
A Nearly-Linear Time Algorithm for Linear Programs with Small
Treewidth: A Multiscale Representation of Robust Central Path

Sally Dong
University of Washington

Yin Tat Lee
University of Washington

& Microsoft Research

Guanghao Ye
University of Washington

September 14, 2023

Abstract

Arising from structural graph theory, treewidth has become a focus of study in fixed-
parameter tractable algorithms in various communities including combinatorics, integer-linear
programming, and numerical analysis. Many NP-hard problems are known to be solvable in
Õ(n · 2O(tw)) time, where tw is the treewidth of the input graph. Analogously, many problems
in P should be solvable in Õ(n · twO(1)) time; however, due to the lack of appropriate tools, only
a few such results are currently known. [FLS+18] conjectured this to hold for as broadly as all
linear programs; in our paper, we show this is true:

Given a linear program of the form minAx=b,ℓ⩽x⩽u c
⊤x, and a width-τ tree decomposition

of a graph GA related to A, we show how to solve it in time

Õ(n · τ2 log(1/ε)),

where n is the number of variables and ε is the relative accuracy. Combined with recent
techniques in vertex-capacitated flow [BGS21], this leads to an algorithm with Õ(n1+o(1) ·
tw2 log(1/ε)) runtime. Besides being the first of its kind, our algorithm has runtime nearly
matching the fastest runtime for solving the sub-problem Ax = b, under the assumption that
no fast matrix multiplication is used.

We obtain these results by combining recent techniques in interior-point methods (IPMs),
sketching, and a novel representation of the solution under a multiscale basis similar to the
wavelet basis.

1

ar
X

iv
:2

01
1.

05
36

5v
3

 [
cs

.D
S]

 1
3

Se
p

20
23

Contents

1 Introduction 4
1.1 Convex Generalization . 5
1.2 Difficulties . 6

1.2.1 Dynamic Programming . 7
1.2.2 Scanning Through Variables . 7
1.2.3 Tightening the Iterations Bounds for Interior Point Methods 8
1.2.4 Faster Iterations via Inverse Maintenance . 9

1.3 Related Works . 9
1.3.1 Algorithms With Runtime at Least Exponential to Treewidth 9
1.3.2 Algorithms with Runtime Polynomial to Treewidth 9
1.3.3 Related Works in Optimization . 10

2 Overview of Our Approach 10
2.1 Robust Central Path Method . 11
2.2 Cholesky Decomposition . 12
2.3 Multiscale Representation of the Central Path . 12
2.4 Data Structures for Maintaining Multiscale Representation 13
2.5 Proofs of Main Theorems . 15
2.6 Wavelet Interpretation . 15

3 Preliminaries 17

4 Elimination Tree 19
4.1 Dual Graph and Treewidth . 19
4.2 Balanced Vertex Separator . 20
4.3 Elimination Tree . 21

5 Sparsity Patterns and Maintaining the Cholesky Factorization 24
5.1 Solving Triangular Systems . 24
5.2 Computing and Updating the Cholesky Factorization 25

6 Robust Central Path Maintenance 27
6.1 Multiscale Representation of the Central Path Dynamic 28
6.2 Implicit Representation of (x, s) . 28
6.3 Approximating A Sequence of Vectors . 35
6.4 Sketching A Sequence of Vectors . 39
6.5 Sketching the Multiscale Representation via Simple Sampling Tree 41

6.5.1 Simple Sampling Tree Construction . 42
6.5.2 Data Structure for Sketching . 43

6.6 Sketching the Multiscale Representation via Balanced Sampling Tree 51
6.6.1 Balanced Sampling Tree Construction . 52
6.6.2 Data Structure for Sketching . 54

6.7 Proof of Theorem 6.1 . 61

7 Acknowledgment 66

A Robust Interior Point Algorithm for General Convex Sets 72

2

A.1 Overview . 72
A.2 Interior Point Algorithm . 73
A.3 Gradient Descent on Ψλ . 75
A.4 Gradient Descent on Φ . 78
A.5 Bounding Φ under Changes of x and s . 79

A.5.1 Verifying conditions of Lemma A.8 . 79
A.5.2 First Order Approximation of γ . 82
A.5.3 Bounding the Movement of Φ . 85

A.6 Initial Point Reduction . 88
A.7 Main Result . 94
A.8 Using the Universal Barrier . 95
A.9 Hyperbolic Function Lemmas . 96

B Treewidth vs. Problem Size in Netlib Instances 97

3

1 Introduction

Linear programming is one of the most fundamental problems in computer science and optimiza-
tion. General techniques for solving linear programs, such as simplex methods [Dan51], ellipsoid
methods [Kha80] and interior point methods [Kar84], have been developed and continuously re-
fined since the 1940s, and have later been found to be useful in a wide range of problems spanning
optimization, combinatorics, and machine learning.

For an arbitrary linear program minAx=b,ℓ⩽x⩽u c
⊤x with n variables and d constraints, the cur-

rent fastest algorithms take either Õ(n2.373 log(1/ε)) time [CLS19, JSWZ20] or Õ((
√

nd · nnz(A) +
d2.5) log(1/ε)) time [vdBLSS20, BLL+20], where ε is the accuracy parameter1. When A is a
dense matrix, these runtimes are close to optimal, as they nearly match the runtime Õ((nnz(A) +
dω) log(1/ε)) to solve the subproblem Ax = b, where ω ≈ 2.373 is the matrix multiplication expo-
nent. When A is sparse, as is the case in many problems arising from both theory and applications,
we ask if much faster runtimes are possible.

When n and d are the same order, this problem is highly non-trivial, even for linear systems. It
is only recently known how to solve a sparse linear system in slightly faster than dω time [PV20],
and sub-quadratic time is insurmountable under the current techniques. It turns out in practice
however, sparse linear systems often have low treewidth, a condition much stronger than mere
sparsity; for example, many of the linear programs in the Netlib repository have sublinear treewidth
(Appendix B). For low treewidth linear systems, a small polynomial dependence on treewidth still
implies a much faster than quadratic runtime, hence making them a particularly suitable target of
study.

Beyond the practical consideration, whether there is a Õ(n · twO(1)) LP algorithm is important
in parameterized complexity. Most algorithms designed for low treewidth graphs rely on dynamic
programming, which naturally give algorithms with runtime exponential in treewidth even for prob-
lems in P, such as reachability and shortest paths [ASK12, CŁ13, CZ00, PdWvdK12]. There are
only a few problems in P that we know how to solve in Õ(n · twO(1)) time [FLS+18]. We refer to
Sections 1.3.1 and 1.3.2 for a discussion of these problems.

Recently, [FLS+18] posed exactly this question2:

Can linear programs be solved in Õ(n · twO(1) log(1/ε)) time?

We answer the question affirmatively in this paper:

Theorem 1.1. Given a linear program minAx=b,ℓ⩽x⩽u c
⊤x, where A ∈ Rd×n is a full rank matrix

with d ⩽ n, define the dual graph GA
3 to be the graph with vertex set {1, . . . , d}, such that ij ∈

E(GA) if there is a column r such that Ai,r ̸= 0 and Aj,r ̸= 0. Suppose that

• a tree decomposition of GA with width τ is given, and

• r is the inner radius of the polytope, namely, there is x such that Ax = b and ℓ+r ⩽ x ⩽ u−r.

1The current fastest exact algorithms for linear program take either 2O(
√

d log n−d
d

) time [HZ15], or the runtime
depends on the magnitude of entries of A.

2We add the log(1/ε) term to their original conjecture. Without this term, the conjecture will imply the existence
of strongly polynomial time algorithms for linear programs, one of Smale’s 18 unsolved problems in mathematics.

3There are different ways of associating a graph with the matrix A (see [JK15, FLS+18]). We adopt the one
used in the ILP community [JK15, EHK+19]. We choose this definition so that when applied to linear programming
formulations of flow problems, in which the constraint matrix A is the incidence matrix of the input graph G, we
have GA = G, and hence the treewidth of the LP is most meaningfully related to the flow problem.

4

Let L = ∥c∥2 and R = ∥u−ℓ∥2. For any 0 < ε ⩽ 1/2, we can find x such that Ax = b and ℓ ⩽ x ⩽ u
such that

c⊤x ⩽ min
Ax=b, ℓ⩽x⩽u

c⊤x+ ε · LR

in expected time
Õ(n · τ2 log(R/(rε))).

To keep this paper simple, we refrain from using fast matrix multiplication. Under this restric-
tion, we note that our runtime is tight, since it nearly matches the fastest runtime for solving the
subproblem Ax = b (Corollary 5.8).

Our algorithm involves a pre-processing component: We need to find some suitable reordering of
the rows of A, known as an elimination order, so that matrices in later computations will have
certain desired sparsity patterns. In practice, there are various efficient algorithms for finding a
good reordering, such as minimum degree orderings [GL89, ADD96, FMP+18] and nested dissec-
tion algorithms [Geo73, LRT79, KK98]. In theory, there are also different ways to compute the
reordering. In the previous version of this paper, we applied techniques in [AK16] and [BW17] to
give two reordering algorithms with suboptimal bounds. They are removed to shorten the paper.
After our paper, [BGS21] gave an almost-linear time algorithm to compute a tree decomposition
that is a polylog n factor from optimal. This implies the following:

Theorem 1.2. Applying the algorithms in [BGS21], the runtime in Theorem 1.1 becomes

Õ
((

(n · tw)1+o(1) + n · tw2
)
log(1/ε)

)
= Õ

((
n1+o(1) · tw2

)
log(1/ε)

)
.

Detailed discussions can be found in literature (e.g. [Ren88] and [LS13, Sections E, F]) on converting
an approximation solution to an exact solution. To summarize, for integral A, b, c, it suffices to pick
ε = 2−O(L) to get an exact solution, where L = log(1 + dmax + ∥b∥2 + ∥c∥2) is the bit complexity
and dmax is the largest absolute value of the determinant of a square sub-matrix of A. For many
combinatorial problems, L = O(log(n+ ∥b∥2 + ∥c∥2)).

1.1 Convex Generalization

Theorem 1.1 and Theorem 1.2 generalize to a class of convex optimization problem as follows:

Theorem 1.3. Given a convex program

min
Ax=b,xi∈Ki for i∈[m]

c⊤x (1.1)

where A ∈ Rd×n is a full rank matrix with d ⩽ n and Ki ⊂ Rni are convex sets, with
∑m

i=1 ni = n.
We identify the columns of A in blocks, such that block i contains the ni columns corresponding to
xi. We define the generalized dual graph GA to be the graph with vertices set {1, · · · d}, such that
ij ∈ E(GA) if there is a block r such that Ai,r ̸= 0 and Aj,r ̸= 0. We define the product convex set
K = Πm

i=1Ki. Suppose that

• we are given a tree decomposition of GA with width τ ,

• R is the diameter of the set K,

• There exists z such that Az = b and B(z, r) ⊂ K,

5

• ni = O(1) for all i ∈ [m],

• we are given initial points xi ∈ Rni such that B(xi, r) ⊂ Ki for each i,

• we can check if y ∈ Ki in O(1) time for all i ∈ [m].

Then, for any 0 < ε ⩽ 1/2, we can find x ∈ K with Ax = b such that

c⊤x ⩽ min
Ax=b,x∈K

c⊤x+ ε · ∥c∥2 ·R

in expected time
Õ(n · τ2 log(R/r) log(R/(rε))).

Remark 1.4. The proofs for the convex program and the linear program are almost identical. Any
operation involving the entry A[i, j] in the linear program setting is generalized to operations on the
1× nj submatrix of A from row i and block j. Since each block has size O(1), the overall runtime
relating to all matrix operations is maintained. We analyze our interior point method directly using
this generalized formulation in this paper; the linear programming formulation follows as a special
case.

This natural convex generalization in fact captures a large number of problem formulations. We
illustrate with one example from signal processing, the fused lasso model for denoising [TSR+05]:
Given a 1-D input signal u1, u2, · · · , un, find an output x that minimizes the potential

V (x) =

n∑
i=1

(xi − ui)
2 + λ

n−1∑
i=1

|xi+1 − xi|,

where the first term restricts the output signal to be close to the input, and the second term controls
the amount of irregularity, and λ is the regularization parameter. To relate it back to our problem
Eq. (1.1), we consider a generalized formulation: Given a family of convex functions ϕ1, . . . , ϕN

of x = (x1, . . . , xn), where for each i, the function ϕi(x) = ϕi(xSi) only depends on the variables
{xj : j ∈ Si} for some subset Si ∈ [n], we want to solve the problem

min
x∈Rn

N∑
i=1

ϕi(xSi). (1.2)

By creating extra variables yi,j for all i ∈ [n] and j ∈ Si, we can write the problem as min
∑

i ti,
subjected to yi,j = xj and ti ≥ ϕi(yi,j) for all i and all j ∈ Si. The inequality constraints is
equivalent to requiring that (t, y) lie in the convex set {(t, y) : ti ≥ ϕi(yi,j)}. This is exactly in the
form of Eq. (1.1). The dual graph GA of this problem is closely related to the intersection graph
GI of the set family {Si}i∈N : Specifically, each set of constraints yi,j = xj corresponds to |Si| many
vertices in GA, and contracting each such set into one vertex produces GI . Hence, we have that the
treewidth tw(GA) of this convex program is at most the treewidth of GI . For the denoising problem
above, the intersection graph is in fact close to a path and has constant treewidth. Therefore, our
result shows that this problem can be solved in nearly-linear time, without relying on the specific
formula or structure.

1.2 Difficulties

In this section, we discuss a few alternate approaches to our problem and why they likely prove
unfruitful. We will illustrate using problems of the form Eq. (1.2) when it is more straightfor-
ward.

6

1.2.1 Dynamic Programming

Dynamic programming is a natural first approach, as has been applied to other low treewidth
problems. To explain the difficulty of achieving fully-polynomial-time fixed-parameter tractability
in the optimization setting, we consider the following simplified problem: Given a graph G = (V,E)
with a convex function fe : R2 → R for every edge e ∈ E, consider the objective function on RV

defined by

fG(x) =
∑
ij∈E

fij(xi, xj). (1.3)

To divide the problem into smaller one, we consider any small balanced vertex separator S ⊂ V ;
namely V is partition into three sets S, L and R such that there are no edges between L and R.
We can write the objective function f(x) by

fG(x) = fL(x) + fR(x) + fG−E(L)−E(R)(x),

where fT (x) =
∑

ij∈E(T) fij(xi, xj) and E(T) is the set of edges with at least one end point in T .
To minimize fG, it suffices to fix xS and recursively minimizing x on L and R, and minimize over
all fixed xS . Namely,

min
x

fG(x) = min
xS

fG−E(L)−E(R)(xS) + f̃L(xS) + f̃R(xS).

where f̃L(xS) = minxL f(xS , xL) and f̃R(xS) = minxR f(xS , xR). Here, we crucially use the fact
that fG−E(L)−E(R)(x) depends only on the variables in S, but not L and R; the term fL depends
only on the variables in L and S, but not R; similarly for fR. In general, if f is convex, then
both f̃L and f̃R are convex functions on RS . Hence, the formula shows that we can solve the
optimization problem by first constructing the reduced problem on G[L] and G[R], then solve a size
|S| optimization problem.

If the fij ’s are all quadratic functions, then both f̃L and f̃R are quadratic functions, and it turns out
they can be stored as matrices known as Schur complements. Hence, we can solve the problem with
the approach described above; in fact, algebraic manipulation gives the sparse Cholesky factorization
algorithm with runtime Õ(n · τ2).

However, for general convex function fG, it is not known how to store the functions f̃L and f̃R
efficiently, and this will likely require runtime exponential in treewidth. At a high level, the rea-
son is that before we solve the outer problem fG, we do not know at which fixed xS we should
recurse on for f̃L and f̃R. It is known that without adaptivity, exponentially many oracle calls are
needed to minimize a general convex function [Nem94, BS18, BJL+19]. This suggests we should
compute f̃L and f̃R recursively for each different xS . However, it is likely that we need to access at
least two different points xS , and this already leads to runtime recursion T (n) ≥ 4T (n/2) + O(1)
which is at least n2. Therefore, dynamic programming appears to be inefficient for general convex
optimization.

1.2.2 Scanning Through Variables

When the underlying structure of the variable dependencies is simple enough, a simple scan through
the variables may suffice for the problem at hand; for example, [DGRW19] successfully applies this
approach for function-fitting problems on a path. To illustrate, consider a problem of the form

min
x

F (x)
def
= f1(x1, x2, · · · , xk) + f2(x2, · · · , xk+1) + f3(x3, · · · , xk+2) + · · · .

7

Suppose x∗ is the unique minimizer of the function and x∗1, x
∗
2, · · · , x∗k−1 are given. By looking at

the gradient of the function above at the first coordinate, we know that

∂

∂x1
F (x) =

∂

∂x1
f1(x

∗
1, x

∗
2, · · · , x∗k) = 0.

Since x∗1, x
∗
2, · · · , x∗k−1 is given, this is a one variable non-linear equation on x∗k and it has a unique

solution under mild assumptions. Solving these equations, we obtain x∗k. Now, looking at ∂
∂x2

F (x),
we have that

∂

∂x2
F (x) =

∂

∂x2
f1(x

∗
1, x

∗
2, · · · , x∗k) +

∂

∂x2
f2(x

∗
2, x

∗
3, · · · , x∗k+1) = 0.

Since we already know x∗1, · · · , x∗k, this is again a one variable non-linear equation. Therefore, we
can solve this problem one variable at a time.

This approach can be modelled by an underlying graph structure in the following sense: Each
variable xi is represented by vertex i of the graph, and i ∼ j if there is some a term fk dependent
on both i and j. We say a vertex i is solved if we know x∗i . In the example above, the graph is a
thick path, and if the first k − 1 vertices are solved at the beginning, then we can follow the path
to solve the remaining vertices one by one.

Unfortunately, this type of scan-based algorithm cannot be generalized. Consider a convex function
of the form Eq. (1.3) where the graph G is a complete binary tree with n leaves. Let i be a vertex
such that the subtree rooted at i is of height two containing four leaves. Observe that we cannot
solve for the children of i by case analysis, if both i and the leaves are unsolved. Since there are
n/4 many subtree of height two in G, at least n/4 many variables must be known at the beginning,
before we can follow the graph structure to solve for the remaining variables. As such, this approach
does not produce any meaningful simplification.

1.2.3 Tightening the Iterations Bounds for Interior Point Methods

Another natural approach for attacking the conjecture is to prove that existing polynomial time
methods for linear program run faster automatically for graphs with low treewidth. Currently, there
are two family of polynomial time algorithms – the ellipsoid method (more generally cutting plane
methods) and interior point methods. For cutting plane methods, n iterations are needed in general,
since the method only obtains one hyperplane per iteration, and we need n hyperplane simply to
represent the solution even for the case tw(A) = O(1). In general, these hyperplanes are represented
by dense vectors and will probably take n2 time in total.

For interior point methods, the iteration bound is less clear since there is no information obstruction.
In general, it is known that O(

√
n log(1/ε)) iterations are needed to solve a linear program, and each

iteration involves solving a linear system. For the case d = Θ(n) in particular, this bound has not
been improved since the ’80s. In fact, it has been shown that the standard interior point method
used in practice indeed takes Ω(

√
n log(1/ε)) iterations in the worst case [MT14, ABGJ18], and

some of these constructions have O(1) treewidth. Even for concrete problems such as maximum
flow, difficult instances for iterative methods often have treewidth O(1) [KLOS14]. These lower
bounds suggest that obtaining an optimization method with Õ(twO(1)(A)) iterations requires a
substantively new algorithm.

8

1.2.4 Faster Iterations via Inverse Maintenance

Dual to the previous approach is the idea of speeding up each iteration of interior point meth-
ods. Each iteration of these methods require some computation or maintenance involving a term
(AH−1A⊤)−1; previous work on linear programming focused on inverse maintenance techniques
to accomplish this either explicitly or implicitly. In [CLS19, vdBLSS20, JSWZ20], the inverse is
explicitly maintained and this takes at least d2 time in total. [vdBLN+20, BLL+20] focus on IPM
for the bipartite matching problem and the maximum flow problem, where a sparsified Laplacian
system AH−1A⊤x = b is solved directly in each iteration and hence the whole algorithm takes at
least d per step and d1.5 time in total, where d is the number of vertices. It seems that either
approach cannot lead to nearly linear time (when n = Θ(d)).

In our setting, one natural approach is to maintain the Cholesky factorization LL⊤ = AH−1A⊤.
This can be done in nearly-linear time in total, by combining ideas from numerical methods [Dav06]
and previous algorithms mentioned above. Unfortunately, in general, almost any sparse update in
H leads to Ω(d) changes in L−1. Hence, it seems difficult to get a runtime faster than d1.5 by just
combining inverse maintenance with current knowledge of sparse Cholesky factorization.

1.3 Related Works

1.3.1 Algorithms With Runtime at Least Exponential to Treewidth

The notion of treewidth is closely tied to vertex separators; specifically, low treewidth graphs have
small vertex separators, and this structure is amenable to a dynamic-programming approach for vari-
ous problems. A number of NP-hard problems such as Independent Set, Hamiltonian Circuit,
Steiner Tree, and Travelling Salesman can be solved with runtimes that depend only lin-
early on the problem size and exponentially on treewidth [Bod94] as the result of dynamic pro-
gramming. They are extensively studied as part of the class of fixed-parameter tractible problems.
In general, dynamic programming style approaches based on the tree decomposition unfortunately
almost always lead to an exponential dependence on treewidth, even for polynomial-time solvable
problems.

We point to one particular recent result here, which is a 2O(k2) · n time algorithm to find k disjoint
paths given k vertex pairs on a planar graph by [LMP+20]; it appears to be one of the first algorithms
to exploit treewidth in a completely different way from dynamic programming.

1.3.2 Algorithms with Runtime Polynomial to Treewidth

When the problem is linear algebraic, such as solving linear systems and computing rank or determi-
nant, the dynamic programming approaches often leads to runtime polynomial in treewidth.

For linear systems Ax = b, George first developed the method of nested dissection in [Geo73], which
leveraged the underlying graph structure of A for the case where it is a grid. This was generalized
by the seminal work of Lipton, Rose and Tarjan in [LRT79], to solving systems where A is any
symmetric positive-definite matrix whose underlying graph has good balanced vertex separators.
This was further extended by [AY13], to apply to non-singular matrices over any field. The Cholesky
factorization of A is a key part of all aforementioned results; it has a long line of study in numerical
analysis [Dav06], and is used as the default sparse linear system solver in various languages such as
Julia, Matlab and Python. Our algorithm heavily relies on the machineries developed in this line
of work.

9

Recently, [FLS+18] shows several problems can be reduced to matrix factorizations efficiently, in-
cluding computing determinant, computing rank, and finding maximum matching, and this leads
to O(τO(1) · n) time algorithms where τ is the width of the given tree decomposition of the graph.
The only non-linear algebraic O(τO(1) · n) time problem we are aware of is Unweighted Maxi-
mum Vertex-Flow [FLS+18], which makes use of the crucial fact that the vertex separator size
is directedly connected to the flow size to achieve a Õ(τ2 · n) runtime.

When we are not restricted to nearly linear-time algorithms, [KPSZ18] combines nested dissection
with support theory to solve the class of linear systems where A can be viewed as a higher dimen-
sional graph Laplacian. For semidefinite programming, [ZL18] shows that interior point methods
can solve certain classes of sparse semidefinite programs in O(τ6.5n1.5 log(1/ε)) time, where τ is
a sparsity parameter for SDPs analogous to treewidth for LPs. Both algorithms require solving
super-logarithm many linear systems.

As far as we know, there is no previous work on linear programming in direct relation to treewidth.

1.3.3 Related Works in Optimization

A long line of work in the integer-linear programming community studies solving ILPs with respect to
fixed treedepth, a parameter related but more restrictive than treewidth; indeed, ILPs can be weakly
NP-hard even on instances with treewidth at most two. For an ILP with treedepth denoted td(A),
[EHK+19] gives a weakly polynomial ILPs algorithm running in time O(g(min{td(A), td(A⊤)}) ·
poly(n)), where g is at least some doubly-exponential function. This is followed-up by [CEH+20],
giving a strongly polynomial algorithm running in 2O(td·2td)∆O(2td)n1+o(1)time, where ∆ is an upper-
bound on the absolute value of an entry of A. [EHK+19] also discusses how an algorithm for ILP
may be used to solve LP, [BKO19] builds on this to show an algorithm solving mixed integer-
linear programs in time f(a, td(A)) poly(n), where a is the largest coefficient of the constraint
matrix.

The optimization work in this paper is mainly inspired by techniques for general interior point
methods, where the first proof of a polynomial time algorithm was due to Karmarkar [Kar84]. After
multiple running time improvements [Kar84, Ren88, Vai89, NN91, LS19, CLS19, LSZ19, vdBLN+20,
vdBLSS20], the current fastest IPMs are the results of [BLL+20] and [JKL+20]. We build on this
recent line of work, where ideas from interior point methods, Johnson-Lindenstrauss sketching, and
linear algebraic data structures are combined. For our dynamic data structure, we inspired by ideas
similar to wavelets commonly found in signal processing [RV91], where we maintain IPM information
across iterations at different scales, and process updates in every level of resolution.

2 Overview of Our Approach

In this section, we provide a high-level explanation of the overall approach and the techniques
used. We discuss the more general convex formulation given in Theorem 1.3, but for simplicity, we
assume each ni = 1 and m = n in the statement of the theorem; this allows us to directly refer to
coordinates of all relevant matrices and vectors, rather than blocks. We revert back to blocks for
the detailed proofs in later sections.

Our algorithm is based on interior point methods [NN94]. These methods solve the convex program
by alternating between taking a gradient step, and projecting back to the constraint set Ax = b
under a suitable norm. The movement of x follows some path x(t) inside the interior of the domain

10

K, with t decreasing by a 1−Θ(1/
√
n) factor every iteration, starting at some point x(1) ∈ K and

ending at the solution x(0) we want to find. We use the common central path defined by

x(t) = arg min
Ax=b

c⊤x+ t
m∑
i=1

ϕi(xi) (2.1)

where ϕi is a self-concordant barrier function (Definition A.3) on Ki that blows up on ∂Ki, namely,
ϕi(xi)→ +∞ as xi → ∂Ki. We simultaneously require the dual central path s(t) Eq. (A.2), where
s is maintained similarly to x.

The main difficulty is in following the path x(t) efficiently. At timestep t of the central path, the
current point x is updated by x← x+ δx, where

δx =
(
H−1

x −H−1
x A⊤(AH−1

x A⊤)−1AH−1
x

)
δµ(x, s, t) (2.2)

for some non-negative diagonal matrix Hx dependent on x, and vector δµ dependent on (x, s, t).

Our work therefore focuses on how to quickly and approximately maintain Eq. (2.2), and the
accumulation of δx over the entire central path for the final solution x (and analogously for the
dual solution δs and s). In Section 2.1, we follow existing results and approximate AH−1

x A⊤ by
AH−1

x A⊤ where x is an approximation of x. This ensures the change in AH−1
x A⊤ is low-rank

in each iteration, which allows us to update (AH−1
x A⊤)−1 implicitly and efficiently using existing

results in Cholesky decomposition, outlined in Section 2.2. Unfortunately, the change of δx is dense
even under a sparse change of x. In Section 2.3, we propose a novel representation of δx, where
only Õ(nτ log(1/ε)) “coefficients” are changed during the central path. This allows us to maintain
the solution x implicitly during the whole algorithm using only Õ(nτ2 log(1/ε)) time. Finally, to
maintain AH−1

x A⊤ close to AH−1
x A⊤, we show how to detect large coordinate changes in this new

representation in Section 2.4.

The main contributions of this paper is the novel representation of the central path and the data
structure to maintain and detect changes under this representation. We believe that this represen-
tation will be of independent interest beyond convex programs with low treewidth.

2.1 Robust Central Path Method

Although each entry of Hx and δµ is updated at every step due to the dense update of x, a robust
central path circumvents the need to recompute them completely in every iteration, and thus lowers
the cost of each step. This idea has been used since the first interior point method [Kar84], and has
led to significant recent progress in convex optimization [CLS19, vdB20, vdBLSS20, vdBLN+20,
JSWZ20, JLSW20, BLL+20].

In Appendix A, we give our robust central path algorithm (Algorithm 16), which is a slight variant
of the one presented in [LSZ19]. The changes are needed to support some extra approximation
required by our new representation. Theorem A.1 shows that to solve problem Eq. (1.1), it suffices
to implement Õ(

√
n log(1/ε)) approximate steps

x← x+ (H−1
x −H−1

x A⊤(AH−1
x A⊤)−1AH−1

x)δµ(x, s, t) (2.3)

s← s+ tA⊤(AH−1
x A⊤)−1AH−1

x δµ(x, s, t)

where x, s are vectors close to x, s, and t is a scalar close to t.

11

We only need to output (x, s) at the end, and do not need their exact values during the algorithm.
Instead, it suffices to detect which coordinate has changed too much and update the approximation
(x, s) accordingly. For interior point methods, if updated lazily, there are only a nearly linear
number of coordinate changes to x and s during the whole algorithm:∑

IPM step k

∥x(k+1) − x(k)∥0 +
∑

IPM step k

∥s(k+1) − s(k)∥0 = Õ(n log(1/ε)).

Since x, s are n-dimensional vectors, every coordinate is updated only roughly log(1/ε) times on
average, and hence it allows for very efficient updates of the approximate steps. In particular, we
have the following:

Throughout the algorithm, there are only Õ(n log(1/ε)) coordinate updates to Hx. (2.4)

2.2 Cholesky Decomposition

In recent IPM works, each iteration involves either computing or maintaining (AH−1
x A⊤)−1 of the

update given in Eq. (2.3). However, this is too expensive for our setting, even for the case of constant
treewidth. The change of the inverse between consecutive steps is usually a dense matrix (possibly
small rank) which takes at least Ω(d) space to represent. In our algorithm, we instead maintain the
sparse Cholesky decomposition.

AH−1
x A⊤ is a positive-definite matrix, and therefore admits a unique Cholesky decomposition

AH−1
x A⊤ = LL⊤, where L is a lower-triangular matrix with positive diagonal entries. The diagonal

matrix Hx changes throughout the algorithm, but crucially, this only changes the entries of L, not
its non-zero pattern. In Section 4, we discuss how to compute a permutation of the rows of A (and
correspondingly entries of b), and an associated elimination tree T of A, which reflects the non-zero
pattern of L. Suppose the rows of A has been reordered, and then AH−1

x A⊤is factored into LL⊤.
Let τ be the height of the elimination tree T . The following properties hold (Theorem 4.1):

• T is a tree on d vertices {1, . . . , d}, with vertex i representing row/column i of L.

• The columns of A, L, and L−1 are all τ -sparse.

• The non-zero entries of L−1ei and Lei are respectively subsets of the path from vertex i to
the root of T . Furthermore, they can be computed in τO(1) time.

• For a single coordinate change in Hx, it takes τO(1) time to update L exactly.

Now, we can rewrite (AH−1
x A⊤)−1 as L−⊤L−1, and take advantage of the sparsity of L via T in

the algorithm. In particular, by Eq. (2.4), we have the following:

Throughout the algorithm, there are only Õ(nτO(1) log(1/ε)) coordinate updates to L. (2.5)

2.3 Multiscale Representation of the Central Path

To implement the central path steps, we want all variables to change in a sparse way, so we can
update quickly between iterations. In particular, we want to represent x (similarly s) implicitly
by

x = x0 +Bh

for some vectors x0, h and some basis matrix B.

12

When Hx and δµ admit only sparse changes between steps, the first term (H−1
x δµ) of Eq. (2.3) is

easy to compute explicitly, which we do and maintain as part of x0. Part of the second term given by
h

def
= L−1AH

−1/2
x δµ is similarly easy to maintain, due to the fact that each column of L−1 and A has

sparsity τ and can be obtained in τO(1) time. However, computing and maintaining H−1
x A⊤L−⊤h

explicitly is still costly. The first key observation of this paper is that the representation

x = x0 +H−1
x A⊤L−⊤h

has the following properties:

1. For any i, we can compute xi in τO(1) time.

Note that xi = (x0)i + h⊤L−1AH−1
x ei. Since we know each column of A is τ -sparse, we can

compute AH−1
x ei in O(τ) time and it is O(τ) sparse. Hence, L−1AH−1

x ei is just a mixture of
O(τ) many columns of L−1 and since each column of L−1 is O(τ) sparse, we can compute it
in τO(1) time. This gives a τO(1) time algorithm to compute xi.

2. After a sparse update to L and Hx, we can maintain the representation in τO(1) time.

More precisely, given x = x0 +H−1
x A⊤L−⊤h, Lnew = L +∆L, Hnew

x = Hx +∆Hx, then we
can find xnew0 and hnew in τO(1) time such that x = xnew0 + (Hnew

x)−1A⊤(Lnew)−⊤hnew.

For the change of Hnew
x , we can simply set xnew0 = x0+(H−1

x −(Hnew
x)−1)A⊤(Lnew)−⊤h. Since

(H−1
x − (Hnew

x)−1) is sparse, we can compute the term (H−1
x − (Hnew

x)−1)A⊤(Lnew)−⊤h by
the approach from Property 1 (computing the formula from left to right).

