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Revelation Gap for Pricing from Samples

Yiding Feng ∗ Jason D. Hartline † Yingkai Li ‡

Abstract

This paper considers prior-independent mechanism design, in which a single mechanism
is designed to achieve approximately optimal performance on every prior distribution from a
given class. Most results in this literature focus on mechanisms with truthtelling equilibria,
a.k.a., truthful mechanisms. Feng and Hartline (2018) introduce the revelation gap to quan-
tify the loss of the restriction to truthful mechanisms. We solve a main open question left in
Feng and Hartline (2018); namely, we identify a non-trivial revelation gap for revenue maxi-
mization.

Our analysis focuses on the canonical problem of selling a single item to a single agent with
only access to a single sample from the agent’s valuation distribution. We identify the sample-bid
mechanism (a simple non-truthful mechanism) and upper-bound its prior-independent approx-
imation ratio by 1.835 (resp. 1.296) for regular (resp. MHR) distributions. We further prove
that no truthful mechanism can achieve prior-independent approximation ratio better than
1.957 (resp. 1.543) for regular (resp. MHR) distributions. Thus, a non-trivial revelation gap is
shown as the sample-bid mechanism outperforms the optimal prior-independent truthful mech-
anism. On the hardness side, we prove that no (possibly non-truthful) mechanism can achieve
prior-independent approximation ratio better than 1.073 even for uniform distributions.

1 Introduction

One important research direction in modern computer science focuses on multi-party computation.
Two fundamental concerns in this area are (i) who should be doing what part of the computation;
and (i) what are their incentives to do it correctly. The second concern has been studied extensively
in the economics field of mechanism design. For the first concern, however, the system design field
and the mechanism design field have different high-level guidelines. The end-to-end argument (cf.
Saltzer, Reed, and Clark, 1984) – a long-standing principle in system design – suggests that the
computation should be done where the data is, i.e., in a decentralized fashion. On the other hand,
due to revelation principle (see next paragraph), the mechanism design literature favors systems
where the entire computation is done by a center with other participants truthfully reporting their
portion of the input data to the optimization. Addressing this discrepancy, in this paper, we argue
that such decentralization idea from the system design field is beneficial even in purely economic
terms when robust mechanisms are desired.

Revelation principle, a seminal observation in mechanism design suggests that if there is a mecha-
nism with good equilibrium outcome, there is a mechanism which achieves the same outcome in a
truthtelling equilibrium. This constructed mechanism asks agents to report true preferences, sim-
ulates the agent strategies in the original mechanism, and outputs the outcome of the simulation.
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Due to this guiding principle, a vast number of studies in mechanism design focus on truthful mech-
anisms (i.e., ones where revealing preferences truthfully forms an equilibria). However, successful
applications – e.g., first-price auction, generalized second-price auction for advertisers in sponsored
search – suggest a great practical impact for non-truthful mechanisms. From the view of multi-party
computation, the mechanism itself as well as the participating agents can be thought as different
parties in the system, where agents have their private preference as their input data. Truthful
mechanisms correspond to systems where the optimization is done by the center (i.e. mechanism)
and other parties (i.e. agents) only truthfully report their preference. Non-truthful mechanisms
correspond to systems recommended by the end-to-end argument (Saltzer, Reed, and Clark, 1984),
where agents are also perform some of the computation (i.e. computing their strategies).

To provide a theoretical understanding of the potential inadequacy of revelation principle and
advantages of non-truthful mechanisms, we consider questions from prior-independent mechanism
design, in which a mechanism is designed for agents with preferences drawn from an unknown distri-
butions (a.k.a. prior). The goal is to identify robust mechanisms – ones with good (multiplicative)
prior-independent approximation to the optimal mechanism that is tailored to the distribution of
preferences. In prior-independent mechanism design, it is not generally without loss to restrict to
truthful mechanisms – the equilibrium strategies for Bayesian agents in non-truthful mechanisms
are a function of their prior and thus the construction of truthful mechanism via revelation principle
is no longer prior-independent. Nonetheless, similar to other lines of research in mechanism design,
most results in prior-independent mechanism design focus, with loss of generality, on truthful mech-
anisms. To understand the loss of the restriction to truthful mechanisms, Feng and Hartline (2018)
introduce revelation gap, a quantification of optimal prior-independent approximation ratio among
all truthful mechanisms vs. the optimal prior-independent approximation ratio among all (possibly
non-truthful) mechanisms. They identify a non-trivial revelation gap for welfare-maximization. A
main open question left in Feng and Hartline (2018) it to identify a non-trivial revelation gap in any
canonical model for revenue maximization, which is another important and presumably technically
more challenging objective in mechanism design.

