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Abstract

Based on the recent breakthrough of Huang (2019), we show that for any total Boolean
function f ,

1. deg(f) = O(d̃eg(f)2): The degree of f is at most quadratic in the approximate degree of f .
This is optimal as witnessed by the OR function.

2. D(f) = O(Q(f)4): The deterministic query complexity of f is at most quartic in the
quantum query complexity of f . This matches the known separation (up to log factors)
due to Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs (2017).

We apply these results to resolve the quantum analogue of the Aanderaa–Karp–Rosenberg
conjecture. We show that if f is a nontrivial monotone graph property of an n-vertex graph
specified by its adjacency matrix, then Q(f) = Ω(n), which is also optimal. We also show that
the approximate degree of any read-once formula on n variables is Θ(

√
n).

1 Introduction

Last year, Huang resolved a major open problem in the analysis of Boolean functions called the
sensitivity conjecture [Hua19], which was open for nearly 30 years [NS94]. Surprisingly, Huang’s
elegant proof takes less than 2 pages—truly a “proof from the book.” Specifically, Huang showed
that for any total Boolean function, which is a function f : {0, 1}n → {0, 1}, we have

deg(f) ≤ s(f)2, (1)

where deg(f) is the real degree of f and s(f) is the (maximum) sensitivity of f . These measures
and other standard measures appearing in this introduction are defined in Section 2.

In this paper, we describe some implications of Huang’s resolution of the sensitivity conjecture
to polynomial-based complexity measures of Boolean functions and quantum query complexity. Our
first observation is that Huang actually proves a stronger claim than Eq. (1), in which s(f) can be
replaced by λ(f), a spectral relaxation of sensitivity we define in Definition 7.

Theorem 1. For all Boolean functions f : {0, 1}n → {0, 1}, we have deg(f) ≤ λ(f)2.
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In short, while s(f) can be viewed as the maximum number of 1s in any row or column of
a certain Boolean matrix, λ(f) is the largest eigenvalue of that matrix, which could potentially
be smaller. This observation has several implications because, as we show, λ(f) lower bounds
many other complexity measures. One of the messages of this work is that λ(f) is an interesting
complexity measure and can be used to establish relationships between other complexity measures.

We use this observation to prove two main results: Our first result is an optimal relationship
between deterministic and quantum query complexity for total functions, and our second result is
an optimal relationship between degree and approximate degree for total functions. We then apply
the first result to prove the quantum analogue of the Aanderaa–Karp–Rosenberg conjecture and
apply the second result to show that the approximate degree of any read-once formula is Θ(

√
n).

Deterministic vs. quantum query complexity. We know from the seminal results of Nisan
[Nis91], Nisan and Szegedy [NS94], and Beals et al. [BBC+01] that for any total Boolean function
f , the deterministic query complexity, D(f), and quantum query complexity, Q(f), satisfy1

D(f) = O(Q(f)6). (2)

Grover’s algorithm [Gro96] shows that for the OR function, a quadratic separation between D(f)
and Q(f) is possible. This was the best known quantum speedup for total functions until Ambainis
et al. [ABB+17] constructed a total function f with

D(f) = Ω̃(Q(f)4). (3)

We show that the quartic separation (up to log factors) in Eq. (3) is actually the best possible.

Theorem 2. For all Boolean functions f : {0, 1}n → {0, 1}, we have D(f) = O(Q(f)4).

We deduce Theorem 2 as a corollary of a new tight relationship between deg(f) and Q(f):

Theorem 3. For all Boolean functions f : {0, 1}n → {0, 1}, we have deg(f) = O(Q(f)2).

Observe that Theorem 3 is tight for the OR function on n variables, whose degree is n and
whose quantum query complexity is Θ(

√
n) [Gro96, BBBV97]. Prior to this work, the best relation

between deg(f) and Q(f) was a sixth power relation, deg(f) = O(Q(f)6), which follows from Eq. (2).
As discussed, our proof relies on the restatement of Huang’s result (Theorem 1), showing that

deg(f) ≤ λ(f)2. We show (in Lemma 9) that the measure λ(f) lower bounds the original quantum
adversary method of Ambainis [Amb02], which in turn lower bounds Q(f).

We now show how Theorem 2 straightforwardly follows from Theorem 3 using two previously
known connections between complexity measures of Boolean functions.

Proof of Theorem 2 assuming Theorem 3. Midrijanis [Mid04] showed that for all total functions f ,

D(f) ≤ bs(f) deg(f), (4)

where bs(f) is the block sensitivity of f .
Theorem 3 shows that deg(f) = O(Q(f)2). Combining the relationship between block sensitivity

and approximate degree from [NS94] with the results of [BBC+01], we get that bs(f) = O(Q(f)2).
(This can also be proved directly using the lower bound method in [BBBV97].)

Combining these three inequalities yields D(f) = O(Q(f)4) for all total Boolean functions f . �

We establish Theorem 3 in Section 3 using Theorem 1 and the spectral adversary method in
quantum query complexity [BSS03].

1This means that for total functions, quantum query algorithms can only outperform classical query algorithms by
a polynomial factor. On the other hand, for partial functions, which are defined on a subset of {0, 1}n, exponential
and even larger speedups are possible.
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Degree vs. approximate degree. We also know from the works of Nisan and Szegedy [NS94]
and Beals et al. [BBC+01], that for any total Boolean function f ,

deg(f) = O(d̃eg(f)6), (5)

where deg(f) and d̃eg(f) are the exact degree and approximate degree of f respectively (defined in
Section 2). We show that this relationship can be also significantly improved.

Theorem 4. For all Boolean functions f : {0, 1}n → {0, 1}, we have deg(f) = O(d̃eg(f)2).

This relationship is optimal since it is saturated by the OR function on n bits that has degree n
and approximate degree Θ(

√
n) [NS94].

Theorem 4 follows by combining deg(f) ≤ λ(f)2 (Theorem 1) with λ(f) = O(d̃eg(f)), which we
prove in Section 4. This is the most technically challenging part of this paper, and we provide two
proofs of this claim. The first proof (Theorem 17) is arguably simpler, but it is not self contained
and uses Sherstov’s composition theorem for approximate degree [She13b], and has a large constant
hidden in the big Oh. The second proof (Theorem 18) does not rely on this result and achieves the
optimal constant inside the big Oh.

Observe that because approximate degree lower bounds quantum query complexity, Theorem 4
also implies Theorem 3 (and hence Theorem 2). Although Theorem 3 is a consequence of this,
our proof of Theorem 3 is much simpler and additionally proves that λ(f) lower bounds the
positive-weights adversary method [Amb02], which is not implied by the proof of Theorem 4.

Applications. In Section 5, we use Theorem 3 to prove the quantum analogue of the famous
Aanderaa–Karp–Rosenberg conjecture. Briefly, this conjecture is about the minimum possible query
complexity of a nontrivial monotone graph property, for graphs specified by their adjacency matrices.

There are variants of the conjecture for different models of computation. For example, the ran-
domized variant of the Aanderaa–Karp–Rosenberg conjecture, attributed to Karp [SW86, Conjecture
1.2] and Yao [Yao77, Remark (2)], states that for all nontrivial monotone graph properties f , we have
R(f) = Ω(n2). Following a long line of work, the current best lower bound is R(f) = Ω(n4/3 log1/3 n)
due to Chakrabarti and Khot [CK01].

The quantum version of the conjecture was raised by Buhrman, Cleve, de Wolf, and Za-
lka [BCdWZ99], who observed that the best we could hope for is Q(f) = Ω(n), because the
nontrivial monotone graph property “contains at least one edge” can be decided with O(n) queries
using Grover’s algorithm. Buhrman et al. [BCdWZ99] also showed that all nontrivial monotone
graph properties satisfy Q(f) = Ω(

√
n). The current best bound is Q(f) = Ω(n2/3 log1/6 n), which

is credited to Yao in [MSS07]. We resolve this conjecture by showing an optimal Ω(n) lower bound.

Theorem 5. Let f : {0, 1}(
n
2) → {0, 1} be a nontrivial monotone graph property. Then Q(f) = Ω(n).

Theorem 5 follows by combining Theorem 3 with a known quadratic lower bound on the degree
of monotone graph properties.

In Section 6, we use Theorem 4 to completely characterize the approximate degree of any
read-once formula. It is known that the quantum query complexity of any read-once formula on n
variables is Θ(

√
n) [BS04, Rei11]. It has long been conjectured that the approximate degree of any

read-once formula is also Θ(
√
n). It has taken much effort to establish this even for special read-once

formulas. For example, the conjecture was proved for the simple depth-two read-once formula
and ◦ or in 2013 [BT13, She13a]. This result was later extended to all constant-depth balanced
read-once formulas [BT15] and then to constant-depth unbalanced read-once formulas [BBGK18].
We resolve this question for all read-once formulas.

Theorem 6. For any read-once formula f : {0, 1}n → {0, 1}, we have d̃eg(f) = Θ(
√
n).
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1.1 Known relations and separations D

R0 QE

C R

RC

bs

s

λ

deg

Q

d̃eg

Figure 1: Relations between com-
plexity measures. An upward line
from a measure M1(f) to M2(f)
denotes M1(f) = O(M2(f)) for all
total functions f .

Table 1 summarizes the known relations and separations be-
tween complexity measures studied in this paper (and more).
This is an update to a similar table that appears in [ABK16]
with the addition of s(f) and λ(f). Definitions and additional
details about interpreting the table can be found in [ABK16].

For all the separations claimed in the table, we provide an
example of a separating function or a citation to construction
of such a function. All the relationships in the table follow
by combining the relationships depicted in Figure 1 and the
following inequalities that hold for all total Boolean functions:

• C(f) ≤ bs(f) s(f) [Nis91]
• D(f) ≤ bs(f)C(f) [BBC+01]
• D(f) ≤ bs(f) deg(f) [Mid04]

• RC(f) = O(d̃eg(f)2) [KT16]
• R0(f) = O(R(f) s(f) logRC(f)) [KT16]
• deg(f) ≤ λ(f)2 [Hua19]
• s(f) ≤ λ(f)2 (Lemma 34)

1.2 Paper organization

Section 2 contains preliminaries and definitions of various complexity measures that appear in
this paper. Section 3 reproves Theorem 1, which follows Huang’s original proof [Hua19], and then

shows that λ(f) = O(Q(f)), which establishes Theorem 3. Section 4 establishes λ(f) = O(d̃eg(f)),
which implies Theorem 4. Section 5 gives some background and motivation for the Aanderaa–Karp–
Rosenberg conjecture and proves Theorem 5. Section 6 establishes Theorem 6. We end with some
open problems in Section 7. Appendix A describes some properties of λ(f), its many equivalent
formulations, and its relationship with other complexity measures.

2 Preliminaries

2.1 Query complexity

Let f : {0, 1}n → {0, 1} be a Boolean function. Let A be a deterministic algorithm that computes
f(x) on input x ∈ {0, 1}n by making queries to the bits of x. The worst-case number of queries
A makes (over choices of x) is the query complexity of A. The minimum query complexity of any
deterministic algorithm computing f is the deterministic query complexity of f , denoted by D(f).