For the change of Lnew, we simply need to find hnew such that (Lnew)−⊤hnew = L−⊤h.
Rearranging, we have hnew = (Lnew)⊤L−⊤h = h + (∆L)⊤L−⊤h. Again, since (∆L)⊤ is
sparse, we can compute it from left to right.

From now on, we call h the multiscale coefficients. Since there are only Õ(nτO(1) log(1/ε)) coordi-
nates in Hx and L (Eq. (2.4), Eq. (2.5)), Property 2 shows that we can maintain this representation
in Õ(nτO(1) log(1/ε)) time. Furthermore, we have:

Throughout, there are only Õ(nτO(1) log(1/ε)) coordinates updates to the multiscale coefficients.
(2.6)

Finally, Property 1 shows that these multiscale coefficients is as good as explicit representation since
we can read any entry in τO(1) time. Suppose we know which coordinates of x deviated from x
significantly, then we can simply use Property 1 to update x.

Combining this with heavy-hitter ideas, we can easily get an algorithm of time Õ(n1.25τO(1) log(1/ε))
(See [Ye20] for an earlier draft version of this paper).

2.4 Data Structures for Maintaining Multiscale Representation

A key component of our algorithm revolves around finding which coordinates of x deviate signifi-
cantly from x. Specifically, we want to find large coordinate in H

1/2
x (x − x), where the term H

1/2
x

is to measure the deviation in a correct norm required by the interior point method.

Similar to the discussion above, we can maintain H
1/2
x (x − x) implicitly as x0 +W⊤h for some

sparsely changing vectors x0, where W def
= L−1AH

−1/2
x and h

def
= L−1AH

−1/2
x δµ. Here, we focus on

discussing the change of the term W⊤h; analogous ideas are used for x0.

13

First, observe that we cannot maintain W⊤h = H
−1/2
x A⊤L−⊤h, as the rows of A and L−1 may

be dense. However, it is relatively easy to maintain v⊤W⊤h for any vector v, since v⊤W⊤h =

h⊤Wv = h⊤L−1AH
−1/2
x v, and we can exploit the column sparsity of A and L−1. If we use a

Johnson-Lindenstrauss sketching matrix Φ in place of v and maintain ΦW⊤h, then this allows us
to quickly estimate ∥W⊤h∥22.

We construct a data structure called the sampling tree S (Definition 6.13), based on the elimination
tree T , to store a family of sketches of the form ΦW⊤h. Specifically, S is a constant-degree tree
with leaves given by the set [n], where leaf i corresponds to (W⊤h)i. For any node v ∈ V (S),
let χ(v) ⊆ [n] denote the set of all leaves in the subtree rooted at v, and let Φχ(v) denote the JL
sketching matrix restricted to the indices given by χ(v). Then at node v, we maintain Φχ(v)W⊤h.
By JL properties, we can estimate ∥(W⊤h)|χ(v)∥22 at each node v; in other words, we have the
approximate ℓ2-norm of various subvectors of W⊤h of different lengths. Using this information, we
can apply the standard sampling technique of walking down S from the root to a leaf:

We can sample for a coordinate i proportional to (W⊤h)2i in O(height(S)) ⩽ Õ(τ) steps. (2.7)

A large coordinate (W⊤h)i means xi and xi differ significantly. Then we compute xi exactly and
update xi ← xi.

x and δµ are updated every iteration, hence, we must maintain the latest W and h to support
sampling using S. As there are Õ(nτ) nodes in S, we do not have enough time to update Φχ(v)W⊤h
at every node v every iteration. However, observe that we only need to know the latest value of
∥(W⊤h)|χ(v)∥22 during the sampling procedure, and as S is a constant-degree tree, sampling once
only visits O(height(S)) nodes in S. So we may rely on a form of lazy maintenance. Here, we focus
on discussing a coordinate change in x; analogous ideas are used for changes in δµ.

For a single coordinate change in xi, we need to update H
−1/2
x and L, but crucially the update only

affects Φχ(v)W⊤h at select nodes of S. Specifically, H−1/2
x changes by a single entry, which causes

the value of Φχ(v)W⊤h to change only if i ∈ χ(v). Hence, for each entry update of H−1/2
x , we only

need to update a path in S. On the other hand, a change in xi causes O(τ) columns of L to update.
Each column of L has a corresponding node u ∈ S, such that for any v ∈ S, the value Φχ(v)W⊤h
maintained at v changes only if u is an ancestor or descendant of v. Hence, for each column update
of L, we split the effect into two:

1. “upwards” effect: The updates to ancestors of u. Since u has at most height(S) many ancestors,
we have sufficient time to update these sketches immediately.

2. “downwards” effect: The updates to descendants of u. We cannot afford to update the whole
subtree rooted at u; hence, we delay the update. A node can have height(S)-many delayed
updates, with one per ancestor. Then, we can perform all the delayed updates in τO(1) time
when it is accessed during sampling.

Combined with Eq. (2.7), we have:

S can be maintained to support sampling a coordinate i in τO(1) amortized time. (2.8)

To further lower the cost for the case that τ is large, we present a more involved construction of a
sampling tree using heavy-light decompositions with height O(log n) (Section 6.6).

14

2.5 Proofs of Main Theorems

We now link the various pieces of this paper together to prove Theorems 1.1 to 1.3.

All three settings require a preprocessing step to find a suitable reordering of the constraints Ax =
b. Constructing the graph GA from the non-zero pattern of AH−1

x A⊤ takes O(nτ2) time. Then
by Theorem 4.1, we can find a reordering of the rows of A and a binary elimination tree T for
the corresponding Cholesky decomposition: when a width-τ tree decomposition of GA is given as
in Theorem 1.1, this takes Õ(nτ) time and produces an elimination tree of height Õ(τ). Otherwise,
we use [BGS21] to obtain a tree of height Õ(tw(GA)) which takes Õ(n · tw(GA)) time.

We can reduce the linear program of Theorem 1.1 to a convex program of the form Eq. (CP), before
invoking Theorem A.1 for the interior point method. Specifically, for the LP given in Theorem 1.1,
each convex set Ki is the interval [ui, li] with ni = 1; we have that ϕi(xi) = − log(ui−xi)−log(xi−li)
is a 1-self-concordant barrier function for Ki minimized by xi = (li+ui)/2; without loss of generality,
we may set w = 1m and have κ = n.

For Theorem 1.3, we can invoke Theorem A.1 directly. When the barrier functions are not given,
we use the universal barrier ϕi with self-concordance ni for each i (Appendix A.8); since ni = O(1),
we can find the minimizer xi of ϕi as a preprocessing step in O(1) time. As in the LP case, we set
w = 1m and have κ =

∑m
i=1wini = n.

Theorem A.1 shows that the robust interior point method given as Algorithm 16 produces the
approximate solution as required, and terminates within O(

√
κ log(κ/ε ·R/r)) = O(

√
n log(R/(εr)))

steps.

The data structure CentralPathMaintenance is used to perform one step of the central path
exactly as we need. The cost of a step is analyzed in Theorem 6.1. Let τ denote the height of
the elimination tree T computed during preprocessing, and let N = O(

√
n log(n/ε · R/r)) denote

the number of central path steps. To begin, we initialize the data structure via Initialize in time
O(nτ2 log4(N)). At timestep t, Algorithm 16 needs to find x, s, t and compute updates to x, s, t,
which is all accomplished by invoking MultiplyAndMove(t). As MultiplyAndMove is called
N times over the entire algorithm, the total runtime is O(Nn1/2+nlog(tmax/tmin))·τ2 poly log(N) =
Õ(nτ2 log(1/ε)). At the very end, Output outputs the result (x, s) exactly in time O(nτ2).

Finally, for the setting of Theorem 1.3, since we use universal barrier functions ϕi for i ∈ [m],
computing ∇ϕi and ∇2ϕi as part of the IPM take O(log(Rn/r)) time by Remark A.2. Hence, we
incur an additional log(R/r) factor in the overall runtime.

2.6 Wavelet Interpretation

Now, we explain the geometric meaning of this multiscale representation and its connection to
wavelets. The rest of this subsection can be safely skipped as this view is not used in any proof.

In wavelet theory, a complex signal is represented as a linear combination of shifted and scaled
versions of a simple signal. In our context, we are representing the pending change δx by various
linear combinations of vectors H−1

x A⊤L−⊤ei. In the case that A is the incidence matrix of a
path, the elimination tree is simply the complete binary tree, that when flattened in a breadth-first
fashion, returns the original path. Here the vertices at different levels of the elimination tree exactly
correspond to dyadic intervals of different lengths, while vertices at the same level correspond to
dyadic intervals of the same length but with a “time” shift. When H = I, the vector H−1A⊤L−⊤ei
in fact looks quite similar to the Haar basis (See Fig. 2.1).

15

Figure 2.1: The multiscale basis {A⊤L−1ei}i where A is the incidence matrix of a path. We group
the basis by size and shift the basis according to its size for clarity.

More precisely, we define the wavelet transform W def
= L−1AH−1/2, where W maps the signal in

the original space to the coefficient space, with the basis elements corresponding to vertices of
the elimination tree. Here we list only some similarities between this and the standard wavelet
transform:

1. Applying the wavelet and inverse wavelet transform recovers the signal:

W⊤Wh = h for any h ∈ Range(W⊤).

2. For each point in the original space, it is only covered by a few basis elements with different
scales:

Wei lies on O(τ) paths on the elimination tree.

3. For each basis element, it covers the original space with different scales:

The support of W⊤ei is roughly a subtree.

4. There is a fast wavelet transform:

We can apply W and W⊤to any vector in nτO(1) time.

The key difference is that our wavelet basis does not represent any signal, but only the signal in the
range of H−1/2A⊤.

To illustrate the multiscale coefficient, we consider the fused lasso problem4 in Fig. 2.2. The central
path is a 1-D signal that smoothly moves from a constant at t = 1 to a recovered signal at t = 10−3.
Following this smooth transition is expensive, hence we consider the robust central path, which is
noisier but converges to the same recovered signal. The noise comes from the approximation of x by
x5. However, maintaining this robust central path is still quite expensive, because all coordinates

4We pick this problem because it is easy to represent the whole central path as a surface plot.
5We emphasize xt is the robust central path, not xt. We only use x to approximate the linear systems. We cannot

use x as the solution because it does not satisfy the condition Ax = b.

16

Figure 2.2: Consider the fused lasso problem, with the upper left figure showing the input and true
signals. The upper right figure shows the standard central path for this problem. The lower left
figure shows the robust central path implicitly maintained in our algorithm. The lower right figure
shows the multiscale coefficients we explicitly maintain in the algorithm.

change at every step in the robust central path. The crux of this paper is representing the robust
central path by the multiscale basis {A⊤L−1ei}i, under which the coefficient changes sparsely.

Finally, we note that choosing this wavelet basis is quite natural from the view of physical science.
Consider applying the interior point method for the maximum flow problem on a path: In this
case, the linear system AH−1

x A⊤ is simply a weighted Laplacian on a path, and the central path
is simply the solution of some partial differential equations. Numerical differential equations in
general face the same computation issues as us, that is, to represent the solution in a sparse way.
It has been known since the ’90s that both the Laplacian (more generally, elliptical differential
equation), its inverse, and the solution can be represented sparsely using the wavelet basis such
as [BCR91, DKO97]. The idea of using wavelets to approximate the solution has been applied to
many partial differential equations [SCHO13]. Arguably, this paper shows that the idea also applies
to the “partial differential equation” defined by a central path, where the self-concordance theory
ensures everything is well-behave enough for this to happen.

3 Preliminaries

In this section, we introduce the notations we used throughout the paper.

We say a symmetric matrix A ∈ Rn×n is positive semidefinite (PSD) if x⊤Ax ≥ 0 for all x ∈ Rn

and positive definite (PD) if x⊤Ax > 0 for all x ∈ Rn. For symmetric matices A,B ∈ Rn×n, we use

17

A ⪰ B to indicate that A−B is a PSD matrix. We define operators ⪯,≻,≺ analogously.

For a vector v ∈ Rn, we use ∥v∥2 to denote its euclidean norm. We use ∥v∥0 to denote the number
of non-zero entries in v. For a PSD matrix A ∈ Rn×n, we let ∥v∥A =

√
v⊤Av.

We use ei to denote the standard unit vector. We use 0n,1n to denote all-zero and all-one vectors
in Rn. We define 0m×n and 1m×n analogously. We write In ∈ Rn to denote the identity matrix.
When dimensions are clear in the context, we drop the subscripts.

We use upper case letters to denote matrices, and lower cases for vectors and scalars. We use A ·B
to denote the matrix-matrix multiplication and A · x to denote the matrix-vector multiplication for
readability. When readability is not an issue, the operator · is omitted. To distinguish from the
vector dot product, we always use x⊤y.

For any matrix A ∈ Rm×n, we use AS to denote the matrix restricted to the column (block) indices
given by the set S. We say a block diagonal matrix A ∈ ⊕m

i=1Rni×ni if A can be written as

A =


A1

A2

. . .

Am


where A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , . . . , and Am ∈ Rnm×nm .

For any matrix M , we use Mi to denote the i-th column or column block, and Mi to denote the
non-zero pattern of the i-th column or column block, i.e. it is a set of row indices. For example,
j ∈ Ai if row j of A is non-zero in a column in block i. We use M i to denote the i-th row of M and
Mi to denote the non-zero pattern of the i-th row.

We use Õ(·) to hide logO(1)(n) and (log log(1/ε))O(1) factors. We similarly define Ω̃ and Θ̃. For any
positive integer n, we let [n] denote the set {1, 2, . . . , n}. We use sinhx to denote ex−e−x

2 and coshx

to denote ex+e−x

2 .

For a tree T = (V,E), we write v ∈ T or v ∈ V (T) interchangeably to denote v ∈ V . For a rooted
tree T , we say a set S lies on a path of T if there is a path P from the root of T to some node in
T , and S ⊆ P. We use P(i) to denote the set of vertices on the path from vertex i to the root in
T , and D(i) to denote the set of vertices in the subtree rooted at i.

We use the convention that a tree consisting of a single vertex has height 1.

In our pseudocode, we use font to denote data structure objects, Font to denote functions and ob-
ject types, and regular math font to denote other variables stored in a data structure. Throughout
our algorithms, we assume there is a basic object type List which gives us random access to all
its elements. We write DataStructureA extends DataStructureB in the object-oriented pro-
gramming sense: that is, DataStructureA contains all the variables and functions from DataS-
tructureB, accessible either directly by name when there is no naming conflict, or with the
keyword super.

18

4 Elimination Tree

Any positive-definite matrix M admits a unique Cholesky factorization M = LL⊤, where L is
a lower-triangular matrix with real and positive diagonal entries. In this section, we review some
existing techniques [BGHK95, Dav06] for computing a permutation of the linear constraints Ax = b,
for A ∈ Rd×n. Our goal is to ensure that after permuting the rows of A, the Cholesky factorization
LL⊤ = AH−1

x A⊤ will have certain desired sparsity patterns, which is then reflected in an associated
elimination tree.

Let the rows of A be labelled 1, 2, . . . , d. Recall we are given block-diagonal structure n =
∑m

i=1 ni

for A and Hx. We identify A in column blocks, with Ai denoting the ni columns in block i. We simply
use H in the remainder of this section, as we only require its non-zero pattern which is independent
of x; H is an n× n block-diagonal positive-definite matrix, and without loss of generality, we may
assume all entries in each block of H are non-zero. In this case, observe that the ni columns in
block i of AH−1/2 all have the same non-zero pattern, which we denote by Ai ⊆ [d]. We use the
convention that a tree on one vertex has height 1.

The main results of this section is as follows. We give two cases for the runtime, corresponding
to Theorem 1.1 with a given tree decomposition, and Theorem 1.2 without the decomposition.

Theorem 4.1. Let A be a d × n matrix with block structure n =
∑m

i=1 ni, and suppose we are
given the generalized dual graph GA. We can compute a permutation P of the rows of AH−1/2

(equivalently, an ordering π : [d] 7→ [d]), and a tree T on d vertices, so that in the Cholesky
factorization PAH−1A⊤P⊤ = LL⊤,

• each vertex of T corresponds to a row/column of the Cholesky factor L, and

• the non-zero entries of Lei, L−1ei are respectively subsets of the path from vertex i to the root
in T .

The second property implies the column sparsity of L and L−1 are bounded by height(T). The
following runtimes and associated tree height are possible:

1. Õ(n · τ) if a tree decomposition of the dual graph GA of width τ is given. height(T) =
O(τ log n).

2. Õ((n · tw(GA))
1+o(1)) without a given tree decomposition. height(T) = O(tw(GA) polylog n),

where tw(GA) is the treewidth of GA
6.

Proving Theorem 4.1 requires a number of concepts that may be unfamiliar to the reader. We begin
by presenting them and their basic properties in the subsections below.

4.1 Dual Graph and Treewidth

We begin with the necessary definitions for completion.

Definition 4.2. Recall the generalized dual graph of the matrix A ∈ Rd×n with block structure
n =

∑m
i=1 ni is the graph GA = (V,E) with V = {1, . . . , d}, and ij ∈ E if and only if Ai,r ̸= 0 and

Aj,r ̸= 0 for some r, where we use Ai,r to mean the submatrix of A in row i and column block r.
6Here, we defined the treewidth of a directed graph by simply ignoring the directions of the edges. This definition

is compatible with first writing the directed max-flow as an LP, and then taking the treewidth of the dual graph of
the constraint matrix.

19

Equivalently, GA is the dual graph of AH−1/2 by the definition in Theorem 1.1. In particular, the
non-zero pattern of (AH−1/2)(AH−1/2)⊤ is precisely the adjacency matrix of GA.

Definition 4.3. A tree-decomposition of a graph G is a pair (X,T), where T is a tree, and X :
V (T) 7→ 2V (G) is a family of subsets of V (G) called bags labelling the vertices of T , such that

1.
⋃

t∈V (T)X(t) = V (G),

2. for each v ∈ V (G), the nodes t ∈ V (T) with v ∈ X(t) induces a connected subgraph of T , and

3. for each e = uv ∈ V (G), there is a node t ∈ V (T) such that u, v ∈ X(t).

The width of a tree-decomposition (X,T) is max{|X(t)| − 1 : t ∈ T}. The treewidth of G is the
minimum width over all tree-decompositions of G. Intuitively, the treewidth of a graph captures
how close the graph is to being a tree.

The following structural results about treewidth are elementary.

Lemma 4.4. If G is a graph on d vertices and tw(G) = τ , then |E(G)| ⩽ dτ .

Lemma 4.5. If G′ is a subgraph of G, then tw(G′) ⩽ tw(G).

Lemma 4.6. For the complete graph on k vertices, tw(Kk) = k − 1.

There are some basic relations between the sparsity of a matrix A and the treewidth of its dual
graph:

Lemma 4.7. Any block of A with sparsity τ induces a clique of size τ in GA. It follows that
max{|Ai| : Ai a column block of A} ⩽ tw(A) + 1.

Treewidth is a natural structural parameter of a graph, with close connections to graph algorithms
of a recursive nature. At a high level, it is generalized by the notion of well-separable graphs. We
are particularly interested in its connection to vertex separators.

4.2 Balanced Vertex Separator

Definition 4.8. Let G = (V,E) be a graph. For any W ⊆ V and 1/2 ⩽ α < 1, an α-vertex
separator of W is a set S ⊆ V of vertices such that every connected component of the graph
G[V − S] contains at most α · |W | vertices of W . In the particular case when W = V , we call the
separator an α-vertex separator of G. The separator number of G is the maximum over all subsets
W of V of the size of the smallest 1/2-vertex separator of W in G.

We sometimes denote an α-vertex separator S by (G1, S,G2), where V (G1) ∪ S ∪ V (G2) = V (G),
and G1 and G2 are disconnected in G \ S.

Similar to treewidth, separator numbers are monotone.

Lemma 4.9. Let G′ be a subgraph of G. For any constant 1/2 ⩽ α < 1, the size of the smallest
α-vertex separator of G′ is at most that of G.

The following theorem relates the treewidth of a graph and the separator number.

Theorem 4.10 ([BGHK95], Lemma 6). If G is a graph with treewidth τ , then there exists a 1/2-
balanced separator of G of size at most τ + 1.

Now we return to ideas for computing the permutation and elimination tree.

20

4.3 Elimination Tree

Let G = (V,E) be the generalized dual graph of A, that is, its adjacency matrix is given by the
non-zero pattern of AH−1A⊤. Let π : V 7→ [d] be an ordering of the vertices of G, which we will
call an elimination order. We say a vertex v ∈ V is eliminated at step π(v). The filled graph of G
corresponding to π, denoted by G+

π , is constructed as follows:

Algorithm 1 Construct G+
π

G+
π ← (V,E)

for i from 1 to n do
for each v ∈ V such that π(v) > i do

if ∃ a path P from π−1(i) to v in G, and all u ∈ P − v satisfies π(u) ⩽ i then
add an edge between π−1(i) and v in G+

π

end if
end for

end for
return G+

π

This construction of G+
π is also known as the elimination game on G, which intuitively models the

canonical Cholesky factorization algorithm on PAH−1A⊤P⊤ = LL⊤, where P is the permutation
matrix for π: Indeed, eliminating the vertex π−1(i) at the i-th iteration of the elimination game
can be viewed as moving the π−1(i)-th row of A to the i-th row in the factorization algorithm, and
adding the edge between π−1(i) and v for the specified vertices v ∈ V indicates that the vi-th entry
of L is non-zero in the factorization algorithm. It turns out the adjacency matrix of the filled graph
G+

π precisely gives the nonzero structure of the triangular factor L. Hence, our goal is to choose π
to decrease the number of edges in G+

π .

Formally, u, v ∈ V (G+
π) are adjacent if and only if there is a path P from u to v in G, such that all

interior vertices w on P satisfies π(w) < min{π(u), π(v)}.

Definition 4.11 (Elimination Tree). The elimination tree corresponding to π is the tree T defined
by the following parent-children relation: For a vertex v ∈ V , its parent is argmin{π(w) : w ∈
NG+

π
(v), π(w) > π(v)}; in words, it is the vertex w that is eliminated earliest after v, that is

reachable from v in G using a path whose interior vertices are all eliminated before v. Different
elimination orders give rise to different elimination trees. The height of the shortest elimination
tree over all choices of π is the minimum etree height.

When the rows of A are reordered according to π, the elimination tree reflects the non-zero pattern
in the Cholesky factor.

Lemma 4.12 ([Sch82]). Let L be the Cholesky factor for the matrix AH−1A⊤. Let Lj denote the
j-th column block. The non-zero pattern of Lj is a subset of the vertices on the path from j to the
root in the elimination tree corresponding to the identity permutation.

Example 4.13. The figure below shows the relationship between a matrix, its Cholesky factor,
and the corresponding elimination tree. On the left is a 10 × 10 matrix AA⊤, with rows labelled
{1, . . . , 10}. In the middle is the Cholesky factor L of AA⊤. On the right is the elimination tree,
where node i in the tree corresponds to row i of the matrices AA⊤ and L.

21

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

M = AA>

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

L

1 2 3 5 8

10

9

7

46

Figure 4.1: Each blue dot represents a non-zero entry in the matrix.

Lemma 4.14. If uw is an edge in G, then in any elimination tree T of G, there is an ancestor-
descendant relationship between u and w. It follows that if K is a clique in G, then in any elimination
tree T of G, the vertices of K all lie on the same path from some leaf of T to the root.

The various parameters presented above are related by the following result:

Theorem 4.15 ([BGHK95], Theorem 12). Every graph G on n vertices satisfies

separator number− 1 ⩽ treewidth ⩽ min elimination tree height ⩽ separator number · log n.

This structural theorem indicates that we can construct an elimination tree T of GA and bound its
height as a function of tw(A). Specifically, we use the standard technique of recursively computing
vertex separators, and using them to generate an ordering π of the vertices of V (GA). Rather than
constructing the elimination tree according to the definition however, we construct a slightly taller
bounded-degree tree, and show it still reflects the sparsity conditions of the Cholesky factor.

In Algorithm 2, we use a list notation (v1, . . . , vk) to denote the ordering π of a set of vertices
{v1, . . . , vk} with π(vi) = i. We use + to denote the concatenation of two lists.

Algorithm 2 Constructing an Elimination Order and Tree
1: procedure makeElimOrderAndTree(G)
2: if |V (G)| ⩽ f(τ) then
3: let π be an arbitrary ordering of V (G)
4: construct a path on V (G) according to π, let u be the last vertex of the ordering/path
5: return (π, u)
6: end if
7: (G1, S,G2)← approxBalancedSeparator(G)
8: (π1, v1)← makeElimOrderAndTree(G1)
9: (π2, v2)← makeElimOrderAndTree(G2)

10: π ← arbitrary ordering of S
11: construct a path on S according to π, let u be the first vertex of the ordering/path and v

the last
12: set u as the parent of v1 and v2
13: return (π1 + π2 + π, v)
14: end procedure

22

Theorem 4.16. Let G = (V,E) be a graph on n vertices with treewidth τ , and let f(τ) be some
function of τ . Suppose approxBalancedSeparator is an algorithm that, given a graph H on k
vertices, computes (H1, S,H2) where

1. H1, H2 ⊆ H are subgraphs of H, and V (H1) ∪ S ∪ V (H2) = V (H),

2. S is an α-vertex separator of H for some universal constant 1/2 ⩽ α < 1, and |S| ⩽ f(τ),

3. the algorithm runs in time Tsep(k).

Then Algorithm 2 constructs an elimination order and a binary tree T for G of height at most
O(f(τ) · log n), in time Õ(Tsep(n)).

Proof. We have the following straightforward analysis of makeElimOrderAndTree: Let T (k)
denote the runtime on a graph with k vertices. Then{

T (k) = O(1) k ⩽ f(τ)

T (k) ⩽ T (α′k) + T ((1− α′)k) + Tsep(k) k > f(τ)

Solving the recurrence, we have T (n) = Õ(Tsep(n)).

In total, makeElimOrderAndTree recurses to a depth of O(log n), and at each recursive itera-
tion, the contribution to the elimination tree height is the size of the separator |S| ⩽ f(τ) computed
in the iteration.

A standard implementation of approxBalancedSeparator given a tree decomposition of G is
as follows:

Theorem 4.17. Let (X,T) be a width-τ tree decomposition of a graph G on n vertices. Then in
O(nτ) time, we can find a 2/3-vertex separator (G1, S,G2) of G, and tree decompositions (X1, T1)
of G1 and (X2, T2) of G2 each of width at most τ .

Proof. We assume T has O(n) nodes to start (a transformation can be made in O(τ · |V (T)|) time
in the recursive iterations, see e.g. [FLS+18] Definition 2.4). By scanning through the bags of T
in O(nτ) time, we can find a node t ∈ T such that T \ t is two disjoint subtrees T1, T2, with
|
⋃

s∈T1
X(s) \X(t)| ⩽ 2/3n, and similarly for T2. Then X(t) ⊆ V (G) is a 2/3-vertex separator of

G. By removing the vertices X(t) from all the bags in T1 and T2, we get the tree decompositions
of G1 and G2 respectively, both of width at most τ .

When the tree decomposition is not given, we can use [BGS21] to find it approximately.

Theorem 4.18 ([BGS21]). Given a graph with m edges and n vertices, we can compute a width-
O(tw(G) log3 n) tree decomposition in O(m1+o(1) polylog n) time.

Proof of Theorem 4.1. It remains to show that the tree T returned by Algorithm 2 satisfies the
sparsity properties specified in Theorem 4.1.

Let T ′ be the true elimination tree corresponding to the elimination order π computed by Al-
gorithm 2. Note that in a recursive iteration makeElimOrderAndTree(H), the subroutine
approxBalancedSeparator(H) will return (H1, S,H2), such that in the original graph G, ver-
tices in H1 are only connected to vertices in H2 via a path containing vertices in S. Hence, vertices
in H1 have no ancestors in H2 in T ′, and vice versa. Any path in T ′ from a vertex i ∈ H1 to the

23

root goes through some higher-ordered vertices in H1 followed by a subset of the vertices S; this is
contained in the path in T from i to the root, which includes all higher-ordered vertices in H1 and
all of S. By Lemma 4.12, after the permuting according to π, for each j ∈ [d], the non-zero pattern
of Lj is a subset of the path from j to the root in T ′; it is therefore also true in T .

Plugging in f(τ) = τ when a width-τ decomposition is given, and f(τ) = O(tw(G) log3 n) when
not, and using the monotonicity property of treewidth and separator size, we get the conclusions
of Theorem 4.1 immediately.

5 Sparsity Patterns and Maintaining the Cholesky Factorization

In this section, we discuss the sparsity properties of all the matrices we work with for the central path,
and the required runtime for their computations and maintenance. All of these properties are known
(see textbooks [GLN94, Dav06] for more complete introductions). We include some algorithms and
proofs to familiarize readers for the techniques we will use. As in the previous sections, we have
the constraint matrix A ∈ Rd×n whose rows are permuted according to Theorem 4.1. Let L be the
Cholesky factor of AH−1A⊤, and let T = ({1, . . . , d}, E) be the elimination tree for L of height τ .
Note we use the convention that a tree consisting of a single vertex has height 1.

Recall P(i) denote the set of vertices on the path from vertex i to the root in T , and D(i) denotes
the set of vertices in the subtree rooted at i (including i) in T . For any matrix M , we use Mi

to denote the i-th column or block, and Mi to denote the non-zero pattern of the i-th column or
block (i.e. it is a set of row indices). For example, j ∈ Ai if row j of A is non-zero in a column in
block i. We use M i to denote the i-th row of M andMi to denote the non-zero pattern of the i-th
row.

We begin with basic properties of A and L:

Lemma 5.1. If tw(A) = τ , then nnz(Ai) ⩽ τ for all i ∈ [n]. In particular, Ai is a subset of some
path from a leaf to the root of T .

Proof. By construction, Ai form a clique in the dual graph GA, and tw(A) is lower-bounded by the
size of the largest clique in GA. By construction of the elimination tree, any clique in GA must lie
on one path from a leaf to the root of T .

Lemma 5.2 ([Sch82, proposition 5]). Li ⊆ P(i) for each i. In particular, the height of the elimi-
nation tree satisfies τ ≥ max{|Li| : i ∈ [d]}.

As a corollary, this relation between the non-zero pattern of the columns of L and T further allow
us to characterize the non-zero pattern of the rows of L:

Lemma 5.3. Li ⊆ D(i).

5.1 Solving Triangular Systems

Now, we discuss the cost of solving triangular systems, in connection to the elimination tree T .

24

Algorithm 3 Solving Lx = v
1: x← 0d
2: for increasing j with vj ̸= 0 do
3: xj ← vj/Ljj

4: v ← v − xjLj

5: end for
6: return x

Lemma 5.4. Let x = L−1v, and let S be the non-zero pattern of v. Then, the nonzero pattern of x
is a subset of

⋃
i∈S P(i). Furthermore, we can solve for L−1v in O(∥L−1v∥0 · τ) time. In particular,

if the non-zero pattern of v is a subset of some path P from a leaf to the root in T , then the non-zero
pattern of L−1v is also a subset of P, and we can solve for L−1v in O(τ2) time.

Proof. We prove the sparsity pattern by inspecting Algorithm 3. Note that the xi ̸= 0 if vi ̸= 0
or (xj ̸= 0 and Lij ̸= 0). Lemma 5.2 shows that Lij ̸= 0 implies i is an ancestor of j. Hence, the
non-zeros in x can only propagate to its ancestors from the non-zeros of v. As a result, the non-zero
pattern of x is a subset of

⋃
i∈S P(i).

For the runtime, we note that Lj has τ non-zero entries and hence each step takes O(τ) time. Since
the number of steps is exactly ∥L−1v∥0, we have the runtime O(∥L−1v∥0 · τ).

Lemma 5.5. For any v, we can solve for (L−⊤v)i in time O(τ2).

Proof. Note that (L−⊤v)i = e⊤i L
−⊤v. By Lemma 5.4, computing e⊤i L

−⊤ takes O(τ2) time and
the resulting vector has τ sparsity, so the subsequent multiplication with v also takes τ = O(τ2)
time.

Lemma 5.6. Let S ⊆ [d] be a subset of the vertices on some path P from a leaf to the root in T .
Then for any y, we can compute the subvector (L−⊤y)|S = y⊤L−1|S in O(τ2) time, where L−1|S
denotes L−1 restricted to the columns given by S.

Proof. Let S′ = V (P), so we have S ⊆ S′. Lemma 5.4 shows that L−1ei is supported on S′ for
any i ∈ S′. It follows that for any i ∈ S, we have e⊤i L

−⊤y = y⊤L−1ei = y|⊤S′(L−1ei)|S′ . Hence,
(L−⊤y)|S only depends on the entries of y on S′.

This allows us to write (L−⊤y)|S = (L−⊤)|S′×S′y|S′ = (LS′×S′)−⊤y|S′ . Finally, we note that L⊤
S′×S′

is a (τ + 1)× (τ + 1) upper triangular matrix and hence we can solve it in O(τ2) time.