Main Results

In this paper, we focus on revenue maximization in a canonical single-item environment for a single
agent with a single sample access, i.e., the agent’s value is drawn from an unknown distribution but
the mechanism can access a single sample (independent to agent’s value) from that distribution
(cf. Dhangwatnotai, Roughgarden, and Yan, 2015; Allouah and Besbes, 2019). The agent knows
her private valuation and the distribution for valuation, but she does not know the sample of the
mechanism. Our main theorem identifies a non-trivial revelation gap for revenue maximization in
this model. This theorem follows from three results. First, we introduce the (non-truthful) sample-
bid mechanism and obtain an upper bound of its prior-independent approximation ratio. Second,
we obtain a lower bound of the optimal prior-independent approximation ratio among all possi-
ble mechanisms. Third, we show that any truthful mechanism1 is equivalent to a sampled-based
pricing mechanism introduced by Allouah and Besbes (2019) where the authors lower-bound and
upper-bound the optimal prior-independent approximation ratio among all sample-based pricing
mechanisms. See Table 1 for a summary of all three results. Since the prior-independent approx-
imation ratio of the sample-bid mechanism is strictly better than the optimal prior-independent
approximation ratio among all truthful mechanisms, we immediately get our non-trivial revelation

1We impose a technical assumption (i.e. scale-invariant) to the class of truthful mechanisms, which is common in
prior-independent mechanism design (Allouah and Besbes, 2018, 2019; Hartline, Johnsen, and Li, 2020).
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Table 1: Prior-independent approximation factor of single-agent revenue-maximization with single-
sample access. Two class of distributions (i.e. regular, MHR – standard assumptions in mechanism
design) are considered, where MHR distributions is a subclass of regular distributions. We impose
a technical assumption (i.e. scale-invariant, Definition 7.1) to the class of truthful mechanisms.

Class of truthful mechanisms Class of all mechanisms

Regular dists. MHR dists. Regular dists. MHR dists.

Upper bound 1.996(∗) 1.575(∗) 1.835(§) 1.296(†)

Lower bound 1.957(∗) 1.543(∗) 1.073(‡)

(∗) Allouah and Besbes (2019) and Lemma 7.2;
(§) Theorem 4.1; (†) Theorem 5.1; (‡) Theorem 6.1.

gap for revenue maximization.

In the model of a single agent with single-sample access, the class of non-truthful mechanisms is
rich, which includes fairly complicated mechanisms. For example, mechanisms can ask agents to
reports both her value and prior; or include multiple rounds of communication between seller and
agent who sequentially reveal their private information.2 Nonetheless, our upper bound of the
optimal prior-independent approximation ratio is attained by a simple non-truthful mechanism –
sample-bid mechanism defined as follow.

• Sample-bid mechanism: Given parameter α and sample s, the sample-bid mechanism solicits
a non-negative bid b ≥ 0, charges the agent α ·min{b, s}, and allocates the item to the agent
if b ≥ s.

From the agent’s perspective, she reports a bid to compete for the item against a random sample
realized from the same valuation distribution; and regardless of whether she wins or loses, she will
always be charged α ·min{b, s}. In fact, the agent’s optimal bidding strategy could be overbidding
or underbidding, depending on the value as well as the distribution. The sample-bid mechanism
has the similar format as the Becker–DeGroot–Marschak method (Becker, DeGroot, and Marschak,
1964) which has been studied and implemented in experimental economics for understanding agents’
perception of the random event.

In order to beat the optimal prior-independent approximation ratio among all truthful mechanisms,
we need to show the approximation for the sample-bid mechanism is strictly better than 1.957 < 2
for regular distributions, and 1.543 < e/(e− 1) for MHR distributions. However, most approxima-
tion techniques and results for non-truthful mechanisms in the literature only provide similar or
or larger constants – for instance, smoothness property, permeability, and revenue covering prop-
erty in price of anarchy (cf. Roughgarden, Syrgkanis, and Tardos, 2017; Dütting and Kesselheim,
2015; Hartline, 2016, see more discussion in related work).3 One the other hand, analyzing the
approximation of truthful mechanisms is relatively easier. In revenue maximization, one analysis
approach used extensively for truthful mechanisms is the revenue curve reduction (see next para-
graph). This approach has lead to tight or nearly tight results in both prior-independent approx-

2Recall that the agent knows the distribution of the sample but does not know its realization.
3Feng and Hartline (2018) bypass this challenge in their revelation gap for welfare maximization by considering a

model where the all-pay auction (cf. Maskin, 2000) achieves prior-independent approximation ratio 1, i.e., it is indeed
the Bayesian optimal mechanism.
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imation (Allouah and Besbes, 2018, 2019; Hartline, Johnsen, and Li, 2020) and Bayesian approxi-
mation (Alaei, Hartline, Niazadeh, Pountourakis, and Yuan, 2019; Jin, Lu, Tang, and Xiao, 2020;
Jin, Lu, Qi, Tang, and Xiao, 2019).

Revenue curves (cf. Bulow and Roberts, 1989) give an equivalent representation of agent’s valuation
distribution and enable clean characterizations of the revenue of any mechanism (see e.g. Myerson,
1981; Bulow and Roberts, 1989; Alaei, Fu, Haghpanah, and Hartline, 2013). The high-level goal of
revenue curve reduction is to identify a subclass of revenue curves that has closed form and over
which the worst approximation guarantee is attained. The main argument is to design a (problem
or mechanism) specific modification to the revenue curve (converting an arbitrary revenue curve
into a revenue curve from the subclass) and analyze the impact of revenue from the modification
on the given mechanism. Note that revenue is the expected payment of the agents when they bid
optimally. For truthful mechanisms, after the modification has been designed, it is sufficient to study
how payment changes for every bid in the modification, since agents are bidding truthfully (i.e.
bids equal values). However, for non-truthful mechanisms, converting a revenue curve to another
one will lead to changes in both the payment for each bid and the optimal bidding strategy of each
agent. This makes the revenue curve reduction approach more difficult for non-truthful mechanisms,
and thus, results of non-truthful mechanisms in the literature rarely uses this technique. In this
paper, due to the simplicity of our model and the sample-bid mechanism, we are able to apply this
technique by carefully (but relatively loosely) disentangling these two impacts and then analyzing
them separately.