We define the bounded-error randomized (respectively quantum) query complexity of f , denoted
by R(f) (respectively Q(f)), in an analogous way. We say an algorithm A computes f with bounded
error if Pr[A(x) = f(x)] ≥ 2/3 for all x ∈ {0, 1}n, where the probability is over the internal
randomness of A. Then R(f) (respectively Q(f)) is the minimum number of queries required by
any randomized (respectively quantum) algorithm that computes f with bounded error. It is clear
that Q(f) ≤ R(f) ≤ D(f). For more details on these measures, see the survey by Buhrman and de
Wolf [BdW02].
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Table 1: Best known separations between complexity measures

D R0 R C RC bs s λ QE deg Q d̃eg

D 2, 2
[ABB+17]

2, 3
[ABB+17]

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABB+17]

2, 3
[ABB+17]

2, 3
[GPW18]

4, 4
[ABB+17]

4, 4
[ABB+17]

R0 1, 1
⊕

2, 2
[ABB+17]

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABB+17]

2, 3
[ABB+17]

2, 3
[GJPW18]

3, 4
[ABB+17]

4, 4
[ABB+17]

R 1, 1
⊕

1, 1
⊕

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABB+17]

3
2 , 3

[ABB+17]

2, 3
[GJPW18]

3, 4
[BS20]

[SSW20]

4, 4
[ABB+17]

C 1, 1
⊕

1, 1
⊕

1, 2
⊕

2, 2
[GSS13]

2, 2
[GSS13]

2.22, 5
[BHT17]

2.44, 6
[BHT17]a

1.15, 3
[Amb13]

1.63, 3
[NW95]

2, 4
∧

2, 4
∧

RC 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

3
2 , 2

[GSS13]

2, 4
[Rub95]

2, 4
∧

1.15, 2
[Amb13]

1.63, 2
[NW95]

2, 2
∧

2, 2
∧

bs 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 4
[Rub95]

2, 4
∧

1.15, 2
[Amb13]

1.63, 2
[NW95]

2, 2
∧

2, 2
∧

s 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 2
∧

1.15, 2
[Amb13]

1.63, 2
[NW95]

2, 2
∧

2, 2
∧

λ 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

QE 1, 1
⊕

1.33, 2
∧̄-tree

1.33, 3
∧̄-tree

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABK16]

2, 3
[ABK16]

2, 4
∧

4, 4
[ABK16]

deg 1, 1
⊕

1.33, 2
∧̄-tree

1.33, 2
∧̄-tree

2, 2
∧ ◦ ∨

2, 2
∧ ◦ ∨

2, 2
∧ ◦ ∨

2, 2
∧ ◦ ∨

2, 2
∧

1, 1
⊕

2, 2
∧

2, 2
∧

Q 1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 2
[ABK16]

2, 3
[ABK16]

2, 3
[ABK16]

3, 6
[BHT17]

4, 6
[ABK16]

1, 1
⊕

2, 3
[ABK16]

4, 4
[ABK16]

d̃eg 1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 2
[BT17]

2, 2
[BT17]

2, 2
[BT17]

2, 2
[BT17]

2, 2
[BT17]

1, 1
⊕

1, 1
⊕

1, 1
⊕

• An entry a, b in the row M1 and column M2 roughly means that there exists a function g
with M1(g) ≥M2(g)a−o(1), and for all total functions f , M1(f) ≤M2(f)b+o(1) (see [ABK16]
for a precise definition). For example, the 3, 4 entry at row R and column Q means that the
maximum possible separation between R and Q is at least cubic and at most quartic.

• The second row of each cell contains an example of a function that achieves the separation
(or a citation to an example), where ⊕ = parity, ∧ = and, ∨ = or, ∧ ◦ ∨ = and-or, and
∧̄-tree is the balanced nand-tree function.

• Cells have a white background if the relationship is optimal and a gray background otherwise.

• Entries with a green background follow from Huang’s result. Entries with a red background
follow from this work.

a[BHT17] exhibited a family of functions satisfying C(f) = Ω(UCmin(f)1.22), and they also gave a transformation
which modifies a function f in a way that causes s1(f) to become O(1), causes s0(f) to become at most UCmin(f),
and does not decrease C(f). Since we have λ(f) ≤

√
s0(f) s1(f) by Lemma 31, this implies a power 2.44 separation

between λ(f) and C(f).
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2.2 Sensitivity and block sensitivity

Let f : {0, 1}n → {0, 1} be a Boolean function, and let x ∈ {0, 1}n be a string. A block is a subset
of [n]. We say that a block B ⊆ [n] is sensitive for x (with respect to f) if f(x⊕ 1B) 6= f(x), where
1B is the n-bit string that is 1 on bits in B and 0 otherwise. We say a bit i is sensitive for x if the
block {i} is sensitive for x. The maximum number of disjoint blocks that are all sensitive for x is
called the block sensitivity of x (with respect to f), denoted by bsx(f). The number of sensitive
bits for x is called the sensitivity of x, denoted by sx(f). Clearly, bsx(f) ≥ sx(f), since sx(f) is
has the same definition as bsx(f) except that the size of the blocks is restricted to 1. We define
s(f) = maxx∈{0,1}n sx(f) and bs(f) = maxx∈{0,1}n bsx(f).

2.3 Degree measures

A polynomial q ∈ R[x1, . . . , xn] is said to represent the function f : {0, 1}n → {0, 1} if q(x) = f(x)
for all x ∈ {0, 1}n. A polynomial q is said to ε-approximate f if q(x) ∈ [0, ε] for all x ∈ f−1(0) and
q(x) ∈ [1− ε, 1] for all x ∈ f−1(1). The degree of f , denoted by deg(f), is the minimum degree of a

polynomial representing f . The ε-approximate degree, denoted by d̃egε(f), is the minimum degree
of a polynomial ε-approximating f . We will omit ε when ε = 1/3. We know that D(f) ≥ deg(f),

R(f) ≥ d̃eg(f), and Q(f) ≥ d̃eg(f)/2.
The degree of f as a polynomial is also called the Fourier-degree of f , which equals max{|S| :

|f̂(S)| 6= 0} where f̂(S) := Ex[f(x) · (−1)
∑

i∈S xi ]. In particular, deg(f) < n if and only if f agrees
with the Parity function, parityn(x) = ⊕ni=1xi, on exactly half of the inputs.

3 Degree, spectral sensitivity, and quantum query complexity

Before proving Theorem 3, which is based on Huang’s proof, we reinterpret his result in terms of a
new complexity measure of Boolean functions that we call λ(f): the spectral norm of the sensitivity
graph of f .

Definition 7 (Sensitivity Graph Gf , Spectral Sensitivity λ(f)). Let f : {0, 1}n → {0, 1} be a
Boolean function. The sensitivity graph of f , Gf = (V,E) is a subgraph of the Boolean hypercube,
where V = {0, 1}n, and E = {(x, x⊕ ei) ∈ V × V : i ∈ [n], f(x) 6= f(x⊕ ei)}. That is, E is the set
of edges between neighbors on the hypercube that have different f-value. Let Af be the adjacency
matrix of the graph Gf . We define the spectral sensitivity of f as λ(f) = ‖Af‖.

Note that since Gf is bipartite, the largest and smallest eigenvalues of Af are equal in magni-
tude [GR01, Theorem 8.8.2], and because Af is a real symmetric matrix, λ(f) is also the maximum
eigenvalue of Af .

Huang’s proof of the sensitivity conjecture [Hua19] can be divided into two steps:

1. ∀f : deg(f) ≤ λ(f)2

2. ∀f : λ(f) ≤ s(f)

The second step is the simple fact that the spectral norm of an adjacency matrix is at most the
maximum degree of any vertex in the graph, which equals s(f) in this case.

We reprove the first claim of Huang’s proof [Hua19], i.e., deg(f) ≤ λ(f)2, for completeness. This
is Theorem 1 from the introduction.

Theorem 1. For all Boolean functions f : {0, 1}n → {0, 1}, we have deg(f) ≤ λ(f)2.

6



Proof. Without loss of generality we can assume that deg(f) = n since otherwise we can restrict
our attention to a subcube of dimension deg(f) in which the degree remains the same and the top
eigenvalue is at most λ(f). Specifically, we can choose any monomial in the polynomial representing
f of degree deg(f) and set all the variables not appearing in this monomial to 0.

For f with deg(f) = n, let V0 = {x ∈ {0, 1}n : f(x) = parityn(x)} and V1 = {x ∈ {0, 1}n :
f(x) 6= parityn(x)}. By the fact that deg(f) = n we know that |V0| 6= |V1| as otherwise f would
have 0 correlation with the n-variate parity function, implying that f ’s top Fourier coefficient is 0.

We also note that any edge in the hypercube that goes between V0 and V0 is an edge in
Gf since it changes the value of f . This holds since for such an edge, (x, x ⊕ ei), we have
f(x) = parityn(x) 6= parityn(x⊕ ei) = f(x⊕ ei). Similarly, any edge in the hypercube that goes
between V1 and V1 is an edge in Gf .

Assume without loss of generality that |V0| > |V1|. Thus, |V0| ≥ 2n−1 + 1. We will show that
there exists a nonzero vector v′ supported only on the entries of V0, such that ‖Af · v′‖ ≥

√
n · ‖v′‖.

Let G = (V,E) be the complete n-dimensional Boolean hypercube. That is, V = {0, 1}n and
E = {(x, x ⊕ ei) : x ∈ {0, 1}n, i ∈ [n]}. Take the following signing of the edges of the Boolean
hypercube, defined recursively.

B1 =

(
0 1
1 0

)
and Bi =

(
Bi−1 I
I −Bi−1

)
for i ∈ {2, . . . , n}. (6)

This gives a new matrix Bn ∈ {−1, 0, 1}V×V where Bn(x, y) = 0 if and only if x is not a neighbor
of y in the hypercube.

Huang showed that Bn has 2n/2 eigenvalues that equal −
√
n and 2n/2 eigenvalues that equal

+
√
n. To show this, he showed that B2

n = n · I by induction on n and thus all eigenvalues of Bn
must be either +

√
n or −

√
n. Then, observing that the trace of Bn is 0, as all diagonal entries

equal 0, we see that we must have an equal number of +
√
n and −

√
n eigenvalues.

Thus, the subspace of eigenvectors for Bn with eigenvalue
√
n is of dimension 2n/2. Using

|V1| < 2n/2, there must exists a nonzero eigenvector for Bn with eigenvalue
√
n that vanishes on V1.

Fix v to be any such vector.
Let v′ be the vector whose entries are the absolute values of the entries of v. We claim that

‖Af · v′‖2 ≥
√
n · ‖v′‖2. To see so, note that for every x ∈ V0 we have

(Af · v′)x =
∑

y∼x:f(y)6=f(x)

v′y =
∑

y∼x:y∈V0

v′y =
∑
y∼x

v′y

≥
∑

y∈{0,1}n
|Bx,yvy| ≥

∣∣∣∣∣∣
∑

y∈{0,1}n
Bx,yvy

∣∣∣∣∣∣ =
√
n · |vx| =

√
n · v′x . (7)

On the other hand, for x ∈ V1 we have (Af · v′)x = 0 = v′x. Thus the norm of Af · v′ is at least
√
n

times the norm of v′, and hence λ(f) = ‖Af‖ ≥
√
n =

√
deg(f). �

Finally, we prove that λ(f) = O(Q(f)). This proof goes via the spectral adversary method, SA(f),
introduced by Barnum, Saks, and Szegedy [BSS03], which has many other equivalent formulations
described in [SS06]. This result also follows from the equivalent characterization of λ(f) as K(f), a
complexity measure defined by Koutsoupias [Kou93] that we describe in more detail in Appendix A,
and the known result that K(f) ≤ SA(f) due to Laplante, Lee, and Szegedy [LLS06, Theorem 5.2].
We provide a self-contained proof here for completeness.

Definition 8 (Spectral Adversary method). Let {Di}i∈[n] and F be matrices of size {0, 1}n×{0, 1}n
with entries in {0, 1} satisfying Di[x, y] = 1 if and only if xi 6= yi, and F [x, y] = 1 if and

7



only if f(x) 6= f(y). Let Γ denote a {0, 1}n × {0, 1}n nonnegative symmetric matrix such that
Γ ◦ F = Γ (i.e., the nonzero entries of Γ are a subset of the the nonzero entries of F ). Then

SA(f) = maxΓ
‖Γ‖

maxi∈[n] ‖Γ◦Di‖ .

Barnum, Saks, and Szegedy [BSS03] proved that Q(f) = Ω(SA(f)).

Lemma 9. For all partial Boolean functions f , λ(f) ≤ SA(f) = O(Q(f)).

Proof. We first prove that λ(f) ≤ SA(f). Indeed, one can take Γ to be simply the adjacency
matrix of Gf . That is, for any x, y ∈ {0, 1}n put Γ[x, y] = 1 if and only if y ∼ x in the hypercube
and f(x) 6= f(y). We observe that ‖Γ‖ = λ(f). On the other hand, for any i ∈ [n], Γ ◦Di is the
restriction of the sensitive edges in direction i. The maximum degree in the graph represented by
Γ ◦Di is 1 hence ‖Γ ◦Di‖ is at most 1. Thus we have

SA(f) ≥ ‖Γ‖
maxi∈[n] ‖Γ ◦Di‖

≥ λ(f). (8)

Combining this with Q(f) = Ω(SA(f)) [BSS03], we get λ(f) ≤ SA(f) = O(Q(f)). �

From Theorem 1 and Lemma 9 we immediately get Theorem 3.