5.2 Computing and Updating the Cholesky Factorization

Next, we study the cost of computing and updating the Cholesky factorization. The crux for
efficient implementation of sparse Cholesky factorization is that both the matrix M and its Cholesky
decomposition M = LL⊤ are sparse, and hence the operations involving 0 can be skipped. There
are many different algorithms for this; the following is one of them.

25

Algorithm 4 Cholesky factorization of a matrix M

1: for j = 1 to d do
2: Lj,j ←

√
Mj,j −

∑j−1
k=1 L

2
j,k

3: for i = j + 1 to d do
4: Li,j ← 1

Lj,j

(
Mi,j −

∑j−1
k=1 Li,kLj,k

)
5: end for
6: end for
7: return L

By analyzing the number of non-zeros operations of the above algorithm (or other Cholesky factor-
ization algorithms), one can show the following:

Lemma 5.7 ([GLN94, Theorem 2.2.2]). For a positive definite matrix M , we can compute its
Cholesky factorization M = LL⊤ in time

Θ(
d∑

j=1

|Lj |2),

where |Lj | denotes the number of nonzero entries in the j-th column of L.

Corollary 5.8. The Cholesky factorization AH−1
x A⊤ = LL⊤ can be computed in O(nτ2) time.

Proof. By the definition of tree height, for any vertex i in the tree, the length of the path from i
to root is less than τ . Then Lemma 4.12 implies |Lj | ⩽ τ for all j. Hence, it takes O(nτ2) time to
compute AH−1

x A⊤ explicitly. Then, we can apply Lemma 5.7 to compute Cholesky factorization
and it takes time O(dτ2) = O(nτ2).

The following two lemmas involve rank-1 updates of the Cholesky factorization, one regarding the
sparsity pattern and one the update time. We state a simplified version of [DH03], which makes a
further sparsity assumption. We include the proof of first lemma for intuition.

Lemma 5.9 ([DH03, Section 5]). Given a positive definite matrix M ∈ Rd×d, its elimination tree T
of height τ , and the corresponding Cholesky factorization M = LL⊤. Let (L+∆L)(L+∆L)⊤ be the
new Cholesky factorization of M +ww⊤. Suppose that the sparsity pattern of M and M +ww⊤ are
same. If we let S be the index set of columns of L that are updated, i.e. S = {j ∈ [d] | ∆Lj ̸= 0},
then S is a subset of some path from k to the root in T where k is the first non-zero index in w.
Consequently, the row and column sparsity of ∆L are bounded by τ , and nnz(∆L) = O(τ2).

The same holds for M − ww⊤ as long as M − ww⊤ is positive definite.

Proof. Since ww⊤ is a clique in the graph associated with non-zeros of M , it is contained in a path
from k to the root in T where k is the first non-zeros in w. Let I be the set of indices in this path.
It follows that M is only changed in the I × I block. Now, we run Algorithm 4 twice, once on M
and once on M + ww⊤ and prove that the difference in L is in the I × I block. The formulas in
Algorithm 4 show that the changes to M and L are propagated in the L in the next step in the
following ways:

• Updating the entry Mij causes Lij to update.
This case is good because we know i, j ∈ I.

26

• Updating the entry Ljk causes Ljj to update.
By induction, in the last step Ljk is updated implies j, k ∈ I. Hence, (j, j) ∈ I × I (only
entries in the I × I submatrix of L are updated).

• Updating the entry Lik and Ljk ̸= 0 causes Lij to update.
By induction, we know i, k ∈ I. Since Ljk ̸= 0, Lemma 5.2 shows j is on the path of k to the
root. Since k ∈ I, we have j ∈ I. Hence, (i, j) ∈ I × I again.

• Updating the entry Ljk and Lik ̸= 0 causes Lij to update.
Same argument as above.

In all the cases, the change in L is restricted to the I × I submatrix.

At a high level, since we know L is changed in a τ × τ sized block, we only need to update the
factorization on that block. Similarly to matrix inverse, there are simple algorithms for rank-1
update for factorization in time linear to the square of the dimension.

Lemma 5.10 ([DH03, Section 5]). Given a positive definite matrix M ∈ Rd×d, its elimination tree
T of height τ , and the corresponding Cholesky factorization M = LL⊤. Let (L+∆L)(L+∆L)⊤ be
the new Cholesky factorization of M +ww⊤. Suppose that the sparsity pattern of M and M + vv⊤

are same. Then, we can compute ∆L in O(τ2) time.

The same holds for M − ww⊤ as long as M − ww⊤ is positive definite.

6 Robust Central Path Maintenance

In this section, we present a data structure CentralPathMaintenance to efficiently perform
the robust central path step needed in Algorithm 16. Specifically, we will prove the following
theorem.

Theorem 6.1 (Robust Central Path Step). Suppose Algorithm 16 is run on the convex pro-
gram Eq. (CP). Given the constraint matrix A ∈ Rd×n with block-diagonal structure n =

∑m
i=1 ni,

its binary elimination tree T of height τ , and parameters λ, ε, εt, α, w = 1m as defined in Algo-
rithm 16, the randomized data structure CentralPathMaintenance (Algorithms 14 and 15)
implicitly maintains the central path primal-dual solution pair (x, s) (Algorithm 16 Line 31) and
explicitly maintains its approximation (x, s) (Algorithm 16 Line 28) using the following functions:

• Initialize(x, s, t0, k): Initializes the data structure with initial primal-dual solution pair (x, s),
initial central path timestep t0, and a runtime tuning parameter k in O(nτ2 log4(n)) time.

• MultiplyAndMove(t): It implicitly maintains

x← x+H
−1/2
x (I − Px)H

−1/2
x δµ(x, s, t)

s← s+ tH
1/2
x PxH

−1/2
x δµ(x, s, t)

(6.1)

where Hx
def
= ∇2ϕ(x), Px

def
= H

−1/2
x A⊤(AH−1

x A⊤)−1AH
−1/2
x , and t is some earlier timestep

satisfying |t− t| ⩽ εt · t.

It also explicitly maintains (x, s) such that ∥xi − xi∥xi ⩽ ε and ∥si − si∥∗xi
⩽ tεwi for all

i ∈ [m] with probability at least 0.9.

27

Assuming the function is called at most N times and t is monotonically decreasing from tmax

to tmin, the total running time is

O
((

Nn1/2 + nlog(tmax/tmin)
)
τ2 poly log(N)

)
.

• Output: It computes (x, s) exactly and outputs them in O(nτ2) time.

Remark 6.2. The N dependence in the runtime is a result of parameter tuning. If the IPM takes
more than Õ(

√
n log(1/ε)) steps, the data structure can still run in Õ(nτ2 log(1/ε)) by choosing a

larger value for the parameter k in Initialize.

6.1 Multiscale Representation of the Central Path Dynamic

In any call to MultiplyAndMove, we want to update the central path primal-dual solution
pair according to Eq. (6.1), as well as the approximation pair. Here, we introduce the multiscale
representation used in these computations:

Definition 6.3 (Multiscale Basis). At any step of the robust central path with approximate primal-
dual solution pair (x, s), we define

W def
= L−1

x AH
−1/2
x

where Hx = ∇2ϕ(x) and Lx is the lower Cholesky factor of AH−1
x A⊤.

Intuitively, the basis element are rows of W, which are represented by vertices in the elimination
tree T . Note that our data structure never computes or stores W explicitly, as it is a costly
operation.

Definition 6.4 (Multiscale Coefficients). At any step of the robust central path with approximate
primal-dual solution pair (x, s), we define

h
def
= L−1

x AH−1
x δµ(x, s, t)

where Hx = ∇2ϕ(x), and Lx is the lower Cholesky factor of AH−1
x A⊤.

Now, we can rewrite the central path update from Eq. (6.1) using the multiscale representa-
tion:

x← x+H−1
x δµ(x, s, t)−H

−1/2
x W⊤h

s← s+ tH
1/2
x W

⊤h.
(6.2)

6.2 Implicit Representation of (x, s)

For the first part of proof of Theorem 6.1, we demonstrate how to obtain an implicit representation
of the robust central path pair (x, s), using the explicitly maintained approximation pair (x, s).
Rather than directly working with the expression in Eq. (6.2), we rewrite (x, s) in terms of variables
that admit sparse changes between consecutive steps in the central path, in order to more efficiently
maintain them.

Theorem 6.5. Given constraint matrix A and its binary elimination tree T with height τ , the data
structure MultiscaleRepresentation (Algorithms 5 and 6) implicitly maintains the primal-dual
pair (x, s) as defined by Eq. (6.2), computable via the expression

x = x̂+H
−1/2
x βxcx −H

−1/2
x W⊤(βxh+ εx)

s = ŝ+H
1/2
x W

⊤(βsh+ εs),
(6.3)

28

by maintaining the variables x̂, βx, cx, εx, ŝ, βs, εs, h,Hx and Lx. Note that the variables εx and εs
here denote the accumulated error of βxh and βsh; they are not necessarily small.

The data structure supports the following functions:

1. Initialize(x, s, x, s, t) : Initializes the data structure in O(nτ2) time, with initial value of the
primal-dual pair (x, s), its initial approximation (x, s), and initial approximate timestep t.

2. Move(): Moves (x, s) according to Eq. (6.2) in O(1) time by updating its implicit representa-
tion.

3. Update(xnew, snew): Updates the approximation pair (x, s) to (xnew, snew).

Let S = {i ∈ [m] | xnewi ̸= xi or snewi ̸= si}. Then each call to Update takes O(|S| · τ2) time,
and each variable in Eq. (6.3) except W changes in O(|S| · τ) many entries.

Algorithm 5 Multiscale Representation Data Structure - Initialize and Move
1: datastructure MultiscaleRepresentation
2: private : member
3: Constraint matrix A ∈ Rd×n, elimination tree T ▷ Fixed global constants
4: x, s ∈ Rn ▷ Approximate primal dual pair of (x, s)
5: Hx ∈ ⊕i∈[m]Rni×ni ▷ Hessian matrix Hx = ∇2ϕ(x)

6: Lx ∈ Rd×d ▷ Lower Cholesky factor of AHxA
⊤

7: x̂, ŝ, cx ∈ Rn, εx, εs, h ∈ Rd, βx, βs ∈ R ▷ Implicit representation of (x, s) as in Eq. (6.3)
8: α ∈ R, δµ ∈ Rn ▷ Implicit representation of δµ as in Invariant 6.6
9: t ∈ R+ ▷ Central path timestep parameter

10: end members
11: procedure Initialize(x ∈ Rn, s ∈ Rn, x ∈ Rn, s ∈ Rn, t ∈ R+)
12: x← x, s← s, t← t
13: x̂← x, ŝ← s
14: εx ← 0, εs ← 0
15: βx ← 0, βs ← 0
16: Hx ← ∇2ϕ(x)
17: Find lower Cholesky factor Lx where LxL

⊤
x = AH−1

x A⊤ using T ▷ By Corollary 5.8
18: Initializeh(x, s,Hx, Lx)
19: end procedure
20: procedure Initializeh(x, s,Hx, Lx) ▷ Lemma 6.8
21: for i ∈ [m] do

22: (δµ)i ← −
α sinh(λ

wi
γi(x,s,t))

γi(x,s,t)
· µi(x, s, t)

23: α← α+ α2 · w−1
i cosh2(λ

wi
γi(x, s, t)) ▷ λ,w, γ, µ as defined in Algorithm 16

24: end for
25: cx ← H

−1/2
x δµ

26: h← L−1
x AH−1

x δµ
27: end procedure
28: procedure Move
29: βx ← βx + (α)−1/2

30: βs ← βs + t · (α)−1/2

31: end procedure

29

Algorithm 6 Multiscale Representation Data Structure - Update
1: datastructure MultiscaleRepresentation
2: procedure Update(xnew,snew) ▷ Lemma 6.10
3: Hnew ← ∇2ϕ(xnew)
4: Find lower Cholesky factor Lnew where Lnew(Lnew)⊤ = AHnewA⊤ ▷ Lemma 5.10
5: Updateh(xnew, snew, Hnew, Lnew)
6: UpdateW(Lnew, Hnew)
7: x← xnew, s← snew

8: Hx ← Hnew, Lx ← Lnew

9: end procedure
10: procedure Updateh(xnew, snew, Hnew, Lnew) ▷ Lemma 6.11
11: S ← {i ∈ [m] | xnewi ̸= xi or snewi ̸= si}
12: αnew ← α, δµ

new ← δµ
13: for i ∈ S do
14: ▷ λ,w, γ, µ as defined in Algorithm 16
15: αnew ← αnew − α2 · w−1

i cosh2(λ
wi
γi(x, s, t)) + α2 · w−1

i cosh2(λ
wi
γi(s

new, xnew, t))

16: (δµ
new

)i ← −
α sinh(λ

wi
γi(x

new,snew,t))

γi(xnew,snew,t)
· µi(x

new, snew, t)

17: end for
18: cnewx ← (Hnew)−1/2δµ

new

19: hnew ← (Lnew)−1A(Hnew)−1δµ
new

20: εnewx ← εx + βx(h
new − h)

21: εnews ← εs + βs(h
new − h)

22: x̂new ← x̂+ βx(H
−1/2
x cx − (Hnew)−1/2cnewx)− (H

−1/2
x − (Hnew)−1/2)W⊤(βxh+ εx)

23: ŝnew ← ŝ+ (H
1/2
x − (Hnew)1/2)W⊤(βsh+ εs)

24: cx ← cnewx , h← hnew

25: εx ← εnewx , εs ← εnews

26: x̂← x̂new, ŝ← ŝnew

27: end procedure
28: procedure UpdateW(Lnew, Hnew) ▷ Lemma 6.12
29: x̂new ← x̂− (Hnew)−1/2((Hnew)−1/2 −H

−1/2
x)A⊤L−⊤(βxh+ εx)

30: ŝnew ← ŝ− (Hnew)1/2((Hnew)−1/2 −H
−1/2
x)A⊤L−⊤(βsh+ εs)

31: εnewx ← εx + (Lnew − L)⊤L−⊤(βxh+ εx)
32: εnews ← εs + (Lnew − L)⊤L−⊤(βsh+ εs)
33: x̂← x̂new, ŝ← ŝnew

34: εx ← εnewx , εs ← εnews

35: end procedure

30

Proof of Theorem 6.5

We prove the correctness and running time for each operation of MultiscaleRepresentation,
and that they respect Invariant 6.6. The correctness of the implicit representation in Eq. (6.3) then
follows immediately.

Invariant 6.6. After the data structure MultiscaleRepresentation is initialized, the correct
central path pair (x, s) is always implicitly maintained and can be computed according to Eq. (6.3).
Moreover, the following additional invariants are maintained:

α =
m∑
j=1

w−1
j cosh2(

λ

wj
γi(x, s, t)) (i)

δµ = α1/2 · δµ(x, s, t) (ii)

cx = H
−1/2
x δµ (iii)

h = L−1
x AH−1

x δµ. (iv)

Lemma 6.7 (Initialize). The data structure MultiscaleRepresentation takes O(nτ2) to ini-
tialize. Moreover, Invariant 6.6 is satisfied after initialization.

Proof. Proof of Correctness: We initialize x̂ to x and ŝ to s and all other terms from Eq. (6.3)
to zero. Hence, this is the correct representation. Next, we call the helper function Initializeh,
and the remainder of Invariant 6.6 is guaranteed by Lemma 6.8.

Proof of Runtime: Since ni = O(1) for all i ∈ [m], we can compute ∇2ϕ(x) in O(n) time. By
Corollary 5.8, we can find the lower Cholesky factor in O(nτ2) time. By Lemma 6.8, Initializeh
takes O(nτ2) time. Hence, the initialization takes O(nτ2) time.

Lemma 6.8 (Initializeh(x, s,Hx, Lx)). Given approximate central path pair (x, s), the Hessian
matrix Hx = ∇2ϕ(x), and lower Cholesky factor Lx, the data structure takes O(nτ2) time to perform
Initializeh. Moreover, (i)-(iv) of Invariant 6.6 are satisfied after initialization.

Proof. Proof of Correctness: The invariants directly follow from the definition.

Proof of Runtime: Since ni = O(1) for all i ∈ [m], each iteration of the for-loop takes O(1)
time. Then, it takes O(n) time to compute α and δµ. Since Hx is a block-diagonal matrix, we can
compute cx = H

−1/2
x δµ in O(n) time. Finally, L−1

x AH−1
x δµ can be computed in time O(nτ2) by

Lemmas 5.1 and 5.4.

Lemma 6.9 (Move). Under Invariant 6.6, the data structure MultiscaleRepresentation takes
O(1) time to move the current central path pair (x, s) by one step according to Eq. (6.2). More-
over, Invariant 6.6 is preserved afterwards.

Proof. Proof of Correctness: Let xnew, snew be the updated values of x, s after Move is per-
formed. We check that the implicit representation from Eq. (6.3) is indeed the correct expression

31

for xnew by comparing it to x:

xnew − x = H
−1/2
x α−1/2cx −H

−1/2
x W⊤(α−1/2h)

= H
−1/2
x α−1/2H

−1/2
x δµ −H−1/2W⊤(α−1/2L−1

x AH−1
x δµ)

= H−1
x δµ(x, s, t)−H

−1/2
x W⊤L−1

x AH−1δµ(x, s, t)

= H−1
x δµ(x, s, t)−H

−1/2
x W⊤h,

where the first step follows by Line 29, the second by (3) and (4) of Invariant 6.6, the third by (2) of
Invariant 6.6, and the fourth step follows by the definition of h. This difference is exactly as given
in Eq. (6.2).

Similarly, for snew, we have

snew − s = H
1/2
x W

⊤(t · βs)

= tH
1/2
x W

⊤(α−1/2LxAH
−1
x δµ)

= tH
1/2
x W

⊤LxAH
−1
x δµ(x, s, t)

= tH
1/2
x W

⊤h,

exactly as given in Eq. (6.2). The first step follows from Line 30, the second and third steps from
(4) and (2) of Invariant 6.6, and the fourth step from the definition of h.

Proof of Runtime: The operation only uses addition and taking square roots of real numbers.

Lemma 6.10 (Update(xnew, snew)). Under Invariant 6.6, the data structure MultiscaleRepresentation
takes O(|S| · τ2) time to move the approximation pair (x, s) to (xnew, snew), where S = {i ∈ [m] |
xnewi ̸= xi or snewi ̸= si}. Invariant 6.6 is preserved at the end of the function call.

Moreover, the total number of coordinate changes in the variables involved in the implicit represen-
tation is bounded by O(|S| · τ).

Proof. We can update x, s trivially. Immediately afterwards, we must update Hx, L and h in the
data structure, so they correspond correctly to xnew. As a result of these updates, Eq. (6.3) will
no longer hold, so we must then adjust the other variables x̂, ŝ, cx, εx, εs, βx, βs used in the implicit
representation, in order to restore the invariant. To simplify the presentation, we accomplish this
via two helper functions, Updateh and UpdateW.

By combining Lemmas 6.11 and 6.12, we show that the implicit representation expression holds
after all variables are updated. Furthermore, they show the required bound on the total number of
coordinate changes in all the implicit representation variables.

For the runtime, we can compute Lnew in O(τ2 · (∥xnew − x∥0 + ∥snew − s∥0)) time by Lemma 5.10.
Furthermore, Updateh takes O(|S| · τ2) time. For UpdateW, we can split the update of L into
|S| many rank-1 updates by updating A((Hnew

i)−1 −H−1
i)A⊤ in time O(τ2) for each i ∈ S, where

Hi = ∇2ϕi(xi). By Lemma 5.9, the non-zero columns of ∆L
def
= Lnew −L lie on a path of T . Then,

each call of UpdateW takes O(τ2) time by Lemma 6.12. Hence, the total runtime is O(|S| ·τ2).

Lemma 6.11 (Updateh(xnew, snew, Hnew, Lnew)). Under Invariant 6.6, given the new approxima-
tion pair xnew, snew, Hnew = ∇2ϕ(xnew), and the lower Cholesky factor Lnew of A(Hnew)−1/2A⊤,

32

the function Updateh updates the implicit representation such that (i)-(iv) of Invariant 6.6 are
preserved, and at the end of the function call, the central path pair are given by

x = x̂+ (Hnew)−1/2βxcx − (Hnew)−1/2W⊤(βxh+ εx),

s = ŝ+ (Hnew)1/2W⊤(βsh+ εs).

Moreover, it takes O(|S| · τ2) time to perform Updateh where S = {i ∈ [m] | xnewi ̸= xi or snewi ̸=
si}, and all the variables in Eq. (6.3) change in at most O(|S| · τ) many entries.

Proof. Proof of Correctness: First, we check (i)-(iv) of Invariant 6.6: For (i) and (ii), note that
the values of µi and γi only depend on xi, si and t, so it suffices to update only the entries of α and
δµ with indices in S. For (iii) and (iv), they are trivially satisfied by definition.

After Line 23, we have computed new versions of the variables x̂, ŝ, cx, h, εx, εs. For the implicit
representation of x, they satisfy:

x̂new + (Hnew)−1/2βxc
new
x − (Hnew)−1/2W⊤(βxh

new + εnewx)

= x̂+ βx(H
−1/2
x cx − (Hnew)−1/2cnewx)− (H

−1/2
x − (Hnew)−1/2)W⊤(βxh+ εx)

+ (Hnew)−1/2βxc
new
x − (Hnew)−1/2W⊤(βxh

new + εnewx)

= x̂+ βxH
−1/2
x cx −H

−1/2
x W⊤(βxh+ εx)

= x,

where the first step follows by the definition of x̂new and the second step follows by βxh
new+ εnewx =

βxh+ εx from Line 20. The proof of implicit representation of s is identical; we omit it here.

The remainder of the function updates the variables to their new versions, giving the desired con-
clusion of the lemma.

Proof of Runtime: Since ni = O(1) for all i ∈ [m], it takes O(|S|) time to compute αnew

and δµ
new. Since H is a block-diagonal matrix, it takes O(|S|) time to compute cnewx . Similarly,

it takes O(|S|) time to compute (Hnew)−1δµ
new. We use µ̂ to denote (H)−1δµ and µ̂new to denote

(Hnew)−1δµ
new. Then, we can compute hnew by computing hnew − h. We note that

hnew − h = (Lnew)−1A(Hnew)−1µ̂new − L−1AH−1µ̂

= (Lnew)−1A(Hnew)−1µ̂new − L−1A(Hnew)−1µ̂new︸ ︷︷ ︸
δ
(1)
h

+L−1A(Hnew)−1µ̂new − L−1AH−1µ̂︸ ︷︷ ︸
δ
(2)
h

.

We note that δ
(2)
h can be computed in O(|S| · τ2) time using Lemmas 5.1 and 5.4. By definition of

Lnew, we can compute δ
(1)
h in O(|S| · τ2) time. Let SL

def
= {i ∈ [d] | Lnew

i ̸= Li}. By Lemma 5.9, SL

can be covered by |S| many paths on the elimination tree. This also shows hnew − h has O(|S| · τ)
many non-zero entries. Hence, we can compute εnewx and εnews in O(|S| · τ) time. Finally, since
nnz(H −Hnew) = O(|S|), we can compute (H−1/2 − (Hnew)−1/2)W⊤ and (H1/2 − (Hnew)1/2)W⊤

in O(|S| · τ2) time by Lemmas 5.1 and 5.4.

Number of Coordinate Changes: Recall that hnew − h has O(|S| · τ) many non-zero entries, so
the number of coordinate changes in εx, εs is also bounded by O(|S| · τ). The number of coordinate
changes in x̂ and ŝ is bounded by O(|S|·τ) since (H−1/2−(Hnew)−1/2)W⊤ and (H1/2−(Hnew)1/2)W⊤

both have O(|S| · τ) many non-zero entries by Lemmas 5.1 and 5.4, and ∥cnewx − cx∥0 = O(|S|).

33

Lemma 6.12 (UpdateW(Lnew, Hnew)). Given Hnew = ∇2ϕ(xnew), the lower Cholesky factor Lnew

of A(Hnew)−1/2A⊤, and current implicit representation of (x, s) given by

x = x̂+ (Hnew)−1/2βxcx − (Hnew)−1/2W⊤(βxh+ εx)

s = ŝ+ (Hnew)1/2W⊤(βsh+ εs)

UpdateW takes O((|S|+|SL|)·τ2) time to update the variables maintained by MultiscaleRepresentation,
such that at the end of the function call, the central path pair is given by

x = x̂new + (Hnew)−1/2βxcx − (Hnew)−1/2(Wnew)⊤(βxh+ εnewx)

s = ŝnew + (Hnew)1/2(Wnew)⊤(βsh+ εnews),

where Wnew def
= (Lnew)−1A(Hnew)−1/2, S def

= {i ∈ [m] | xnewi ̸= xi or snewi ̸= si}, and SL
def
= {i ∈

[d] | Lnew
i ̸= Li}.

Moreover, when viewed as a set of vertices in T , if SL can be covered by O(|S|) many paths in T ,
then the running time of UpdateW is O(|S| · τ2) and the number of coordinate changes in x̂, ŝ, εx
and εs is bounded by O(|S| · τ).

Proof. Proof of Correctness:

First, we examine the reason behind the definition of εnewx : We want to find εnewx such that

(Lnew)−⊤(βxh+ εnewx) = L−⊤(βxh+ εx).

Rearrange, we get

εnewx = (Lnew)⊤L−⊤(βxh+ εx)− βxh

= (Lnew − L+ L)⊤L−⊤(βxh+ εx)− βxh

= (Lnew − L)⊤L−⊤(βxh+ εx) + L⊤L−⊤(βxh+ εx)− βxh

= εx + (Lnew − L)⊤L−⊤(βxh+ εx).

Now, we check the implicit representation of x. At the end of the function, we have

x̂new + (Hnew)−1/2βxcx − (Hnew)−1/2(Wnew)⊤(βxh+ εnewx)

= x̂new + (Hnew)−1/2βxcx − (Hnew)−1/2(Hnew)−1/2A⊤(Lnew)−⊤(βxh+ εnewx)

= x̂new + (Hnew)−1/2βxcx − (Hnew)−1A⊤L−⊤(βxh+ εx)

= x,

where the first step follows by definition of Wnew, the second step follows by the property of εnewx

above, and the last step follows by definition of x̂new.

The proofs for εnews and s are identical; we omit them here.

Proof of Runtime: Note that ∆εx
def
= εnewx − εx = ((βxh + εx)

⊤L−1(Lnew − L))⊤. Then, we
can compute L−1(Lnew − L) in O(|SL| · τ2) time by Lemmas 5.2 and 5.4, and therefore compute
∆εx in O(|SL| · τ2) time. By Lemmas 5.1 and 5.4, we can compute ((Hnew)−1/2 −H−1/2)A⊤L−⊤

in O(|S| · τ2) time, and the result has sparsity O(|S| · τ). Thus, we can compute x̂new and ŝnew in
O(|S| · τ2) time. In total, the function runs in O((|S|+ |SL|) · τ2) time.

34

For each path P, we can directly compute (L−⊤(βxh+ εx))|P in time O(τ2) by Lemma 5.6. Then,
it takes O(τ2) to compute ∆εx for each path. Hence, the update time in this case is bounded by
O(|S| · τ2).

Number of Coordinate Changes: By Lemmas 5.1 and 5.4, ((Hnew)−1/2 − H−1/2)A⊤L−⊤ has
sparsity O(|S|·τ). For each path P, the solution of L−1(Lnew−L) is a τ×τ submatrix by Lemmas 5.2
and 5.4, leading to εnewx − εx and εnews − εs having sparsity O(|S| · τ).

6.3 Approximating A Sequence of Vectors

The central path maintenance involves a number of dynamic vectors, e.g. x̂, ŝ, cx from Eq. (6.3).
These can essentially be viewed as online sequences of vectors, where the sequence length is the
number of central path steps. To work with these vector variables efficiently over the central path
steps, we maintain their ℓ∞-approximations.

In this section, we introduce the techniques for obtaining ℓ∞-approximations of an online sequence
of vectors using a sampling tree data structure, crucially avoiding reading the input vectors in full
at all times to lower the runtime. The underlying idea is standard in sampling, heavy-hitters, and
sketching, see e.g. [CM05]. We explain how it is used in the context of central path maintenance in
subsequent sections.

Definition 6.13. A sampling tree (S, χ) of Rn consists of a constant degree rooted tree S = (V,E)
and a labelling of the vertices χ : V → 2[n], such that:

• χ(root) = [n],

• If v is a leaf node of S, then |χ(v)| = 1,

• For any node v of S, the set {χ(c) | c is a child of v} forms a partition of χ(v).

Theorem 6.14. Given a sampling tree (S, χ) with height η, some 0 < εapx, δapx < 1, length of
input sequence k, a fixed but unknown JL-matrix Φ ∈ Rr×n where r = Ω(η2 log(nk/δapx)), and
upper bound ζ > 0 such that the sequence {y(ℓ)}kℓ=1 satisfies ∥y(ℓ) − y(ℓ−1)∥2 ⩽ ζ for all ℓ ∈ [k], the
data structure ℓ∞-Approximates (Algorithms 7 and 8) supports k calls to Query, such that:

In the ℓ-th call to Query, the data structure can indirectly access {y(i)}ℓi=1 using the list of oracles
{O[y(i)]}ℓi=1 as follows:

O[y(i)].TypeI(v): access to the vector Φχ(v)y
(i) for node v ∈ S,

O[y(i)].TypeII(j): access to entry y
(i)
j for j ∈ [n],

and returns z(ℓ) such that ∥z(ℓ) − y(ℓ)∥∞ ⩽ εapx with probability at least 1− δapx/k.

Over the entire input sequence, the data structure makes O(η ·ζ2k2/ε2apx ·poly log(nkζ/(εapx · δapx)))
type-I oracle calls and O(ζ2k2/ε2apx · poly log(nkζ/(εapx · δapx))) type-II oracle calls, with O(η · r ·
ζ2k2/ε2apx ·poly log(nkζ/(εapx · δapx))) additional computation time. It maintains {z(ℓ)}kℓ=1 such that
∥z(ℓ) − y(ℓ)∥∞ ⩽ εapx for all ℓ ∈ [k] with success probability at least 1− δapx.

For any vector y in the sequence, we show that Φχ(v)y allows us to obtain a (1± 1
η)-approximation

of ∥y|χ(v)∥22. With such estimations, we can sample a coordinate of y with probability proportional
to y2i using O(η) many oracle calls, using a random descent on the sampling tree, where we choose
each child with probability proportional to their estimation. This further enables us to obtain a

35

Algorithm 7 ℓ∞ Maintenance Data Structure – Initialize and Query
1: data structure ℓ∞-Approximates
2: private : members
3: Sampling tree (S, χ) ▷ Fixed global constant
4: εapx, δapx ∈ (0, 1) ▷ error parameter and failure probability parameter
5: ℓ, k ∈ N ▷ counter and total length of sequence
6: ζ ∈ R+ ▷ upper bound of ∥y(ℓ+1) − y(ℓ)∥2
7: list {O{y(i)}}ki=0 ▷ sequence of oracles of input vectors y(i)

8: list {z(i)}ki=0 ▷ sequence of approximations
9: end members

10: procedure Initialize(S, χ, εapx ∈ (0, 1), δapx ∈ (0, 1), ζ ∈ R+, k ∈ N)
11: ℓ← 0, k ← k
12: εapx ← εapx, δapx ← δapx, ζ ← ζ
13: y(0) ← 0, z(0) ← 0
14: end procedure
15: procedure Query(O[ynew])
16: ℓ← ℓ+ 1
17: O[y(ℓ)]← O[ynew] ▷ store new oracle to list
18: z(ℓ) ← z(ℓ−1) ▷ first set the approximation to be the same as the previous
19: I ← ∅ ▷ set of indices i where we may need to update z

(ℓ)
i

20: for j = 0, 1, . . . , ⌊log ℓ⌋ do
21: Ij ← ∅
22: if ℓ ≡ 0 mod 2j then
23: for O(4jζ2/ε2apx · log3 k · log(nkζ/(εapxδapx))) many times do
24: Ij ← Ij ∪ {Sample(ℓ− 2j + 1, ℓ)}
25: end for
26: end if
27: I ← I ∪ Ij
28: end for
29: for all i ∈ I do
30: zi ← O[y(ℓ)].TypeII(i)
31: if |zi − (z(ℓ))i| > εapx then ▷ Set z

(ℓ)
i ← y

(ℓ)
i when error is larger than εapx

32: (z(ℓ))i ← zi
33: end if
34: end for
35: return z(ℓ)

36: end procedure

36

Algorithm 8 ℓ∞ Maintenance Data Structure – Sample and Estimate
1: procedure Sample(a ∈ [k], b ∈ [k])
2: repeat
3: v ← root(S), p← 1
4: while v is not a leaf node do
5: Sample child v′ of v with probability pv′

def
=

Estimate(a, b, v′)∑
u a child of v Estimate(a, b, u)

6: p← p · pv′
7: v ← v′

8: end while
9: ▷ Since v is a leaf node, χ(v) consists of a single index from [n]

10: ▷ For notational purposes, suppose χ(v) = {i}
11: y

(a)
i ← O[y(a)].TypeII(i)

12: y
(b)
i ← O[y(b)].TypeII(i)

13: with probability (y
(a)
i − y

(b)
i)2/(10 · p · Estimate(a, b, root(S))), return i

14: until false
15: end procedure
16: procedure Estimate(a ∈ [k], b ∈ [k], v ∈ S)
17: return ∥O{y(a)}.TypeI(v)−O{y(b)}.TypeI(v)∥22
18: end procedure

(1± ε)-approximation of y in the ℓ∞-norm using O(∥y∥22/ε2 log(∥y∥2/ε)) type-II oracle calls by the
coupon collection problem. By linearity of Φ, this then allows us to approximate y(b) − y(a).