Our final result for the single-agent pricing from samples model provides a lower bound on the
optimal prior-independent approximation ratio among the class of all mechanisms. This result
contrasts with multi-agent models where there there exists complicated and arguably impractical
non-truthful mechanism whose prior-independent approximation is arbitrarily close to 1.4 The
crucial observation for proving this lower bound is that for pointmass distributions, the agent
perfectly knows the seller’s sample. Thus, she can strategically imitate the behavior of the values in
other distributions. This restricts the seller’s ability to extract revenue from the agent, which leads
to a prior-independent approximation ratio at least 1.073 even on the restricted subclass of MHR
distributions (in fact, even on uniform distributions). Our lower bound also suggests that it will
be non-trivial to identify the non-truthful mechanism which attains the optimal prior-independent
approximation ratio.

It should be noted that our better-performing non-truthful prior-independent mechanisms do not
come without drawbacks relative to truthful prior-independent mechanisms. Elegantly, truthful
prior-independent mechanisms do not require prior knowledge by any party. In contrast, non-
truthful prior-independent mechanisms generally require some knowledge of the prior on the part
of the agents. From this perspective, our results show that a seller is able to extract strictly higher
revenue from the agent by taking advantage of information that the agent possesses and is able to
strategize with respect to.

Important Directions

Despite the practical importance of non-truthful mechanisms, the literature on mechanism design al-
most exclusively considers the design of truthful mechanisms. Thus, the most general direction from
this paper is to systematically build a theory for the design of non-truthful mechanisms with good

4Such mechanisms are designed and analyzed in non-parametric implementation theory – a line of research in
economics, see the survey of Jackson (2001) and further discussion in the related work section.
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performance guarantee. Some recent works on this topic are equilibrium analysis of i.i.d. rank-based
mechanism (Chawla and Hartline, 2013), robust analysis of welfare and revenue for classic mecha-
nisms in practice (i.e. price of anarchy, see discussion in related work), estimating revenue and wel-
fare in a mechanism from equilibrium bids in another mechanism (Chawla, Hartline, and Nekipelov,
2014b, 2016), and the sample complexity of non-truthful mechanisms in asymmetric environments
(Hartline and Taggart, 2019).

Though Feng and Hartline (2018) and this paper demonstrate non-trivial revelation gap for both
welfare-maximization and revenue maximization, both gaps are constant. Thus, one interesting
open question left is to identify a superconstant revelation gap in a canonical model where simple
non-truthful mechanisms are sufficient to beat the optimal prior-independent truthful mechanisms,
and we conjecture that the single-agent with single-sample access model without any regularity
assumption on distributions might be a good candidate to answer this question.

Prior-independent mechanism design for a single item with symmetric agents is an extensively stud-
ied model (Bulow and Klemperer, 1996; Devanur et al., 2015; Fu et al., 2015). The fundamental
difficulty is to pin down the optimal prior-independent approximation ratio even for the two-agent
setting. Recently, Allouah and Besbes (2018) obtain the tight bounds of optimal prior-independent
truthful mechanism for MHR distributions, and Hartline, Johnsen, and Li (2020) generalize it to
regular distributions. In both works, the main technique is the revenue curve reduction. An open
question here is to identify simple non-truthful mechanism which outperforms the optimal prior-
independent truthful mechanism in this canonical single-item two-agents model.

In this work, we apply the revenue curve reduction approach – a powerful technique of approx-
imation analysis for truthful mechanisms – to a non-truthful mechanism. Our argument is not
as general as ones for truthful mechanisms and thus there are gaps between the lower bound and
upper bound. Besides sharpening these bounds as an open question, an important open question
is to design general analysis framework on revenue curves for non-truthful mechanisms.

Related Work

Prior-independent mechanism design, as a standard framework for understanding the robustness of
mechanisms, has been applied to single-dimensional mechanism design (Dhangwatnotai et al., 2015,
citealpRTY-12, Fu et al., 2015,Allouah and Besbes, 2018,Feng and Hartline, 2018, Hartline et al.,
2020), multi-dimensional mechanism design (Devanur et al., 2011,Roughgarden et al., 2020,Goldner and Karlin,
2016), makespan minimization (Chawla, Hartline, Malec, and Sivan, 2013), mechanism design for
risk-averse agents (Fu, Hartline, and Hoy, 2013), and mechanism design for agents with interdepen-
dent values (Chawla, Fu, and Karlin, 2014a). Except Fu, Hartline, and Hoy (2013) and Feng and Hartline
(2018), all other results focus on truthful mechanisms.