4 Degree vs. approximate degree

In this section we establish that for all total functions, spectral sensitivity is lower bounded by
approximate degree. We first prove the simpler result for exact degree and then provide two proofs
of the result for approximate degree.

4.1 Spectral sensitivity lower bounds degree

We first show the simpler result that spectral sensitivity lower bounds (exact) degree.

Theorem 10. For all total Boolean functions f : {0, 1}n → {0, 1}, λ(f) ≤ deg(f).

We start by expressing λ(f) in a way that allows us to relate it to a polynomial representing f . In
the following let H denote the Hadamard matrix of size 2n×2n, defined as Hxy = (−1)〈x,y〉2−n/2. For
any function f : {0, 1}n → R, we let diag(f) be the diagonal matrix that satisfies diag(f)xx = f(x).
We also let Xxx be the diagonal matrix satisfying Xxx = |x|, where |x| is the Hamming weight of x.

Lemma 11. Let f : {0, 1}n → {0, 1} be a total Boolean function and g : {0, 1}n → {−1, 1} be
defined as g = 1− 2f . Then λ(f) = maxv:‖v‖=1 v

T(RXR−X)v, where R = H diag(g)H.

Proof. Following Definition 7, let the sensitivity graph of f be Gf , its adjacency matrix be
Af , and its spectral sensitivity be λ(f) = ‖Af‖. Since Af is a symmetric matrix, we have
λ(f) = maxv:‖v‖=1 |vTAfv|. Furthermore, Gf is a bipartite matrix, as there are no edges between
vertices of odd and even Hamming weight, which means the spectrum of Af is symmetric about
0 [GR01, Theorem 8.8.2]. Thus λ(f) = maxv:‖v‖=1 v

TAfv.
Let AH be the adjacency matrix of the hypercube graph (V,E) with V = {0, 1}n and edges

(x, x⊕ ei) for all x ∈ {0, 1}n and i ∈ [n]. Then we can express Af as

2Af = AH − diag(g)AH diag(g), (9)

8



since the (x, y) entry of the right hand side is 1− g(x)g(y) when (x, y) is an edge in the hypercube
and 0 otherwise. Let us rewrite this expression in the basis that diagonalizes AH . It is known that
H diagonalizes AH , and AH = H(n1− 2X)H, where 1 is the identity matrix. This is because

(HAHH)xy =
1

2n

∑
z∈{0,1}n

∑
i∈[n]

(−1)〈x,z〉+〈z⊕ei,y〉 =
1

2n

∑
z∈{0,1}n

(−1)〈x⊕y,z〉
∑
i∈[n]

(−1)yi . (10)

The first sum is 0 if x 6= y and otherwise the expression evaluates to n−2|x| showing that HAHH =
(n1 − 2X). Furthermore, since H is an involution (i.e., H2 = 1), we have H(n1 − 2X)H = AH .
Using these two identities, we have

λ(f) = max
v:‖v‖=1

vTAfv = max
v:‖v‖=1

vTHAfHv (11)

=
1

2
max
v:‖v‖=1

vT(HAHH −H diag(g)AH diag(g)H)v (12)

=
1

2
max
v:‖v‖=1

vT(n1− 2X −H diag(g)H(n1− 2X)H diag(g)H)v (13)

= max
v:‖v‖=1

vT(−X + (H diag(g)H)X(H diag(g)H))v (14)

= max
v:‖v‖=1

vT(RXR−X)v, (15)

where Eq. (11) uses HT = H and ‖Hv‖ = ‖v‖. �

In the proof below we use two main properties of the matrix R. First, R is a symmetric,
orthonormal matrix. Second, that Rxy = 0 if |x⊕y| > deg(g), where |x⊕y| is the Hamming distance
between x and y. Since any polynomial representing f can be transformed into one representing g
without changing its degree, note that deg(g) = deg(f). The first property follows straightforwardly
and we establish the second property now. Note that this lemma does not require the output of g
to be in {−1, 1}, a fact we use in the next section.

Lemma 12. Let g : {0, 1}n → R have real degree d and let R = H diag(g)H. Then for all
x, y ∈ {0, 1}n, Rxy = ĝ(x ⊕ y), where for all z ∈ {0, 1}n, ĝ(z) = 1

2n
∑

y∈{0,1}n(−1)〈z,y〉g(y).
Consequently, Rxy = 0 if |x⊕ y| > d.

Proof. From the definition of R, we have

Rxy =
1

2n

∑
z∈{0,1}n

(−1)〈x,z〉(−1)〈z,y〉g(z) =
1

2n

∑
z∈{0,1}n

(−1)〈x⊕y,z〉g(z) = ĝ(x⊕ y). (16)

Since g can be represented by a polynomial of degree d, all Fourier coefficients ĝ(z) with |z| > d are
0 and hence if |x⊕ y| > d we have Rxy = ĝ(x⊕ y) = 0. �

From Lemma 11, we know that λ(f) is the maximum value of vT(RXR − X)v over all unit
vectors v, which can be written as

vT(RXR−X)v =
∑

x∈{0,1}n
|x|(Rv)2

x −
∑

x∈{0,1}n
|x|v2

x =
n∑
i=1

ici −
n∑
j=1

jbj , (17)

where we have defined ci :=
∑

x:|x|=i(Rv)2
x and bj :=

∑
x:|x|=j v

2
x.
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To upper bound this expression, we need to relate the ci and bj quantities. We can establish a
relationship using the fact that because R is sparse, if the input vector v is concentrated on one
Hamming weight, then Rv will be concentrated on nearby Hamming weights (up to distance d). We
formalize this idea in the lemma below. Note that this lemma does not use all the properties of R
that we have established and we will need this in the next section.

Lemma 13. Let R be a matrix with ‖R‖ ≤ 1 satisfying Rxy = 0 when |x⊕ y| > d. For any vector
v, define ci :=

∑
x:|x|=i(Rv)2

x and bj :=
∑

x:|x|=j v
2
x. Then for any r ∈ {d+ 1, . . . , n}, we have

n∑
i=r

ci ≤
n∑

j=r−d
bj . (18)

Proof. By expanding the definition of ci, we have

n∑
i=r

ci =
∑
y:|y|≥r

(Rv)2
y =

∑
y:|y|≥r

 ∑
x∈{0,1}n

Ryxvx

2

=
∑
y:|y|≥r

 ∑
x∈{0,1}n

RyxΠ(≥r−d)vx

2

, (19)

where we define Π(≥r) to be the diagonal projector that satisfies the following for any vector v:

(Π(≥r)v)x =

{
vx if |x| ≥ r
0 otherwise

. (20)

The last equality holds because R(x, y) = 0 if |x⊕ y| > d so we can restrict the sum over x to be
over those x with |x| ≥ r − d, and thus the only entries vx that appear in the sum have |x| ≥ r − d.
Thus we have

n∑
i=r

ci =
∑
y:|y|≥r

(
(R(Π(≥r−d)v)y

)2 ≤ ∑
y∈{0,1}n

(
(R(Π(≥r−d)v)y

)2
= ‖R(Π(≥r−d)v)‖2, (21)

where the inequality holds because we only added more positive numbers to the sum by relaxing
the sum over y. Finally,

‖R(Π(≥r−d)v)‖2 ≤ ‖Π(≥r−d)v‖2 =
∑

x:|x|≥r−d

v2
x =

n∑
j=r−d

bj . (22)

where the inequality uses ‖R‖ ≤ 1. This yields the claimed result. �

We can now formally show the upper bound on vT(RXR−X)v for a unit vector v.

Lemma 14. Let R be a matrix with ‖R‖ ≤ 1 satisfying Rxy = 0 when |x⊕ y| > d. For any unit
vector v, we have

vT(RXR−X)v ≤ d. (23)

Proof. As shown in Eq. (17),

vT(RXR−X)v =
n∑
i=1

ici −
n∑
j=1

jbj , (24)
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where ci :=
∑

x:|x|=i(Rv)2
x and bj :=

∑
x:|x|=j v

2
x. Lemma 13 already established the following

inequalities for all r ∈ {d+ 1, . . . , n}:
n∑
i=r

ci ≤
n∑

j=r−d
bj , (25)

If we sum up these inequalities for all values of r ∈ {d+ 1, . . . , n}, we don’t quite get the sums that
appear in Eq. (24). So let’s throw in some additional inequalities. For r ∈ {1, . . . , d}, we have

n∑
i=r

ci ≤ 1, (26)

which uses the fact that
∑n

i=r ci ≤
∑n

i=0 ci = ‖Rv‖2 ≤ 1 because ‖R‖ ≤ 1 and ‖v‖ = 1. We also
have for all k ∈ {0, . . . , d− 1}

0 ≤
n∑

j=n−k
bj , (27)

using the fact that all bj ≥ 0.
If we sum up all the inequalities in Eq. (25) for r ∈ {d+ 1, . . . , n}, the inequalities in Eq. (26)

for r ∈ {1, . . . , d}, and the inequalities in Eq. (27) for k ∈ {0, . . . , d− 1}, we get

n∑
i=1

ici ≤
n∑
j=1

jbj + d, (28)

which shows that vT(RXR−X)v ≤ d. �

We can now establish Theorem 10.

Proof of Theorem 10. From Lemma 11, we have that λ(f) = max‖v‖=1 v
T(RXR −X)v and from

Lemma 14 we know that for any unit vector v, vT(RXR−X)v ≤ d = deg(g) = deg(f). �

4.2 Spectral sensitivity lower bounds approximate degree

We will now strengthen the previous result to show that spectral sensitivity also lower bounds
approximate degree. As an intermediate result, we first establish this bound with a log factor. The
stronger result without a log factor will follow from this in a completely black box way.

Lemma 15. For all total Boolean functions f : {0, 1}n → {0, 1}, λ(f) = O(d̃eg(f) log n).

We use the same notation as in the previous section, where f : {0, 1}n → {0, 1} is the total
Boolean function under consideration and g(x) = 1− 2f(x).

Let g̃ be a minimum degree polynomial that ε-approximates the function g : {0, 1}n → {−1, 1}
for some ε < 1/2 to be chosen later. We know that there exists a polynomial that 1/3-approximates

f and has degree d̃eg(f). It is also known that d̃egε(f) = O(d̃eg(f) log(1/ε)) for any (total or
partial) function f . See [BNRdW07] for an explicit construction using “amplification polynomials.”
Hence there there is a ε-approximating polynomial for f , and hence for g, of degree at most
O(d̃eg(f) log(1/ε)). Let g̃ be such a polynomial with degree d = O(d̃eg(f) log(1/ε)). Specifically, we
have for all x ∈ {0, 1}n that g(x) = −1 =⇒ g̃(x) ∈ [−1,−1 + ε] and g(x) = 1 =⇒ g̃(x) ∈ [1− ε, 1].

We start by proving a statement analogous to Lemma 11, but using a polynomial that ε-
approximates f .
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Lemma 16. Let f : {0, 1}n → {0, 1} be a total Boolean function and g : {0, 1}n → {−1, 1} be

defined as g = 1− 2f . Let g̃ be a degree O(d̃eg(f) log(1/ε)) polynomial that ε-approximates g. Then
λ(f) = maxv:‖v‖=1 v

T(R̃XR̃−X)v + 3εn, where R̃ = H diag(g̃)H.