Instead of directly estimating y(ℓ) for each ℓ, we obtain a ℓ∞-approximation for all y(b)−y(a), where
[a, b]

def
= {a, a+ 1, . . . , b− 1, b} is in the set of dyadic intervals of [k].

Definition 6.15. Let k be a positive integer. The set of dyadic intervals of [k] is

{[i · 2j + 1, (i+ 1) · 2j] | i, j ∈ N; (i+ 1) · 2j ⩽ k}.

The following lemma tells us why dyadic intervals help to keep the error sub-linear to the size of
the intervals.

Lemma 6.16 (folklore). Any interval [a, b] in [k] can be partitioned into at most 2 log k dyadic
intervals.

Hence, it suffices to obtain a (1± ε
2 log k) approximation for every dyadic interval.

Before we prove Theorem 6.14, we show that the function Sample(a, b) in the data structure indeed
samples a coordinate i of (y(b) − y(a)) with probability proportional to (y(b) − y(a))2i .

Lemma 6.17 (Sample). Under the same setting as Theorem 6.14, conditioned on the function
Estimate(a, b, v) always returns ∥Φχ(v)(y

(a) − y(b))∥22 = (1 ± 1
2η)∥(y

(a) − y(b))|χ(v)∥22, the function
Sample(a, b) on Line 1 samples a coordinate i proportional to (y(b) − y(a))2i with O(η · r) expected
running time, and makes O(η) many type-I oracle calls and O(1) many type-II oracle calls in
expectation.

Proof. Proof of Correctness: Let δy denote y(b) − y(a) in this proof.

37

Let v1, v2, . . . , vm ∈ V be the sequence of nodes visited in the while-loop on Lines 4 to 8, where v1 is
the root node of S and vm is the leaf node with χ(vm) = {i}, for some i ∈ [n] and m ⩽ η. Observe
that at end of the while-loop, p is exactly the probability that vm is sampled. Hence, the algorithm
outputs vm with probability

Pr[i is outputed] = Pr[vm is sampled] · Pr[i is returned | vm] = p ·
(y

(a)
i − y

(b)
i)2

10 · p∥Φδy∥22
=

δ2y,i
10 · ∥Φδy∥22

.

This shows Sample outputs a coordinate i with probability proportional to δ2y,i.

Proof of Runtime: Consider one iteration of the repeat-loop (Lines 2 to 14), where the inner
while-loop visits the node sequence v1, . . . , vm. The probability to choose child vj+1 from node vj is
∥Φχ(vj+1)δy∥22/

∑
u a child of vj ∥Φχ(u)δy∥22. By our condition on the function Estimate(a, b, v), we

have
∑

c a child of vj ∥Φχ(u)δy∥22 = (1± 1
η)∥Φχ(vj)δy∥22. Hence,

Pr[vj+1 | vj] ⩽
(
1 +

1

η

) ∥Φχ(vj+1)δy∥22
∥Φχ(vj)δy∥22

.

Taking the telescoping product, we have

p ⩽ (1 +
1

η
)η
∥Φχ(v2)δy∥22
∥Φχ(v1)δy∥22

×
∥Φχ(v3)δy∥22
∥Φχ(v2)δy∥22

× . . .×
∥Φχ(vm)δy∥22
∥Φχ(vm−1)δy∥22

⩽ 3 ·
∥Φ{i}δy∥22
∥Φδy∥22

.

This iteration of the repeat-loop returns with probability

δ2y,i
10p∥Φδy∥22

≥
δ2y,i

10∥Φδy∥22
· ∥Φδy∥

2
2

3∥Φ{i}δy∥22
≥ 1

50
,

where we used ∥Φ{i}δy∥22 ⩽ (1 + 1
2η)δ

2
y,i. Hence, the expected number of iteration is O(1).

For each iteration of the repeat-loop, the inner while-loop on Lines 4 to 8 traverses a path from the
root to a leaf node in S, so we can bound the number of iterations by η. At each node vj along the
path with c children, sampling on Line 5 requires O(r) time and 2c many type-I queries. At the
end of the descent to a leaf, we make 2 type-II queries on Lines 11 and 12 and then 2 type-I queries.
Hence, each call of Sample takes O(η · r) time, O(η) type-I queries, and O(1) type-II queries in
expectation.

Proof of Theorem 6.14. Proof of Runtime: For a fix j ∈ [⌊log k⌋], the data structure makes
O(4jζ2 · log3 k · log(nkζ/(εapx ·δapx))/ε2apx) many calls to Sample, for each 2j calls to Query. Since
there are k calls to Query in total, the total number of Sample call is

⌊log k⌋∑
j=1

k

2j
·O
(
4jζ2

ε2apx
· log3 k · log(nkζ

εapx · δapx
)

)
= O

(
k2ζ2 · log3 k · log(nkζ/(εapxδapx))

ε2apx

)
.

Combining the bound above and Lemma 6.17, the total runtime is O(ηrk
2ζ2

ε2apx
poly log(nkζ/(εapx · δapx)))

in expectation, with O(k2ζ2/ε2apx · poly log(nkζ/(εapx · δapx)))) type-II queries and O(ηk2ζ2/ε2apx ·
poly log(nkζ/(εapx · δapx))) type-I queries in expectation.

38

Proof of Correctness: By the coupon collection problem, for any vector v, we can find all
coordinates i of v such that |vi| ≥ 1

a∥v∥2 with high probability, by sampling O(a2 log a) many coor-
dinates, each time sampling coordinate i with probability proportional to v2i . By our choice of r =
Ω(η2 log(nk/δapx)) and union bound over all type-I queries, we have the function Estimate(a, b, v)
always return ∥Φχ(v)(y

(a) − y(b))∥22 = (1± 1
2η)∥(y

(a) − y(b))|χ(v)∥22 with probability at least 1− δapx
2 .

Fix j ∈ [⌊log ℓ⌋]. We sample O(4jζ2 · log3 k · log(nkζ/(εapxδapx))/ε2apx) many coordinates for y(ℓ) −
y(ℓ−2j) (Lines 22 to 26). By the triangle inequality, and the property that consecutive y(ℓ)’s change
slowly, we have ∥y(ℓ) − y(ℓ−2j)∥2 ⩽ 2j · ζ. Hence, Ij contains all coordinates i such that |(y(ℓ) −
y(ℓ−2j))i| > O(εapx/ log k) with success probability 1− δapx/ poly(nk).

Taking the union bound over all j, we have that I =
⋃
Ij contains all coordinates i such that

|(y(ℓ)−y(ℓ−2j+1))i| > O(εapx/ log k) for all ℓ ∈ [k] and j ∈ [⌊log k⌋] with probability at least 1− δapx
2 .

Consider the data structure at the end of iteration ℓ. Fix a coordinate i, and let ℓi be the iteration
when the value of zi was set by Lines 30 and 32. In other words, z(ℓ)i = y

(ℓi)
i . Let δ(t)y,i = (y(t)−y(t−1))i

for any t ∈ [k]. Then,

|y(ℓ)i − z
(ℓ)
i | = |y

(ℓ)
i − y

(ℓi)
i | =

∣∣∣∣∣
ℓ∑

t=ℓi+1

δ
(t)
y,i

∣∣∣∣∣ =
∣∣∣∣∣
2 log k∑
s=1

(as+1)2js∑
t=as2js+1

δ
(t)
y,i

∣∣∣∣∣ ⩽ 2 log k ·O(εapx/ log k) ⩽ εapx,

where the third step follows by Lemma 6.16, and the fourth step follows by the fact that ℓi is the
last time zi was updated, so for any [a ·2j +1, (a+1)2j] ⊂ [ℓi, ℓ], we have |(y((a+1)2j+1)−y(a·2

j))i| <
O(εapx/ log k).

Taking the union bound again, we have the data structure succeeds with probability at least 1−δapx.

6.4 Sketching A Sequence of Vectors

In this section, we show how to construct an oracle used in Theorem 6.14 that supports type-I
queries for a sequence of vectors.

Theorem 6.18. Given a sampling tree (S, χ) of Rn with height η, and a JL sketching matrix
Φ ∈ Rr×n, the data structure VectorSketch maintains yv

def
= Φχ(v)h for all nodes v in the

sampling tree through the following functions:

• Initialize(S, χ,Φ ∈ Rr×n, h): Initializes the data structure in time O(n · η · r), so that node
v ∈ S maintains yv.

• Update(hnew ∈ Rn): Maintains the data structure for h← hnew in O(η ·r · ∥hnew−h∥0) time.

• Query(v ∈ V (S)): Outputs Φχ(v)h in O(r) time.

Proof. Correctness: In Initialize, we calculate yv directly for all v. In Update when h is updated
to hnew, note that yv maintained at a node v needs to be updated if and only if (hnew − h)χ(v) ̸= 0.
Hence, for each index i with (hnew− h)i ̸= 0, we need to update at all nodes v with i ∈ χ(v), which
is exactly the path from the leaf node u with χ(u) = {i} to the root of S. Moreover, the update
due to coordinate i is precisely Φ{i}(h

new − h).

39

Algorithm 9 Vector Sketching Data Structure
1: datastructure VectorSketch
2: private : members
3: Φ ∈ Rr×n ▷ JL matrix
4: Sampling tree (S, χ)
5: h ∈ Rn ▷ latest input vector
6: List {yv}v∈V (S) ▷ sketches indexed by nodes of S, where yv

def
= Φχ(v)h

7: end members
8: procedure Initialize(S, χ,Φ ∈ Rr×n, h ∈ Rn)
9: (S, χ)← (S, χ)

10: Φ← Φ
11: h← h
12: for all v ∈ S do
13: yv ← Φχ(v)h
14: end for
15: end procedure
16: procedure Update(hnew)
17: for all i such that hnewi ̸= hi do
18: Find leaf node v of S such that χ(v) = {i}
19: for all node u ∈ PS(v) do ▷ where P(v) is the path from v to the root in S
20: yv ← yv − Φ{i}h+Φ{i}h

new

21: end for
22: end for
23: h← hnew

24: end procedure
25: procedure Query(v ∈ S)
26: return yv
27: end procedure

40

Runtime: For Initialize, let LayerS(i) def
= {v ∈ V (S) | depth(v) = i} be the set of nodes in the i-th

layer of the sampling tree. By property (3) of the sampling tree in Definition 6.13, χ(v) ∩ χ(u) = ∅
for any u, v ∈ LayerS(i). Hence, we can compute Φχ(v)h for all v ∈ LayerS(i) in time O(n · r). Since
S has height η, initialization takes O(n · η · r) time.

For Update, observe that the outer for-loop runs ∥hnew − h∥0 times. The inner for-loop iterates
at most η times, as it traverses up a path from a leaf node to the root in S. For each node on the
path, we need to compute zv −Φ{i}h+Φ{i}h

new which takes r time. Thus, we can bound the total
update time by O(η · r · ∥hnew − h∥0).

To find the leaf node v such that χ(v) = {i}, we note the function χ is fixed, so it can be pre-process
during initialization in O(n) time.

The query time follows by the fact that yv is an r-dimensional vector.

6.5 Sketching the Multiscale Representation via Simple Sampling Tree

The previous section shows how to construct an oracle used in Theorem 6.14 that supports type-I
queries for a sequence of slowing changing vectors. However, not all vector variables in our main
central path maintenance data structure change slowly across consecutive central path steps. In
particular, we also want to maintain the sketches of matrix-vector products involving W⊤, such as
W⊤h,W⊤εx and W⊤εs from Eq. (6.3).

Consider maintaining ℓ∞-approximations of the sequence of W⊤h: Using VectorSketch pre-
sented in Theorem 6.18 directly yields a data structure whose update time at iteration ℓ + 1 is a
function of ∥(W⊤h)(ℓ+1) − (W⊤h)(ℓ)∥0. Recall that W and h change between central path steps as
a function of changes in x; unfortunately, even if x only changes in a single coordinate, W⊤h can
change densely. Hence, we would like to design a modified data structure whose update time is a
function of ∥x(ℓ+1) − x(ℓ)∥0 and ∥h(ℓ+1) − h(ℓ)∥0 instead. In this section and the next, we present
sketching data structures that serve as the oracle needed in Theorem 6.14 for type-I queries, specif-
ically for the case when the online sequence of vectors is of the form {(W⊤h)(ℓ)}kℓ=0, for dynamic
W and h.

To this end, we have to crucially utilize the structure of the lower Cholesky factor L and the
elimination tree T . In this section, we present a simple construction of a sampling tree which
preserves the structural property of the elimination tree T , and an intuitive implementation of the
sketching maintenance data structure with Õ(poly(τ)) amortized runtime per update. In Section 6.6,
we show a more involved data structure to lower the runtime, using many of the same ideas.

This section mainly serves to illustrate our approach to maintaining the sketches, so we assume
each ni = 1 and m = n in the block structure of A for simplicity of presentation; the assumption is
removed in Section 6.6.

Theorem 6.19. Given the constraint matrix A, its binary elimination tree T with height τ , a
JL matrix Φ ∈ Rr×n, and a sampling tree (S, χ) with height η ⩽ O(τ + log(n)) constructed as
in Section 6.5.1, the data structure SimpleSketch (Algorithms 10 and 11) maintains the sketch
Φχ(v)W⊤h = Φχ(v)H

−1/2
x A⊤L−⊤

x at every node v ∈ S through following operations:

• Initialize(S, χ,Φ, x, h): Initializes the data structure in O(n · τ · η · r) time, so that node
v ∈ S maintains the sketch Φχ(v)W⊤h = Φχ(v)H

−1/2
x A⊤L−⊤

x .

41

• Update(xnew, hnew): Updates all sketches in S to reflect W updating to Wnew and h to hnew,
where Wnew is given implicitly by xnew. This function runs in O(∥xnew − x∥0 · τ2 · η · r) +
O(∥hnew − h∥0 · τ · r) time.

• Query(v): Outputs Φχ(v)W⊤h in O(τ2 · r) time.

In Section 6.5.1, we give the construction of the sampling tree. In Section 6.5.2, we give the analysis
of each individual function.

Symbol Definition

T elimination tree with vertex set {1, . . . , d}
(S, χ) sampling tree. By convention, we call vertices of S nodes

D(v) set of nodes in the subtree rooted at v (inclusively)

P(v) set of nodes on the path from v to the root (inclusively)

depth(v) depth of node v in tree (depth(root) = 1)

low(a) the lowest node in tree in the nonzero pattern of a vector a

low(A) the lowest node in tree in the nonzero column pattern of A

LCA(u, v) the lowest common ancestor of u and v in tree

AS matrix A restricted to coordinates/blocks indexed by nodes in set S

fS(v) or fT (v) function f(v) for the specified tree S or T

Table 1: Notations in this section

6.5.1 Simple Sampling Tree Construction

We begin with the construction of a simple sampling tree (S, χ) which has n leaf nodes, based on the
elimination tree T . Recall T has d vertices given by the set {1, 2, . . . , d}, where vertex i correspond
to row i of A.

First, we define the function lowT (a) : Rd → [d] by

lowT (a) = arg max
i∈{i|ai ̸=0}

depthT (i),

which gives the node i at the lowest level in T such that ai ̸= 0. Note that lowT (Aj) is well-defined,
since the non-zero pattern of Aj is a subset of a path in T by Lemma 5.1.

For each vertex i ∈ T , we construct a balanced binary tree on all new nodes, rooted at node i′ and
with leaf nodes given by the set Fi = {cj | lowT (Aj) = i}. Observe if i is a leaf node of T , then
Fi is non-empty. We construct a new tree S by beginning with S ← T , and then for each i ∈ T ,
attaching the new subtree rooted at i′ under i in S. After this, the set of leaf nodes in S is given
by
⋃

i∈T Fi = {cj | j ∈ [n]}, with every leaf corresponding to a distinct column of A.

For each v ∈ S, we recursively define its labelling χ(v) by:

χ(v) =

{
i if v = ci is a leaf node⋃

u a child of v in S χ(u) else

42

In particular, for i ∈ S ∩ T = {1, . . . , d}, χ(i) satisfies:

χ(i) = {j | lowT (Aj) = i} ∪
⋃

j a child of i in T
χ(j). (6.4)

Let this newly constructed (S, χ) be the simple sampling tree. Since T is a binary tree, S is a
degree-3 tree. An example is shown in Fig. 6.1.

Definition 6.20 (T (v)). Recall we have V (T) = {1, . . . , d} ⊂ V (S). For a node v ∈ S, we define its
T -ancestor T (v) to be the lowest ancestor of v in S that is also in T . In particular, if v ∈ {1, . . . , d},
then T (v) = v.

For example, in Fig. 6.1, T (5) = 5 and T (c3) = 4, where c3 is the bottom left node in S.

Theorem 6.21. Given an elimination tree T with height τ , the simple sampling tree with height
τ +O(log n) = O(τ) can be constructed in O(nτ + n log n) time.

Proof. Since the newly added balanced binary tree under each v ∈ T has height at most O(log n),
the height of the sampling tree is bounded by τ +O(log n) = O(τ).

For each column Ai, we can find low(Ai) in time O(τ) since nnz(Aj) = O(τ) by Lemma 5.1. Hence,
we can find Fi for every i ∈ T in O(nτ) time in total. Constructing the balanced binary tree rooted
at every i′ takes at most O(n log n) total time. Finding the sets χ(v) at every v ∈ S takes O(n log n)
total time. Hence, we can construct (S, χ) in O(nτ + n log n) time.

6.5.2 Data Structure for Sketching

Now, we discuss how to maintain the sketches Φχ(v)W⊤h at every node v ∈ S. Recall the non-
zero pattern of the Cholesky factor L is reflected in the elimination tree. Specifically, the non-zero
pattern of column Li is a subset of the path from i to the root of T . Since we have constructed S
to preserve the ancestor-descendant relationships from T , we will be able to update the sketches in
S in a more clever way.

To better utilizing the structural relationship between the lower Cholesky factor and the sampling
tree, for any v ∈ S, we rewrite the sketches Φχ(v)W⊤h = Φχ(v)H

−1/2A⊤L−⊤h using the following
notation:

Definition 6.22 (Jv, Z∗
v , yv). For each v ∈ S, let

Jv
def
= Φχ(v)H

−1/2A⊤, Z∗
v

def
= Jv · L−⊤, yv

def
= Z∗

v · h = Φχ(v)W⊤h.

At every node v, we will maintain Jv, and some variant of Z∗
v and yv discussed later.

Let us first examine the sparsity pattern of Jv and Z∗
v :

Lemma 6.23 (Sparsity pattern of Jv). Let v ∈ S, and suppose Jv satisfies (i) of Invariant 6.28.
Let S be the non-zero column pattern of Jv, i.e. S = {j ∈ [d] | (Jv)j ̸= 0}. If v ∈ S \ T , then
S ⊆ PT (T (v)). On the other hand, if v ∈ T , then S ⊆ DT (T (v)) ∪ PT (T (v)).

Proof. First, note that for any i ∈ [n], the non-zero column pattern of Φ{i}H
−1/2A⊤ is the non-zero

pattern of column Ai. More generally, the non-zero column pattern of Jv = Φχ(v)H
−1/2A⊤ is given

by the union of the non-zero pattern of columns Aj such that j ∈ χ(v) for any v ∈ S.

43

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
sparsity pattern of A

1

2

3

4

5

6

7

8

𝑐 𝑐 𝑐

𝑐 𝑐 𝑐

𝑐

𝑐

𝑐

𝑐10

Figure 6.1: Example of simple sampling tree: The tree on the left is the elimination tree T for
constraint matrix A, whose sparsity pattern is shown on the right (ni = 1 for all i). The tree on
the right is the simple sampling tree, where red triangles are newly added nodes, and the bracket
under each leaf node denotes the column that the node will maintain in the data structure.

44

In the case that v ∈ S \ T , let i = T (v) be the T -ancestor of v. By construction of (S, χ), we have
χ(v) ⊆ {j ∈ [n] | lowT (Aj) = i}. Hence, the sparsity pattern of any column Aj with j ∈ χ(v) is a
subset of PT (i) by Lemma 5.1. Since v is a descendant of i in S, we have χ(v) ⊂ χ(i) by property
of χ. Therefore, S ⊆ PT (i), as required.

In the case that v = i ∈ T , observe that as a consequence of Eq. (6.4), we have

χ(i) = {j ∈ [n] | lowT (Aj) = k, where k ∈ DT (i)}.

By Lemma 5.1, for any j ∈ χ(i), the sparsity pattern of Aj is a subset of a path in T containing i,
that is, it is contained in DT (i) ∪ PT (i).

Lemma 6.24 (Sparsity pattern of Z∗
v). Let v ∈ T , and let S be the non-zero pattern of the columns

of Zv, i.e. S = {i ∈ [d] | (Zv)i ̸= 0}. Then, S ⊆ DT (v) ∪ PT (v).

Proof. This directly follows by Lemmas 5.4 and 6.23.

At this point, we have all the tools to answer queries for the sketch at a node v ∈ S \ T : Given Jv
at v ∈ S \ T , the non-zero columns of Jv is a subset of PT (T (v)) by Lemma 6.23. Hence, we can
compute the sketch y∗v = Jv · L−⊤h in poly(τ) time during a query. The sketch at a node v ∈ T
needs to be maintained more carefully.

Updates to W via x causes a corresponding update to the Cholesky factor L. We will show later
that if column j of L changes, then the sketches that change are at nodes of S in the subtree rooted
at j, and the path from j to the root; we delay the updates of L at nodes on the path PT (j).

Definition 6.25 (L[t], tv, Zv). Let {L[t]}t≥0 be a list of Cholesky factors computed at different
iterations during the maintenance, such that L[ℓ] is the Cholesky factor computed at iteration ℓ,
for an internal iteration counter ℓ ≥ 0 that advances whenever L is updated.

At every node v ∈ S ∩ T , we maintain a time stamp tv ≥ 0. Furthermore, we maintain a modified
Zv that depends on L from an earlier iteration given by tv, that is,

Zv = Jv · L[tv]−⊤.

Remark 6.26. For any v ∈ T , note that Zv and Z∗
v have the same non-zero pattern, as the non-zero

pattern of L is constant throughout the algorithm.

Similarly, updates to h may cause sketches at many nodes of S to change. Again, we implement
lazy updating for the part of the sketch yv = Z∗

v · h involving h.

Definition 6.27 (y▽v). For v ∈ T , let

y▽v
def
= Zv · (I − IPT (v))h.

At every node v ∈ S ∩ T , we maintain y▽v . When Zv = Z∗
v , observe that we can write yv as

yv = Z∗
v · IPT (v)h+ y▽v . (6.5)

It follows that to obtain the latest sketch yv at node v, we can update Zv ← Z∗
v , update y▽v

accordingly, and then compute yv by Eq. (6.5), noting that the first term can be computed in
poly(τ) time given Z∗

v and h.

Now, we list the invariants our data structure maintains during the algorithm.

45

Invariant 6.28. The variables maintained in the data structure SimpleSketch, as given in Algo-
rithm 10, always preserve the following invariant before and after each function call:

Jv = Φχ(v)H
−1/2A⊤ v ∈ S (i)

Zv = Jv · L[tv]−⊤ v ∈ T (ii)
0 = (L[ℓ]− L[tv])DT (v)\{v} v ∈ T (iii)

y▽v = Zv · (I − IPT (v))h v ∈ T (iv)

where H = ∇2ϕ(x), L is the lower Cholesky factor such that LL⊤ = AH−1/2A⊤, and tv is the time
stamp of v.

Finally, suppose the current iteration counter is ℓ. the following lemma tells us how to compute the
latest value Z∗

v = Jv · L[ℓ]−⊤, using Zv = Jv · L[tv]−⊤ maintained by the data structure:

Lemma 6.29. Suppose Invariant 6.28 is satisfied for node v ∈ T , then

Z∗
v = Zv −

(
L[ℓ]−1(L[ℓ]− L[tv])PT (v) · Z⊤

v

)⊤
.

Proof. Let us denote ∆L = L[ℓ]−L[tv]. Then (Z∗)⊤ = (L[ℓ] +∆L)−1J⊤
v , and we want to find ∆Z

such that

Z⊤
v + (∆Z)⊤ = (Z∗)⊤ = (L[tv] + ∆L)−1J⊤

v .

We have

(L[tv] + ∆L)(Z⊤
v + (∆Z)⊤) = J⊤

v = L[ℓ]Z⊤
v

(∆Z)⊤ = −(L[tv] + ∆L)−1(∆L)Z⊤
v

Z∗
v − Zv = ∆Z = −

(
L[ℓ]−1(L[ℓ]− L[tv])Z

⊤
v

)⊤
.

We split ∆L into three parts:

∆L = (IPT (v) + IDT (v)\{v} + IT \(DT (v)∪PT (v)))∆L.

By Lemma 6.24, the non-zero columns of Zv = Jv · L[tv]−⊤ is a subset of DT (v) ∪ PT (v). Hence,
IT \(DT (v)∪PT (v)) · Z⊤

v = 0. By (iii) of Invariant 6.28, (L[ℓ]− L[tv]) · IDT (v)\{v} = 0, implying that

L[ℓ]−1(L[ℓ]− L[tv])Z
⊤
v = L[ℓ]−1(L[ℓ]− L[tv])PT (v) · Z⊤

v .

Now we are ready to prove the correctness and runtime of each function in the data structure.
The correctness of the overall maintenance data structure then follows immediately from the invari-
ants.

Lemma 6.30 (Initialize). Given initial x and h, the JL matrix Φ ∈ Rr×n, and the elimination
tree T with height τ , the data structure SimpleSketch initializes the sketches in the sampling tree
in O(n · τ · η · r) time. Moreover, the internal state of the data structure satisfies Invariant 6.28
after initialization.

46

Algorithm 10 Simple Multiscale Representation Sketching Data Structure – Initialize and Query
1: datastructure SimpleSketch
2: private : members
3: Φ ∈ Rr×n ▷ JL matrix
4: sampling tree (S, χ) ▷ constructed according to Section 6.5.1
5: elimination tree T
6: ℓ ∈ N ▷ iteration counter
7: h ∈ Rd

8: x ∈ Rn ▷ W given implicitly by x
9: H ∈ Rn×n ▷ Hessian H = ∇2ϕ(x)

10: List {L[t] ∈ Rd×d}t≥0 ▷ sequence of Cholesky factors at various iterations t
11: List {Jv ∈ Rr×d}v∈T ▷ Jv = Φχ(v)H

−1/2A⊤

12: List {Zv ∈ Rr×d}v∈S ▷ Zv = Jv · L[tv]−⊤

13: List {y▽v ∈ Rr}v∈T ▷ y▽v = Zv · (I − IPT (v))h
14: list {tv ∈ N}v∈T ▷ tv is the time of the last update at a node v
15: end members
16: procedure Initialize(S, χ,Φ ∈ Rr×n, x ∈ Rn, h ∈ Rd) ▷ Lemma 6.30
17: (S, χ)← (S, χ)
18: Φ← Φ
19: ℓ← 0, h← h
20: Compute H ← ∇2ϕ(x)
21: Find the lower Cholesky factor L[ℓ] of AH−1A⊤

22: for all v ∈ S do
23: Jv ← Φχ(v)H

−1/2A⊤ ▷ compute Jv for all v ∈ S
24: end for
25: for all v ∈ T do ▷ these nodes store additional partial computations
26: Zv ← Jv · L[ℓ]−⊤

27: y▽v ← Zv · (I − IPT (v))h
28: tv ← ℓ ▷ record that Zv and y▽v were last updated at time ℓ
29: end for
30: end procedure
31: procedure Query(v ∈ S) ▷ Lemma 6.32
32: if v ∈ S \ T then ▷ directly compute and return the value of sketch
33: return Jv · L[ℓ]−⊤h
34: end if
35: ▷ for v ∈ T , we make use of existing partial computations
36: ∆L← (L[ℓ]− L[tv])PT (v)

37: Zv ← Zv − (L[ℓ]−1 ·∆L · Z⊤
v)⊤ ▷ Update Zv to correspond to L[ℓ], that is, Zv = Z∗

v

38: y▽v ← Zv · (I − IPT (v)) · h
39: ▷ Zv and y▽v now correspond to the latest L[ℓ], so we update the time stamp of v
40: tv ← ℓ
41: return Zv · IPT (v) · h+ y▽v
42: end procedure

47

Algorithm 11 Simple Multiscale Representation Sketching Data Structure – Updates
1: datastructure SimpleSketch
2:
3: procedure Update(xnew ∈ Rn, hnew ∈ Rn)

▷ Lemma 6.31
4: for i ∈ [n] where xnewi ̸= xi do
5: UpdateCoordinate(xnew, i) ▷ break up the update into single-coordinate updates
6: end for
7: for all hnewi ̸= hi do
8: for all v ∈ PT (i) do
9: y▽v ← y▽v + Zv · I{i} · (hnew − h)

10: end for
11: end for
12: h← hnew

13: end procedure
14: procedure UpdateCoordinate(xnew ∈ Rn, i ∈ [n]) ▷ Lemma 6.33
15: xi ← xnewi

16: Hnew = ∇2ϕ(x)
17: ℓ← ℓ+ 1 ▷ increment iteration before computing a new Cholesky factor
18: Find lower Cholesky factor L[ℓ] of A(Hnew)−1A⊤

19: UpdateL(PT (lowT (Ai)))
20: UpdateH(Hnew

i , i)
21: end procedure
22: procedure UpdateL(S ⊆ T) ▷ S is a path in T , Lemma 6.35
23: for all v ∈ S do
24: ▷ We update Zv to Z∗

v in two steps: first from L[tv] to L[ℓ−1], then from L[ℓ−1] to L[ℓ]

25: Zv ← Zv −
(
L[ℓ− 1]−1 · (L[ℓ− 1]− L[tv])PT (v) · Z⊤

v

)⊤
26: Zv ← Zv − (L[ℓ]−1 · (L[ℓ]− L[ℓ− 1]) · Z⊤

v)⊤

27: y▽v ← Zv · (I − IPT (v)) · h
28: tv ← ℓ
29: end for
30: end procedure
31: procedure UpdateH(Hnew) ▷ Lemma 6.34
32: ∆H = Hnew −H
33: for all i ∈ [n] such that (∆H)i ̸= 0 do
34: Find v such that χ(v) = {i}
35: for all u ∈ PS(v) do
36: Jv ← Φχ(v)(H +∆H · I{i})−1/2A⊤

37: if u ∈ T then
38: Zv ← Jv · L[tv]−⊤

39: y▽v ← Zv · (I − IPT (v)) · h
40: end if
41: end for
42: end for
43: H ← Hnew

44: end procedure

48

Proof. The correctness directly follows by the setup of Invariant 6.28.

Runtime: By Corollary 5.8, we can find L[ℓ] in time O(nτ2). For any non-leaf node v ∈ S, we
note that Jv =

∑
u a child of v Ju. For a leaf node v ∈ S, we have χ(v) = {i} for some i ∈ [n], so we

can compute Jv in time O(τ · r) by Lemma 5.1. Then, we can compute all Jv for non-leaf nodes by
summing the values of its children, iteratively up the tree. Since the height of tree S is η, we can
compute Jv for all v ∈ S in time O(|V (S)| · τ · η · r).

For v ∈ T , by Eq. (6.4), we have

Zv =

(
Φ{i|lowT (Ai)=v} +

∑
child u of v in T

Φχ(u)

)
H−1/2A⊤L[ℓ]−⊤

= Φ{i|lowT (Ai)=v}H
−1/2A⊤L−⊤ +

∑
child u of v in T

Jv · L[ℓ]−⊤

Thus, for each v ∈ T , we only need to compute the term Φ{i|lowT (Ai)=v}H
−1/2A⊤L−⊤. Since the

non-zero columns of Φ{i|lowT (Ai)=v}H
−1/2A⊤ lie on PT (v), this term has O(τ · r) many non-zero

entries, and we can compute it in O(τ2 · r) time by Lemma 5.4. Again, by iteratively computing Zv

up the tree, we can compute Zv for all v ∈ T in O(|T | · τ2 · r) time.

Because h is explicitly given, we can compute y▽v = Zv · (I − IPT (v)) · h in nnz(Zv) time for each
v ∈ S; then we can compute y▽v for all v ∈ T in O(|T | · τ2 · r) time.

Combined with the fact τ ⩽ η and |T | = d ⩽ n, the total time is bounded by O(n · τ · η · r).

Lemma 6.31 (Update). Suppose the current state of data structure satisfied the Invariant 6.28.
Given Wnew implicitly by xnew, and hnew, the function update of SimpleSketch updates the
sketches in S implicitly in time O(∥xnew − x∥0 · τ2 · η · r) + O(∥hnew − h∥0 · τ · r) Moreover, the
function also updates the internal states correspondingly so that Invariant 6.28 is still preserved.