There is a significant area of research studying mechanism design with sample access from the dis-
tribution of agents’ preference, which has two regimes – small number of samples, and large number
of samples. In the former regime, literature studies the approximation of mechanisms with a single-
sample access (Azar, Kleinberg, and Weinberg, 2014; Dhangwatnotai, Roughgarden, and Yan, 2015;
Allouah and Besbes, 2019; Feng, Hartline, and Li, 2019; Correa, Dütting, Fischer, and Schewior,
2019; Dütting, Fusco, Lazos, Leonardi, and Reiffenhäuser, 2020; Correa, Cristi, Epstein, and Soto,
2020), and mechanisms with two-sample access (Babaioff, Gonczarowski, Mansour, and Moran,
2018; Daskalakis and Zampetakis, 2020). In the latter regime, the goal is to minimize the sample
complexity, i.e., number of sample to achieve (1 − ǫ)-approximation (e.g. Cole and Roughgarden,
2014; Morgenstern and Roughgarden, 2015; Huang et al., 2018; Gonczarowski and Weinberg, 2018;
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Guo et al., 2019; Hartline and Taggart, 2019). Except Hartline and Taggart (2019), all other re-
sults focus on truthful mechanisms.

Price of anarchy studies how classic non-truthful mechanisms (e.g. first-price auction, all-pay
auction) approximate the optimal welfare. Syrgkanis and Tardos (2013) introduce a smoothness
property defined on mechanisms and give an analysis framework based on this property. With
this smoothness framework, the authors upper-bound the welfare-approximation of the first-price
auction by e/(e− 1), and the welfare-approximation of the all-pay auction by 2. These two re-
sults are later tightened by Christodoulou, Sgouritsa, and Tang (2015) for the all-pay auction and
Hoy, Taggart, and Wang (2018) for the first-price auction using some mechanism-specific argu-
ments. Hartline, Hoy, and Taggart (2014) introduce a geometric framework for analyzing the price
of anarchy for both welfare and revenue. As the instantiations of the framework, authors upper-
bound the revenue approximation of the first-price auction with individual monopoly reserve by
2e/(e− 1). Dütting and Kesselheim (2015) show that bounds from these analysis frameworks are
tight up to constant factors.

The literature on non-parametric implementation theory considers the same question as prior-
independent mechanism design but allows mechanisms where agents cross-report their beliefs on
other agents’ values (e.g., Jackson, 2001). Caillaud and Robert (2005) introduce a dynamic auc-
tion for single-item multi-agent settings which is able to implement the Bayesian revenue optimal
auction (Myerson, 1981) without the knowledge of agents’ distribution. Dasgupta and Maskin
(2000) introduce a generalization of VCG auction for multi-agent interdependent value settings.5

In this auction, agents are asked to submit a function that gives a bid for every possible valu-
ation of the other agents. Though this auction requires no knowledge of agents’ distributions,
Dasgupta and Maskin (2000) show that it is Bayesian welfare-optimal under mild assumptions.
Azar et al. (2012) study how to use scoring rules to learn agents’ distribution and implement
the auction based on this learned distribution. All results above suggest that in the multi-agent
settings, there exist complicated and arguably impractical non-truthful mechanisms whose prior-
independent approximation equal or are arbitrarily close to 1. However, as we mentioned earlier,
in the model of a single-agent with single-sample access, we provide a lower bound on the optimal
prior-independent approximation without any restriction on mechanisms.

2 Preliminaries

Model. This paper focuses on the single-item revenue-maximization problem with a single agent.
The agent has a private value v drawn from a valuation distribution (a.k.a. prior) F supported on
[v, v]. we assume that distribution F has positive density f every where in the support. Given
allocation x and payment p, the utility of the agent is vx− p.

We consider the prior-independent mechanism design with a single sample access. Namely, the
seller does not know the valuation distribution F , but has a single sample s drawn from F . The
agent knows the valuation distribution F but does not observe the sample s, and the value v of
the agent is independent of the sample s. A mechanism M = (x̃, p̃) includes an allocation rule
x̃ : R × R → [0, 1] mapping from the agent’s bid b and the sample s to the allocation probability
of the item; and a payment rule p̃ : R×R → R+ mapping from the agent’s bid b and the sample s
to the payment charged from the agent. Let x̃(b, F ) = Es∼F [x̃(b, s)], p̃(b, F ) = Es∼F [p̃(b, s)] be the

5In general, there is no incentive compatible mechanism which outputs the welfare-optimal outcomes in interde-
pendent value settings.
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expected allocation and payment over the randomness of the sample s drawn from distribution F .
The seller first announce the mechanism M = (x̃, p̃) to the buyer, and then the sample s and value
v are realized from distribution F . The agent report a bid b based on her private value v, and the
seller implements the mechanism M with input b and sample s. We assume that the seller has full
commitment power on implementing the mechanism.

Given a mechanism (x̃, p̃) and distribution F , the best response of the agent is b(·, F ) : R → R

which maximizes her expected utility, i.e., for every value v, b(v, F ) ∈ argmaxb v · x̃(b, F )− p̃(b, F ).6

A mechanism (x̃, p̃) is incentive compatible (IC) if reporting the agent’s value truthfully is her best
response, i.e., b(v, F ) = v for all v and F . A mechanism (x̃, p̃) is individual rational (IR) if the
agent’s utility under her best response is non-negative, i.e, maxb v · x̃(b, F ) − p̃(b, F ) ≥ 0 for all v
and F .7

For any mechanism (x̃, p̃), let x(v, F, s) = x̃(b(v, F ), s) be the interim allocation of value v given dis-
tribution F and sample s when the agent follows her best response, and let p(v, F, s) = x̃(b(v, F ), s)
be the interim payment. Moreover, denote x(v, F ) = Es∼F [x(v, F, s)] and p(v, F ) = Es∼F [p(v, F, s)]
as the expected interim allocation and payment. We often omit F in the notation if it is clear from
the context.