Proof. Using Lemma 11, we have

λ(f) = max
v:‖v‖=1

vT(RXR−X)v (29)

= max
v:‖v‖=1

vT(H diag(g)HXH diag(g)H −X)v (30)

= max
v:‖v‖=1

vT(H(diag(g̃) + diag(g − g̃))HXH(diag(g̃) + diag(g − g̃))H −X) (31)

≤ max
v:‖v‖=1

vT(H diag(g̃)HXH diag(g̃)H −X)v + 3εn (32)

= max
v:‖v‖=1

vT(R̃XR̃−X)v + 3εn, (33)

where the inequality follows from the fact that ‖ diag(g − g̃))‖ ≤ ε, ‖H‖ = 1, and ‖X‖ = n. �

As before, let us examine the matrix R̃ = H diag(g̃)H. It follows from the definition that R̃ is a
symmetric matrix. It is also nearly orthonormal and satisfies ‖R̃‖ ≤ 1 because

‖R̃‖ = max
x
|g̃(x)| ≤ 1. (34)

Finally, we still have R̃xy = 0 if |x⊕ y| > d = deg(g̃) as before from Lemma 12, since the lemma
did not assume that the output of g was in {−1, 1}. We are now ready to prove Lemma 15.

Proof of Lemma 15. From Lemma 16 we have that λ(f) = maxv:‖v‖=1 v
T(R̃XR̃−X)v+ 3εn, where

R̃ = H diag(g̃)H and g̃ is an ε-approximating polynomial for g of degree d = O(d̃eg(f) log(1/ε)).
The matrix R̃ satisfies the assumptions of Lemma 14, so we have λ(f) ≤ d+ 3εn. Choosing ε = 1/3n

gives us λ(f) = O(d̃eg(f) log n). �

Our main result now follows from this weaker statement in a black box way.

Theorem 17. For all total Boolean functions f : {0, 1}n → {0, 1}, λ(f) = O(d̃eg(f)).

Proof. This proof uses Boolean function composition and the tensor power trick [Tao08, 1.9.4]. It

relies on the composition properties of the complexity measures λ(f) and d̃eg(f).
First, it is not too hard to show that for all Boolean functions f and g,

λ(f ◦ g) = λ(f)λ(g). (35)

This essentially follows from known results on the quantum adversary bound, but we include a proof
the appendix (Theorem 29) for completeness. We only need the ≥ direction in this proof.

Second, we need the fact that approximate degree composes with at most a constant factor
overhead in the upper bound direction. Sherstov [She13b] showed that for all total functions f and
g, we have

d̃eg(f ◦ g) ≤ c d̃eg(f) d̃eg(g), (36)

for some universal constant c ≥ 1.
Now from Lemma 15, we know that there exists a constant c′ such that for all f : {0, 1}n → {0, 1},

we have
λ(f) ≤ c′ d̃eg(f) log n. (37)
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Let fk : {0, 1}nk → {0, 1} denote the function f composed with itself k times. Then we have for all
k ∈ N,

λ(f)k = λ(fk) ≤ c′ d̃eg(fk) log(nk) ≤ c′ck−1 d̃eg(f)k(k log n). (38)

Taking the kth root on both sides gives us

λ(f) ≤ (c′k log n)1/kc d̃eg(f). (39)

Since this equation holds for arbitrarily large k, we must have

λ(f) ≤ c d̃eg(f), (40)

which completes the proof. �

4.3 An alternate self-contained proof

We now reprove the previous result, that spectral sensitivity lower bounds approximate degree,
without using Sherstov’s composition theorem for approximate degree [She13b]. Our alternate proof
also has the advantage of yielding a tighter upper bound by a constant factor.

As in the previous section, f : {0, 1}n → {0, 1} is the total function under consideration

and we want to relate λ(f) to d̃egε(f), where for any ε ∈ [0, 1/2), d̃egε(f) is the minimum
degree of a polynomial q such that for all x ∈ {0, 1}n, f(x) = 1 =⇒ q(x) ∈ [1 − 2ε, 1] and
f(x) = 0 =⇒ q(x) ∈ [−1,−1 + 2ε].

The main result of this section is the following, which also implies Theorem 10 by setting ε = 0.

Theorem 18. For all total Boolean functions f : {0, 1}n → {0, 1} and ε ∈ [0, 1/2), λ(f) ≤
1

1−2ε d̃egε(f).

We start by upper bounding λ(f) by the norm of a matrix Bq that is derived from the polynomial
q. For any ε, let q be an ε-approximating polynomial for f (as defined above). We then define for
all x, y ∈ {0, 1}n,

(Bq)xy =

{
1
2(q(x)− q(y)) if |x⊕ y| = 1,

0 if |x⊕ y| 6= 1.
(41)

Lemma 19. For any total Boolean function f : {0, 1}n → {0, 1} and Bq as defined in Eq. (41) from
an ε-approximating polynomial q, we have λ(f) ≤ 1

1−2ε‖Bq‖.

Proof. We know that λ(f) = ‖Af‖, where (Af )xy = 1 if and only if |x⊕ y| = 1 and f(x) 6= f(y),
and otherwise (Af )xy = 0. Because Af has nonzero entries only when f(x) 6= f(y), if we reorder
the basis {0, 1}n such that all inputs with f(x) = 0 come first and all inputs with f(y) = 1 come
after, then Af will be a block matrix of the form

Af =

(
0 AT

A 0

)
. (42)

It is easy to see that ‖Af‖ = ‖A‖. Let us now write Bq in the same reordered basis, and call the
bottom left matrix B. For x ∈ f−1(1) and y ∈ f−1(0), Bxy = 1

2(q(x) − q(y)) if |x ⊕ y| = 1. For
these inputs, we know that q(x) ∈ [1− 2ε, 1] and q(y) ∈ [−1,−1 + 2ε], and thus Bxy ∈ [1− 2ε, 1] if
|x⊕ y| = 1. All other entries in B equal 0. The matrix A satisfies Axy = 1 if |x⊕ y| = 1. Thus we
observe that Bxy ≥ (1− 2ε)Axy for all x ∈ f−1(1) and y ∈ f−1(0). Let u and v be unit vectors such
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that uTAv = ‖A‖. Since A is a nonnegative matrix, we may assume without loss of generality that
u, v ≥ 0.2 Using these vectors, we see that ‖B‖ ≥ uTBv ≥ (1− 2ε)uTAv = (1− 2ε)‖A‖.

Since B is a submatrix of Bq, we have ‖Bq‖ ≥ ‖B‖ ≥ (1 − 2ε)‖A‖ = (1 − 2ε)‖Af‖ = (1 −
2ε)λ(f). �

We now express Bq in terms of matrices that are easier to work with. The first matrix, which

was also defined in the previous section, is R̃ = H diag(q)H, where diag(q) denotes the 2n × 2n

matrix with q(x) on the diagonal. The second matrix is W of size 2n× 2n, defined as Wxy = |x|− |y|
for all x, y ∈ {0, 1}n.

In the following, for two m×n matrices A and B, we denote by A�B the Hadamard product (i.e.,
entrywise product) of A and B. A�B is an m×n matrix, with elements given by (A�B)i,j = Ai,jBi,j .

Lemma 20. For the matrix Bq defined in Eq. (41), and W and R̃ defined above, ‖Bq‖ = ‖W � R̃‖.

Proof. We have Bq = (diag(q)AH − AH diag(q))/2, where AH is the adjacency matrix of the
Boolean hypercube. This can be verified by observing that at position (x, y), both sides are 0 if
|x⊕ y| 6= 1, and otherwise both sides are (q(x)− q(y))/2. Now, recall that AH = H(n1− 2X)H,
where 1 is the identity matrix, X is the matrix satisfying Xxx = |x| and H is the Hadamard matrix.
Hence

HBqH =
H diag(q)H(nI − 2X)− (nI − 2X)H diag(q)H

2
= XR̃− R̃X. (43)

Then for any x, y ∈ {0, 1}n,

(HBqH)xy = (XR̃− R̃X)xy = |x|R̃xy − |y|R̃xy = (|x| − |y|)R̃xy = (W � R̃)xy. (44)

Since H is unitary, ‖Bq‖ = ‖HBqH‖ = ‖W � R̃‖. �

We now need to upper bound ‖W � R̃‖. First, we observe that Lemma 12 shows that the

matrix R̃ satisfies R̃xy = 0 if |x ⊕ y| ≥ d = d̃egε(f). The lemma was established for a different

matrix R, but R̃ satisfies the assumptions of the lemma as well. Then, due to the above observation,
W � R̃ = V � R̃ for any matrix V that satisfies Vxy = Wxy for x, y with |x⊕ y| ≤ d. Thus, it suffices

to bound ‖V � R̃‖ for any matrix V as above. In particular, we could design a matrix V as above
all whose entries are bounded by d in absolute value. It is tempting to say that since V ’s entries
are bounded by d and since ‖R̃‖ ≤ 1 then ‖V � R̃‖ ≤ d however this is not well-justified since
matrix norms can increase dramatically even if we just change the signs of some entries in a matrix.
Nevertheless, we would show that there exists a choice of V for which the above assertion hold.
Moreover we would show that for a certain choice of V as above, it holds that ‖V �A‖ ≤ d‖A‖ for
any matrix A. Indeed, such a property is captured by the γ2-norm of V . This γ2-norm arises in
communication complexity [LMSS07, LSS08] and is also known as the Schur product norm [Wal86].
It is defined as follows.

Definition 21 (γ2 norm). For any m× n matrix A, we define

γ2(A) = min
X,Y :XTY=A

c(X)c(Y ), (45)

where c(X) is the maximum `2 norm of any column of X.

2Otherwise, by taking point-wise absolute values on u and v we would get two unit vectors ũ and ṽ with
ũTAṽ =

∑
i,j ũiAi,j ṽj ≥

∑
i,j uiAi,jvj = uTAv.
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A crucial property of the γ2-norm is that ‖A�B‖ ≤ γ2(A) · ‖B‖ for any two m× n matrices A
and B.3 We use it to prove the next lemma.

Lemma 22. Let Bq and W be as defined above. Let V be any matrix that satisfies Vxy = Wxy when
||x| − |y|| ≤ d. Then ‖Bq‖ ≤ γ2(V ).

Proof. In Lemma 20 we showed that ‖Bq‖ = ‖W�R̃‖. Since R̃xy = 0 if |x⊕y| ≥ d, W�R̃ = V �R̃
since V and W agree on inputs where ||x| − |y|| ≤ d, which is implied by the condition |x⊕ y| ≤ d.
Thus ‖Bq‖ = ‖V � R̃‖. We then use the relationship ‖A � B‖ ≤ γ2(A)‖B‖, which is not hard

to show (see, e.g., [AHJ87, Section 5] or [LSS08, Theorem 9]). This gives us ‖Bq‖ ≤ γ2(V )‖R̃‖.
Finally, since R̃ = H diag(q)H and for any x, |q(x)| ≤ 1, we have ‖R̃‖ ≤ 1. �

Now we can upper bound ‖Bq‖ by γ2(V ) for any matrix V that satisfies Vxy = |x| − |y| when
||x| − |y|| ≤ d. Instead of working with V , which is a 2n × 2n matrix, the following lemma will allow
us work with an (n+ 1)× (n+ 1) matrix.

Lemma 23. Let M be any (n+ 1)× (n+ 1) matrix that satisfies Mst = s− t for all s, t ∈ {0, . . . , n}
with |s − t| ≤ d. Then there exists a matrix V satisfying the conditions of Lemma 22, such that
γ2(V ) ≤ γ2(M).

Proof. If M is such a matrix, then we can get an appropriate matrix V simply by duplicating rows
and columns of M . That is, index the rows and columns of M by {0, 1, . . . , n}, and let V be the
2n × 2n matrix defined by Vx,y = M|x|,|y|. Then we can get V from M by duplicating row j of M to
create

(
n
j

)
copies of it, for each j ∈ {0, 1, . . . , n}, and then repeating the duplication for the columns.

To ensure that γ2(V ) ≤ γ2(M), all we need to show is that duplicating a row or column of
a matrix does not increase γ2(·). This is easy to see: if the matrix we start with is M = XTY
with c(X)c(Y ) = γ2(M), then duplicating a row of M gives the matrix M ′, which can be factored
M ′ = (X ′)TY , where X ′ is the matrix we get by duplicating the corresponding row of XT (which is
a column of X). Since duplicating a column of X does not affect c(X), we get a factorization of
M ′ which certifies that γ2(M ′) ≤ c(X)c(Y ) = γ2(M). A similar argument shows that duplicating a
column of M also does not increase γ2(·). �

Lemma 24. There is an (n+ 1)× (n+ 1) matrix M such that γ2(M) ≤ d and Mst = s− t for all
s, t ∈ {0, 1, . . . , n} with |s− t| ≤ d.