Proof. Note that we can process the updates to W and h consecutively; hence the runtime is a sum
of the runtimes of the two steps.

To update x to xnew and thus W to Wnew, we again view it as a sequence of updates, where each
update correspond to a single coordinate change in x, processed by the helper function Update-
Coordinate. The associated proof is given in Lemma 6.33.

Similarly, we update h to hnew by a sequence of single-coordinate updates. By Lemma 6.24, the
nonzero columns of Zv · (I − IPT (v)) lies on DT (v). Therefore, when hi changes, y▽v changes only
if i ∈ DT (v), so it suffices to update only the sketches at nodes v where v ∈ PT (i), and the
update is given by Zv · I{i} · (hnew − h), computable in O(r) time. Thus, updating a coordinate
hi takes |PT (v)|O(r) = O(τ · r) time. Summing over all changed coordinates, we can update h in
O(∥hnew − h∥0 · τ · r) time.

Lemma 6.32 (Query). Suppose Invariant 6.28 is satisfied. The function Query(v) of SimpleS-
ketch outputs Φχ(v)W⊤h in O(τ2r) time. Moreover, Invariant 6.28 is preserved after the function
call.

Proof. Correctness: For the case v ∈ S \ T , the correctness directly follows by definition of Jv.
Now, we consider the case that v ∈ T . The invariant maintenance of moving tv to ℓ directly follows

49

by Lemma 6.29. To output Φχ(v)W⊤h = yv, the function computes the expression as given by
Eq. (6.5).

Runtime: For the case v ∈ S \ T , the non-zero columns of Jv lies on PT (T (v)) by Lemma 6.23.
By Lemma 5.4, the term Jv ·L[ℓ]−⊤ has O(τ · r) many nonzero entries and can be computed in time
O(τ2r) time. Thus, we can compute Jv · L[ℓ]−⊤h in time O(τ2 · r).

For the case v ∈ T , we first note that we can find ∆L in O(τ2) time since |PT (v)| ⩽ τ , and the
column sparsity of L is also bounded by τ by Lemma 5.2. By the sparsity pattern of ∆L, we can
compute (∆L) · (Z▽v)

⊤ in O(τ2r) time. By sparsity pattern of L, we can update Zv ← Z∗
v and

y▽v in O(τ2r) time by solving O(r) lower triangular system using Lemma 5.4. In Eq. (6.5), we can
compute Zv · IPT (v) · h in O(τ · r) time since |PT (v)| ⩽ τ . Hence, the function takes O(τ2 · r) time
in total.

Lemma 6.33 (UpdateCoordinate). Suppose the current state of the data structure satisfies In-
variant 6.28. The function UpdateCoordinate of SimpleSketch updates the implicit represen-
tation of W by updating the i-th coordinate of x from xi to xnewi in O(τ2 · η · r) time. Moreover,
the function UpdateCoordinate also updates the internal states correspondingly such that Invari-
ant 6.28 is preserved after the function call.

Proof. Correctness: First, we show that for the change on L, it suffices to updates all nodes on
the path PT (lowT (Ai)). We note that only (iii) of Invariant 6.28 depends on the value of L[ℓ], so
we need to update the sketch only if (L[ℓ + 1] − L[tv]) · IDT (v)\{v} ̸= 0. Since the data structure
satisfies the invariants for ℓ, we have (L[ℓ]− L[tv]) · IDT (v)\{v} = 0 for all v. Therefore, we need to
update the sketch only if

(L[ℓ+ 1]− L[ℓ]) · IDT (v)\{v} ̸= 0.

We use Lnew to denote L[ℓ+1] and use L to denote L[ℓ], where Lnew(Lnew)⊤ = AH−1A⊤+cAiA
⊤
i for

some c and i. Let ∆L = Lnew−L. By Lemma 5.9, the non-zero columns of ∆L lies on PT (lowT (Ai)).
We denote lowT (Ai) by u, and rewrite ∆L as

∑
w∈PT (u)(∆L)we

⊤
w . For each w ∈ PT (u), we note

that (∆L)we
⊤
w · IDT (v)\{v} ̸= 0 only if v ∈ PT (w) \ w. Hence, it suffices to update⋃

w∈PT (u)

PT (w) \ w ⊆ PT (u).

The function then uses two helper functions UpdateL and UpdateH, whose correctness and run-
time are given in Lemma 6.34 and Lemma 6.35.

Runtime: By Lemma 5.10, we can find Lnew in O(τ2) time and L changes in τ columns. By
Lemma 6.34, H changes in coordinate i, so we can update it in O(τ2 · η · r) time. Since L changes
in τ columns, we can update L in the data structure in O(τ3r) time by Lemma 6.35. Hence, the
function takes O(τ2 · η · r) time in total.

Lemma 6.34 (UpdateH). Suppose Invariant 6.28 is satisfied. UpdateH updates H to Hnew,
and implicitly adjusts the sketches in S to preserve Invariant 6.28 in O(nnz(∆H) · τ2 · η · r) time.

Proof. Correctness: We observe that Zv changes only if Iχ(v) ·∆H ̸= 0. Suppose the i-th column
of H changes, and let v be the node of S with χ(v) = {i}. Then observe that for a change in Hi, it
suffices to update PS(v).

50

Runtime: For a change in Hi, let H̃
def
= (H + ∆H · I{i})−1/2 − H−1/2. Then we can find

Φχ(v)H̃A⊤ by computing an outer product of a column of Φ with row of A⊤, which takes O(τ · r)
time by the sparsity pattern of A (Lemma 5.1). Then for a node v, we can update Zv by compute
Φχ(v)H̃A⊤L[tv]

−⊤, which takes O(τ2 · r) time by Lemma 5.4. We can then update y▽v in O(τ2 · r)
time. As height(S) = η, and we only update along a path to the root, this function takes O(τ2 ·η ·r)
time for the update to Hi.

Lemma 6.35 (UpdateL). Given a set S ⊂ V (T), the function UpdateL updates tv to the latest
time at each v ∈ S, and adjusts the implicit representation of the sketch at v to preserve Invari-
ant 6.28. If the number of non-zero columns of ∆L is bounded by O(τ), then the function takes
O(|S| · τ2 · r) time.

Proof. Correctness: The correctness directly follows by Lemma 6.29.

Runtime: By the sparsity pattern of L (Lemma 5.2), we can compute (L[ℓ]−L[tv])·IPT (T (v))·(Zv)
⊤

and ∆L · (Zv)
⊤ in O(τ2r) time, and the column sparsity pattern of the result is on a path in T .

Then, we can update Zv and y▽v in O(τ2r) time by solving O(r) many lower triangular systems
using Lemma 5.4. Hence, the total time is bounded by O(|S| · τ2r).

6.6 Sketching the Multiscale Representation via Balanced Sampling Tree

Simple Sampling Tree Balanced Sampling Tree

Sampling tree height Õ(τ) Õ(1)

JL dimension Õ(τ2) Õ(1)

Initialization time Õ(nτ4) Õ(nτ2)

Update W time Õ(∥xnew − x∥0 · τ5) Õ(∥xnew − x∥0 · τ2)
Update h time Õ(∥hnew − h∥0 · τ3) Õ(∥hnew − h∥0)

Query time Õ(τ4) Õ(τ2)

Query time × tree height Õ(τ5) Õ(τ2)

Table 2: Comparison between two sampling trees.

Combining the simple sampling tree data structure with our IPM algorithm will give us a
Õ(nτ5 log(1/ε)) algorithm for solving LPs. To make our algorithm competitive when τ is large,
we demonstrate how to further speed up (Algorithms 10 and 11) to Õ(τ2) per step in this section.
More specifically, we have the following theorem:

Theorem 6.36. Given the constraint matrix A, its elimination tree T with height τ , a JL matrix
Φ ∈ Rr×n, and a sampling tree (S, χ) constructed as in Section 6.6.1 with height O(log n), the
data structure BalancedSketch (Algorithms 12 and 13) maintains Φχ(v)W⊤h for each v ∈ V (S)
through the following operations:

• Initialize(S, χ,Φ, x, h): Initializes the data structure in O(nτ2r log n) time, so that each
node v ∈ S maintains the sketch Φχ(v)W⊤h = Φχ(v)H

−1/2
x A⊤L⊤

x .

51

8

7

6 3

5

4 2

1

8

7

6 3

5

4 2

1

Figure 6.2: A rooted tree is given on the left, its heavy-light decomposition is shown on the right;
the ordering is [8, 7, 6, 5, 2, 1, 4, 3].

• Update(xnew, hnew): Updates all sketches in S implicitly to reflect W updating to Wnew and
h updating to hnew in O(∥xnew − x∥0 · τ2r log n) +O(∥hnew − h∥0 · r log n) time, where Wnew

is given implicitly by xnew.

• Query(v): Outputs Φχ(v)W⊤h in O(τ2 · r) time.

We observe that the data structures in Section 6.5 has the same Ω(τ3) bottleneck for both updating
the multiscale representation and sampling: The data structures are always operating on some path
of the sampling tree S, where we need to solve the lower triangular systems for each node on that
path. In this section, we show how to obtain a balanced sampling tree with O(log n) height and
thus speeds up each operation to Õ(τ2).

6.6.1 Balanced Sampling Tree Construction

As a first ingredient in our construction is the following lemma from Sleator and Tarjan’s heavy-light
decomposition.

Lemma 6.37 (Heavy-Light Decomposition [ST83]). Given a rooted tree T , there exists an ordering
of vertices of V (T) such that the path between any two vertices consists of at most O(log n) many
contiguous subsequences of the ordering, and for any vertices v, the subtree rooted at v corresponds
to a single contiguous subsequence of the order. Moreover, such an ordering can be found in O(n)
time.

First, we construct a sampling tree of Rd, denoted by (B, χ), as follows: We perform heavy-light
decomposition on the elimination tree T with vertex set [d]. Let σ1, . . . , σd denote the vertices
ordered according to Lemma 6.37. Let B be a complete binary tree containing d leaves, where the i-th
leaf is σi ∈ [d]. We set χ(σi) = {σi}. For each non-leaf node v ∈ B, we let χ(v) = χ(left child of v)∪
χ(right child of v). It is easy to check (B, χ) is a sampling tree of Rd by Definition 6.13.

Now, we extend the sampling tree (B, χ) on Rd to Rn to obtain the balanced sampling tree (S, χ):
At each leaf node v ∈ B, we add a complete binary tree with vertex set

{i ∈ [n] | coordinate i in j-th block and low
T
(Aj) = χ(v)},

52

𝑐 𝑐1 𝑐4

𝑐3 𝑐6

𝑐7 𝑐5

𝑐8 𝑐9

𝑐10

Figure 6.3: Examples of tree B (left) and S (right) constructed from the elimination tree in Fig. 6.2.
The red triangle in the right graph denotes the newly added nodes in the tree. The bracket under
each leaf node denotes the corresponding column maintained by that node.

where low(Aj) is defined by
low(Aj) = arg max

i∈{i|Aij ̸=0}
depth(i).

We denote this modified binary tree as S. Then, each leaf node u of S corresponds to some i ∈ [n],
and we set χ(u) = {i}. We can check that for any leaf node v ∈ B,

χ(v) = {i ∈ [n] | coordinate i in j-th block and low
T
(Aj) = χ(v)}.

We define this (S, χ) to be our balanced sampling tree. An example is shown in Fig. 6.3.

Since the height of B is log d, and the height of the newly added binary trees are at most log n, the
height of S is O(log n).

Theorem 6.38. Given an elimination tree T with height τ , the balanced sampling tree can be
constructed in O(nτ + n log n) time.

Proof. By Lemma 6.37, we find the heavy-light-decomposition order in linear time. Since B is a
binary tree on this order, we can construct (B, χ) in O(d log d) time. For each block Aj where
j ∈ [m], we can find low(Aj) in time O(τ) since nnz(Aj) = O(τ) (Lemma 5.1). Hence, we can find
low(Aj) for all j ∈ [m] in time O(nτ). This gives us χ(v) for all v ∈ B. Finally, we can construct
(S, χ) in time O(n log n). Hence, we can construct (S, χ) in O(nτ + n log n) time.

The balanced sampling tree does not preserve ancestor-descendant relationship of the vertices of
T . However, the following lemma about the Heavy-Light Decomposition will help us get something
close.

Lemma 6.39. Let the sequence a1, a2, . . . , an be the order produced by Heavy-Light Decomposition
on tree T . For any contiguous subsequence al, al+1, . . . , ar, we have∣∣∣∣∣∣

 ⋃
i∈[l,r]

PT (ai)

 ∩
 ⋃

i∈[1,n]\[l,r]

PT (ai)

∣∣∣∣∣∣ ⩽ 2 · height(T).

53

Proof. It suffices to show that for any four numbers l1, l2, r1, r2 where l1 ⩽ l2 ⩽ r2 ⩽ r1, we have
P(al1) ∩ P(ar1) ⊆ P(al2) ∩ P(ar2). Indeed, when this is true, we have∣∣∣∣∣∣

 ⋃
i∈[l,r]

P(ai)

 ∩
 ⋃

i∈[n]\[l,r]

P(ai)

∣∣∣∣∣∣ ⩽
∣∣∣∣∣∣
 ⋃

i∈[1,l−1]

P(ai)

 ∩
 ⋃

i∈[l,r]

P(ai)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
 ⋃

i∈[l,r]

P(ai)

 ∩
 ⋃

i∈[r+1,n]

P(ai)

∣∣∣∣∣∣ ,
and the two terms on the right-hand side can be bounded by |P(al−1)∩P(al)| and |P(ar)∩P(ar+1)|
respectively.

Note that P(x) ∩ P(y) = P(LCA(x, y)), where LCA(x, y) denotes the lowest common ancestor of
x and y in tree T . Since the ordering a1,a2, . . . , an is produced by a depth-first traversal on T ,
we observe that the subtree rooted at LCA(al1 , ar1) contains al2 , ar2 , since they are both discovered
during the DFS after al1and before ar1 ; consequently it contains LCA(al2 , ar2). It also by definition
contains al1and ar1 . Therefore, LCA(al1 , ar1) is an ancestor of LCA(al2 , ar2), and it follows that
P(LCA(al1 , ar1)) ⊆ P(LCA(al2 , ar2)).

For the sampling tree (B, χ), we have the following lemma:

Lemma 6.40 (See e.g. [dBCvKO08]). Given the complete binary sampling tree (B, χ), let ak =
χ(v), where v is the k-th leaf of B. For any contiguous subsequence al, al+1, . . . , ar of the sequence
a1, . . . , ad, we can find a node set S ⊆ B of size O(log d) such that⋃

u∈S
χ(u) = {ai | i ∈ [l, r]}.

Moreover, this set S can be found in O(log d) time.

6.6.2 Data Structure for Sketching

As our balanced sampling tree S does not totally preserve the ancestor-descendant relationships in
T , we need a more complex maintenance scheme. We first observe that for any node v ∈ S \ B, the
nonzero columns of Φχ(v)H

−1/2A⊤ lies on a path of T . Therefore, given Jv = Φχ(v)H
−1/2A⊤, the

term Φχ(v)W⊤ can be computed in Õ(τ2) time. In the last section, for each node v ∈ T , we delay
L’s updates in the columns that lie on PT (v). Here, we define its analogy on B:

Definition 6.41 (Λ(v),Λ(v)). Let Λ : B → 2T be the function

Λ(v)
def
=

 ⋃
i∈χ(v)

PT (ai)

 ∩
 ⋃

i∈T \χ(v)

PT (ai)

 .

We also define Λ(v) : B →2T to be the set of columns that are maintained up-to-date for each v:

Λ(v)
def
=

 ⋃
i∈χ(v)

PT (ai)

 \ Λ(v).

54

Figure 6.4: Example of Λ(v) and Λ(v): on the left is B, where Λ(v) = {5, 6, 7, 8} is the set of nodes
crossed by both the green path and blue path. Λ(v) = {3, 4} is the set of nodes contained by blue
boxes.

Lemma 6.42. For any nodes u, v ∈ B, if u ∈ PB(v), then Λ(v) ⊆ Λ(u).

Proof. By definition of Λ(·) and Λ(·), we have

Λ(v) =

 ⋃
i∈χ(v)

PT (ai)

 \
 ⋃

i∈T \χ(v)

PT (ai)

 .

Since (B, χ) is a sampling tree, we have χ(v) ⊆ χ(u). Hence, we complete the proof by noting(⋃
i∈χ(v) PT (ai)

)
⊆
(⋃

i∈χ(u) PT (ai)
)

and
(⋃

i∈T \χ(u) PT (ai)
)
⊆
(⋃

i∈T \χ(v) PT (ai)
)
.

Definition 6.43 (Λ♣). Finally, we define the function Λ♣ : T → B.

Λ♣(u)
def
= lowB({v ∈ B | u ∈ Λ(v)}).

Equivalently, we have
Λ♣(u) = lowB({v ∈ B | DT (u) ⊆ χ(v)}).

Using this equivalent definition, we show that Λ♣(·) is well-defined.

Lemma 6.44. For any u ∈ T , the set {v ∈ B | DT (u) ⊆ χ(v)} is a path on B.

Proof. Recall that {χ(v) | v ∈ B and depth(v) = k} forms a partition of T for any k ⩽ height(B).
Then, for any k ⩽ height(B), there is at most one node satisfying both DT (u) ⊆ χ(v) and depth(v) =
k. We complete the proof by note that if DT (u) ⊆ χ(v), then DT (u) ⊆ χ(w) for any w ∈ PB(v)
since (B, χ) is a sampling tree.

55

Now, we show the equivalence of two definition:

Lemma 6.45. For any u ∈ T and v ∈ B, we have u ∈ Λ(v) if and only if DT (u) ⊆ χ(v).

Proof. The only if direction: Suppose u ∈ Λ(v) and there is a w ∈ DT (u) but w /∈ χ(v). We note
that w ̸∈ χ(v) implies w ∈ T \ χ(v). Then, we have u ∈ Λ(v) since u ∈ PT (w). This contradicts
with our assumption that u ∈ Λ(v).

The if direction: Since DT (u) ⊆ χ(v), we have u ∈ χ(v) ⊆
(⋃

i∈χ(v) PT (ai)
)
. Then, it suffices to

show u ̸∈ Λ(v). Suppose u ∈ Λ(v), then there is a node w ∈ DT (v) such that w /∈ χ(v). This
contradicts with our assumption that DT (u) ⊆ χ(v).

Intuitively, for each node v ∈ B, we need to maintain the union of paths on the interval [lv, rv] = χ(v),
i.e.
⋃

i∈[lv ,rv] P
T (ai). The set Λ(v) to denote the set of nodes in T shared by other nodes the same

level of binary tree B. Lemma 6.39 shows that |Λ(v)| = O(τ). Hence, we never maintain them
exactly in the sampling tre, but rather compute them as needed. On the other hand, for each node
v ∈ B, we maintain the node u ∈ T exactly only if ai ∈ DT (u) for i ∈ [lv, rv]. Thus, for each node
v ∈ T , it is only been explicitly maintained on a path of B, and Λ♣(v) denotes the lower end of
that path. In particular, we have the following lemma about Λ♣(·):

Lemma 6.46. Let u, v ∈ T . If u ∈ PT (v), then Λ♣(u) ∈ PB(Λ♣(v)).

Proof. We note that DT (u) ⊆ χ(w) implies DT (v) ⊆ χ(w) for any w ∈ B. Then, we have {w ∈
B | DT (u) ⊆ χ(w)} ⊆ {w ∈ B | DT (v) ⊆ χ(w)}. Hence, by the equivalent definition of Λ♣ and
Lemma 6.44, we have Λ♣(u) ∈ PB(Λ♣(v)).

Similar to the proof of Section 6.5, ideally, we want to maintain

Z∗
v

def
= Φχ(v)H

−1/2A⊤L[ℓ]−⊤ and y∗v
def
= Z∗

v · h.

To do so, we make use of the following properties:

Invariant 6.47. The variables maintained in the data structure BalancedSketch, as given in
Algorithm 12, preserve the following invariants before and after each function call:

Jv = Φχ(v)H
−1/2A⊤ v ∈ S (i)

Zv = Jv · L[tv]−⊤ v ∈ B (ii)
0 = (L[ℓ]− L[tv]) · IΛ(v) v ∈ B (iii)

y▽v = Zv(I − IΛ(v))h
(ℓ) v ∈ B (iv)

Lemma 6.48 (Sparsity Pattern of Zv). Suppose Jv and Zv satisfies (i) and (ii) of Invariant 6.47
for some v ∈ B. Let S be the index set of the non-zero columns of Zv, e.g. S = {i ∈ [d] | (Zv)i ̸= 0},
then we have

S ⊆
⋃

i∈χ(v)

PT (ai).

Proof. By our construction of Jv, we note that nonzero columns of Jv lies on
⋃

i∈χ(v) PT (ai). By
Lemma 5.4, we have S ⊆

⋃
i∈χ(v) PT (ai).

56

We have the following relationship between Zv and Z∗
v for any v ∈ T :

Lemma 6.49. Suppose Invariant 6.47 is satisfied for v, then we have

Z∗
v = Zv −

(
L[ℓ]−1(L[ℓ]− L[tv]) · IΛ(v)Z⊤

v

)⊤
.

Proof. Similar to the proof of Lemma 6.29, we have

Z∗
v = Zv −

(
L[ℓ]−1(L[ℓ]− L[tv])Z

⊤
v

)⊤
.

Let ∆L
def
= L[ℓ]− L[tv]. Then, we can split ∆L into three parts:

∆L = (IΛ(v) + IΛ(v) + IT \(Λ(v)∪Λ(v)))∆L.

We first note that IT \(Λ(v)∪Λ(v)) · Z⊤
v = 0. By Lemma 6.48, the nonzero columns of Zv lies on⋃
i∈χ(v)

PT (ai) = (Λ(v) ∪ Λ(v)).

Hence, IT \(Λ(v)∪Λ(v)) · Z⊤
v = 0. By (iii) of Invariant 6.47, we have (L[ℓ] − L[tv]) · IΛ(v) = 0. Thus,

we have
L[ℓ]−1(L[ℓ]− L[tv])Z

⊤
v = L[ℓ]−1(L[ℓ]− L[tv]) · IΛ(v)Z⊤

v .

Lemma 6.50 (Initialize). Given initial x and h, the JL matrix Φ ∈ Rr×n, and the elimination tree
T , the data structure BalancedSketch initializes in time O(nτ2r log n). Moreover, the internal
state of the data structure satisfies the Invariant 6.47 after initialization.

Proof. The correctness directly follows by Invariant 6.47.

By Corollary 5.8, we can find the initial Cholesky decomposition L[0] in time O(nτ2) time. For
computing Jv, we note that Jv =

∑
child c of v Jc. When χ(v) = {i} for some i, we can compute Jv

in time O(τr) by column sparsity of A. Since the height of tree is bounded by O(log n), we can
compute all Jv in time O(|S| · τr log n). For Zv, we note that

Zv =
∑

child c of v

Jc · L[ℓ]−⊤

Hence, it suffices to compute Jv · L[ℓ]−⊤ for all leaf node v ∈ B, which takes O(nτ2r) time. By
Lemma 5.4, the solution of Jv · L[ℓ]−⊤ has O(τr) nonzero entries. Hence, we can compute Zv for
all v ∈ B in time O(nτ2r log n) time. Compute y▽v takes time O(nτ2r log n) time.

Lemma 6.51 (Update). Suppose the current state of data structure satisfies Invariant 6.47. Given
Wnew implicitly by xnew, and hnew, the function Update of BalancedSketch updates the sketches
in S implicitly by in time O(∥xnew−x∥0 · τ2r log n)+O(∥hnew−h∥0r log n). Moreover, the function
also updates the internal states correspondingly so that Invariant 6.47 is still preserved.

57

Algorithm 12 Balanced Multiscale Representation Sketching Data Structure – Initialize and Query
1: datastructure BalancedSketch
2: private : members
3: Φ ∈ Rr×n ▷ JL matrix
4: sampling tree (S, χ) with balanced binary tree B ▷ constructed as in Section 6.6.1
5: ℓ ∈ N ▷ iteration counter
6: h ∈ Rd

7: x ∈ Rn ▷ W given implicitly by x
8: H ∈ Rn×n ▷ Hessian H = ∇2ϕ(x)
9: List{L[t] ∈ Rd×d}t≥0 ▷ sequence of Cholesky factor L at various iterations t

10: List {Jv ∈ Rr×d}v∈S ▷ Jv = Φχ(v)H
−1/2A⊤

11: List {Zv ∈ Rr×d}v∈B ▷ Zv = Φχ(v)H
−1/2A⊤L[tv]

−⊤

12: List {y▽v ∈ Rr}v∈B ▷ y▽v = Zv(I − IΛ(v))h
13: List {tv ∈ N}v∈B ▷ Last iterations during which node v was updated
14: end members
15: procedure Initialize(S, χ,Φ ∈ Rr×n, x ∈ Rn, h ∈ Rd) ▷ Lemma 6.50
16: (S, χ)← (S, χ)
17: Φ← Φ
18: ℓ← 0, h← h
19: Find Λ(v) for all v ∈ B
20: Compute H ← ∇2ϕ(x)
21: Find lower Cholesky factor L[ℓ] of AH−1A⊤

22: for all v ∈ S do
23: Jv ← Φχ(v)H

−1/2A⊤ ▷ compute Jv for all v ∈ S
24: end for
25: for all v ∈ B do
26: Zv ← JvL[ℓ]

−⊤

27: y▽v ← Zv(I − IΛ(v))h
28: tv ← ℓ
29: end for
30: end procedure
31: procedure Query(v ∈ S) ▷ Lemma 6.52
32: if v ∈ S \ B then
33: return Jv · L[ℓ]−⊤h ▷ directly compute the value of sketch
34: end if
35: ▷ For v ∈ T , we make use of existing partial computations
36: ∆L← (L[ℓ]− L[tv]) · IΛ(v)
37: Zv ← Zv − (L[ℓ]−1 ·∆L · Z⊤

v)⊤

38: y▽v ← Zv · (I − IΛ(v))h
39: tv ← ℓ ▷ update the time stamp for node v
40: y△v ← Zv · IΛ(v) · h
41: return y△v + y▽v
42: end procedure

58

Algorithm 13 Balanced Multiscale Representation Sketching Data Structure – Updates
1: datastructure BalancedSketch
2: procedure Update(xnew ∈ Rn, hnew ∈ Rd) ▷ Lemma 6.51
3: for i ∈ [m] where xnewi ̸= xi do
4: UpdateBlock(xnewi)
5: end for
6: for all hnewi ̸= hi do
7: v ← Λ♣(i)
8: for all u ∈ PB(v) do
9: y▽u ← Zu · I{i} · (hnew − h)

10: end for
11: end for
12: h← hnew

13: end procedure
14: procedure UpdateBlock(xnewi ∈ Rni) ▷ Lemma 6.53
15: ℓ← ℓ+ 1
16: xi ← xnewi

17: Hnew = ∇2ϕ(x)
18: Find lower Cholesky factor L[ℓ] of A(Hnew)−1A⊤

19: S ← PB(Λ♣(low(Ai)))
20: UpdateL(S)
21: UpdateH(Hnew)
22: end procedure
23: procedure UpdateL(S ⊂ B) ▷ Lemma 6.54
24: for all v ∈ S do
25: ▷ We update Zv in two steps: first from L[tv] to L[ℓ− 1], then from L[ℓ− 1] to L[ℓ]

26: Zv ← Zv −
(
L[ℓ− 1]−1(L[ℓ− 1]− L[tv])Λ(v) · Z⊤

v

)⊤
27: Zv ← Zv − (L[ℓ]−1 · (L[ℓ]− L[ℓ− 1]) · Z⊤

v)⊤

28: y▽v ← Zv(I − IΛ(v))h
29: tv ← ℓ
30: end for
31: end procedure
32: procedure UpdateH(Hnew) ▷ Lemma 6.55
33: ∆H = Hnew −H
34: for all i ∈ [m] such that (∆H)i ̸= 0 do
35: Find set S such that S = {v ∈ S | χ(v) = {j} and coordinate j in i-th block}
36: for all u ∈

⋃
v∈S PS(v) do

37: Jv ← Φχ(v)(H +∆H · I{i})−1/2A⊤

38: if v ∈ B then
39: Zv ← Jv · L[tv]−⊤

40: y▽v ← Zv · (I − IΛ(v))h
41: end if
42: end for
43: end for
44: H ← Hnew

45: end procedure

59

Proof. To update x to xnew, we view it as a sequence of updates, where each update corresponding
to a single block change in x, and use the helper function UpdateBlock. The proof of correctness
and runtime are given in Lemma 6.53.

Similarly, we update h to hnew block-wise. Suppose h changes in coordinate j. We note that
(Zv)j ̸= 0 only if j ∈

⋃
i∈[lv ,rv] P

T (i). Then Zv(I − IΛ(v))ej ̸= 0 only if j ∈
⋃

i∈χ(v) PT (i) and
j ̸∈ Λ(v). Hence, all such v lies on the path PB(Λ♣(j)).

For each coordinate j of h that changes, it suffices to compute Zv · I{j} · (hnew − h). We note this
can be done in O(r) time. Thus, for each hj , it takes O(r log n) time since |PB(Λ♣(j))| = O(log n).
Hence, we can update h in O(∥hnew − h∥0 · r log n) time in total.

Lemma 6.52 (Query). Suppose the state of the data structure satisfies Invariant 6.47 immediately
before a call to Query. Then calling Query(v) of BalancedSketch returns Φχ(v)W⊤h in O(τ2r)
time. Moreover, Invariant 6.28 is preserved at the end of the function call.

Proof. When v ∈ S \B, we directly compute Φχ(v)H
−1/2A⊤L[ℓ]−⊤h = Jv ·L[ℓ]−⊤h(ℓ). Let u be the

lowest ancestor node of v in B. Note the row sparsity pattern of Jv lies on PT (u) by the construction
of S. Hence, we can solve L[ℓ]−1J⊤

v in O(τ2r) time by Lemma 5.4. Since h(ℓ) is given explicitly, we
compute Jv · L[ℓ]−⊤h(ℓ) in O(τ2r) time.

In the other case where v ∈ B, the correctness follows by Invariant 6.47. For the runtime, by
Lemma 6.39, we have |Λ(v)| = O(τ). By the sparsity pattern of L, we can compute (L[ℓ]− L[tv]) ·
IΛ(v) · Z▽[v]

⊤ in O(τ2r) time, and the column sparsity pattern of the result is on two paths of T .
Hence, we can update Zv and y▽v in O(τ2r) time. Since |Λ(v)| = O(τ), computing y△ takes O(r · τ)
time. In total, we can compute Φχ(v)W⊤h in O(τ2r) time.

Lemma 6.53 (UpdateBlock). Suppose the current state of the data structure satisfies Invari-
ant 6.47. The function UpdateBlock of BalancedSketch updates the implicit representation of
W by updating i-th block coordinate of x, xi to xnewi , in time O(τ2r log n). Moreover, Invariant 6.47
is preserved after the function call.

Proof. Correctness: To update L, it suffices to update the nodes in the set S = PB(Λ♣(u)):
Indeed, note that only (iii) of Invariant 6.47 depends on L[ℓ]. Thus, we need to update the sketch
only if

(L[ℓ+ 1]− L[ℓ]) · IΛ(v) ̸= 0.

We use ∆L to denote L[ℓ + 1] − L[ℓ]. By Lemma 5.9, the non-zero columns of ∆L lies on
PT (lowT (Ai)). Let u = lowT (Ai), then we have

∆L =
∑

w∈PT (u)

(∆L)we
⊤
w .

We note that (∆L)we
⊤
w · IΛ(v) ̸= 0 only if w ∈ Λ(v). By definition of Λ♣ and Lemma 6.44, we have

(∆L)we
⊤
w · IΛ(v) ̸= 0 only if v ∈ PB(Λ♣(w)). Thus, we need to update the set⋃

w∈PT (u)

PB(Λ♣(w)).

By Lemma 6.46, we have Λ♣(w) ∈ PB(Λ♣(u)). Hence,
⋃

w∈PT (u) PB(Λ♣(w)) = PB(Λ♣(u)).

60

Runtime: By Lemma 5.10, we can perform the rank-1 updates on L in O(τ2) time. Since S =
PB(Λ♣(u)), we have |S| = O(log n). We note when xi updates, we only need to update one diagonal
block of H, hence nnz(∆H) = O(1). By Lemmas 6.54 and 6.55, we can update H and L for the
data structure in time O(τ2r log n). Hence, the function takes O(τ2r log n) time in total.

Lemma 6.54 (UpdateL). Suppose Invariant 6.47 is satisfied. Given the set S ⊂ B, then the
function UpdateL of BalancedSketch updates the sketches implicitly and tv to the current time
at each v ∈ S. If the number of non-zero column of ∆L is bounded by O(τ), then the function
UpdateL takes O(|S| · τ2 · r) time.

Proof. Correctness: The correctness directly follows by Lemma 6.49.

Runtime: By Lemma 6.39, we have |Λ(v)| = O(τ). By Lemmas 5.2 and 5.9, we can compute
(L[ℓ]−L[tv]) · IΛ(v) ·Z▽[v]

⊤ and ∆L ·Z▽[v]
⊤ in time O(τ2r) and the column sparsity pattern of the

result is on a path of T . Hence, we can update Zv and y▽v in time O(τ2r). Hence, the total time is
bounded by O(|S| · τ2r).