The revenue RevF [M] of a mechanism M = (x, p) on distribution F is the expected payment
when the agent plays her best response, i.e., Ev∼F [p(v, F )]. We evaluate mechanisms by the prior-
independent approximation ratio.

Definition 2.1. The prior-independent approximation ratio of a mechanism M over a class of
distributions DISTS is defined as

Γ (M,DISTS) , max
F∈DISTS

RevF [OPTF ]

RevF [M]

where RevF [OPTF ] , max
p

(1 − F (p)) p is the optimal revenue for distribution F (cf. Myerson,

1981).

Revenue Curve. For any distribution F , let q(v, F ) = 1 − F (v) be the quantile for the distri-
bution, and v(q, F ) be the value v such that q = 1−F (v). Here we introduce the revenue curve in
quantile space (cf. Bulow and Roberts, 1989), which is a useful tool in the revenue analysis.

Definition 2.2. For any valuation distribution F , the revenue curve R(q, F ) of the agent is a
mapping from any q ∈ [0, 1] to the optimal revenue from an agent with value drawn from F subject
to the constraint that the item is allocated with ex ante probability q.

In the later analysis in the paper, when F is clear from the context, we omit it in the notation
and only use R(q) to represent the revenue curve and q(v) to represent the quantile of value v. Let

φ(v) = v − 1−F (v)
f(v) be the virtual value of the agent.

Definition 2.3. An valuation distribution F is regular if the virtual value of the agent is weakly
increasing.

6When there are multiple bids maximizing the utility of the agent, we allow the agent to choose any bid maximizing
her utility. The revenue guarantee we obtained in this paper holds even when the agent can break tie and choose the
bid minimizing the revenue of the seller.

7Note that the utility of the agent can be negative for some realization of the sample s, but in expectation it must
be non-negative.
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Theorem 2.1 (Myerson, 1981). A distribution F is regular if and only if the corresponding revenue
curve R(q, F ) is concave.

Theorem 2.2 (Myerson, 1981). For any distribution F and any mechanism with interim allocation
and payment rule x(v), p(v), the expected revenue of the seller equals the expected virtual value of
the agent plus the payment of the lowest value v, i.e., Ev∼F [p(v)] = Ev∼F [x(v)φ(v)] + p(v).

Finally, we define the monopoly reserve and monopoly quantile of the agent given the revenue
curve R.

Definition 2.4. The monopoly quantile of the agent is qm = argmaxq R(q),8 and the monopoly
reserve of the agent is vm = R(qm)/qm.

3 The Sample-bid Mechanism

In this section, we introduce the main mechanism considered in this paper, the sample-bid mecha-
nism.

Definition 3.1 (sample-bid mechanism). Given parameter α and sample s, the sample-bid mech-
anism solicits a non-negative bid b ≥ 0, charges the agent α ·min{b, s}, and allocates the item to
the agent if b ≥ s.

In the sample-bid mechanism, the agent reports her bid without knowing the realization of the
sample. From her perspective, the utility u(v, b, F ) for her who has value v, reports bid b, and
competes with sample s ∼ F is

u(v, b, F ) = v · F (b)
︸︷︷︸

Prs∼F[s≤b]

− αb · (1− F (b))
︸ ︷︷ ︸

payment when s ≥ b

−α

∫ max{b,v}

v
tdF (t)

︸ ︷︷ ︸

payment when s ≤ b

Note that reporting bid equal to zero, the utility of agent is zero. Thus, sample-bid mechanismis
individually rational.

Lemma 3.1. The sample-bid mechanism is individually rational.

On the other hand, reporting bid equal to agent’s value is not the best response in general. We
provide a characterization of agent’s optimal bid as follows.

Lemma 3.2. In the sample-bid mechanism, given any parameter α and distribution F , the optimal
bid b(v, F ) for the agent with value v satisfies the constraint that

v = α ·
1− F (b(v, F ))

f(b(v, F ))
, (1)

or b(v, F ) ∈ {0,∞}. Ties are broken according to the utility of the agent.

Proof. The agent’s utility from reporting bid b is

u(v, b, F ) = v · F (b)− αb(1− F (b))− α

∫ max{b,v}

v
tdF (t)

8In this paper, we break tie in favor of smaller quantile. Note that all the results are not affected by the tie
breaking rule.
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Consider the first order condition with respect to bid b, if the optimal bid is obtained in the interior,
we have

f(b)

(

v − α ·
1− F (b)

f(b)

)

= 0

as a necessary condition for the optimality of the bid b. Otherwise, the optimal bid is obtained on
the boundary, where b(v, F ) ∈ {0,∞}.

Note that there might exist multiple bids b that satisfies the constraint (1) in Lemma 3.2. In that
case, the agent chooses the bid which satisfies (1) and maximizes her utility. Another observation
(Lemma 3.3) of the sample-bid mechanism is that the expected revenue of the seller scales linearly
with the valuation distribution. Since the optimal revenue scales linearly with the valuation distri-
bution as well, to analyze the prior-independent approximation ratio of the sample-bid mechanism,
we can focus on the valuation distributions such that the optimal revenue is normalized to 1.