Proof. We start with a slightly informal “picture” proof. To explain the matrix M , it will be
simplest to give an example for the case d = 3, n = 12. We pick M to be the following matrix:

0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1 0
+1 0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1
+2 +1 0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2
+3 +2 +1 0 −1 −2 −3 −2 −1 0 +1 +2 +3
+2 +3 +2 +1 0 −1 −2 −3 −2 −1 0 +1 +2
+1 +2 +3 +2 +1 0 −1 −2 −3 −2 −1 0 +1
0 +1 +2 +3 +2 +1 0 −1 −2 −3 −2 −1 0

−1 0 +1 +2 +3 +2 +1 0 −1 −2 −3 −2 −1
−2 −1 0 +1 +2 +3 +2 +1 0 −1 −2 −3 −2
−3 −2 −1 0 +1 +2 +3 +2 +1 0 −1 −2 −3
−2 −3 −2 −1 0 +1 +2 +3 +2 +1 0 −1 −2
−1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1 0 −1
0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1 0


(46)

Here the matrix M is a 13 × 13 matrix which satisfies Mst = s − t when |s − t| ≤ 3: that is,
within distance 3 of its diagonal, the entries of M are equal to the distance to the diagonal (and
they are positive below the diagonal and negative above it). Next, we write M as a sum of d = 3

3This inequality can also be used to define the γ2 norm. As [LSS08, Theorem 9] shows, we can equivalently define
γ2(A) as the maximum of ‖A�B‖ over all matrices B with ‖B‖ ≤ 1.
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matrices that have entries in {−1, 0,+1}. Note that each of the following d matrices have d × d
blocks of −1 just above the diagonal and d× d blocks of +1 just below the diagonal.

0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1 0
+1 0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1
+2 +1 0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2
+3 +2 +1 0 −1 −2 −3 −2 −1 0 +1 +2 +3
+2 +3 +2 +1 0 −1 −2 −3 −2 −1 0 +1 +2
+1 +2 +3 +2 +1 0 −1 −2 −3 −2 −1 0 +1
0 +1 +2 +3 +2 +1 0 −1 −2 −3 −2 −1 0

−1 0 +1 +2 +3 +2 +1 0 −1 −2 −3 −2 −1
−2 −1 0 +1 +2 +3 +2 +1 0 −1 −2 −3 −2
−3 −2 −1 0 +1 +2 +3 +2 +1 0 −1 −2 −3
−2 −3 −2 −1 0 +1 +2 +3 +2 +1 0 −1 −2
−1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1 0 −1
0 −1 −2 −3 −2 −1 0 +1 +2 +3 +2 +1 0


=



0 0 0 −1 −1 −1 0 0 0 +1 +1 +1 0
0 0 0 −1 −1 −1 0 0 0 +1 +1 +1 0
0 0 0 −1 −1 −1 0 0 0 +1 +1 +1 0

+1 +1 +1 0 0 0 −1 −1 −1 0 0 0 +1
+1 +1 +1 0 0 0 −1 −1 −1 0 0 0 +1
+1 +1 +1 0 0 0 −1 −1 −1 0 0 0 +1
0 0 0 +1 +1 +1 0 0 0 −1 −1 −1 0
0 0 0 +1 +1 +1 0 0 0 −1 −1 −1 0
0 0 0 +1 +1 +1 0 0 0 −1 −1 −1 0

−1 −1 −1 0 0 0 +1 +1 +1 0 0 0 −1
−1 −1 −1 0 0 0 +1 +1 +1 0 0 0 −1
−1 −1 −1 0 0 0 +1 +1 +1 0 0 0 −1
0 0 0 −1 −1 −1 0 0 0 +1 +1 +1 0



+



0 0 −1 −1 −1 0 0 0 +1 +1 +1 0 0
0 0 −1 −1 −1 0 0 0 +1 +1 +1 0 0

+1 +1 0 0 0 −1 −1 −1 0 0 0 +1 +1
+1 +1 0 0 0 −1 −1 −1 0 0 0 +1 +1
+1 +1 0 0 0 −1 −1 −1 0 0 0 +1 +1
0 0 +1 +1 +1 0 0 0 −1 −1 −1 0 0
0 0 +1 +1 +1 0 0 0 −1 −1 −1 0 0
0 0 +1 +1 +1 0 0 0 −1 −1 −1 0 0

−1 −1 0 0 0 +1 +1 +1 0 0 0 −1 −1
−1 −1 0 0 0 +1 +1 +1 0 0 0 −1 −1
−1 −1 0 0 0 +1 +1 +1 0 0 0 −1 −1
0 0 −1 −1 −1 0 0 0 +1 +1 +1 0 0
0 0 −1 −1 −1 0 0 0 +1 +1 +1 0 0


+



0 −1 −1 −1 0 0 0 +1 +1 +1 0 0 0
+1 0 0 0 −1 −1 −1 0 0 0 +1 +1 +1
+1 0 0 0 −1 −1 −1 0 0 0 +1 +1 +1
+1 0 0 0 −1 −1 −1 0 0 0 +1 +1 +1
0 +1 +1 +1 0 0 0 −1 −1 −1 0 0 0
0 +1 +1 +1 0 0 0 −1 −1 −1 0 0 0
0 +1 +1 +1 0 0 0 −1 −1 −1 0 0 0

−1 0 0 0 +1 +1 +1 0 0 0 −1 −1 −1
−1 0 0 0 +1 +1 +1 0 0 0 −1 −1 −1
−1 0 0 0 +1 +1 +1 0 0 0 −1 −1 −1
0 −1 −1 −1 0 0 0 +1 +1 +1 0 0 0
0 −1 −1 −1 0 0 0 +1 +1 +1 0 0 0
0 −1 −1 −1 0 0 0 +1 +1 +1 0 0 0


(47)

For a general d, M will be a sum of d matrices that we call C0, C1, . . . , Cd−1. We now explain
how to upper bound γ2(Ck) and obtain an upper bound on γ2(M). Define Q to be the matrix

Q = Jdn/4de+1 ⊗
( 0 −1 0 +1

+1 0 −1 0
0 +1 0 −1
−1 0 +1 0

)
⊗ Jd, (48)

where ⊗ denotes the Kronecker (tensor) product, and where Jm denotes the m×m all-ones matrix.
Further, this middle matrix is

(
+1 −1
−1 +1

)
⊗
(

0 −1
+1 0

)
.

For k = 0, . . . , d− 1, we let Ck be the n× n submatrix defined by (Ck)i,j = Qi+k,j+k. In other
words, C0 is the top left n× n corner of Q, and for each k ≥ 1, we obtain Ck from Ck−1 by shifting
the submatrix diagonally.

Thus, the (i, j) entry of C0 + · · ·+Cd−1 is equal to Qi,j +Qi+1,j+1 + · · ·+Qi+d−1,j+d−1. Because
Q is a block matrix whose blocks are of size d× d, this is equal in magnitude to |i− j|, as d− |i− j|
is the length of the intersection of the line segment from (i, j) to (i+ d− 1, j + d− 1) and the d× d
blocks along the main diagonal. Finally, whether the value is positive or negative depends whether
the line segment additionally intersects a block of 1’s (if i > j) or a block of −1’s (if i < j,) and
thus C0 + · · ·+ Cd−1 is in fact equal to M .

Now that we have argued that all the matrices Ck are submatrices of shifted versions of Q, let
us compute γ2(Q). We now claim that γ2(Q) = 1. This follows from a few easy-to-verify facts about
the γ2(·) norm:

1. γ2(A⊗B) = γ2(A)γ2(B).

2. γ2(Jm) = 1 for all m.

3. γ2(
(

+1 −1
−1 +1

)
) = 1 and γ2(

(
0 −1

+1 0

)
) = 1.

Since Q decomposes into a Kronecker product of matrices with γ2(·) = 1 we get that γ2(Q) = 1.
Finally, we use two additional properties of γ2(·): first, that it is subadditive (indeed, it is a norm),
so γ2(M) ≤

∑d−1
k=0 γ2(Ck); and second, that it is non-increasing under restriction to a submatrix,

so γ2(Ck) ≤ γ2(Q) for each k = 0, 1, . . . , d− 1. Together, these properties imply that γ2(M) ≤ d,
completing the picture proof.
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We also provide a more explicit and formal way of showing that there is an appropriate
matrix M satisfying γ2(M) ≤ d; this method also avoids using any properties of γ2(·) by directly
giving a factorization M = STT . This factorization still corresponds to writing M as the sum of
C0 +C1 + · · ·+Cd−1, together with the observation that each of the matrices Ck has rank 2 (as can
be seen from their Kronecker product decomposition).

Specifically, the matrices S and T will have dimensions 2d × (n + 1), and will be defined as
follows. For any s ∈ {0, 1, . . . , n} and any j ∈ {0, . . . , 2d− 1}, we can write s+ j = a+ b(2d) for
unique integers a ∈ {0, 1, . . . , 2d − 1} and b ∈ N; that is, a is the remainder of s + j modulo 2d,
and b = b(s + j)/2dc. If a ∈ [0, d − 1], we define Sjs = (−1)b and Tjs = 0. Otherwise (i.e., if
a ∈ [d, 2d − 1]), we define Sjs = 0 and Tjs = −(−1)b. We will use Sj to denote row j of S, and
similarly for Tj . (For reference, in terms of the picture proof, we will have ST

j Tj + ST
j+dTj+d = Cj

for all j ∈ {0, 1, . . . , d− 1}.)
In each column of S and T , half the entries are zero and half are ±1, and hence we have

c(S) = c(T ) =
√
d. To complete the proof of the lemma, all we need to do is to set M = STT and

to show that Mst = s − t whenever |s − t| ≤ d. To this end, observe that (ST
j Tj)st is nonzero if

and only if s+ j mod 2d ∈ [0, d− 1] and t+ j mod 2d ∈ [d, 2d− 1]. When |s− t| ≤ d, it’s easy to
see that the number of different values of j ∈ {0, 1, . . . , 2d− 1} for which this happens is exactly
|s− t|. Moreover, if s < t, then it’s not hard to see that (ST

j Tj)st will be negative if it is nonzero,

while if s > t, it will be positive if it is nonzero. Hence (STT )st =
∑2d−1

j=0 (ST
j Tj)st = s− t whenever

|s− t| ≤ d. �

Finally, we can put the pieces together to prove Theorem 18.

Proof of Theorem 18. From Lemma 19, we have λ(f) ≤ 1
1−2ε‖Bq‖. Lemma 22 and Lemma 23 then

give us ‖Bq‖ ≤ γ2(M), for any matrix M that satisfies the conditions in Lemma 24. Lemma 24

constructs such a matrix M with γ2(M) ≤ d = d̃egε(f), completing the proof. �

5 Monotone graph properties

The Aanderaa–Karp–Rosenberg conjectures are a collection of conjectures related to the query
complexity of deciding whether an input graph specified by its adjacency matrix satisfies a given
property in various models of computation.

Specifically, let the input be an n-vertex undirected simple graph specified by its adjacency
matrix. This means we can query any unordered pair {i, j}, where i, j ∈ [n], and learn whether
there is an edge between vertex i and j. Note that the input size is

(
n
2

)
= Θ(n2).

A function f on
(
n
2

)
variables is a graph property if it treats the input as a graph and not merely

a string of length
(
n
2

)
. Specifically, the function must be invariant under permuting vertices of the

graph. In other words, the function can only depend on the isomorphism class of the graph, not
the specific labels of the vertices. A function f is monotone (increasing) if for all x, y ∈ {0, 1}n,
x ≤ y =⇒ f(x) ≤ f(y), where x ≤ y means xi ≤ yi for all i ∈ [n]. For a monotone function,
negating a 0 in the input cannot change the function value from 1 to 0. In the context of graph
properties, if the input graph has a certain monotone graph property, then adding more edges
cannot destroy the property.