Lemma 6.55 (UpdateH). Suppose Invariant 6.47 is satisfied for ℓ. Given ∆H such that H[ℓ+1] =
H[ℓ] + ∆H, then the function UpdateH updates H and the internal state of the data structure in
O(nnz(∆H) · τ2r log n) time.

Proof. Correctness: We observe that Zv changes only if Iχ(v) ·∆H ̸= 0. Suppose the i-th block
of H changes, and let v ∈ S where χ(v) = {i}. For changes on Hi, it suffices to update PS(v).

Runtime: Since H is a block-diagonal matrix, let H̃
def
= (H[ℓ] + ∆H · I{i})−1/2 − H[ℓ]−1/2, then

the nonzero pattern of H̃ is an ni × ni submatrix on the block diagonal. Recall ni = O(1), hence,
we can find Φχ(v)H̃A⊤ by computing O(1) many outer products of columns of Φ and row of A⊤,
which takes O(τr) time by sparsity pattern of A (Lemma 5.1). Then, we can update Zv by compute
Φχ(v)H̃A⊤L[tv]

−⊤, which takes O(τ2r) time by Lemma 5.4. Thus, we can update Zv and y▽v in
time O(τ2r) time for each v. As the height of S is bounded by O(log n), this function takes time
O(nnz(∆H) · τ2r log n).

6.7 Proof of Theorem 6.1

Proof of Correctness:7

At every iteration of MultiplyAndMove, we call super.Move followed by super.Update with
the updated xnew, snew values. Therefore, we correctly maintain the implicit representation (x, s)
directly as a result of Theorem 6.5.

Now, we show that

∥xi − xi∥xi ⩽ ε and ∥si − si∥∗xi
⩽ tε for all i ∈ [m].

7[GS22] has noted an error pertaining to the maintenance of the approximate solutions (see their remark 4.19).
Specifically, the guarantee of Eq. (6.6) is insufficient to satisfy the conditions of Theorem 6.14 for using the ℓ∞-
Approximates data structure. A fix is provided by [GS22], where the sampling procedure along the sampling tree
is replaced by a top-down BFS. An alternative fix is to modify the ℓ∞-Approximates data structure, so that rather
than approximating y = H

1/2
x x, where y is treated as a black-box vector, the data structure should maintain the

term H
1/2
x separately from x. The correct implementation of this approach can be found in [DGG+22, Section 6]. In

this manuscript, we have left the error as is.

61

Algorithm 14 Robust Central Path Maintenance – Initialize, MultiplyAndMove, Output
1: data structure CentralPathMaintenance extends MultiscaleRepresentation
2: private : member
3: BalancedSketch SketchW⊤εx, SketchW⊤εs, SketchW⊤h

▷ maintains W⊤εx,W⊤εs, and W⊤h, Theorem 6.36
4: VectorSketch SketchH1/2x̂, SketchH−1/2ŝ, SketchH−1/2cx

▷ maintains H
1/2
x x̂, H−1/2

x ŝ, and H
−1/2
x cx, Theorem 6.18

5: ℓ∞−Approximates ApproxH1/2
x x, ApproxH−1/2

x s

6: ▷ maintains ℓ∞-approximations of H1/2
x x and H

−1/2
x s, Theorem 6.14

7: Sampling tree (S, χ)
8: ℓ ∈ N ▷ central path step counter
9: N ∈ N ▷ upper bound on total number of steps

10: k ←
√
n ▷ number of steps supported before a restart

11: r ← Θ(log3(N))
12: Φ ∈ Rr×n ▷ JL matrix
13: end members
14: procedure Initialize(x ∈ Rn, s ∈ Rn, t ∈ R+, ε ∈ (0, 1))
15: super.Initialize(x, s, x, s, t)
16: Initialize Φ ∈ Rr×n by letting each entry be i.i.d. samples from N (0, 1√

r
)

17: Construct sampling tree (S, χ) as in Section 6.6.1.
18: InitializeSketch()
19: ℓ← 0
20: ε

(x)
apx ← ε

maxi ni
, ζ(x) ← 2α, δapx ← N

20k ▷ setting the appropriate approximation tolerances

21: ε
(s)
apx ← ε·t

2maxi ni
, ζ(s) ← 2αt ▷ α, ni as in Algorithm 16

22: ApproxH1/2
x x.Initialize(S, χ, ε(x)apx, δapx, ζ

(x), k)

23: ApproxH−1/2
x s.Initialize(S, χ, ε(s)apx, δapx, ζ

(s), k)
24: end procedure
25: procedure MultiplyAndMove(t ∈ R+)
26: ℓ← ℓ+ 1
27: if |t− t| > t · εt or ℓ > k then ▷ restarts entire data structure
28: Initialize(x, s, t, ε)
29: end if
30: super.Move()
31: ▷ Oracle Ox,Os for the ℓ∞-Approximates data structures, Lemma 6.56
32: xnew ← H

−1/2
x · ApproxH1/2

x x.Query(Ox{H1/2
x x̂+ βx · cx −W⊤(βxh+ εx)})

33: snew ← H
1/2
x · ApproxH−1/2

x s.Query(Os{H−1/2
x ŝ+W⊤(βsh+ εs)})

34: super.Update(xnew, snew)
35: UpdateSktech()
36: end procedure
37: procedure Output
38: return x̂+H

−1/2
x βxcx −H

−1/2
x W⊤(βxh+ εx), ŝ+H

1/2
x W⊤(βsh+ εs)

39: end procedure

62

Algorithm 15 Robust Central Path Maintenance – Helper Functions
1: datastructure CentralPathMaintenance extends MultiscaleRepresentation
2: procedure InitializeSketch
3: SketchW⊤εx.Initialize(S, χ,Φ, x, εx)
4: SketchW⊤εs.Initialize(S, χ,Φ, x, εs)
5: SketchW⊤h.Initialize(S, χ,Φ, x, h)
6: SketchH−1/2cx.Initialize(S, χ,Φ, H−1/2cx)

7: SketchH1/2x̂.Initialize(S, χ,Φ, H1/2
x x̂)

8: SketchH−1/2ŝ.Initialize(S, χ,Φ, H−1/2
x ŝ)

9: end procedure
10: procedure UpdateSketch
11: SketchW⊤εx.Update(x, εx)
12: SketchW⊤εs.Update(x, εs)
13: SketchW⊤h.Update(x, h)
14: SketchH−1/2cx.Update(H−1/2

x cx)

15: SketchH1/2x̂.Update(H1/2
x x̂)

16: SketchH−1/2ŝ.Update(H−1/2
x ŝ)

17: end procedure
18:
19: Oracle Ox{H1/2

x x̂+ βx · cx −W⊤(βxh+ εx)}
20: procedure TypeI(v ∈ S)
21: return SketchH1/2x̂.Query(v) + βx · SketchH−1/2cx.Query(v)−
22: βx · SketchW⊤h.Query(v)− SketchW⊤εx.Query(v)
23: end procedure
24: procedure TypeII(i ∈ [n])
25: return e⊤i (H

1/2
x x̂+ βx · cx −W⊤(βxh+ εx))

26: end procedure
27:
28: Oracle Os{H−1/2

x ŝ+W⊤(βsh+ εs)}
29: procedure TypeI(v ∈ S)
30: return SketchH−1/2ŝ.Query(v) + βs · SketchW⊤h.Query(v) + SketchW⊤εs.Query(v)
31: end procedure
32: procedure TypeII(i ∈ [n])
33: return e⊤i (H

−1/2
x ŝ+W⊤(βsh+ εs))

34: end procedure

63

By construction of ℓ∞-Approximates data structure, ApproxH1/2
x x maintains an ℓ∞-approximation

of
H

1/2
x x̂+ βx · cx −W⊤(βxh+ εx) = H

1/2
x x.

For any non-negative integer ℓ ⩽ k, we have the guarantee

∥H1/2
x x(ℓ+1) −H

1/2
x x(ℓ)∥2 = ∥H1/2

x (x(ℓ+1) − x(ℓ))∥2 = ∥δ(ℓ)x ∥x ⩽
9

8
α ⩽ ζ(x), (6.6)

where we used Lemma A.9 for the first inequality. Since η = O(log n), k =
√
n, and δapx = N

2k , we
can choose r = Θ(log3N).

By Theorem 6.14, if x̃ denotes the output of Approxx.Query, then it satisfies

∥H1/2
x x− x̃∥∞ ⩽ ε(x)apx =

ε

maxi ni
.

In Line 32, we set x = H−1/2x̃, so

∥H1/2(x− x)∥∞ ⩽
ε

maxi ni
·

Therefore, we have the desired error bound

∥xi − xi∥xi = ∥H
1/2
xi

(xi − xi)∥2 ⩽
√
ni · ∥H1/2

xi
(xi − xi)∥∞ ⩽ ε.

Similarly, ApproxH−1/2
x s maintains an ℓ∞-approximation of

H
−1/2
x ŝ+W⊤(βsh+ εs) = H

−1/2
x s.

By Lemma A.9, for any non-negative integer ℓ ⩽ k we have

∥H−1/2
x δ(ℓ)s ∥ ⩽

9

8
α · t ⩽ 9

8
αt ⩽ ζ(s),

where we used t ⩽ t at every step of the algorithm. By Theorem 6.14, if s̃ denotes the output of
Approxs.Query, then in Line 33, s = H

1/2
x s̃, and so

∥H−1/2
x (s− s)∥∞ ⩽ ε(s)apx =

t · ε
2maxi ni

,

Therefore, we have the desired error bound

∥si − si∥∗xi
= ∥H−1/2

xi
(si − si)∥2 ⩽

√
ni ·

t · ε
2maxi ni

⩽ tε,

where the last step follows by 0 < εt <
1
2 and hence t ∈ (t/2, t].

By our choice of δapx, ApproxH1/2
x x and ApproxH−1/2

x s succeed with probability at least 1 − N
10k .

Taking the union bound over N
k many restarts, the data structure succeeds with probability at least

0.9 after N total steps of central path.

Lastly, we ensure our oracle implementations are correct. For simplicity, we check Ox:

64

Lemma 6.56. Oracles Ox and Os are implemented correctly on Lines 19 to 34 of Algorithm 15 for
the latest query to the ℓ∞-Approximates data structure ApproxH1/2

x x and ApproxH−1/2
x s.

Proof. The input vector is H1/2
x x̂+ βx · cx−W⊤(βxh+ εx). A type-I access at v ∈ S should return

Φχ(v)(H
1/2
x x̂+βx ·cx−W⊤(βxh+εx)). By linearity of Φ, and by construction of the sketching data

structures, this is precisely what the oracle implements. A type-II access should return coordinate
i of the input vector, which the oracle does correctly.

The proof for Os is identical, we omit it here.

Proof of Runtime: We split this proof into Lemmas 6.57 to 6.59.

Lemma 6.57 (Initialization time). The initialization time of CentralPathMaintenance is
O(nτ2 log4N).

Proof. By Theorem 6.5, initializing MultiscaleRepresentation takes O(nτ2) time. We can
construct the balanced sampling tree in time O(nτ + n log n) by Theorem 6.38. By Theorems 6.18
and 6.36 and our choice of r, the initialization of each sketch takes O(nτ2 log4N) time. Hence, the
total initialization time is bounded by O(nτ2 log4N).

Lemma 6.58 (MultiplyAndMove time). Suppose that the function is called at most N times
and t is monotonic decreasing, the total running time of MultiplyAndMove is

O

((
Nn1/2

ε4
+ n

log(tmax/tmin)

εt

)
τ2 poly log(n/ε)

)
.

Proof. By Theorem 6.5, Move takes time O(1) time for each call. By Theorem 6.36, the sampling
tree has height η = O(log n). Then, each Updateh takes time O(log4N) per coordinate change
by Theorems 6.18 and 6.36. By Lemmas 6.60 and 6.61, each type-I query takes O(τ2 log3N) time
and type-II query takes O(τ2) time. Thus, the running time of ApproxH1/2

x x and ApproxH−1/2
x s is

bounded by O(nτ2 · poly log(N)) for every k :=
√
n steps by Theorem 6.14 and our choice of α and

ε in Algorithm 16. This also implies

ℓ0+k∑
ℓ=ℓ0

∥x(ℓ+1) − s(ℓ)∥0 + ∥s(ℓ+1) − s(ℓ)∥0 = O(n · poly log(N)).

Hence, by Update time in Theorem 6.5, the running time for this function during the algorithm is

N

k
·O(n · τ2 · poly log(N)) = O(Nn1/2τ2 · poly log(N)).

and the total number of entries change during algorithm for each variable in Eq. (6.3) is

O
(
Nn1/2τ · poly log(N)

)
.

We note that ApproxH1/2
x x (resp. ApproxH−1/2

x s) requires oracle queries to previous versions of
variables maintained CentralPathMaintenance, including all the sketching data structures and
the variables maintained in MultiscaleRepresentation. We resolve this by using persistent data
structures throughout, costing an O(logN) multiplicative factor in all run-times, see e.g. [DSST89].

65

Hence, by Theorems 6.18 and 6.36, the total running time of UpdateSktech during algorithm is
bounded by O(Nn1/2τ2 · poly log(N)).

Note that the algorithm will restart whenever |t− t| > t · εt or ℓ > k =
√
n. Hence, we can bound

the total number of restart by log1−εt(tmin/tmax) +
N
k = O(Nk + log(tmax/tmin)/εt). Each restart

takes O(nτ2 log4N) time by Lemma 6.57.

Thus, the runtime of MultiplyAndMove is bounded by

O

(
Nn1/2τ2 poly log(N) + nτ2 log4N

(
log(tmax/tmin)

εt
+

N

k

))
=O

((
Nn1/2 + n

log(tmax/tmin)

εt

)
τ2 poly log(N)

)
=O

((
Nn1/2 + nlog(tmax/tmin)

)
τ2 poly log(N)

)
.

where the last step follows by the choice of εt in Algorithm 16.

Lemma 6.59 (Output time). Output runs in O(nτ2) time.

Proof. We note that we compute βxh + εx exactly in time O(n). Recall that W = L−1
x AH

−1/2
x ,

we can compute W⊤(βxh + εx) in time O(nτ2) by Lemma 5.6. Hence, we can compute x in time
O(nτ2). The analysis for s is identical, we omit it here.

Lemma 6.60 (Query time). Type-I queries to the oracles Ox and Os run in O(τ2 · log3N) time.

Proof. By the runtime of Query in Theorems 6.18 and 6.36 and r = Θ(log3N), the total query
time is bounded by O(τ2 · log3N).

Lemma 6.61 (Compute time). Type-II queries to the oracles Ox and Os run in O(τ2) time.

Proof. We show the claim for Ox: Since Hx is a block-diagonal matrix and ni = O(1), we can
compute e⊤i (H

1/2
x x̂+βx ·cx) in O(1) time. Now, it suffices to show we can compute e⊤i W⊤(βxh+εx)

in O(τ2) time. By the definition of W, we have

e⊤i W⊤(βxh+ εx) = (βxh+ εx)
⊤L−1

x AH
−1/2
x ei.

By Lemmas 5.1 and 5.4, we can compute y = L−1
x AH

−1/2
x ei in O(τ2) time and y has O(τ) many

non-zero entries. Then, we can compute the product (βxh + εx)
⊤y in O(τ) time. Hence, the total

runtime for a type-II query to Ox is O(τ2). The proof for Os is identical; we omit it here.

7 Acknowledgment

We thank Aaron Sidford for discussing the optimization on thick path and Anup B. Rao for dis-
cussing the convex regression problem. The authors are supported by NSF awards CCF-1749609,
CCF-1740551, DMS-1839116, DMS-2023166, Microsoft Research Faculty Fellowship, Sloan Research
Fellowship, and Packard Fellowships.

66

References
[ABGJ18] Xavier Allamigeon, Pascal Benchimol, Stéphane Gaubert, and Michael Joswig. Log-

barrier interior point methods are not strongly polynomial. SIAM Journal on Applied
Algebra and Geometry, 2(1):140–178, 2018.

[ADD96] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. An approximate mini-
mum degree ordering algorithm. SIAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[AK16] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. Journal of the ACM (JACM), 63(2):1–35, 2016.

[ASK12] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. Shortest-path queries
for complex networks: exploiting low tree-width outside the core. In Proceedings of
the 15th International Conference on Extending Database Technology, pages 144–155,
2012.

[AY13] Noga Alon and Raphael Yuster. Matrix sparsification and nested dissection over
arbitrary fields. Journal of the ACM (JACM), 60(4):1–18, 2013.

[BCR91] Gregory Beylkin, Ronald Coifman, and Vladimir Rokhlin. Fast wavelet transforms
and numerical algorithms i. Communications on pure and applied mathematics,
44(2):141–183, 1991.

[BGHK95] Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Ap-
proximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal
of Algorithms, 18(2):238–255, 1995.

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deter-
ministic decremental sssp and approximate min-cost flow in almost-linear time. arXiv
preprint arXiv:2101.07149, 2021.

[BJL+19] Sébastien Bubeck, Qijia Jiang, Yin-Tat Lee, Yuanzhi Li, and Aaron Sidford. Com-
plexity of highly parallel non-smooth convex optimization. In Advances in Neural
Information Processing Systems, pages 13900–13909, 2019.

[BKO19] Cornelius Brand, Martin Kouteckỳ, and Sebastian Ordyniak. Parameterized algo-
rithms for milps with small treedepth. arXiv preprint arXiv:1912.03501, 2019.

[BLL+20] Jan van den Brand, Yin-Tat Lee, Yang P. Liu, Danupon Nanongkai, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Maximum flow in nearly-linear
time on moderately dense graphs. Personal communication, 2020.

[Bod94] Hans L Bodlaender. A tourist guide through treewidth. 1994.

[BS18] Eric Balkanski and Yaron Singer. Parallelization does not accelerate convex optimiza-
tion: Adaptivity lower bounds for non-smooth convex minimization. arXiv preprint
arXiv:1808.03880, 2018.

[BW17] Sebastian Brandt and Roger Wattenhofer. Approximating small balanced vertex sep-
arators in almost linear time. In Workshop on Algorithms and Data Structures, pages
229–240. Springer, 2017.

67

[CEH+20] Jana Cslovjecsek, Friedrich Eisenbrand, Christoph Hunkenschröder, Lars Rohwedder,
and Robert Weismantel. Block-structured integer and linear programming in strongly
polynomial and near linear time, 2020.

[CŁ13] Krishnendu Chatterjee and Jakub Łącki. Faster algorithms for markov decision pro-
cesses with low treewidth. In International Conference on Computer Aided Verifica-
tion, pages 543–558. Springer, 2013.

[CLS19] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the
current matrix multiplication time. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019., pages 938–942, 2019.

[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[CZ00] Shiva Chaudhuri and Christos D Zaroliagis. Shortest paths in digraphs of small
treewidth. part i: Sequential algorithms. Algorithmica, 27(3-4):212–226, 2000.

[Dan51] George B Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity analysis of production and allocation, 13:339–347, 1951.

[Dav06] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, jan 2006.

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational geometry: algorithms and applications, 3rd Edition. Springer, 2008.

[DFK91] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. Journal of the ACM (JACM), 38(1):1–17,
1991.

[DGG+22] Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva,
and Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-
linear time. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 124–153. SIAM, 2022.

[DGRW19] David Durfee, Yu Gao, Anup B Rao, and Sebastian Wild. Efficient second-order
shape-constrained function fitting. In Workshop on Algorithms and Data Structures,
pages 395–408. Springer, 2019.

[DH03] Timothy A. Davis and William W. Hager. Modifying a Sparse Cholesky Factorization.
SIAM Journal on Matrix Analysis and Applications, 20(3):606–627, 2003.

[DKO97] Wolfgang Dahmen, Andrew Kurdila, and Peter Oswald. Multiscale wavelet methods
for partial differential equations. Elsevier, 1997.

[DSST89] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan.
Making data structures persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989.

[EHK+19] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin
Koutecký, Asaf Levin, and Shmuel Onn. An algorithmic theory of integer program-
ming. arXiv preprint arXiv:1904.01361, 2019.

68

[FLS+18] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices
of low treewidth. ACM Transactions on Algorithms (TALG), 14(3):1–45, 2018.

[FMP+18] Matthew Fahrbach, Gary L Miller, Richard Peng, Saurabh Sawlani, Junxing Wang,
and Shen Chen Xu. Graph sketching against adaptive adversaries applied to the
minimum degree algorithm. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 101–112. IEEE, 2018.

[Geo73] Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 10(2):345–363, 1973.

[GL89] Alan George and Joseph WH Liu. The evolution of the minimum degree ordering
algorithm. Siam review, 31(1):1–19, 1989.

[GLN94] Alan George, Joseph Liu, and Esmond Ng. Computer solution of sparse linear systems.
Oak Ridge National Laboratory, 1994.

[GS22] Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint
arXiv:2211.06033, 2022.

[HZ15] Thomas Dueholm Hansen and Uri Zwick. An improved version of the random-facet
pivoting rule for the simplex algorithm. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 209–218, 2015.

[JK15] Bart MP Jansen and Stefan Kratsch. A structural approach to kernels for ilps:
Treewidth and total unimodularity. In Algorithms-ESA 2015, pages 779–791. Springer,
2015.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao
Song. A faster interior point method for semidefinite programming. arXiv preprint
arXiv:2009.10217, 2020.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved
cutting plane method for convex optimization, convex-concave games, and its appli-
cations. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 944–953, 2020.

[JSWZ20] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic
matrix inverse for faster lps. arXiv preprint arXiv:2004.07470, 2020.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311, 1984.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Compu-
tational Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,
1998.

[KLOS14] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its mul-

69

ticommodity generalizations. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 217–226. SIAM, 2014.

[KPSZ18] Rasmus Kyng, Richard Peng, Robert Schwieterman, and Peng Zhang. Incomplete
nested dissection. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 404–417, 2018.

[LMP+20] Daniel Lokshtanov, Pranabendu Misra, Michał Pilipczuk, Saket Saurabh, and Meirav
Zehavi. An exponential time parameterized algorithm for planar disjoint paths. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pages 1307–1316, 2020.

[LRT79] Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM journal on numerical analysis, 16(2):346–358, 1979.

[LS13] Yin Tat Lee and Aaron Sidford. Path finding i: Solving linear programs with\˜ o
(sqrt (rank)) linear system solves. arXiv preprint arXiv:1312.6677, 2013.

[LS19] Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt(rank) linear system
solves. CoRR, abs/1910.08033, 2019.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the
current matrix multiplication time. In Conference on Learning Theory, COLT 2019,
25-28 June 2019, Phoenix, AZ, USA, pages 2140–2157, 2019.

[LV18] Yin Tat Lee and Santosh S Vempala. The kannan-lovász-simonovits conjecture. arXiv
preprint arXiv:1807.03465, 2018.

[LY18] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. arXiv
preprint arXiv:1809.03011, 2018.

[MT14] Murat Mut and Tamás Terlaky. A tight iteration-complexity upper bound for the
mty predictor-corrector algorithm via redundant klee-minty cubes. 2014.

[Nem94] Arkadi Nemirovski. On parallel complexity of nonsmooth convex optimization. Jour-
nal of Complexity, 10(4):451–463, 1994.

[Nes98] Yurii Nesterov. Introductory lectures on convex optimization - a basic course. In
Lecture Notes, 1998.

[NN91] Yurii Nesterov and Arkadi Nemirovsky. Acceleration and parallelization of the path-
following interior point method for a linearly constrained convex quadratic problem.
SIAM Journal on Optimization, 1(4):548–564, 1991.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in con-
vex programming. SIAM, 1994.

[PdWvdK12] Leon R Planken, Mathijs M de Weerdt, and Roman PJ van der Krogt. Computing
all-pairs shortest paths by leveraging low treewidth. Journal of artificial intelligence
research, 43:353–388, 2012.

[PV20] Richard Peng and Santosh Vempala. Solving sparse linear systems faster than matrix
multiplication, 2020.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear
programming. Mathematical programming, 40(1-3):59–93, 1988.

70

[RV91] Olivier Rioul and Martin Vetterli. Wavelets and signal processing. IEEE signal
processing magazine, 8(4):14–38, 1991.

[Sch82] R. Schreiber. A new implementation of sparse gaussian elimination. ACM Trans.
Math. Softw., 8:256–276, 1982.

[SCHO13] Hayden Schaeffer, Russel Caflisch, Cory D Hauck, and Stanley Osher. Sparse dynam-
ics for partial differential equations. Proceedings of the National Academy of Sciences,
110(17):6634–6639, 2013.

[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362–391, 1983.

[SV13] Nikhil Srivastava and Roman Vershynin. Covariance estimation for distributions with
2 + ε moments. The Annals of Probability, 41(5):3081–3111, 2013.

[TSR+05] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight.
Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(1):91–108, 2005.

[Vai89] Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets.
In 30th Annual Symposium on Foundations of Computer Science, pages 338–343.
IEEE Computer Society, 1989.

[vdB20] Jan van den Brand. A deterministic linear program solver in current matrix multi-
plication time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 259–278. SIAM, 2020.

[vdBLN+20] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs, 2020.

[vdBLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense lin-
ear programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 775–788, 2020.

[Ye20] Guanghao Ye. Fast algorithm for solving structured convex programs, 2020.

[ZL18] Richard Y Zhang and Javad Lavaei. Sparse semidefinite programs with near-linear
time complexity. In 2018 IEEE Conference on Decision and Control (CDC), pages
1624–1631. IEEE, 2018.

71

A Robust Interior Point Algorithm for General Convex Sets

In this section, we give a robust interior point method for the optimization problem

min
Ax=b,xi∈Ki for i∈[m]

c⊤x (CP)

where A is a d× n matrix, xi ∈ Ki ⊂ Rni , and x is the concatenation of xi lying inside the domain
K

def
=
∏m

i=1Ki ⊂ Rn with n =
∑m

i=1 ni. The main result of this section is the following:

Theorem A.1. Consider the convex program Eq. (CP). Given νi-self-concordant barriers ϕi : Ki →
R with its minimum xi. Define the following parameters of the convex problem:

1. Inner radius r: There exists a z such that Az = b and B(z, r) ⊂ K.

2. Outer radius R: We have K ⊂ B(x,R) for some x ∈ Rn.

3. Lipschitz constant L: ∥c∥2 ⩽ L.

Let w ∈ Rm
≥1 be any weight vector, and κ =

∑m
i=1wiνi. For any 0 < ε ⩽ 1/2, Algorithm 16 outputs

an approximate solution x in O(
√
κ log(m) log(nκRεr)) steps, such that Ax = b, x ∈ K and

c⊤x ⩽ min
Ax=b, x∈K

c⊤x+ εLR.

Remark A.2. If the barrier functions ϕi is not given, we can use wi = 1 and universal barrier
functions ϕi for Ki [NN94, LY18]. In this case, the algorithm takes O(

√
n log n log(nκRεr)) steps, and

the cost of computing a good enough approximation of ∇ϕi and ∇2ϕi both takes nO(1)
i log(nRr) time

for each i, assuming the following mild conditions:

1. We can check if xi is in Ki in time n
O(1)
i .

2. We are given xi such that B(xi, r) ⊂ K.

Our algorithm and the proof is a simplified but strengthen version of [LSZ19]. We introduce ap-
proximate t in the algorithm to simplify our main data structure. We introduce a new reduction for
finding initial point, which allows us to output x exactly satisfying Ax = b. We used the potential
cosh(∥ · · · ∥) instead of exp(∥ · · · ∥) as in [LSZ19] and this simplifies the proof and the algorithm for
the data structure.

Although we will simply use wi = 1 for all i in this paper, we support the use of other weights in
case it is useful in the future. Another improvement over [LSZ19] is that our bound is tight even
for the case some νi is much larger than other νi. We note that it is an interesting open question
to extend it to dynamic weighted barriers such as the Lee-Sidford barrier [LS19] (beyond the case
ni = 1).

A.1 Overview

Our algorithm is based on interior point methods which follow some path x(t) inside the the interior
of the domain K. The path starts at some interior point of the domain x(1) and ends at the solution
x(0) we want to find. One commonly used path is defined by

x(t) = arg min
Ax=b

c⊤x+ tϕ(x) with ϕ(x)
def
=

m∑
i=1

wiϕi(xi) (A.1)

72

where ϕi are self-concordant barrier functions on Ki. The weights w ∈ Rm
>0 are fixed throughout

the algorithm.

Definition A.3 ([Nes98]). A function ϕ is a ν-self-concordant barrier for a non-empty open convex
set K if domϕ = K, ϕ(x)→ +∞ as x→ ∂K, and for any x ∈ K and for any u ∈ Rn

D3ϕ(x)[u, u, u] ⩽ 2∥u∥∇2ϕ(x) and ∥∇ϕ(x)∥(∇2ϕ(x))−1 ⩽
√
ν.

A function ϕ is a self-concordant barrier if the first condition holds.

For many convex sets, we have an explicit barrier with ν = O(n). For the case of linear programs,
the convex set Ki = [ℓi, ui] and one can use the log barrier − log(ui − x) − log(x − ℓi). It has
self-concordance 1. Throughout this section, we only use the fact that ν ≥ 1 to simplify formulas.

Lemma A.4 ([Nes98, Corollary 4.3.1]). The self-concordance ν is larger than 1 for any barrier
function.

Since ϕi blows up on ∂Ki, x(t) lies in the interior of the domain for t > 0 (if the interior is non-
empty). By the definition of x(t), x(0) is a minimizer of the problem Eq. (CP). In Appendix A.2 to
Appendix A.4, we explain how to follow the path from x(t) to x(0) assuming x(t) is given for some
t. In Appendix A.6, we show how to find the initial point x(t) (for some t) quickly by reformulating
the problem into an equivalent form.

A.2 Interior Point Algorithm

In this section, we discuss how to follow the path x(t) efficiently. To lower the cost of each step,
we maintain our (x, s) implicitly. Throughout the algorithm, we only access an approximation of
(x, s), which called (x, s). Our algorithm takes O(

√∑
iwiνi log(1/ε)) steps and each step involves

solving some linear system according to (x, s).

To analyze the central path, we use the norm induced by the Hessian of Φ throughout this pa-
per.

Definition A.5 (Induced Norms). For each block Ki, we define ∥v∥xi

def
= ∥v∥∇2ϕi(xi), ∥v∥

∗
xi

def
=

∥v∥(∇2ϕi(xi))−1 for v ∈ Rni . For the whole domain K =
∏m

i=1Ki, we define ∥v∥x
def
= ∥v∥∇2ϕ(x) =√∑

iwi∥vi∥2xi
and ∥v∥∗x

def
= ∥v∥(∇2ϕ(x))−1 =

√∑
iw

−1
i (∥vi∥∗xi

)2 for v ∈ Rn.

This norm depends on the Hessian and so it changes as the parameter x changes. The following
lemma about self-concordance implies when the parameter x is not changed rapidly, then the ap-
proximate solution for previous iteration will not be too far from the solution of next iteration.

Lemma A.6 ([Nes98, Theorem 4.1.6]). Given a self-concordant barrier ϕ. For any x ∈ dimϕ and
any y such that ∥y − x∥x < 1, we have y ∈ domϕ and that

(1− ∥y − x∥x)2∇2ϕ(x) ⪯ ∇2ϕ(y) ⪯ 1

(1− ∥y − x∥x)2
∇2ϕ(x).