Lemma 3.3. Denote by r the revenue of the sample-bid mechanism with any parameter α and
any valuation distribution F †. For any ρ > 0 and distribution F ‡ such that F ‡ is F † scaled by
ρ, i.e., F †(v) = F ‡(ρv) for all v, the revenue of the sample-bid mechanism with parameter α and
distribution F ‡ is ρr.

Proof. First we show that for any value v, the bid of value v given distribution F † is equivalent
to the bid of value ρv given distribution F ‡ scaled by ρ. The reason is that F †(v) = F ‡(ρv) and
f †(v) = ρf ‡(ρv). Therefore, by Lemma 3.2, the first order condition implies that the optimal bid
satisfies b(ρv, F ‡) = ρ · b(v, F †). Moreover, the payment satisfies

p̃(ρb, F ‡) = αρb · (1− F ‡(ρb)) + α

∫ ρb

0
t dF ‡(t)

= ρ(αb · (1− F †(b) + α

∫ b

0
t dF †(t)) = ρ · p̃(b, F †).

By taking expectation over the valuation, the expected revenue is scaled by ρ as well.

We finish this section by providing two simple monotonicity properties of the sample-bid mechanism
and defer other more complicated characterizations required in our analysis to the later sections.

Lemma 3.4. In the sample-bid mechanism, given any parameter α and distribution F , the expected
payment for bid b is monotonically non-decreasing in b.

Proof. By definition, the expected payment p̃(b, F ) of bid b over the randomness of the sample
s ∼ F is

p̃(b, F ) = αb · (1− F (b)) + α

∫ max{b,v}

v
t dF (t)

Taking the derivative with respect to bid b, we have

∂p̃(b, F )

∂b
= α(1− F (b)) − αbf(b) + αbf(b) = α(1− F (b)) ≥ 0.

which finishes the proof.

9



Lemma 3.5. In the sample-bid mechanism, given any parameter α and distribution F , the optimal
bid b(v, F ) is monotonically non-decreasing in value v.

Proof. By Myerson (1981), the equilibrium allocation of the agent is non-decreasing in value v.
Moreover, given the auction format, the equilibrium allocation of the agent is increasing in the bid,
and thus the optimal bid b(v, F ) is non-decreasing in the value v.

4 The Sample-bid Mechanism for MHR Distributions

In this section, we analyze the prior-independent approximation ratio of the sample-bid mechanism
over the class of MHR distributions.

Definition 4.1. A distribution F is MHR if the hazard rate f(v)
1−F (v) is monotone non-decreasing

in v.

Theorem 4.1. For the sample-bid mechanism with α = 0.824, the prior-independent approximation
ratio over the class of MHR distributions is between [1.295, 1.296].

The lower bound in Theorem 4.1 is shown in the following example.

Example 4.2. For the sample-bid mechanism with α = 0.824, let F be the valuation distribution
such that F (v) = 1 − e−v for v ∈ [0, 0.43) and F (v) = 1 for v ∈ [0.43,∞). It is easy to verify
that F is MHR. Moreover, the optimal revenue is 0.2797 while the expected revenue of the sample-
bid mechanism, which equals the expected revenue of posting a price equal to 0.824 fraction of the
expected welfare, is 0.2159. Thus, the prior-independent approximation ratio of the sample-bid
mechanism with α = 0.824 is at least 1.295.

Before the proof of the upper bound in Theorem 4.1, we first introduce a characterization of the
agent’s optimal bid when the sample distribution F is MHR; and a technical property for MHR
distributions.

Lemma 4.2. In the sample-bid mechanism, given any parameter α and MHR distribution F , the
optimal bid b(v, F ) for the agent with value v is

b(v, F ) =

{
0 if v < αEs∼F [s] ,
∞ otherwise.

Proof. By the proof of Lemma 3.2, the derivative of the utility given the bid b is

f(b)

(

v − α ·
1− F (b)

f(b)

)

,

where the sign of the above expression flips from negative to positive only once when the bid b
increases from 0 to infinity since F is MHR. Thus the utility is a quasi-convex function of the bid,
which implies that the maximum utility is attained at extreme points, i.e., bid 0 or ∞. Note that
the utility for bidding 0 is always 0, while the utility for bidding ∞ is u(v,∞, F ) = v − αEs∼F [s].
Hence, the agent bid ∞ if and only her value v is at least αEs∼F [s].

Lemma 4.3 (Allouah and Besbes, 2019). For any MHR distribution with any pair of quantile and
values (v1, q1), (v2, q2) such that q1 = q(v1) ≤ q2 = q(v2) and v1 ≥ v2. Then for any v ≥ v2, we

have q(v) ≥ q2 · e
v−v2
v1−v2

·ln(
q1
q2

)
.
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Lemma 4.4. The expected value for any MHR distribution with monopoly quantile qm is w ≥
qm−1

qm·ln qm
.

Proof. The expected value of the agent is

∫ ∞

0
q(v) dv ≥

∫ 1
qm

0
evqm·ln qm dv =

1

qm · ln qm
(eln qm − e0) =

qm − 1

qm · ln qm
,

where the inequality holds by applying Lemma 4.3 with q1 = qm, v1 =
1
qm

and q2 = 1, v2 = 0.