Examples of monotone graph properties include “G is connected,” “G contains a clique of size
k,” “G contains a Hamiltonian cycle,” “G has chromatic number greater than k,” “G is not planar”,
and “G has diameter at most k.” Many commonly encountered graph properties (or their negation)
are monotone graph properties. Finally, we say a function f : {0, 1}n → {0, 1} is nontrivial if there
exist inputs x and y such that f(x) 6= f(y).
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The deterministic Aanderaa–Karp–Rosenberg conjecture, also called the evasiveness conjecture,4

states that for all nontrivial monotone graph properties f , D(f) =
(
n
2

)
. This conjecture remains

open to this day, although the weaker claim that D(f) = Ω(n2) was proved over 40 years ago by
Rivest and Vuillemin [RV76]. Several works have improved on the constant in their lower bound,
and the best current result is due to Scheidweiler and Triesch [ST13], who prove a lower bound of
D(f) ≥ (1/3− o(1)) · n2. The evasiveness conjecture has been established in several special cases
including when n is prime [KSS84] and when restricted to bipartite graphs [Yao88].

The randomized Aanderaa–Karp–Rosenberg conjecture asserts that all nontrivial monotone graph
properties f satisfy R(f) = Ω(n2). A sequence of increasingly stronger lower bounds, starting with
a lower bound of Ω(n log1/12 n) due to Yao [Yao91], a lower bound of Ω(n5/4) due to King [Kin88],
and a lower bound of Ω(n4/3) due to Hajnal [Haj91], has led to the current best lower bound of
Ω(n4/3 log1/3 n) due to Chakrabarti and Khot [CK01]. There are also two lower bounds due to
Friedgut, Kahn, and Wigderson [FKW02] and O’Donnell, Saks, Schramm, and Servedio [OSSS05]
that are better than this bound for some graph properties.

The quantum Aanderaa–Karp–Rosenberg conjecture states that all nontrivial monotone graph
properties f satisfy Q(f) = Ω(n). This is the best lower bound one could hope to prove since there
exist properties with Q(f) = O(n), such as the property of containing at least one edge. In fact, for
any α ∈ [1, 2] it is possible to construct a graph property with quantum query complexity Θ(nα)
using known lower bounds for the threshold function [BBC+01].

As stated in the introduction, the question was first raised by Buhrman, Cleve, de Wolf,
and Zalka [BCdWZ99], who showed a lower bound of Ω(

√
n). This was improved by Yao to

Ω(n2/3 log1/6 n) using the technique in [CK01] and Ambainis’ adversary bound [Amb02]. Better
lower bounds are known in some special cases, such as when the property is a subgraph isomorphism
property, where we know a lower bound of Ω(n3/4) due to Kulkarni and Podder [KP16].

As stated in Theorem 5, we resolve the quantum Aanderaa–Karp–Rosenberg conjecture and
show an optimal Ω(n) lower bound. The proof combines Theorem 3 with a quadratic lower bound
on the degree of nontrivial monotone graph properties. With some work, the original quadratic
lower bound on the deterministic query complexity of nontrivial monotone graph properties by
Rivest and Vuillemin [RV76] can be modified to prove a similar lower bound for degree. We were
not able to find such a proof in the literature, and instead combine the following two claims to
obtain the desired claim.

First, we use the result of Dodis and Khanna [DK99, Theorem 2]:

Theorem 25. For all nontrivial monotone graph properties, deg2(f) = Ω(n2).

Here deg2(f) is the minimum degree of a Boolean function when represented as a polynomial
over the finite field with two elements, F2. We combine this with a standard lemma that shows that
this measure lower bounds deg(f). A proof can be found in [O’D09, Proposition 6.23]:

Lemma 26. For all Boolean functions f : {0, 1}n → {0, 1}, we have deg2(f) ≤ deg(f).

Combining these with Theorem 3, we get that all nontrivial monotone graph properties f satisfy
Q(f) = Ω(n), which is the statement of Theorem 5.

6 Approximate degree of read-once formulas

A read-once formula over the De Morgan basis, which consists of AND gates, OR gates, and
NOT gates, is a formula in which each variable appears exactly once. Examples of read-once

4A function f is called evasive if its deterministic query complexity equals its input size.
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formulas include the andn and orn functions themselves, and compositions of these functions such
as andn ◦ orn.

While it was already established in [NS94] that d̃eg(andn) = d̃eg(orn) = Θ(
√
n), the approxi-

mate degree of and√n ◦ or√n remained open until 2013 when it was shown that and√n ◦ or√n =
Θ(
√
n) [BT13, She13a] using a linear programming characterization of approximate degree. Notice

that in both cases the approximate degree is the square root of the number of variables. This
was later extended to constant-depth balanced read-once formulas [BT15] and constant-depth
unbalanced read-once formulas [BBGK18]. We finally resolve this question for all read-once formulas
by establishing Theorem 6 from the introduction:

Theorem 6. For any read-once formula f : {0, 1}n → {0, 1}, we have d̃eg(f) = Θ(
√
n).

Note that we already knew that for read-once formulas f , Q(f) = Θ(
√
n). The lower bound was

established by Barnum and Saks [BS04] and the upper bound was established by Reichardt [Rei11].
The upper bound in Theorem 6 follows straightforwardly from Reichardt’s upper bound [Rei11],

since approximate degree lower bounds quantum query complexity [BBC+01]. The lower bound is
a consequence of Theorem 4 because the degree of a read-once formula is equal to the number of
variables.

Lemma 27. For any read-once formula f : {0, 1}n → {0, 1}, we have deg(f) = n.

Proof. By using De Morgan’s laws, we can assume that the read-once formula only contains AND
and NOT gates. The base case of a formula with n = 1 variable is easy, since the only such formulas
as x1 and x1, which have degree 1. More generally, deg(f̄) = deg(f), since if a polynomial p(x)
equals f(x) for all x ∈ {0, 1}n, then the polynomial 1− p equals f̄ .

All that remains to be shown is that for read-once formulas f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1}, we have deg(f ∧ g) = deg(f) + deg(g), where f ∧ g : {0, 1}n+m → {0, 1} is the function
that evaluates to f(x) ∧ g(y) for x ∈ {0, 1}n and y ∈ {0, 1}m. The upper bound is obvious since
multiplying the polynomials that represent f and g gives us a polynomial for f ∧ g with degree equal
to the sum of their degrees. However, since the polynomial representation of a Boolean function is
unique, and there is no way of cancelling out higher degree terms by multiplying these polynomials
(since the polynomials involve different sets of variables), we get that deg(f ∧ g) = deg(f) + deg(g).
Induction on the structure of the formula completes the proof. �

7 Open questions

We saw that λ(f) lower-bounds all the complexity measures in Figure 1, and is polynomially related
to all of them. We know that deg(f) ≤ λ(f)2 and s(f) ≤ λ(f)2, and these relationships are optimal,
but the optimal relationships between all other complexity measures and λ(f) remain open. For
example, perhaps bs(f) = O(λ(f)2) or even RC(f) = O(λ(f)2)? The best relationship between
block sensitivity and sensitivity also remains open.

It may also be possible to relate λ(f) to the rational degree of f , which is the minimum degree
of polynomials p and q such that for all x ∈ {0, 1}n, q(x) 6= 0 and f(x) = p(x)/q(x). It is unknown
if rational degree is polynomially related to the complexity measures in Figure 1, although the
question has been open for a long time [NS94].

Another longstanding open problem is to show a quadratic relation between deterministic query
complexity and block sensitivity:

Conjecture 1. For all Boolean functions f : {0, 1}n → {0, 1}, we have D(f) = O(bs(f)2).
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If this conjecture were true, it would optimally resolve several relationships in Table 1, and
would imply, for example, D(f) = O(R(f)2).

After settling the best relation between D(f) and Q(f), the next pressing question is to settle
the best relation between R(f) and Q(f). Recently, two independent works [BS20, SSW20] showed
a power 3 separation between R(f) and Q(f), while the best known relationship is a power 4
relationship (from this work). We conjecture that the upper bound can be improved.

Conjecture 2. For all Boolean functions f : {0, 1}n → {0, 1}, we have R(f) = O(Q(f)3).

Finally, for the special case of monotone total Boolean functions f , Beals et al. [BBC+01]
already showed in 1998 that D(f) = O(Q(f)4). It would be interesting to know whether this can be
improved, perhaps all the way to D(f) = O(Q(f)2).
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A Properties of the measure λ(f)

We show that the measure λ(f) satisfies various elegant properties. First, it can be defined in
multiple ways, one of which was introduced by Koutsoupias back in 1993 [Kou93]. It also has
a formulation as a special case of the quantum adversary bound and hence can be expressed as
as a semidefinite program closely related to that of the quantum adversary bound. Due to this
characterization, λ(f) can be viewed as both a maximization problem and a minimization problem.
These equivalent formulations are described in Appendix A.1.

Second, we show that λ(f) satisfies perfect composition: λ(f ◦ g) = λ(f)λ(g). Third, we show
that λ(f) ≤

√
s0(f) s1(f), which was already observed by Laplante, Lee, and Szegedy [LLS06]

(though we give a slightly different proof). Finally, we show lower bounds on λ(f) and an optimal
quadratic separation between λ(f) and s(f).

A.1 Equivalent formulations

Theorem 28. For all Boolean functions f : {0, 1}n → {0, 1}, we have

λ(f) = K(f) = Adv1(f) = Adv±1 (f), (49)

where the measures K(f), Adv1(f), and Adv±1 (f) are defined below. Furthermore, Adv1(f) itself has
several equivalent formulations: Adv1(f) := SA1(f) = SWA1(f) = MM1(f) = GSA1(f).

We now define all these measures before proving this theorem.

Koutsoupias complexity K(f). For a Boolean function f , let A ⊆ f−1(0), and let B ⊆ f−1(1).
Let Q be the matrix with rows and columns labeled by A and B respectively, with Q[x, y] = 1 if
the Hamming distance of x and y is 1, and Q[x, y] = 0 otherwise. Koutsoupias [Kou93] observed
that ‖Q‖2 is a lower bound on formula size, for every such choice of A and B. We define K(f) to be
the maximum value of ‖Q‖ over choices of A and B. Thus K(f)2 is a lower bound on the formula
size of f .

Single-bit positive adversary Adv1(f). We define Adv1(f) as a version of the adversary bound
where we are only allowed to put nonzero weight on input pairs (x, y) where f(x) 6= f(y) and the
Hamming distance between x and y is exactly 1. We will define Adv1(f) in terms of the spectral
adversary version, which we also denote by SA1(f). Adv1(f) = SA1(f) is defined as the maximum of

‖Γ‖
maxi∈[n] ‖Γ ◦Di‖

(50)

over matrices Γ of a special form. We require Γ satisfy the following: (1) its entries are nonnegative
reals; (2) its rows and columns are indexed by Dom(f); (3) Γ[x, y] = 0 whenever f(x) = f(y); (4)
Γ[x, y] = 0 whenever the Hamming distance of x and y is not 1; and (5) Γ is not all 0. In the above
expression, ◦ refers to the Hadamard (entrywise) product, Dom(f) is the domain of f , and Di is
the {0, 1}-valued matrix with Di[x, y] = 1 if and only if xi 6= yi.
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Single-bit negative adversary Adv±1 (f). We define Adv±1 (f) using the same definition as Adv1(f)
above, except that the matrix Γ is allowed to have negative entries. Note that since this is a relaxation
of the conditions on Γ, we clearly have Adv±1 (f) ≥ Adv1(f).