Instead of following the path x(t) exactly, we follow the path

s/t+ w∇ϕ(x) = µ, (A.2)
Ax = b,

A⊤y + s = c

73

Algorithm 16 A Robust Interior Point Method for Eq. (CP)
1: procedure InteriorPointMethod
2: Input: linear program A ∈ Rd×n, b ∈ Rd, c ∈ Rn with inner radius r and outer radius R
3: Input: νi self-concordant barrier functions ϕi : Rni → R for i ∈ [m] and its weight w ∈ Rm

≥1

4: Let ϕ(x)
def
=
∑m

i=1wiϕi(xi), L = ∥c∥2, κ =
∑m

i=1wiνi
5: ▷ Modify the convex program and obtain an initial (x, s) according to Theorem A.18
6: Let t = 216(n+ κ)5 · LRδ ·

R
r with δ = 1/128

7: Compute xc = argminx∈K c⊤x+ tϕ(x) and x◦ = argminAx=b ∥x− xc∥2
8: Let x = (xc, 3R+ x◦ − xc, 3R) and s = (−t∇ϕ(xc), t

3R+x◦−xc
, t
3R)

9: Let the new matrix Anew = [A,A,−A], the new barrier and new weight

ϕnew
i =

{
ϕi if i ∈ [m]

− log x elses
and wnew

i =

{
wi if i ∈ [m]

1 elses

10: ▷ Find an initial (x, s) for the original linear program.
11: ((x(1), x(2), x(3)), (s(1), s(2), s(3)))← Centering(Anew, ϕnew, wnew, x, s, t, LR)
12: (x, s)← (x(1) + x(2) − x(3), s(1))
13: ▷ Optimize the original linear program.
14: (x, s)← Centering(A, ϕ,w, x, s, LR, ε

4
∑

i wiνi
)

15: Return x
16: end procedure
17: procedure Centering(A, ϕ,w, x, s, tstart, tend)
18: ▷ Definitions
19: λ = 64 log(256m

∑m
i=1wi), ε = 1

1440λ , α = ε
2

20: εt =
ε
4(mini

wi
wi+νi

), h = α

64
√∑m

i=1 wiνi
where νi is the self-concordance of ϕi

21: µt
i(x, s)

def
= si/t+ wi∇ϕi(xi), γti (x, s)

def
= ∥µt

i(x, s)∥∗xi

22: cti(x, s)
def
=

sinh(λ
wi

γt
i (x,s))

γt
i (x,s)·

√∑m
j=1 w

−1
j cosh2(λ

wi
γt
j(x,s))

23: Ψλ(r)
def
=
∑m

i=1 cosh(λri/wi), Φt(x, s)
def
= Ψλ(γ

t(x, s))

24: Px
def
= H

−1/2
x A⊤(AH−1

x A⊤)−1AH
−1/2
x and Hx

def
= ∇2ϕ(x)

25: ▷ Main Loop
26: t = t = tstart, x = x, s = s, k = 0.
27: while t ≥ tend do
28: Maintain x, s, t such that ∥xi − xi∥xi ⩽ ε, ∥si − si∥∗xi

⩽ tεwi and |t− t| ⩽ εtt

29: δµ,i ← −α · cti(x, s) · µt
i(x, s) for all i ∈ [m]

30: Pick δx and δs such that Aδx = 0, δs ∈ Range(A⊤) and

∥H1/2
x δx − (I − Px)H

−1/2
x δµ∥2 ⩽ εα

∥t−1
H

−1/2
x δs − PxH

−1/2
x δµ∥2 ⩽ εα

31: k ← k + 1, t← max((1− h)t, tend), x← x+ δx, s← s+ δs
32: end while
33: Return (x, s)
34: end procedure

74

where µ is close to 0 in (∇2ϕ(x))−1 norm. We enforce µ close to 0 using the following potential.

Definition A.7 (Potential Function). For each i ∈ [m], we define the i-th coordinate error

µt
i(x, s)

def
=

si
t
+ wi∇ϕi(xi) (A.3)

and its norm γti (x, s)
def
= ∥µt

i(x, s)∥∗xi
. We define the soft-max function by

Ψλ(r)
def
=

m∑
i=1

cosh(λ
ri
wi

)

for some λ > 0 and finally the potential function is the soft-max of the norm of the error of each
coordinate

Φt(x, s) = Ψλ(γ
t(x, s)).

When (x, s) or t is clear in the context, we may ignore them in the notation. The algorithm
alternates between decreasing t multiplicatively and a Newton-like step on Eq. (A.2) and the proof
simply shows the potential Φ is bounded throughout. In Appendix A.3 and Appendix A.4, we
explain how we design our Newton step. In Appendix A.5, we bound how Φ changes under our
Newton step. Finally, we give the proof of Theorem A.1 in Appendix A.7.

A.3 Gradient Descent on Ψλ

Since our goal is to bound Φ(x, s) = Ψλ(γ), we first discuss how to decreases Ψλ(r) by directly
controlling r. Suppose we can make step r ← r+δr with step size

∑
iw

−1
i δ2r,i ⩽ α2. Then, a natural

choice is the steepest descent direction8:

δ∗r = arg min∑
i w

−1
i δ2r,i⩽α2

⟨∇Ψλ(r), δr⟩ .

Using that Ψλ(r) =
∑m

i=1 cosh(λ
ri
wi
), we have ∇rΨλ(r) =

λ
wi

sinh(λ
wi
ri) and hence

δ∗r =
−α · sinh(λ

wi
ri)√∑

j w
−1
j sinh2(λ

wj
rj)

.

The following Lemma shows that the direction δ∗r indeed decreases Ψλ. Furthermore, this step is
robust under ℓ∞ perturbation of r and ℓ2 perturbation of δ∗r . To avoid the extra difficulties arising
from 0 divided by 0, we replace the sinh by cosh in the denominator.

Lemma A.8. Fix any r ∈ Rm and w ∈ Rm
≥1. Given any r ∈ Rm with |ri − ri| ⩽ wi

8λ for all i and

δr =
−α · sinh(λ

wi
ri)√∑

j w
−1
j cosh2(λ

wj
rj)

+ εr (A.4)

with
√∑

iw
−1
i ε2r,i ⩽

α
8 . For any step size 0 ⩽ α ⩽ 1

8λ , we have that

Ψλ(r + δr) ⩽ Ψλ(r)−
αλ

2

√∑
i

w−1
i cosh2(λ

ri
wi

) + αλ

√∑
i

w−1
i .

8We use the ∗ to highlight this is the ideal step and to distinguish with the step we will take.

75

Proof. By Taylor expansion, we have

Ψλ(r + δr) = Ψλ(r) + ⟨∇Ψλ(r), δr⟩+
1

2
δ⊤r ∇2Ψλ(r̃)δr (A.5)

where r̃ = r + tδr for some t ∈ [0, 1].

For the first order term ⟨∇Ψλ(r), δr − εr⟩ in Eq. (A.5), we have that

⟨∇Ψλ(r), δr − εr⟩ = −αλ
∑

iw
−1
i sinh(λ

wi
ri) sinh(

λ
wi
ri)√∑

j w
−1
j cosh2(λ

wj
rj)

.

Using Lemma A.31 and the assumption |ri − ri| < wi
8λ , we have

sinh(
λ

wi
ri) sinh(

λ

wi
ri) ≥

6

7
sinh2(

λ

wi
ri)−

1

7

∣∣∣∣sinh(λwi
ri)

∣∣∣∣ .
Hence, we have

⟨∇Ψλ(r), δr − εr⟩

⩽− 6

7
αλ

∑
iw

−1
i sinh2(λ

wi
ri)√∑

j w
−1
j cosh2(λ

wj
rj)

+
1

7
αλ

∑
iw

−1
i

∣∣∣sinh(λ
wi
ri)
∣∣∣√∑

j w
−1
j cosh2(λ

wj
rj)

⩽− 6

7
αλ

∑
iw

−1
i cosh2(λ

wi
ri)√∑

j w
−1
j cosh2(λ

wj
rj)

+
6

7
αλ

∑
iw

−1
i√∑

j w
−1
j cosh2(λ

wj
rj)

+
1

7
αλ

∑
iw

−1
i

∣∣∣sinh(λ
wi
ri)
∣∣∣√∑

j w
−1
j sinh2(λ

wj
rj)

⩽− 6

7
αλ

√∑
i

w−1
i cosh2(

λ

wi
ri) + αλ

√∑
i

w−1
i (A.6)

Using Lemma A.31 and the assumption |ri − ri| < wi
8λ again, we have√∑

i

w−1
i cosh2(

λ

wi
ri) ≥

6

7

√∑
i

w−1
i cosh2(

λ

wi
ri).

Putting this into Eq. (A.6), we have

⟨∇Ψλ(r), δr − εr⟩ ⩽ −
36

49
αλ

√∑
i

w−1
i cosh2(

λ

wi
ri) + αλ

√∑
i

w−1
i . (A.7)

For the first order term ⟨∇Ψλ(r), εr⟩ in Eq. (A.5), we have that

⟨∇Ψλ(r), εr⟩ =
∑
i

λ

wi
sinh(

λ

wi
ri)εr,i

⩽ λ ·
√∑

i

w−1
i sinh2(

λ

wi
ri)

√∑
i

w−1
i ε2r,i

⩽
1

8
αλ

√∑
i

w−1
i cosh2(

λ

wi
ri). (A.8)

76

For the second order term δ⊤r ∇2Ψλ(r̃)δr in Eq. (A.5), we note that

δ⊤r ∇2Ψλ(r̃)δr = λ2
∑
i

w−2
i δ2r,i cosh(λ

r̃i
wi

).

Note that

√∑
i

w−1
i δ2r,i ⩽

√√√√√∑
i

w−1
i

 α · sinh(λ
wi
ri)√∑

j w
−1
j cosh2(λ

wj
rj)

2

+

√∑
i

w−1
i ε2r,i

⩽ α+
α

8
=

9α

8
. (A.9)

In particular, this shows that |δr,i| ⩽ 9α
8

√
wi ⩽ 9α

8 wi. Using this and Eq. (A.9), we have

δ⊤r ∇2Ψλ(r̃)δr = λ2
∑
i

w−2
i δ2r,i cosh(λ

r̃i
wi

)

⩽
9α

8
λ2
∑
i

w−1
i |δr,i| cosh(λ

r̃i
wi

)

⩽
9α

8
λ2

√∑
i

w−1
i δ2r,i

√∑
i

w−1
i cosh2(λ

r̃i
wi

)

⩽ (
9α

8
)2λ2

(√∑
i

w−1
i cosh2(λ

r̃i
wi

)

)

⩽ (
9α

8
)2λ2

8

7

√∑
i

w−1
i cosh2(λ

ri
wi

)

 (A.10)

where we used Eq. (A.9) at the third last inequality and Lemma A.31 at the second last inequality.

Putting Eq. (A.7), Eq. (A.8), and Eq. (A.10) into Eq. (A.5) gives

Ψλ(r + δr) =Ψλ(r) + ⟨∇Ψλ(r), δr⟩+
1

2
δ⊤r ∇2

λ(r̃)δr

⩽Ψλ(r)−
36

49
αλ

√∑
i

w−1
i cosh2(λ

ri
wi

) + αλ

√∑
i

w−1
i

+ (
1

8
αλ+

8

7
(
9α

8
)2λ2)

√∑
i

w−1
i cosh2(λ

ri
wi

)

Using α ⩽ 1
8λ , we can simplify it to

Ψλ(r + δr) ⩽ Ψλ(r)−
(
36

49
− 1

8
− 1

2
(
9

8
)2
1

7

)
αλ

√∑
i

w−1
i cosh2(λ

ri
wi

) + αλ

√∑
i

w−1
i

⩽ Ψλ(r)−
αλ

2

√∑
i

w−1
i cosh2(λ

ri
wi

) + αλ

√∑
i

w−1
i .

77

A.4 Gradient Descent on Φ

In the last section, we discussed how to decrease Ψλ by changing the input r directly. But our
real potential Φt(x, s) = Ψλ(γ

t(x, s)) is defined indirectly using (x, s). In this section, we discuss
how to design the Newton-like step for (x, s). Note that the non-linear equation Eq. (A.2) has an
unique solution for any vector µ. In particular, the solution x is the solution of the optimization
problem minAx=b c

⊤x+t
∑m

i=1wiϕi(xi)−tµ⊤x. Hence, we can move µ arbitrarily while maintaining
Eq. (A.2) by moving x and s.

Since our goal is to decrease Φ(x, s) = Ψλ(γ), similar to Appendix A.3, a natural choice is the
steepest descent direction:

δ∗µ = arg min
∥δµ∥∗x=α

⟨∇µΨλ(∥µi∥∗xi
), µ+ δµ⟩ (A.11)

with step size α. We can view this as a gradient descent step on Φ for µ with step size α. Recall
that Ψλ(r) =

∑m
i=1 cosh(λ

ri
wi
). Hence, ∇∥µi∥∗xi

Ψλ(∥µi∥∗xi
) = λ

wi
sinh(λ

wi
∥µi∥∗xi

) and

∇µiΨλ(∥µi∥∗xi
) =

λ sinh(λ
wi
∥µi∥∗xi

)

wi∥µi∥∗xi

· ∇ϕi(xi)
−1µi =

λ sinh(λ
wi
γti (x, s))

wiγti (x, s)
· ∇ϕi(xi)

−1µi

Solve Eq. (A.11)9, we get

δ∗µ,i(x, s) = −
α sinh(λ

wi
γti (x, s))

γti (x, s) ·
√∑m

j=1w
−1
j sinh2(λ

wj
γtj(x, s))

· µt
i(x, s).

To move µ to µ+ δµ approximately, we take Newton step (δ∗x, δ
∗
s)

10:

1

t
δ∗s +∇2ϕ(x)δ∗x = δ∗µ(x, s),

Aδ∗x = 0,

A⊤δ∗y + δ∗s = 0.

Using Hx to denote ∇2ϕ(x), we solve the system above, and get

δ∗x = H−1
x δ∗µ −H−1

x A⊤(AH−1
x A⊤)−1AH−1

x δ∗µ(x, s),

δ∗s = tA⊤(AH−1
x A⊤)−1AH−1

x δ∗µ(x, s).

Let the orthogonal projection matrix Px
def
= H

−1/2
x A⊤(AH−1

x A⊤)−1AH
−1/2
x , then we can rewrite it

as

δ∗x = H−1/2
x (I − Px)H

−1/2
x δ∗µ(x, s),

δ∗s = tH1/2
x PxH

−1/2
x δ∗µ(x, s).

Our robust algorithm only uses Hx, Px and δ∗µ(x, s) where (x, s) is some approximation of (x, s).
Formally, our step on x and s is defined in Line 30. Note that we allow for an extra error for
(δx, δs) on top of the error due to x and s. Also, we replace sinh by cosh in the denominator as in
Lemma A.8.

9The derivation of the formula is not used in the main proof as this is just a motivation for the choice of the step.
Therefore, we skip the proof of this. An alternative choice is the gradient step on minAx=b,A⊤y+s=c Φ

t(x, s). This
step will be very similar to the step we use in this paper. But it contains few more terms and may make the proof
longer.

10We use the ∗ to highlight this is the ideal step and to distinguish with the step we will take..

78

A.5 Bounding Φ under Changes of x and s

To use Lemma A.8 to bound the potential, we need to verify |γti (xnew, snew) − γti (x, s)| ⩽
wi
8λ and

Eq. (A.4).

A.5.1 Verifying conditions of Lemma A.8

Recall that the ideal step we want to take is

δ∗µ,i = −α · cti(x, s) · µt
i(x, s).

where α is the step size. A rough calculation shows

γti (x
new, snew) = ∥µi + δ∗µ,i∥∗xi

∼ ∥µi∥∗xi
− α

∥µi∥∗xi

· cti(x, s) · µ⊤
i ∇2ϕi(x)

−1µi

= γti (x, s)− α · cti(x, s) · γti (x, s)

This shows that Eq. (A.4) should roughly holds. Formally, in Lemma A.13, we prove this holds for
the step we take in Algorithm 16. First, we bound the step size for each block δx,i.

Lemma A.9 (Step size of δx). Let αi
def
= ∥δx,i∥xi , then√√√√ m∑

i=1

wiα2
i ⩽

9

8
α.

In particular, we have αi ⩽ 9
8α. Similarly, we have

√∑m
i=1w

−1
i (∥δs,i∥∗xi

)2 ⩽ 9
8α · t.

Proof. We have√√√√ m∑
i=1

wiα2
i = ∥δx∥x ⩽ ∥(I − Px)H

−1/2
x δµ∥2 + εα ⩽ ∥H−1/2

x δµ∥2 + εα ⩽ α+ εα ⩽
9

8
α,

where the first inequality follows by the choice that δx ≈ (I − Px)H
−1/2
x δµ, the second inequality

follows by I − Px is an orthogonal projection matrix and, second last equality follows by the step
size for δµ and the last equality follows by ε ⩽ 1

8 .

For δs, we note that√√√√ m∑
i=1

w−1
i (∥δs,i∥∗xi

)2 = ∥δs∥∗x ⩽ t∥PxH
−1/2
x δµ∥2 + εαt ⩽ t∥H−1/2

x δµ∥2 + εαt ⩽
9

8
αt

where we used t ⩽ 33
32 t and ε ⩽ 1

32 .

To bound the change of γ, we first show that µnew is close to µ+ δµ.

Lemma A.10 (Change in µ). Let µt
i(x

new, snew) = µt
i(x, s)+δµ,i+ε

(µ)
i with βi

def
= ∥ε(µ)i ∥∗xi

, we have√∑m
i=1w

−1
i β2

i ⩽ 15εα.

79

Proof. Let ε1 = H
1/2
x δx − (I − Px)H

−1/2
x δµ and ε2 = t

−1
H

−1/2
x δs − PxH

−1/2
x δµ. By definition of µ,

we have

µt
i(x

new, snew) =
snewi

t
+ wi∇ϕi(x

new)

=µt
i(x, s) +

1

t
δs + wi(∇ϕi(x

new)−∇ϕi(xi))

=µt
i(x, s) + δµ,i + wi(∇ϕi(x

new)−∇ϕi(xi)−∇2ϕi(xi)δx)︸ ︷︷ ︸
ε
(µ,1)
i

+
(
H

1/2
x (ε1 + ε2)

)
i︸ ︷︷ ︸

ε
(µ,2)
i

+(
1

t
− 1

t
)δs︸ ︷︷ ︸

ε
(µ,3)
i

(A.12)

where the last step follows by δµ,i =
1
t
δs,i + wi∇2ϕi(xi)δx,i − (wi∇2ϕi(xi))

1/2(ε1 + ε2).

To bound ε
(µ,1)
i , let x(u) = uxnew + (1− u)x, then we have

ε
(µ,1)
i /wi = ∇ϕi(x

new
i)−∇ϕi(xi)−∇2ϕi(xi)δx,i

=

∫ 1

0

(
∇2ϕi(x

(u)
i)−∇2ϕi(xi)

)
δx,idu.

By Lemma A.6, we have

(1− ∥x(u)i − xi∥xi)
2∇2ϕi(xi) ⪯ ∇2ϕi(x

(u)) ⪯ 1

(1− ∥x(u)i − xi∥xi)
2
∇2ϕi(xi). (A.13)

Note that

∥x(u)i − xi∥xi ⩽ ∥x
(u)
i − xi∥xi + ∥xi − xi∥xi ⩽ u∥δx,i∥xi + ε ⩽ αi + ε ⩽

9

8
α+ ε ⩽

25

16
ε,

where we used ∥xi − xi∥xi ⩽ ε, αi ⩽ 9
8α (Lemma A.9) and 2α ⩽ ε (by the algorithm description).

Combine two inequalities above and using that ε ⩽ 1
8 , we get

−5ε∇2ϕi(xi) ⪯ ∇2ϕi(x
(u))−∇2ϕi(xi) ⪯ 5ε∇2ϕi(xi). (A.14)

Using this, Eq. (A.13) and the algorithm description, we have(
∇2ϕi(x

(u))−∇2ϕi(xi)
) (
∇2ϕi(xi)

)−1
(
∇2ϕi(x

(u))−∇2ϕi(xi)
)

⪯ 1

(1− 25
16

1
8)

2

(
∇2ϕi(x

(u))−∇2ϕi(xi)
) (
∇2ϕi(xi)

)−1
(
∇2ϕi(x

(u))−∇2ϕi(xi)
)

⪯ (5ε)2

(1− 25
16

1
8)

2
∇2ϕi(xi) ⪯ 40ε2∇2ϕi(xi).

80

This implies ∥∥∥(∇2ϕi(x
(u))−∇2ϕi(xi)

)
δx,i

∥∥∥∗
xi

=

√
δ⊤x,i
(
∇2ϕi(x(u))−∇2ϕi(xi)

)⊤
(∇2ϕi(xi))

−1 (∇2ϕi(x(u))−∇2ϕi(xi)
)
δx,i

⩽
√

40ε2δ⊤x,i∇2ϕi(xi)δ⊤x,i

⩽
√
40 · ε∥δx,i∥xi

=
9
√
40

8
· εαi.

Hence,

∥ε(µ,1)i ∥∗xi
⩽ wi

∫ 1

0

∥∥∥(∇2ϕi(x
(u))−∇2ϕi(xi)

)
δx,i

∥∥∥∗
xi

du ⩽ 7.2εwiαi. (A.15)

To bound the term ε
(µ,2)
i in Eq. (A.12), we use the definition of induced norm (Definition A.5) and

Eq. (A.13) to get √∑
i

w−1
i (∥ε(µ,2)i ∥∗xi

)2 = ∥ε(µ,2)∥∗x = ∥H1/2
x (ε1 + ε2)∥∗x

⩽
1

1− 25
16

1
8

∥H1/2
x (ε1 + ε2)∥∗x

⩽ 2∥ε1 + ε2∥2 ⩽ 4εα. (A.16)

where we used ∥ε1∥2 ⩽ εα and ∥ε2∥2 ⩽ εα at the end according to the algorithm description.

To bound the term ε
(µ,3)
i in Eq. (A.12), we note that√∑

i

w−1
i (∥(1

t
− 1

t
)δs,i∥∗xi

)2 =
1

t
| t− t

t
|
√∑

i

w−1
i (∥δs,i∥∗xi

)2

⩽
3

2t
| t− t

t
|
√∑

i

w−1
i (∥δs,i∥∗xi

)2

⩽ 2αεtt (A.17)

where we used Eq. (A.14) on the second inequality, Lemma A.9 |t− t| ⩽ εtt at the end.

Using ε(µ) = ε(µ,1) + ε(µ,2) + ε(µ,3), Eq. (A.15) and Eq. (A.16), we have√∑
i

w−1
i (∥ε(µ)i ∥∗xi

)2 ⩽ 7.2ε

√∑
i

wiα2
i + 4εα+ 2αεtt ⩽ 15εα.

Now, we can check the condition |ri − ri| ⩽ wi
8λ in Lemma A.8. The following Lemma shows that it

is true when γti (x, s) ⩽ wi for all i, which holds when Φ is small enough.

81

Lemma A.11. Assume γti (x, s) ⩽ wi for all i. For all i ∈ [m], we have

∥µt
i(x, s)− µt

i(x, s)∥∗xi
⩽ 3εwi.

Furthermore, we have that |γti (x, s)− γti (x, s)| ⩽ 5εwi.

Proof. For the first result, note that

∥µt
i(x, s)− µt

i(x, s)∥∗xi
⩽

1

t
∥si − si∥∗xi

+ wi∥∇ϕi(xi)−∇ϕi(xi)∥∗xi
.

Let x(u) = uxi + (1 − u)xi. By Eq. (A.14), we have ∇2ϕi(x
(u)
i) ⪯ (1 + 5ε)∇2ϕi(xi) ⪯ 5

8∇
2ϕi(xi)

and hence
∇2ϕi(x

(u)
i)(∇2ϕi(xi))

−1∇2ϕi(x
(u)
i) ⪯ 25

64
∇2ϕi(xi).

Therefore, we have

∥∇ϕi(xi)−∇ϕi(xi)∥∗xi
=

∥∥∥∥∫ 1

0
∇2ϕi(x

(u)
i)(xi − xi)du

∥∥∥∥∗
xi

⩽
5

8
∥xi − xi∥xi

. (A.18)

Using ∥si − si∥∗xi
⩽ tεwi, we have ∥µt

i(x, s)− µt
i(x, s)∥∗xi

⩽ 2εwi.

Finally, we note that γti (x, s) ⩽ wi and ∥∇ϕi(xi)∥∗xi
⩽ 2∥∇ϕi(xi)∥∗xi

⩽ 2νi. This implies that

∥si
t
− si

t
∥xi ⩽ (1− t

t
)∥si

t
∥xi ⩽ 2(

t− t

t
)(wi + νi) ⩽

1

2
εwi.

and hence the result.

For the second result, note that

|γti (x, s)− γti (x, s)| ⩽ ∥µt
i(x, s)− µt

i(x, s)∥∗xi
+ |∥µt

i(x, s)∥∗xi
− ∥µt

i(x, s)∥∗xi
|

⩽ 3εwi + 2∥xi − xi∥xi∥µt
i(x, s)∥∗xi

= 3εwi + 2εγti (x, s) ⩽ 5εwi

where we used the algorithm description and Lemma A.6

A.5.2 First Order Approximation of γ

In this subsection, we will show that γi is close to γti (x, s)− α · cti(x, s) · γti (x, s). First, we need the
following helper lemma to bound γi,

∑m
i=1w

−1
i sinh2(λ

wi
γti (x, s)) and c(x, s). In this helper lemma,

we assume that Φ is not too large, which is the invariant maintained throughout the algorithm.

Lemma A.12. Suppose that Φt(x, s) ⩽ cosh(λ), then we have

• γti (x, s) ⩽ wi. and γti (x, s) ⩽ 2wi.

• 0 ⩽ cti(x, s) ⩽ λ.

82

Proof. For the first inequality, note that Φt(x, s) ⩽ cosh(λ) implies that γti (x, s) ⩽ wi for all i.
Hence, Lemma A.11 shows that

|γti (x, s)− γti (x, s)| ⩽ 5wiε ⩽
5wi

8λ
.

Hence, we have γti (x, s) ⩽ 2wi.

For the second inequality, we note that

cti(x, s) =
sinh(λ

wi
γti (x, s))

γti (x, s) ·
√∑m

j=1w
−1
j cosh2(λ

wj
γtj(x, s))

.

Since γi ≥ 0 (by definition), we have cti ≥ 0. If γti (x, s) ≥
wi
λ , we have that

cti(x, s) ⩽
wi sinh(

λ
wi
γti (x, s))

γti (x, s) · cosh(
λ
wi
γti (x, s))

⩽ λ

where we used wi ≥ 1. If γti (x, s) ⩽
wi
λ , we use that | sinh(x)| ⩽ 2|x| for all |x| ⩽ 1 and get

cti(x, s) ⩽
2 λ
wi
γti (x, s)

γti (x, s) ·
√∑m

j=1w
−1
j cosh2(λ

wj
γtj(x, s))

⩽
2λ

wi

√
4
∑m

j=1w
−1
j

⩽ λ.

Finally, we can bound the distance between γnew and γ − αcγ. Here we crucially use the fact that
sinh(x)/x is bounded at x = 0 and it makes our argument slightly simpler than [LSZ19].

Lemma A.13 (Change in γ). Assume Φt(x, s) ⩽ cosh(λ). For all i ∈ [m], let

εr,i
def
= γti (x

new, snew)− γti (x, s) + α · cti(x, s) · γti (x, s).

Then, we have √√√√ m∑
i=1

w−1
i ε2r,i ⩽ 90ελα+ 4max

i

(
γti (x, s)

wi

)
α

Proof. For notation simplicity, we write ci = cti(x, s). Also, we use γti (x, z, s) to denote ∥µi(x, s)∥∗zi .
Using δµ,i = −α · ci · µt

i(x, s), we have

γti (x
new, x, snew) =∥µt

i(x, s) + δµ,i + ε
(µ)
i ∥

∗
xi

=∥µt
i(x, s)− αciµ

t
i(x, s)∥∗xi

± ∥ε(µ)i ∥
∗
xi

=∥µt
i(x, s)− αciµ

t
i(x, s)∥∗xi

± αci · ∥µt
i(x, s)− µt

i(x, s)∥∗xi
± ∥ε(µ)i ∥

∗
xi

=(1− αci)γ
t
i (x, s)± αci · ∥µt

i(x, s)− µt
i(x, s)∥∗xi

± ∥ε(µ)i ∥
∗
xi

(A.19)

where we used that 0 ⩽ αci ⩽ αλ ⩽ 1 at the end Lemma A.12).

83

In particular, we have that

γti (x
new, x, snew) ⩽ γti (x, s) + αci∥µt

i(x, s)− µt
i(x, s)∥∗xi

+ ∥ε(µ)i ∥
∗
xi

⩽ γti (x, s) + 4αciεwi + βi (A.20)

where we used Lemma A.11 and Lemma A.10 at the end. Hence, we have∣∣γti (xnew, xnew, snew)− γti (x
new, x, snew)

∣∣ = ∣∣∥µt
i(x

new, snew)∥xnew
i
− ∥µt

i(x
new, snew)∥xi

∣∣
⩽2∥xnewi − xi∥xi∥µt

i(x
new, snew)∥xi

⩽3∥δx,i∥xiγ
t
i (x

new, x, snew) = 3αiγ
t
i (x

new, x, snew)

⩽3αiγ
t
i (x, s) + 12αciεwi + 3βi (A.21)

where we used Lemma A.6 on the first inequality, xnewi − xi = δx,i on the second inequality, the
definition of αi on the second equality, Eq. (A.20) and αi ⩽ 1 on the last inequality.

Using Eq. (A.19), we have∣∣∣γti (xnew, x, snew)− γti (x, s) + αciγ
t
i (x, s)

∣∣∣
⩽|(1− αci)γ

t
i (x, s)− γti (x, s) + αciγ

t
i (x, s)|

+ αci∥µt
i(x, s)− µt

i(x, s)∥∗xi
+ ∥ε(µ)i ∥

∗
xi

⩽αci|γti (x, s)− γti (x, s)|+ αci∥µt
i(x, s)− µt

i(x, s)∥∗xi
+ ∥ε(µ)i ∥

∗
xi

⩽αci(5εwi) + αci(4εwi) + βi

⩽9αciεwi + βi (A.22)

where we used Lemma A.11, Lemma A.10 and γti (x, s) ⩽ wi at the second last inequality.

Combining Eq. (A.21) and Eq. (A.22), we have

|εr,i| ⩽
∣∣∣γti (xnew, x, snew)− γti (x, s) + αciγ

t
i (x, s)

∣∣∣+ ∣∣γti (xnew, xnew, snew)− γti (x
new, x, snew)

∣∣
⩽ 9αciεwi + βi + 3αiγ

t
i (x, s) + 12αciεwi + 3βi

⩽ 21αciεwi + 3αiγ
t
i (x, s) + 4βi (A.23)

where we used Lemma A.11 at the end.

Now, we bound the ∥εr∥w−1 . We first note that

m∑
i=1

wic
2
i =

∑m
i=1wi

sinh2(λ
wi

γt
i (x,s))

γt
i (x,s)

2∑m
j=1w

−1
j cosh2(λ

wj
γtj(x, s))

= λ2

∑m
i=1w

−1
i

w2
i

λ2γt
i (x,s)

2
sinh2(λ

wi
γti (x, s))∑m

j=1w
−1
j cosh2(λ

wj
γtj(x, s))

⩽ λ2

∑m
i=1w

−1
i cosh2(λ

wi
γti (x, s))∑m

j=1w
−1
j cosh2(λ

wj
γtj(x, s))

= λ2

84

where we used that sinh2(x)
x2 ⩽ cosh2(x) for all x at the second last inequality. Using this and∑

iwiα
2
i ⩽

9
8α

2 (Lemma A.9) into Eq. (A.23), we have√√√√ m∑
i=1

w−1
i ε2r,i ⩽21

√
2αλε+ 3max

(
γti (x, s)

wi

)
·

√√√√ m∑
i=1

wiα2
i + 4

√√√√ m∑
i=1

w−1
i β2

i

⩽21
√
2αλε+ 4max

(
γti (x, s)

wi

)
α+ 60αε

where we used
√∑m

i=1wiα2
i ⩽ 9

8α (Lemma A.9) and
√∑m

i=1w
−1
i β2

i ⩽ 15εα (Lemma A.10) at the
end.

A.5.3 Bounding the Movement of Φ

After verifying conditions in Lemma A.8, we are ready to bound the change of Φ in one step of
(x, s).

Lemma A.14 (Change of Φ after (x, s) step). Assume Φt(x, s) ⩽ cosh(λ/64). We have

Φt(xnew, snew) ⩽ Φt(x, s)− αλ

2

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x, s)) + αλ

√∑
i

w−1
i .

Proof. Let ri = γti (x, s), ri = γti (x, s) and δr,i = γti (x
new, snew) − γti (x, s). Now, we verify the

conditions in Lemma A.8 for ri, ri and δr. Lemma A.11 shows that

|ri − ri| ⩽ 5wiε ⩽
wi

8λ

where we used the assumption ε ⩽ 1
40λ .√√√√ m∑

i=1

w−1
i ε2r,i ⩽ 90αλε+ 4max

(
γti (x, s)

wi

)

Next, Lemma A.13 shows that

δr,i = −α · cti(x, s) · γti (x, s) + εr,i

with √√√√ m∑
i=1

w−1
i ε2r,i ⩽ 90αλε+ 4max

(
γti (x, s)

wi

)
α ⩽

90αλ

1440λ
+

4

64
α ⩽

α

8

where we used |γti (x, s)| ⩽
wi
64 (due to Φt(x, s) ⩽ cosh(λ/64)), ε ⩽ 1

1440λ . Using the formula of
cti(x, s), we have

δr,i = −
α sinh(λ

wi
γti (x, s))√∑m

j=1w
−1
j cosh2(λ

wj
γtj(x, s))

+ εr,i =
−α sinh(λ

wi
ri)√∑m

j=1w
−1
j cosh2(λ

wj
rj)

+ εr,i

85

and this exactly satisfies the conditions in Lemma A.8.

Now, Lemma A.8 shows that

Φt(xnew, snew) ⩽ Φt(x, s)− αλ

2

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x, s)) + αλ

√∑
i

w−1
i .

Now, we bound the change of Φ after changing t.

Lemma A.15 (Change of Φ after t step). Assume that Φt(x, s) ⩽ cosh(λ). Let tnew ← (1−h)t for
h ⩽ 1

8λ
√
maxi νi

. We have

Φtnew(x, s) ⩽ Φt(x, s) + 16hλ
m∑
i=1

√
νi cosh(λγ

tnew

i (x, s)/wi).