Now, we are ready to show Theorem 4.1.

Proof of the upper bound in Theorem 4.1. Fix any MHR distribution F . Let w , Ev∼F [v]. Note
that by Lemma 4.2, our mechanism is equivalent to posting price αw to the agent. Next we
analyze the approximation ratio by considering the cases αw ≥ vm and αw < vm and optimize the
parameter α such that the approximation ratio of both cases coincide. Recall that it is without loss
of generality to normalize the expected revenue of the optimal mechanism to 1, i.e., qm · vm = 1.

First we consider the case when αw < vm = 1/qm. By Lemma 4.4, we have w ≥ qm−1
qm·ln qm

and by

combining Lemma 4.3 with (v1, q1) = (vm, qm) and (v2, q2) = (0, 1), we have q(αw) ≥ eα(qm−1).
Thus, the expected revenue in this case is

αw · q(αw) ≥
α(qm − 1)

qm · ln qm
· eα(qm−1).

Then we consider the case when αw ≥ vm = 1/qm. In this case, combining Lemma 4.3 with
(v1, q1) = (w, qw) and (v2, q2) = (vm, qm), where qw ≥ 1/e is the quantile of the welfare (see

Barlow and Marshall, 1965), for any value v ≥ vm, we have q(αw) ≥ qm · e
αw−vm
w−vm

·ln( qw
qm

)
. Thus the

expected revenue is

αw · q(αw) ≥ αw · qm · e
αw−vm
w−vm

·ln( qw
qm

)
≥ αw · qm · e

αw−1/qm
w−1/qm

·ln( 1
e·qm

)
.

By setting α = 0.824 and numerically evaluating the above expressions for all possible values of w
and qm with respective to the given constraints, we have that the expected revenue in both cases
are at least 0.7717, which guarantees approximation ratio 1.296.

5 The Sample-bid Mechanism for Regular Distributions

In this section, we analyze the prior-independent approximation of the sample-bid mechanism over
the class of regular distributions.

Theorem 5.1. For the sample-bid mechanism with α = 0.7, the prior-independent approximation
ratio over the class of regular distributions is between [1.628, 1.835].

The lower bound in Theorem 5.1 is shown in the following example.

Example 5.1. For the sample-bid mechanism with α = 0.7, let F be the valuation distribution
such that F (v) = 0.265

v−0.735 for v ∈ [1,∞). It is easy to verify that F is regular. Moreover, the
optimal revenue is 1 while the expected revenue of the sample-bid mechanismis 0.614. Thus, the
prior-independent approximation ratio of the sample-bid mechanism with α = 0.7 is at least 1.628.
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In Section 5.1, we introduce some technical characterizations of the sample-bid mechanism which
will be used in the subsequent analysis. In Sections 5.2 and 5.3, we study the prior-independent ap-
proximation ratio of the sample-bid mechanism over the class of regular distributions with monopoly
quantile qm ≥ 0.62 and qm ≤ 0.62 respectively. By Lemma 3.3, without loss of generality, we re-
strict our attention to the class of regular valuation distributions where the optimal revenue for
the distributions is exactly 1 (i.e., vm · qm = 1), and then lower-bound the expected revenue of the
sample-bid mechanism with α = 0.7.

Here we sketch the high-level approach to lower-bound the expected revenue of the sample-bid
mechanism in both regimes (Sections 5.2 and 5.3). Given a regular distribution F , we define a
value threshold v∗(F ) as the smallest value whose optimal bid is at least monopoly reserve vm(F ),
i.e.,

v∗(F ) , inf{v : b(v, F ) ≥ vm(F )}

Denote q(v∗(F ), F ) by q∗(F ). By Lemma 3.4 and Lemma 3.5, the expected revenue RevF (SB) of
the sample-bid mechanism SB for valuation F can be lower-bounded as follows,

RevF (SB) =

∫ 1

0
p(v(q, F ), F ) dq ≥ p(v∗(F ), F ) · q∗(F ) +

∫ 1

q∗(F )
p(v(q, F ), F ) dq.

where p(v, F ) is the expected payment of the agent, with value v and valuation distribution F , in
the sample-bid mechanism. We then analyze p(v∗(F ), F ), q∗(F ), and p(v(q, F ), F ) for q ≥ q∗(F )
by providing lower bounds as the functions of qm(F ) and other some parameters of F .9 Finally, by
numerically evaluating the value of lower bounds for all possible possible parameters, we conclude
that the expected revenue in the sample-bid mechanism for all regular distribution (with monopoly
revenue 1) is at least 0.545, which implies the prior-independent approximation ratio 1/0.545 ≈
1.835 of the sample-bid mechanism in Theorem 5.1. The details for discretizations and numerical
evaluations can be found in Appendix A. Note that the bounds for the approximation ratio of
the sample-based pricing mechanisms in Allouah and Besbes (2019) are also obtained by numerical
analysis, which requires solving a relatively more complicated dynamic program. In contrast, our
numerical analysis only requires brute force enumeration of a few parameters.

As we discussed in Section 2, every valuation distribution F can be represented by its induced
revenue curve R where R(q) , q F−1(1 − q) for all q ∈ [0, 1]. In the remaining of the section, all
statements, notations and analysis (except Lemma 5.3) will be presented in the language of revenue
curves instead of valuation distributions.