Single-bit strong weighted adversary SWA1(f). We define SWA1(f) as a single-bit version
of the strong weighted adversary method SWA(f) from [SS06]. For this definition, we say a weight
function w : Dom(f)×Dom(f)→ [0,∞) is feasible if it is symmetric (i.e., w(x, y) = w(y, x)) and if
it satisfies the conditions on Γ above (i.e., it places weight 0 on a pair (x, y) unless both f(x) 6= f(y)
and the Hamming distance between x and y is 1). We view such a feasible weight scheme w as the
weights on a weighted bipartite graph, where the left vertex set is f−1(0) and the right vertex set is
f−1(1). We let wt(x) :=

∑
y w(x, y) denote the weighted degree of x in this graph, i.e., the sum

of the weights of its incident edges. Then SWA1(f) is defined as the maximum, over such feasible
weight schemes w, of

min
x,i:w(x,xi)>0

√
wt(x)wt(xi)

w(x, xi)
. (51)

Here x ranges over Dom(f), i ranges over [n], and xi denotes the string x with bit i flipped.5

Single-bit minimax adversary MM1(f). Unlike the other forms, we define MM1(f) as a mini-
mization problem rather than a maximization problem. We say a weight function w : Dom(f)×[n]→
[0,∞) is feasible if for all x, y ∈ Dom(f) with f(x) 6= f(y) and Hamming distance 1, we have
w(x, i)w(y, i) ≥ 1, where i is the bit on which x and y disagree. MM1(f) is defined as the minimum,
over such feasible weight schemes w, of

max
x∈Dom(f)

∑
i∈[n]

w(x, i). (52)

Semidefinite program version GSA1(f). We define GSA1(f) to be the optimal value of the
following semidefinite program.

maximize 〈Z,Af 〉
subject to ∆ is diagonal

tr ∆ = 1
∆− Z ◦Di � 0 ∀i ∈ [n]
Z ≥ 0

(53)

Here Z and ∆ are variable matrices with rows and columns indexed by Dom(f), Af is the {0, 1}-
matrix with Af [x, y] = 1 if and only if both f(x) 6= f(y) and (x, y) have Hamming distance 1, and
Di is the {0, 1}-matrix with Di[x, i] = 1 if and only if xi 6= yi.

We now prove Theorem 28.

Proof. Recall that in the definition of K(f), we picked A ⊆ f−1(0) and B ⊆ f−1(1) and defined
the resulting matrix Q. Since the spectral norm of a submatrix is always smaller than or equal
to the spectral norm of the original matrix, we can always assume without loss of generality that

5Readers familiar with the adversary bound should note that this definition is analogous a weighted version of
Ambainis’s original adversary method; in the original method, the denominator was the geometric mean of (a) the
weight of the neighbors of x with disagree with x at i, and (b) the weight of the neighbors of xi which disagree with
xi at i; but in our case, both (a) and (b) are simply w(x, xi), since xi is the only string that disagrees with x on bit i
and is connected to x in the bipartite graph.
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A = f−1(0) and B = f−1(1). Then K(f) = ‖Q‖ for the resulting matrix Q with rows and columns
indexed by f−1(1) and f−1(0) respectively. Now, recall that Af was the adjacency matrix of the
graph Gf , which has an edge between x and y if f(x) 6= f(y) and the Hamming distance between x
and y is 1. The rows and columns of Af are each indexed by Dom(f). By rearranging them, we can
make Af be block diagonal with blocks equal to Q and Q†. From there it follows that ‖Af‖ = ‖Q‖,
so λ(f) = K(f).

Next, recall that Adv1(f) is defined as the maximum ratio ‖Γ‖/maxi ‖Γ ◦Di‖ over valid choices
of Γ. Note that since Γ[x, y] can only be nonzero if x and y disagree on one bit, Γ ◦Di is nonzero
only on pairs (x, y) which disagree exactly on bit i. In other words, if Pi denotes the {0, 1}-valued
matrix with Pi[x, y] = 1 if and only if x and y disagree on bit i and only on i, then Γ ◦Di is nonzero
only in entries where Pi is 1. Now, note that Pi is a permutation matrix. Hence, by rearranging the
rows and columns of Γ ◦Di, we can get it to be diagonal. This means ‖Γ ◦Di‖ is the maximum
entry of Γ ◦Di, and hence maxi ‖Γ ◦Di‖ is the maximum entry of Γ. It follows that Adv1(f) is
the maximum of ‖Γ‖ over feasible matrices Γ with max(Γ) ≤ 1, where max(Γ) = maxij |Γij |. This
argument also holds for Adv±1 (f), which is the maximum of ‖Γ‖ over feasible (possibly negative)
matrices Γ with max(Γ) ≤ 1.

Next, observe that negative weights never help for maximizing ‖Γ‖: indeed, if we had Γ with
negative entries maximizing ‖Γ‖, then we would have vectors u and v with ‖u‖2 = ‖v‖2 = 1 and
uTΓv = ‖Γ‖; but then replacing u and v with their entry-wise absolute values, and replacing Γ with
its entry-wise absolute value Γ′, we clearly get that ‖Γ′‖ ≥ ‖Γ‖. However, max(Γ′) = max(Γ), so Γ′

remains feasible. This means we can always take the maximizing matrix Γ to be nonnegative, so
Adv±1 (f) = Adv1(f). We can similarly assume that the unit vectors u and v maximizing uTΓv are
nonnegative.

Finally, consider the maximizing matrix Γ and the maximizing unit vectors u and v, all
nonnegative, and satisfying max(Γ) ≤ 1. Note that the expression uTΓv is nondecreasing in the
entries of Γ, since everything is nonnegative. Hence to maximize uTΓv, we can always take every
nonzero entry of Γ to be 1, since this maintains max(Γ) ≤ 1. In other words, the matrix maximizing
‖Γ‖ will always simply be Af , and hence Adv1(f) is always exactly equal to λ(f).

It remains to show that SA1(f) = SWA1(f) = MM1(f) = GSA1(f). The proof of this essentially
follows the arguments in [SS06] for the regular positive adversary, though some steps are a little
simpler. To start, we’ve seen that SA1(f) = λ(f). Since Af is symmetric, we have λ(f) =
vTAfv for some unit vector v, which we’ve established is nonnegative; this vector is also an
eigenvector, so Afv = λ(f)v. Consider the weight scheme w(x, y) = v[x]v[y]Af [x, y]. Then
wt(x) =

∑
y v[x]v[y]Af [x, y] = v[x](Afv)[x] = λ(f)v[x]2. Hence if w(x, xi) > 0, we have√

wt(x)wt(xi)

w(x, xi)
=

λ(f)v[x]v[xi]

v[x]v[xi]Af [x, xi]
= λ(f). (54)

This means SWA1(f) ≥ SA1(f). In the other direction, let w be a feasible weight scheme for
SWA1(f), let Γ[x, y] = w(x, y)/

√
wt(x)wt(y), and let v[x] =

√
wt(x)/W , where W =

∑
xwt(x).

Then ‖v‖22 =
∑

xwt(x)/W = 1, and

vTΓv =
∑
x,y

√
wt(x)wt(y)w(x, y)/W

√
wt(x)wt(y) = (1/W )

∑
x,y

w(x, y) = 1. (55)

Hence ‖Γ‖ ≥ 1. On the other hand, we have max(Γ) = maxx,y w(x, y)/
√
wt(x)wt(y). This means

that the ratio ‖Γ‖/max(Γ) equals minx,y:w(x,y)>0

√
wt(x)wt(y)/w(x, y), which is SWA1(f); thus

SA1(f) ≥ SWA1(f).
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Next we examine GSA1(f). Consider a solution (Z,∆) to this semidefinite program and define
Γ = Z ◦M ◦ Af , where M is defined as M = uuT and u is defined by u[x] = 1/

√
∆[x, x] when

∆[x, x] > 0 and u[x] = 0 otherwise. Recall that ∆ is diagonal and that ∆−Z ◦Di � 0 for all i. Since
positive semidefinite matrices are symmetric, Z ◦Di must be symmetric for all i, so Z is symmetric.
Moreover, the diagonal of Z ◦Di is all zeros, so we must have ∆ ≥ 0. Further, if ∆[x, x] = 0 for
some x, we must have the corresponding row and column of Z be all zeros. If we let ∆′ and Z ′

be ∆ and Z with the all-zero rows and columns deleted, then it is clear that ∆ − Z ◦Di � 0 if
and only if ∆′ − Z ′ ◦Di � 0. Defining M ′ as M with those rows and columns deleted and u′ as u
with those entries deleted, we have M ′ = u′(u′)T > 0. Observe that ∆′ − Z ′ ◦Di � 0 if and only if
vT(∆′ − Z ′ ◦Di)v ≥ 0 for all vectors v, which is if and only if (v ◦ u′)T(∆′ − Z ′ ◦Di)(v ◦ u′) ≥ 0 for
all vectors v (since we have u′ > 0). This, in turn, is equivalent to M ′ ◦ (∆′ − Z ′ ◦Di) � 0. Since
M ′◦∆′ = I, this is equivalent to I−M ′◦Z ′◦Di � 0, which is in turn equivalent to I−M ◦Z ◦Di � 0.
Since Z ≥ 0 and we are maximizing 〈Z,Af 〉, it never helps for Z to have nonzero entries in places
where Af is 0. Hence we can assume without loss of generality that Z = Z ◦Af , which means the
constraint becomes I − Γ ◦Di � 0, where we defined Γ = M ◦ Z ◦Af . We thus have ‖Γ ◦Di‖ ≤ 1.
On the other hand, letting v[x] =

√
∆[x, x], we have

vTΓv =
∑
x,y

v[x]v[y]M [x, y]Z[x, y]Af [x, y] =
∑

x,y:∆[x,x],∆[y,y]>0

Z[x, y]Af [x, y] = 〈Z,Af 〉. (56)

Hence SA1(f) ≥ GSA1(f). The reduction in the other direction works similarly: start with an
adversary matrix Γ with max(Γ) ≤ 1, and let v be its principle eigenvector. Then set Z = Γ ◦ (vvT)
and ∆ = I ◦ (vvT). Then I − Γ ◦Di � 0, which implies that ∆−Z ◦Di � 0. We also have tr ∆ = 1,
Z ≥ 0, and 〈Z,Af 〉 = ‖Γ‖.

Finally, we handle MM1(f). To do so, we first take the dual of the semidefinite program for
GSA1(f). This dual has the form

minimize α
subject to

∑
iRi ◦ I ≤ αI∑
iRi ◦Di ≥ Af

Ri � 0 ∀i ∈ [n]

(57)

where the variables are α (a scalar) and matrices Ri, each with rows and columns indexed by Dom(f).
Strong duality follows since when Af is not all zeros, and the semidefinite program in GSA1(f) has
a strictly feasible solution (just take Z to equal εAf for a small enough positive constant ε, and
take ∆ = I/|Dom(f)|). This means the optimal solution of the minimization problem above equals
Adv1(f). It remains to show that this optimal solution T also equals MM1(f).

Let α and {Ri}i be a feasible solution to the semidefinite program above. Since Ri � 0, we
have Ri = XiX

T
i for some matrix Xi. Define w(x, i) = Ri[x, x]. Note that we also have w(x, i) =∑

aXi[x, a]2. Then by Cauchy–Schwarz, w(x, i)w(y, i) ≥ (
∑

aXi[x, a]Xi[y, a])2 = (XiX
T
i )[x, y]2 =

Ri[x, y]2. If x and y are such that Af [x, y] = 1, then they disagree in only one bit i, and hence
Di[x, y] = 1 for that i and Dj [x, y] = 0 for all j 6= i. Since we have

∑
iRi ◦ Di ≥ Af , we

conclude that for all such pairs (x, y), we have w(x, i)w(y, i) ≥ Ri[x, y]2 ≥ Af [x, y]2 = 1 on
the bit i where x and y differ; hence the weight scheme w is feasible. Furthermore, for any x,∑

iw(x, i) =
∑

iRi[x, x] ≤ αI[x, x] = α. Hence MM1(f) is at most the optimal value of this
semidefinite program.

In the other direction, consider a feasible weight scheme w, and define Ri[x, y] =
√
w(x, i)w(y, i).

Then Ri = w(·, i)w(·, i)T, where we treat w(·, i) as a vector; hence Ri � 0. Moreover, Ri ≥ 0, and
for a pair (x, y) with Af [x, y] = 1, there is some i which is the unique bit they disagree on, and
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hence w(x, i)w(y, i) ≥ 1; but this means that Ri[x, y] ≥ 1, and so (Ri · Di)[x, y] ≥ 1 = Af [x, y].
Finally,

∑
iRi[x, x] =

∑
iw(x, i), which means that

∑
iRi ◦ I ≤ MM1(f) · I, as desired. �

A.2 Composition theorem

Just like we have perfect composition theorems for degree (i.e., deg(f ◦ g) = deg(f) deg(g)) and
deterministic query complexity (i.e., D(f ◦ g) = D(f)D(g)), we can show one for λ(f) = Adv1(f).