Proof. By definition of γ, we have

γt
new

i (x, s) = ∥ si
tnew

+ wi∇ϕi(xi)∥∗xi
= ∥ s

t(1− h)
+ wi∇ϕi(xi)∥∗xi

⩽
1

1− h
γti (x, s) +

(
1

1− h
− 1

)
wi∥∇ϕi(xi)∥∗xi

⩽ (1 + 2h)γti (x, s) + 2h
√
νiwi (A.24)

where the last inequality follows by the definition of self-concordance, h ⩽ 1
8λ

√
maxi νi

and νi ≥ 1 .

For Φtnew ,we have

Φtnew(x, s) =

m∑
i=1

cosh(λγt
new

i /wi) ⩽
m∑
i=1

cosh(λγti/wi + 2hλ(γti/wi +
√
νi)).

Since Φt(x, s) ⩽ cosh(λ), we have γti/wi ⩽ 1. Since we have self-concordance νi ≥ 1 , we have

Φtnew(x, s) ⩽
m∑
i=1

cosh(λγti/wi + 4hλ
√
νi)

⩽ Φt(x, s) + 8hλ
m∑
i=1

√
νi cosh(λγ

t
i/wi)

where the last inequality follows by Lemma A.32.

Similar to the argument in Eq. (A.24), we have

γt
new

i (x, s) ≥ (1 + h)γti (x, s)− 2h
√
νiwi.

Hence, we have γti (x, s) ⩽ γt
new

i (x, s) + 2h
√
νiwi. By Lemma A.32 again, we have

cosh(λγti/wi) ⩽ 2 cosh(λγt
new

i /wi). (A.25)

This gives the result.

86

Combining the bound of Φ under (x, s) change (Lemma A.14) and the bound of Φ under t change
(Lemma A.15), we get the bound on Φ after 1 step.

Theorem A.16. Assume Φt(x, s) ⩽ cosh(λ/64). Then for any 0 ⩽ h ⩽ α

64
√∑m

i=1 wiνi
, we have

Φtnew(xnew, snew) ⩽ (1− αλ

8
√∑

iwi

)Φt(x, s) + αλ

√∑
i

w−1
i .

In particular, for any cosh(λ/128) ⩽ Φt(x, s) ⩽ cosh(λ/64), we have that

Φtnew(xnew, snew) ⩽ Φt(x, s).

Proof. By Lemma A.15 and Lemma A.14, we have

Φtnew(xnew, snew)

⩽Φtnew(x, s)− αλ

2

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γt

new

i (x, s)) + αλ

√∑
i

w−1
i

⩽Φt(x, s) + 16hλ
m∑
i=1

√
νi cosh(

λ

wi
γt

new

i (x, s))− αλ

2

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γt

new

i (x, s)) + αλ

√∑
i

w−1
i .

By Cauchy Schwarz inequality, we have

α

4

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γt

new

i (x, s)) ≥α

4

∑m
i=1

√
νi cosh(

λ
wi
γt

new

i (x, s))√∑m
i=1wiνi

≥16h
m∑
i=1

√
νi cosh(

λ

wi
γt

new

i (x, s)).

Hence, we have that

Φtnew(xnew, snew) ⩽Φt(x, s)− αλ

4

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γt

new

i (x, s)) + αλ

√∑
i

w−1
i

⩽Φt(x, s)− αλ

8

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x, s)) + αλ

√∑
i

w−1
i

⩽Φt(x, s)− αλ

8

Φt(x, s)√∑
iwi

+ αλ

√∑
i

w−1
i

where we used Eq. (A.25) at the second inequality.

If Φt(x, s) ≥ cosh(λ/128), we have

Φt(x, s)

8
√∑

iwi

≥ cosh(λ/128)

8
√∑

iwi

=
exp(λ/128)

16
√∑

iwi

=
exp(64 log(256m

∑
iwi)/128)

16
√∑

iwi

=
16
√
m
∑

wi

16
√∑

iwi

=
√
m ≥

√∑
i

w−1
i .

87

Hence, we have Φtnew(xnew, snew) ⩽ Φt(x, s).

A.6 Initial Point Reduction

Since Algorithm 16 requires a point on the central path, we modify the convex program to make it
happen. To satisfy the constraint x ∈ K, we start the algorithm by solving minx∈K c⊤x+ tϕ(x) for
some parameter t. Since x may not satisfy the constraint Ax = b, we write xnew = x(1)+x(2)−x(3)

where x(1) acts as the original variable and x(2), x(3) ∈ Rn
≥0 are the extra variables. We put a large

cost vector on x(2) and x(3) to ensure the solution is roughly the same. The proof shows that if
we optimize this new program well enough, we will have xnew = x(1) + x(2) − x(3) ∈ K and hence
xnew gives a starting point of the original program. The precise formulation of the modified linear
program is as follows:

Definition A.17. Given a convex program minAx=b,x∈K c⊤x with inner radius r, outer radius R
and Lipschitz constant L. For any t, we define the modified convex program by

min
(x(1),x(2),x(3))∈Pt

〈
c(1), x(1)

〉
+
〈
c(2), x(2)

〉
+
〈
c(3), x(3)

〉
where Pt = {x(1) ∈ K, (x(2), x(3)) ∈ R2n

≥0 : A(x(1) + x(2) − x(3)) = b}, c(1) = c, c(2) = t
3R+x◦−xc

,
c(3) = t

3R , xc = argminx∈K c⊤x+tϕ(x) and x◦ = argminAx=b ∥x−xc∥2. We define the corresponding
dual set by

Dt = {s(1) ∈ K∗, (s(2), s(3)) ∈ R2n
≥0 : A

⊤y+s(1) = c(1), A⊤y+s(2) = c(2),−A⊤y+s(3) = c(3) for y ∈ Rd}.

We define the corresponding central path problem

min
(x(1),x(2),x(3))∈Pt

ft(x
(1), x(2), x(3)) (A.26)

where ft(x(1), x(2), x(3)) =
〈
c(1), x(1)

〉
+
〈
c(2), x(2)

〉
+
〈
c(3), x(3)

〉
+tϕ(x(1))−t

∑n
i=1 log x

(2)
i −t

∑n
i=1 log x

(3)
i .

The main result about the modified program is the following.

Theorem A.18. Given a convex program minAx=b,x∈K c⊤x with inner radius r, outer radius R
and Lipschitz constant L. For any 0 ⩽ δ ⩽ 1

2 , the modified linear program (Definition A.17) with
t ≥ 216(n+ κ)5 · LRδ ·

R
r has the following properties:

• The point (xc, 3R+x◦−xc, 3R) is the minimizer of Eq. (A.26). The corresponding s variables
are (−t∇ϕ(xc), t

3R+x◦−xc
, t
3R).

• Given any primal (x(1), x(2), x(3)) ∈ Pt and dual (s(1), s(2), s(3)) ∈ Dt that approximately min-
imizes ft′ at t′ = LR as promised by Algorithm 16:

∥s(1)i /t′ + wi∇ϕi(x
(1)
i)∥∗

x
(1)
i

⩽
wi

16
for all i ∈ [m], (A.27)

x
(j)
i s

(j)
i ∈ [1± 1

16
]t′ for all i ∈ [n], j ∈ {2, 3}.

Let xnew = x(1) + x(2) − x(3) and snew = s(1), then we have that Axnew = b, xnew ∈ K,
A⊤y + snew = c for some y and

∥snewi /t′ + wi∇ϕi(x
new
i)∥∗xnew ⩽ ∥s(1)i /t′ + wi∇ϕi(x

(1)
i)∥∗

x
(1)
i

+ δ.

88

Proof. The proof is separated into Lemma A.19 and Lemma A.26

First, we prove the first conclusion in Theorem A.18.

Lemma A.19. The point x def
= (xc, 3R+ x◦ − xc, 3R) is the minimizer of ft over Pt (Eq. (A.26)).

The corresponding s variables are (−t∇ϕ(xc), t
3R+x◦−xc

, t
3R).

Proof. We will show that x ∈ Pt and that it minimizes ft over R3n, not just Pt.

For the set constraints, we note that x(1) = xc ∈ K by the definition of xc and x(3) = 3R ≥ 0 by
the definition. For x(2), we note that z ∈ K with Az = b and hence ∥x◦ − xc∥2 ⩽ ∥z − xc∥2 ⩽ 2R

(since K has radius R). Hence, x(2)i ≥ R for all i ∈ [n]. Hence, (x(1), x(2), x(3)) ∈ Pt.

For the optimality, we note that

∇x(1)ft(x) = c(1) + t∇ϕ(x(1))
= c+ t∇ϕ(xc) = 0

where we used that xc = argminx∈K c⊤x+ tϕ(x). We note that

∇x(2)ft(x) = c(2) − t

x(2)
= 0

and similarly ∇x(3)ft(x) = 0. Hence x is the minimizer of ft.

Next, we show that the minimizer of ft′(x) for t′ = LR is far from the boundary of K for x(1) and
has small x(2) and x(3). The proof for both involves the same idea: use the optimality condition of
ft′ . Throughout the rest of the section, we are given (x(1), x(2), x(3)) ∈ Pt and (s(1), s(2), s(3)) ∈ Dt

satisfying Eq. (A.27). The following lemma shows that (x(1), x(2), x(3)) is the minimizer of some
function g and we use it to prove the properties of x.

Lemma A.20. (x(1), x(2), x(3)) is the minimizer of the function

g(x(1), x(2), x(3))
def
=
〈
c̃, x(1)

〉
+
〈
c(2), x(2)

〉
+
〈
c(3), x(3)

〉
+t′ϕ(x(1))−

n∑
i=1

µ
(2)
i log x

(2)
i −

n∑
i=1

µ
(3)
i log x

(3)
i

over the domain Pt for some c̃ = c(1) − t′(s(1)/t′ +∇ϕ(x(1))), 15
16 t

′ ⩽ µ
(2)
i ⩽ 17

16 t
′, 15

16 t
′ ⩽ µ

(3)
i ⩽ 17

16 t
′

Proof. Let µ(2) = x(2)s(2) and µ(3) = x(3)s(3). By the definition of Pt ×Dt, we have that

∇x(2)g(x) = c(2) − µ(2)

x(2)
= c(2) − s(2) = A⊤y,

∇x(3)g(x) = c(3) − µ(3)

x(3)
= c(3) − s(3) = −A⊤y

for some y. For the gradient with respect to x(1), we note that

∇x(1)g(x) = c̃+ t′∇ϕ(x(1)) = c(1) − s(1) = A⊤y.

This shows that x satisfies the optimality condition for g, namely ∇g(x) = [A,−A,A]⊤y.

89

The gradient of g is a bit complicated. We avoid it by considering the directional derivative at x on
the direction “z − x” for some z ∈ K promised by the definition of inner radius. Since our domain
is in Pt ⊂ R3n, we need to lift z to higher dimension. Now, we define the point

z(1) =z,

z(2) =z(3) =
t′

t
R.

By construction, we have that z ∈ Pt. Now, we define the path p(β) = (1 − β) · (x(1), x(2), x(3)) +
β · (z(1), z(2), z(3)). Since p(0) minimizes g, we have that d

dβ g(p(β))|β=0 ≥ 0. In particular, we
have

0 ⩽
d

dβ
g(p(β))|β=0

=(c̃+ t′∇ϕ(x(1)))⊤(z(1) − x(1)) (A.28)

+
n∑

i=1

(c
(2)
i −

µ
(2)
i

x
(2)
i

)(z
(2)
i − x

(2)
i) +

n∑
i=1

(c
(3)
i −

µ
(3)
i

x
(3)
i

)(z
(3)
i − x

(3)
i).

Now, we bound the terms one by one. To bound the first term in (A.28), we need following lemmas
relating the self-concordance barrier and the distance to the boundary.

Lemma A.21 ([Nes98, Theorem 4.1.6, Theorem 4.2.6]). Given a ν-self-concordant barrier ϕ. For
any x, y ∈ dimϕ such that ∇ϕ(x)⊤(y − x) ≥ 0, we have ∥y − x∥x ⩽ ν + 2

√
ν. In particular, for

x∗ = argminx ϕ(x), we have

{x : ∥x− x∗∥x∗ ⩽ 1} ⊂ domϕ ⊂ {x : ∥x− x∗∥x∗ ⩽ ν + 2
√
ν}.

Lemma A.22. Given a ν-self-concordant barrier ϕ for the interval [α, β]. For any x, z ∈ (α, β),
we have that √

ϕ′′(x) ⩽
3ν

min(x− α, β − x)

and
ϕ′(x)(z − x) +

1

16

√
ϕ′′(x)|z − x| ⩽ 4ν2 − 1

16
max(

z − α

x− α
,
β − z

β − x
).

Proof. For the first result, we bound ϕ′′ in two case. If ϕ′(x) ≥ 0, then ϕ′(x)(x − α) ≥ 0 and
Lemma A.21 shows that |α − x|

√
ϕ′′(x) ⩽ ν + 2

√
ν ⩽ 3ν. Hence, we have

√
ϕ′′(x) ⩽ 3ν

x−α . If
ϕ′(x) ⩽ 0, similar argument shows that

√
ϕ′′(x) ⩽ 3ν

β−x .

For the second result, we split into four cases. First, we note that both sides on the equation is
invariant under affine transformation. Hence, we can assume α = 0 and β = 1.

Case 1) ϕ′(x)(z − x) ≥ 0.

Lemma A.21 shows that √
ϕ′′(x)|z − x| ⩽ ν + 2

√
ν ⩽ 3ν.

Together with the fact that |ϕ′(x)| ⩽
√

νϕ′′(x), we have

ϕ′(x)(z − x) +
1

16

√
ϕ′′(x)|z − x| ⩽ 2ν2.

90

Case 2) x ∈ [1
12ν , 1−

1
12ν].

Since ϕ′(x)(z − x) ⩽ 0 and z, x ∈ [0, 1], we have

ϕ′(x)(z − x) +
1

16

√
ϕ′′(x)|z − x| ⩽ 1

16

√
ϕ′′(x) ⩽

1

16
· 36ν2 = 3ν2

where we used the first result at the end.

Case 3) x ⩽ 1
12ν

Let x∗ = argminx∈[0,1] ϕ(x). Lemma A.21 shows that there is an interval I = [−γ, γ] such that

x∗ + I ⊂ [0, 1] ⊂ x∗ + (ν + 2
√
ν)I ⊂ x∗ + 3νI.

In particular, this implies that x∗ ∈ [1
6ν , 1−

1
6ν]. Since x ⩽ 1

12ν , we have that x ⩽ x∗ − x.

Now we use this to show ϕ′(x) ⩽ −1
8

√
ϕ′′(x). Note that

ϕ′(x) = ϕ′(x∗)−
∫ x∗

x
ϕ′′(t)dt = −

∫ x∗

x
ϕ′′(t)dt.

Lemma A.6 shows that [x− 1√
ϕ′′(x)

, x+ 1√
ϕ′′(x)

] lies in domϕ. In particular, this implies that

1√
ϕ′′(x)

⩽ x ⩽ x∗ − x (A.29)

and hence x∗ ≥ x+ 1√
ϕ′′(x)

. Hence, we have

ϕ′(x) ⩽ −
∫ x+(ϕ′′(x))−1/2/2

x
ϕ′′(t)dt

⩽ −1

4
ϕ′′(x) · (ϕ

′′(x))−1/2

2

= −1

8

√
ϕ′′(x).

where we used ϕ′′(t) ≥ 1
4ϕ

′′(x) for all |t− x| ⩽ 1

2
√

ϕ′′(x)
(Lemma A.6).

Since ϕ′(x)(z − x) ⩽ 0 and ϕ′(x) ⩽ 0, we have z ≥ x and

ϕ′(x)(z − x) +
1

16

√
ϕ′′(x)(z − x) ⩽ − 1

16

√
ϕ′′(x)(z − x)

⩽ −z − x

16x
=

1

16
− z

16x

where we used x ≥ 1√
ϕ′′(x)

at the end (Eq. (A.29)).

Case 4) x ≥ 1− 1
12ν

By the same argument as case 3, we have ϕ′(x)(z − x) + 1
16

√
ϕ′′(x)(z − x) ⩽ 1

16 −
1−z

16(1−x) .

Combining all the cases, we have the result.

91

Now, we can bound the first term in (A.28).

Lemma A.23. We have that (c̃+t′∇ϕ(x(1)))⊤(z(1)−x(1)) ⩽ (6κ2− r
16η)LR where η is the minimum

distance between x(1) to the boundary of some Ki, i.e. η = miniminq∈∂Ki
∥q − x

(1)
i ∥2.

Proof. Recall that c̃ = c(1) − t′α with α = s(1)/t′ +∇ϕ(x(1)). By the assumption on (x, s), we have
that

∥αi∥∗
x
(1)
i

⩽
wi

16
for all i ∈ [m].

Hence, we have

(c̃+ t′∇ϕ(x(1)))⊤(z(1) − x(1))

=c(1)⊤(z(1) − x(1))− t′
m∑
i=1

α⊤
i (z

(1)
i − x

(1)
i) + t′

m∑
i=1

wi∇ϕi(x
(1))⊤(z

(1)
i − x

(1)
i).

⩽2LR+
t′

16

m∑
i=1

wi∥z(1)i − x
(1)
i ∥x(1)

i

+ t′
m∑
i=1

wi∇ϕi(x
(1))⊤(z

(1)
i − x

(1)
i) (A.30)

where we used ∥c(1)∥2 ⩽ L and ∥z(1) − x(1)∥2 ⩽ 2R (the radius of K is bounded by R).

To bound the last two terms, we define ϕ̃ be the ϕi restricted on the line between z
(1)
i and x

(1)
i .

Note that ϕ̃ is a νi-self-concordant barrier function on some interval [α, β]. Let z and x be the scalar
such that ϕ̃(z) and ϕ̃(x) corresponding to ϕi(z

(1)
i) and ϕi(x

(1)
i). Then, we have that

ui
def
= ∇ϕi(x

(1))⊤(z
(1)
i − x

(1)
i) +

1

16
∥z(1)i − x

(1)
i ∥x(1)

i

= ϕ̃′(x)(z − x) +
1

16

√
ϕ̃′′(x)|z − x|

⩽ 4ν2i −
1

16
max(

z − α

x− α
,
β − z

β − x
).

Let ηi = minq∈∂Ki
∥q − x

(1)
i ∥2 and qi be a minimizing q. Suppose α ⩽ x ⩽ z (the other case is

similar). Since Ki is convex, there is a hyperplane separating qi and Ki. Let h be the ℓ2 distance
to the hyperplane. Note that h is linear on K and that h(α) ≥ 0, h(z) ≥ r (because B(z, r) ⊂ Ki).
Hence,

ηi = h(x) =
x− α

z − α
h(z) +

z − x

z − α
h(α) ≥ x− α

z − α
r.

Hence, we have
z − α

x− α
≥ r

ηi
.

This shows ui ⩽ 4ν2i − r
16ηi

. In particular, we know that ui ⩽ 4ν2i − r
16η for one of the i. For other

terms, we can simply by it by 4ν2i . Putting these into Eq. (A.30), we have

(c̃+ t′∇ϕ(x(1)))⊤(z(1) − x(1)) ⩽ 2LR+ 4t′
m∑
i=1

wiν
2
i −

rt′

16η

⩽ 2LR+ 4t′κ2 − rt′

16η
.

Using t′ = LR and κ ≥ 1, we have the result.

92

For the second term and the third term in (A.28), we have the following

Lemma A.24. We have that

n∑
i=1

(c
(j)
i −

µ
(j)
i

x
(j)
i

)(z
(j)
i − x

(j)
i) ⩽ 3LRn− t

5R

n∑
i=1

x
(j)
i

for both j = 2 and 3.

Proof. We only prove the case j = 2. The proof for j = 3 is similar. As proved in Lemma A.19,
∥x◦ − xc∥2 ⩽ 2R. Hence c

(2)
i = t

3R+x◦,i−xc,i
∈ [t

5R ,
t
R]. Hence, we have

(c
(2)
i −

µ
(2)
i

x
(2)
i

)(z
(2)
i − x

(2)
i) =c

(2)
i z

(2)
i −

µ
(2)
i

x
(2)
i

z
(2)
i − c

(2)
i x

(2)
i + µ

(2)
i

⩽
t

R
· t

′

t
R− t

5R
· x(2)i + 2t′

⩽3t′ − t

5R
· x(2)i .

Summing over all i and using t′ = LR gives the result.

Combining (A.28), Lemma A.23 and Lemma A.24, we have

0 ⩽ (6κ2 − r

16η
)LR+ 6LRn− t

5R

n∑
i=1

(x
(2)
i + x

(3)
i).

Hence, this shows that (x(1), x(2), x(3)) satisfies Eq. (A.27) implies that it is far from ∂K (i.e. η is
large) and x(2), x(3) are small:

r

16η
+

t

5LR2

n∑
i=1

(x
(2)
i + x

(3)
i) ⩽ 6n+ 6κ2.

In particular, this shows the following:

Lemma A.25. We have that η ≥ r
96(n+κ2)

and
∑n

i=1(x
(2)
i + x

(3)
i) ⩽ 30(n+ κ2) · LRt ·R.

Now, we are ready to prove the second conclusion of Theorem Theorem A.18.

Lemma A.26. Let xnew = x(1) + x(2) − x(3) and snew = s(1), then we have that Axnew = b,
xnew ∈ K, A⊤y + snew = c for some y and

∥snewi /t′ + wi∇ϕi(x
new
i)∥∗xnew

i
⩽ ∥s(1)i /t′ + wi∇ϕi(x

(1)
i)∥∗

x
(1)
i

+ δ.

Proof. Note that Axnew = b by definition. Lemma A.25 shows that x(1) is η ≥ r
96(n+κ2)

far from
∂K. Since xnew = x(1) + x(2) − x(3), we have

∥xnew − x(1)∥2 ⩽ ∥x(2)∥1 + ∥x(3)∥1 ⩽ 30(n+ κ2) · LR
t
·R

93

where we used x(2), x(3) ≥ 0 and Lemma A.25. Hence, we have that

∥xnew − x(1)∥2
η

⩽ 212(n+ κ)4 · R
r
· LR

t
< 1

by the choice of t. In particular, this shows that xnew ∈ K.

Next, A⊤y + snew = A⊤y + s(1) = c by construction.

Finally, to bound s/t+ w∇ϕ, we note that Lemma A.22 shows that ∇2ϕi(x
(1)) ⪯ 9ν2

η2
. This gives

∥xnewi − x
(1)
i ∥x(1)

i

⩽
3ν

η
· ∥xnewi − x

(1)
i ∥2

⩽ 3ν · (r

96(n+ κ2)
)−1 · 30(n+ κ2) · LR

t
·R

⩽ 214(n+ κ)5 · LR
t
· R
r

⩽
δ

4

where we used our choice of δ. Using this and Lemma A.6 gives ∥v∥xnew
i

⩽ (1 + δ
2)∥v∥x(1)

i

and

∥∇ϕi(x
new
i)−∇ϕi(x

(1)
i)∥∗

x
(1)
i

⩽ δ
2 . Hence

∥snewi /t′ + wi∇ϕi(x
new
i)∥∗xnew

i

⩽(1 +
δ

2
)∥snewi /t′ + wi∇ϕi(x

new
i)∥∗

x
(1)
i

=(1 +
δ

2
)∥s(1)i /t′ + wi∇ϕi(x

(1)
i) + (∇ϕi(x

new
i)−∇ϕi(x

(1)
i))∥∗

x
(1)
i

⩽(1 +
δ

2
)∥s(1)i /t′ + wi∇ϕi(x

(1)
i)∥∗

x
(1)
i

+ (1 +
δ

2
)∥∇ϕi(x

new
i)−∇ϕi(x

(1)
i)∥∗

x
(1)
i

⩽∥s(1)i /t′ + wi∇ϕi(x
(1)
i)∥∗

x
(1)
i

+ δ.

A.7 Main Result

To prove Theorem A.1, we first need the following lemma showing that the iterate x is a good
solution when t is small enough.

Lemma A.27 ([LSZ19, Lemma D.3]). Let ϕi(x) be a νi-self-concordant barrier for Ki. Suppose we
have ∥ sit +∇ϕi(xi)∥∗xi

⩽ 1 for i ∈ [m], A⊤y + s = c and Ax = b. Then, we have

c⊤x ⩽ min
Ax=b,x∈

∏m
i=1 Ki

c⊤x+ 4t
∑

νi.

Theorem A.1. Consider the convex program Eq. (CP). Given νi-self-concordant barriers ϕi : Ki →
R with its minimum xi. Define the following parameters of the convex problem:

1. Inner radius r: There exists a z such that Az = b and B(z, r) ⊂ K.

2. Outer radius R: We have K ⊂ B(x,R) for some x ∈ Rn.

3. Lipschitz constant L: ∥c∥2 ⩽ L.

94

Let w ∈ Rm
≥1 be any weight vector, and κ =

∑m
i=1wiνi. For any 0 < ε ⩽ 1/2, Algorithm 16 outputs

an approximate solution x in O(
√
κ log(m) log(nκRεr)) steps, such that Ax = b, x ∈ K and

c⊤x ⩽ min
Ax=b, x∈K

c⊤x+ εLR.

Proof. Theorem A.18 gives an explicit point on the central path. Hence, we have Φt(x, s) = m ⩽
cosh(λ/128) initially. Theorem A.16 shows that Φt(x, s) ⩽ cosh(λ/128) throughout the first call of
Centering. After we obtain the approximate central path point ((x(1), x(2), x(3)), (s(1), s(2), s(3)))
at t = LR for the modified convex program, Theorem A.18 shows that (x(1) + x(2) − x(3), s(1)) is
an approximate central path point at t = LR for the original convex program. Furthermore, γti
is increased by δ = 1

128 for all i. Hence, ΦLR is increased by at most exp(λ
128) factor. Hence, we

have ΦLR(x, s) ⩽ cosh(λ/64). Now, Theorem A.16 shows that Φt(x, s) ⩽ cosh(λ/64) throughout
the second call of Centering.

Now, we verify the output. Note that Aδx = 0 and δs ∈ ImA⊤. Hence, throughout the algorithm,
we have Ax = b and c − s ∈ ImA⊤. Finally, for the optimality, we note that wiϕi are wiνi
self-concordant. Lemma A.27 shows that

c⊤x′ ⩽ min
Ax=b,x∈

∏m
i=1 Ki

c⊤x+ 4tend

m∑
i=1

wiνi.

Since the algorithm terminates at tend = ε/(4
∑m

i=1wiνi), we have the error bounded.

A.8 Using the Universal Barrier

In this subsection, we discuss the case if the barriers ϕi : Ki → R is not given. In this case, we can
use the universal barrier, which has self concordance ni.

Theorem A.28 ([NN94, LY18]). For any convex set K, the universal barrier function ϕ(x) =
logVol(K◦(x)) is a n self-concordant barrier where K◦(x) = {y ∈ Rn : y⊤(z − x) ⩽ 1, ∀z ∈ K}.

The gradient and Hessian of the universal barrier function ϕ can be computed using the center of
gravity and the covariance of K◦(x).

Lemma A.29 ([LY18, Lemma1]). For any convex set K ⊂ Rn and any x ∈ int(K), we have

∇ϕ(x) = −(n+ 1)µ(K◦(x)),

∇2ϕ(x) = (n+ 1)(n+ 2)Cov(K◦(x)) + (n+ 1)µ(K◦(x))µ(K◦(x))⊤.

where µ(K◦(x)) is the center of gravity of K◦(x) and Cov(K◦(x)) is the covariance matrix of K◦(x).

Computing center of gravity and covariance takes polynomial time. See for example [LV18] for a
survey.

Theorem A.30 ([DFK91, SV13]). Given a membership oracle for a convex set K ⊂ Rn with cost
T . Assuming B(0, r) ⊂ K ⊂ B(0, R), we can compute x and A such that

∥x− µ(K)∥Cov(K)−1 ⩽ ε and (1− ε)A ⪯ Cov(K) ⪯ (1 + ε)A

in time O(nO(1)T log(R/r)/ε2).

95

Next, note that the membership oracle of K◦(x) involves optimizing one linear function over the
convex set k and it can be done using membership oracle of K and the ellipsoid method. Therefore,
for any x, we can compute an approximate gradient g and the Hessian H of the universal barrier
function such that

∥g −∇ϕ(x)∥∇2ϕ(x)−1 ⩽ ε and (1− ε)H ⪯ ∇2ϕ(x) ⩽ (1 + ε)H

in time O(nO(1)T log(R/r)/ε2) where T is the cost of the membership oracle of K.

Finally, we note that as long as ε ⩽ 1
logc m for some large enough c, our robust interior point method

works with those approximate gradient and the Hessian with the same guarantee. Since the proof
is essentially same, we skip the analysis here. We note there are known explicit barrier functions
with good self-concordance for most commonly used convex sets and in this case, we do not need
heavy machinery like the above to compute them.

A.9 Hyperbolic Function Lemmas

Lemma A.31. For any x, y ∈ R with |y| ⩽ 1
8 , we have

| sinh(x+ y)− sinh(x)| ⩽ 1

7
| sinh(x)|+ 1

7
.

Similarly, we have | cosh(x+ y)− cosh(x)| ⩽ 1
7 cosh(x).

Proof. Note that sinh(x+y) = sinh(x) cosh(y)+cosh(x) sinh(y). Using that || cosh(x)|−| sinh(x)|| ⩽
1, we have

| sinh(x+ y)− sinh(x)| ⩽ | sinh(x)|| cosh(y)− 1|+ cosh(x) sinh(y)

⩽ | sinh(x)|(| cosh(y)− 1|+ | sinh(y)|) + | sinh(y)|

The first result follows from this and | cosh(y)− 1|+ | sinh(y)| ⩽ 1
7 for |y| ⩽ 1

8 .

For the second result, note that cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y). Hence,

|cosh(x+ y)− cosh(x)| ⩽ (cosh(y)− 1) cosh(x) + sinh(x) sinh(y)

⩽ (cosh(y)− 1 + | sinh(y)|) cosh(x)

⩽
1

7
cosh(x).

Lemma A.32. For any x ≥ 0 and 0 ⩽ y ⩽ 1, we have

cosh(x+ y) ⩽ (1 + 2y) cosh(x)

Proof. Note that cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y) and exp(x) = sinh(x) + cosh(x),
then we have

cosh(x+ y) = cosh(x) [exp(y)− sinh(y)] + sinh(x) sinh(y)

⩽ cosh(x) [exp(y)− sinh(y)] + cosh(x) sinh(y)

= cosh(x) exp(y)

⩽ cosh(x) + 2y cosh(x),

where we use exp(y) ⩽ 1 + 2y for 0 ⩽ y ⩽ 1.

96

B Treewidth vs. Problem Size in Netlib Instances

101 102 103 104 105 106

101

102

103

104

Number of variables n

U
pp

er
bo

un
d

on
tr

ee
w

id
th

τ

Treewidth vs Problem size

Netlib LP
τ = n1/2

τ = n3/4

102 103 104 105 106

104

106

108

1010

1012

Number of non-zeros s = nnz(A)

T
im

e
co

m
pl

ex
it
y
T

=
n
τ
2

Time vs Problem size

Netlib LP
T = s3/2

T = s2

Figure B.1: The left plot shows some upper bound of treewidth vs d for all 109 feasible linear
program instances in Netlib repository. We compute a upper bound of treewidth using [KK98].
This shows that treewidth is between n1/2 and n3/4 for many linear programs in this data set. The
right plot shows that the runtime nτ2 is sub-quadratic in the input size nnz(A) for many linear
programs in this data set.

97

	Introduction
	Convex Generalization
	Difficulties
	Dynamic Programming
	Scanning Through Variables
	Tightening the Iterations Bounds for Interior Point Methods
	Faster Iterations via Inverse Maintenance

	Related Works
	Algorithms With Runtime at Least Exponential to Treewidth
	Algorithms with Runtime Polynomial to Treewidth
	Related Works in Optimization

	Overview of Our Approach
	Robust Central Path Method
	Cholesky Decomposition
	Multiscale Representation of the Central Path
	Data Structures for Maintaining Multiscale Representation
	Proofs of Main Theorems
	Wavelet Interpretation

	Preliminaries
	Elimination Tree
	Dual Graph and Treewidth
	Balanced Vertex Separator
	Elimination Tree

	Sparsity Patterns and Maintaining the Cholesky Factorization
	Solving Triangular Systems
	Computing and Updating the Cholesky Factorization

	Robust Central Path Maintenance
	Multiscale Representation of the Central Path Dynamic
	Implicit Representation of (x,s)
	Approximating A Sequence of Vectors
	Sketching A Sequence of Vectors
	Sketching the Multiscale Representation via Simple Sampling Tree
	Simple Sampling Tree Construction
	Data Structure for Sketching

	Sketching the Multiscale Representation via Balanced Sampling Tree
	Balanced Sampling Tree Construction
	Data Structure for Sketching

	Proof of thm:central-path-algo

	Acknowledgment
	Robust Interior Point Algorithm for General Convex Sets
	Overview
	Interior Point Algorithm
	Gradient Descent on
	Gradient Descent on
	Bounding under Changes of x and s
	Verifying conditions of lem:Phipotentialdecrease
	First Order Approximation of
	Bounding the Movement of

	Initial Point Reduction
	Main Result
	Using the Universal Barrier
	Hyperbolic Function Lemmas

	Treewidth vs. Problem Size in Netlib Instances