Theorem 29. For all (possibly partial) functions f and g, we have Adv1(f ◦ g) = Adv1(f)Adv1(g).

Proof. For the lower bound direction, note that Af is the matrix with Af [x, y] = 1 if f(x) 6= f(y)
and the Hamming distance between x and y is 1 (with Af [x, y] = 0 otherwise). Ag is defined
similarly. We wish to lower bound ‖Af◦g‖. To do so, we first introduce some notation. Let n
be the input size of f and let m be the input size of g. For nm-bit strings x and y, we write
x = x(1)x(2) . . . x(n) and y = y(1)y(2) . . . y(n), where x(i) and y(i) are m-bit strings. We write g(x) as
shorthand for the string g(x(1))g(x(2)) . . . g(x(n)), and similarly for g(y). For a string x ∈ {0, 1}nm,
we let x(i,j) denote the string x with the bit at position (i, j) flipped; in particular, the Hamming
distance between x and x(i,j) is 1. We will also use sf (z) to denote the set of sensitive bits of the
string z with respect to function f .

Let v be the principal eigenvector of Af and let u be the principal eigenvector of Ag. We can
assume they are nonnegative. Then ‖v‖2 = ‖u‖2 = 1, Afv = λ(f)v, and Agu = λ(g)u. Let v0

denote the component of v on 0-inputs of f and let v1 be the component for 1-inputs, so that
v = [v0, v1]. Define u0 and u1 similarly. Then since Af never has a 1 in a position (x, y) where
f(x) = f(y), it decomposes into blocks of the form [0, Bf ;BT

f , 0], and we must have Afv0 = λ(f)v1

and Afv1 = λ(f)v0. Similarly, Agu0 = λ(g)u1 and Agu1 = λ(g)u0. We can assume without loss of
generality that ‖u0‖22 = ‖u1‖22 = ‖v0‖22 = ‖v1‖22 = 1/2, because otherwise, rebalancing the weights
of v0 and v1 could increase vTAfv without increasing ‖v‖ (and similarly for u0 and u1).

Define the vector α with one entry for each input to f ◦ g by

α[x] := 2n/2v[g(x)]u[x(1)]u[x(2)] . . . u[x(n)]. (58)

Then
‖α‖22 =

∑
x

α[x]2 = 2n
∑

z∈Dom(f)

∑
y1∈g−1(z1)

· · ·
∑

yn∈g−1(zn)

v[z]2u[y1]2 . . . u[yn]2 (59)

= 2n
∑

z∈Dom(f)

v[z]2‖uz1‖22 . . . ‖uzn‖22 = 1. (60)

We also have

αTAf◦gα =
∑
x,x′

α[x]α[x′]Af◦g[x, x
′]

=
∑
x

∑
i∈[n],j∈[m]

α[x]α[x(i,j)]Af◦g[x, x
(i,j)]

=
∑

z∈Dom(f)

∑
y1∈g−1(z1)

· · ·
∑

yn∈g−1(zn)

∑
i∈sf (z)

∑
j∈sg(yi)

α[y1 . . . yn]α[y1 . . . y
j
i . . . yn]

=
∑

z∈Dom(f)

∑
y1∈g−1(z1)

· · ·
∑

yn∈g−1(zn)

∑
i∈[n]

∑
j∈[m]

α[y1 . . . yn]α[y1 . . . y
j
i . . . yn]Af [z, zi]Ag[yi, y

j
i ]

=
∑

z∈Dom(f)

∑
i∈[n]

v[z]v[zi]Af [z, zi]γ(z, i),
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where

γ(z, i) =
∑

y1∈g−1(z1)

· · ·
∑

yn∈g−1(zn)

∑
j∈[m]

2nu[y1] . . . u[yn] · u[y1] . . . u[yji ] . . . u[yn]Ag[yi, y
j
i ]

=
∑

yi∈g−1(zi)

∑
j∈[m]

2u[yi]u[yji ]Ag[yi, y
j
i ]
∏
k 6=i

2‖uzk‖
2
2

= 2uT0Bgu1

= λ(g).

Hence
αTAf◦gα = λ(g)

∑
z∈Dom(f)

∑
i∈[n]

v[z]v[zi]Af [z, zi] = λ(g)vTAfv = λ(g)λ(f). (61)

This shows that λ(f ◦ g) ≥ λ(f)λ(g).
For the upper bound direction, we use MM1. Let wf be a feasible weight scheme for f , and

let wg be a feasible weight scheme for g. Define weight scheme w for f ◦ g by w(x, (i, j)) =
wf (g(x), i) · wg(x(i), j). Then clearly w is nonnegative and for each x,∑

i,j

w(x, (i, j)) =
∑
i

wf (g(x), i)
∑
j

wg(x
(i), j) ≤ wtf (x) max

i
wtg(x

(i)), (62)

where we use wtf (z) to denote
∑

iwf (z, i) and similarly for wtg(z). Hence the objective value of w
is at most the product of the objective values of wf and wg. Finally, note that

w(x, (i, j))w(x(i,j), (i, j)) = wf (g(x), i)wf (g(x)i, i)wg(x
(i), j)wg((x

(i))j , j). (63)

If (i, j) is sensitive for x, then i is sensitive for g(x) and j is sensitive for x(i), and hence we have
wf (g(x), i)wf (g(x)i, i) ≥ 1 and wg(x

(i), j)wg((x
(i))j , j) ≥ 1, which means w(x, (i, j))w(x(i,j), (i, j)) ≥

1. Therefore, w is feasible, and we have MM1(f ◦ g) ≤ MM1(f)MM1(g), as desired. �

A.3 Upper bounds

We now show a slightly better upper bound on λ(f), that it is upper bounded by the geometric
mean of the 0-sensitivity and 1-sensitivity, which can be a better upper bound than s(f).

We provide two proofs of this. The first uses the λ(f) formulation and uses a linear algebra
argument about norms. This proof is due to Laplante, Lee, and Szegedy [LLS06], who observed this
about the measure K(f).

To describe this proof, we briefly need to describe some matrix norms. For a vector v ∈ Rn, the p-
norm for a positive integer p is defined as ‖v‖p = (

∑
i∈[n] |vi|p)1/p. We also define ‖v‖∞ = maxi∈[n] |vi|.

Note that ‖v‖1 is simply the sum of the absolute values of all the entries of the vector.
Similarly, for a matrix A ∈ Rn×m, we define the induced p-norm of A to be

‖A‖p = max{‖Ax‖p : ‖x‖p = 1}. (64)

The spectral norm ‖A‖ is the induced 2-norm ‖A‖2. The 1-norm ‖A‖1 is simply the maximum sum
of absolute values of entries in any column of the matrix. The ∞-norm ‖A‖∞ is the maximum sum
of absolute values of entries in any row of the matrix.

Lastly, we need a useful relationship between these norms sometimes called Hölder’s inequality
for induced matrix norms (see [GL13, Corollary 2.3.2] for a proof):
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Proposition 30. For all matrices A ∈ Rn×m, we have ‖A‖ ≤
√
‖A‖1‖A‖∞.

We can now prove the upper bound:

Lemma 31. For all (possibly partial) functions f , we have λ(f) ≤
√
s0(f) s1(f).

Proof. We know that λ(f) = ‖Af‖ and Af is a matrix of the form
(

0 B
BT 0

)
if we rearrange the rows

and columns so that all 0-inputs come first and are followed by 1-inputs, since Af only connects
inputs with different f -values. Thus we have

λ(f) = ‖Af‖ = ‖B‖ ≤
√
‖B‖1‖B∞‖ =

√
s0(f) s1(f), (65)

where we used Hölder’s inequality (Proposition 30) and the fact that the maximum row and column
sum of B are precisely s0(f) and s1(f), respectively. �

Our second proof of this claim uses the MM1(f) formulation which yields an arguably simpler
proof.

Lemma 32. For all (possibly partial) functions f , we have Adv1(f) ≤
√
s0(f) s1(f).

Proof. Using the MM1(f) version of Adv1(f), set w(x, i) =
√
s0(f)/

√
s1(f) if f(x) = 1, and set

w(x, i) =
√

s1(f)/
√

s0(f) if f(x) = 0. Then if x and y differ in a single bit i, we clearly have
w(x, i)w(y, i) = 1. On the other hand,

∑
iw(x, i) ≤ s1(f) ·

√
s0(f)/

√
s1(f) =

√
s0(f) s1(f) for

1-inputs x, and analogously
∑

iw(y, i) ≤
√
s0(f) s1(f) for 0-inputs y. �

Using this better bound on λ(f) and Huang’s result, we also get that for all total Boolean
functions f ,

deg(f) ≤ s0(f) s1(f). (66)

This result was also recently observed by Laplante, Naserasr, and Sunny [LNS20]. Unlike their
proof, the following uses Huang’s theorem in a completely black-box way.

Proposition 33. Assume that deg(f) ≤ s(f)2 for all total Boolean functions f . Then we also have
deg(f) ≤ s0(f) s1(f).

Proof. Let s0(f) = k and s1(f) = `. We know that deg(f) ≤ max{k, `} by assumption. Let
andk ◦ or` be the AND function on k bits composed with the OR function on ` bits. Clearly
s0(andk ◦ or`) = ` and s1(andk ◦ or`) = k. Furthermore, because the function is monotone, the
sensitive bits for a 0-input are bits set to 0, and the sensitive bits for a 1-input are bits set to 1. This
means that composing this function with f with yield a function where the one-sided sensitivity
will be upper bounded by the product of one-sided sensitivity of the individual functions. Hence for
all b ∈ {0, 1}, we have

sb(andk ◦ or` ◦ f) ≤ sb(andk ◦ or`) sb(f) ≤ k`. (67)

Using the assumption on the function andk ◦ or` ◦ f , we get

deg(andk ◦ or` ◦ f) ≤ (s(andk ◦ or` ◦ f))2 ≤ (k`)2. (68)

Finally, it is well known that deg(f ◦ g) = deg(f) deg(g) (see, e.g., [Tal13]), and hence deg(andk ◦
or` ◦ f) = k` deg(f), which implies deg(f) ≤ k`. �
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A.4 Lower bounds

Finally, we describe some lower bounds on λ(f). These follow from known results, but we reproduce
them here for completeness.

Lemma 34. For all (possibly partial) functions f , s(f) ≤ λ(f)2.

Proof. Consider any input x with sensitivity s(f). This means x has s(f) neighbors on the
hypercube with different f value. The sensitivity graph restricted to these s(f) + 1 inputs is a
star graph centered at x. The spectral norm of the adjacency matrix of the star graph on k + 1
vertices is

√
k. Since the spectral norm of Af is lower bounded by that of a submatrix, we have

λ(f) ≥
√

s(f). �

This relationship is tight for the orn function which has s(orn) = n and λ(orn) =
√
n. Although

orn has unbalanced sensitivities, with s0(orn) = n and s1(orn) = 1, there are functions f with
s(f) = s0(f) = s1(f) = n and λ(f) =

√
n. One example of such a function is x1 ⊕ or(x2, . . . , xn).

Another example of such a function with a quadratic gap between s(f) and λ(f) is the function
that is 1 if and only if the input string has Hamming weight 1. This function has s0(f) = n since
the all zeros string is fully sensitive and s1(f) = n since every Hamming weight 1 string is also fully
sensitive. But we know that this problem can be solved by Grover’s algorithm with O(

√
n) queries,

and hence λ(f) = O(Q(f)) = O(
√
n).

We can also lower bound ‖Af‖ by ‖Af‖ ≥ |vTAfv| for any vector v with ‖v‖ = 1. If we take v
to be the normalized all ones vector, this is just the average sensitivity.

Lemma 35. For all (possibly partial) functions f , λ(f) ≥ Ex[sx(f)].

For example, this shows that λ(parityn) = n. The bound in Lemma 35 can be improved
by only taking the expectation on the right over a subset of the inputs of f , which then equals
another complexity measure originally defined by Khrapchenko [Khr71]. See [Kou93] for more on
this relationship and Khrapchenko’s bound.
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