5.1 Technical Properties of the Sample-bid Mechanism

In this subsection, we introduce some technical characterizations of the sample-bid mechanism
which will be used in the later analysis.

To establish a lower bound on the expected revenue of of a truthful mechanism, a classic ap-
proach – revenue curve reduction – (e.g. Alaei, Hartline, Niazadeh, Pountourakis, and Yuan, 2019;
Allouah and Besbes, 2018) is as follows: (i) start with an arbitrary revenue curve R1, (ii) con-
vert it to another revenue R2 with closed-form formula while the optimal revenue remains the

9Let R be the revenue curve induced by valuation distribution F . In Section 5.2, we lower-bound the expected
revenue as a function of qm(F ) and R(0). In Section 5.2, we lower-bound the expected revenue as a function of

qm(F ), q(vm(F )/0.7, F ) and w ,
∫ qm(F )

q(v/0.7,F )

R(q)
q

dq.
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same, (iii) argue that the expected revenue for R2 is at most the expected revenue for R1 while
the optimal revenue remains the same, and finally (iv) evaluate the expected revenue for R2 for
all possible parameters. In this section, we want to apply a similar approach to the sample-bid
mechanism because it is a non-truthful mechanism. A new technical difficulty arises in step (iii).
When comparing R1 and R2, for truthful mechanisms, it is sufficient to study the change in the
expected payment (i.e. p̃(b,R1) and p̃(b,R2)) for each bid b. However, for non-truthful mechanisms
(e.g. sample-bid mechanism), the optimal bid of the agent changes when the revenue curve R1 is
replaced by R2. In Lemma 5.2, we provide a characterization of optimal bid when we switch from
R1 to R2 in a specific way (illustrated in Figure 1). We use it as a building block repeatedly in
Section 5.2 and Section 5.3. Intuitively, the following lemma characterizes the phenomenon that
increasing the revenue curve for high values does not affect the agent’s preference for low bids.

Lemma 5.2. In the sample-bid mechanism, consider any quantile q† ∈ [0, 1] and any pair of
revenue curves R1, R2 such that R1(q) ≤ R2(q) for any quantile q ≤ q† and R1(q

†) = R2(q
†).

Letting b† = R1(q†)/q†. For any value v and any bid b‡ ≥ b†, if an agent with value v and revenue
curve R1 prefers bid b† than b‡, i.e., u(v, b†, R1) ≥ u(v, b‡, R1), then an agent with value v and
revenue curve R2 also prefers bid b† than b‡, i.e., u(v, b†, R2) ≥ u(v, b‡, R2).

Proof. By the construction of our mechanism, the utility of an agent who has value v, revenue
curve R and bids b is

u(v, b,R) = v · (1− q(b,R))− p̃(b,R)

and

p̃(b, v) = αb · q(b,R) + α

∫ 1

q(b,R)

R(q)

q
dq.

By the assumption that R1(q) ≤ R2(q) for any quantile q ≤ q† and b‡ ≥ b†, we have q(b‡, R1) ≤
q(b‡, R2) ≤ q†. See Figure 1 for a graphical illustration. Thus,

p̃(b‡, R1)− p̃(b†, R1) = α ·

(

−b† · q† +

∫ q†

0
min

{
R1(q)

q
, b‡
}

dq

)

≤ α ·

(

−b† · q† +

∫ q†

0
min

{
R2(q)

q
, b‡
}

dq

)

= p̃(b‡, R2)− p̃(b†, R2).

Thus,

u(b†, v,R1)− u(b‡, v,R1) = v · (1− q†)− p̃(b†, R1)− v · (1− q(b‡, R1)) + p̃(b‡, R1)

≤ v · (1− q†)− p̃(b†, R2)− v · (1− q(b‡, R2)) + p̃(b‡, R2) = u(b†, v,R2)− u(b‡, v,R2)

and hence u(b†, v,R1) ≥ u(b‡, v,R1) implies u(b†, v,R2) ≥ u(b‡, v,R2).

Lemma 5.3. In the sample-bid mechanism with any parameter α ∈ [0, 1], for an agent with concave
revenue curve R and value v greater than the monopoly reserve vm, she weakly prefers the bid v/α
than any bid b† ∈ [vm, v/α], i.e., u(v, v/α, R) ≥ u(v, b†, R).
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1

0 1q†

b†
b‡

q(b ‡
, R
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q(b ‡

, R
2 )

R2 R1

Figure 1: Graphical illustration for Lemma 5.2. The gray dashed thick (resp. black solid) curve is
revenue curve R1 (resp. R2). The slopes of two dotted lines from (0, 0) are b‡ and b† respectively.

Proof. Let F be a regular distribution. By the definition, the utility of the agent who has value v,
valuation distribution F and bids b is

u(v, b, F ) = v · F (b)− p̃(b, F )

By considering the first order condition as in Lemma 3.2, we have

∂u(v, b, F )

∂b
= f(b)

(

v − α ·
1− F (b)

f(b)

)

.

Thus, we can compute the difference between u(v, v/α, F ) and u(v, b, F ) for any value v ≥ vm and
bid b ∈ [vm, v/α] as follows,

u(v, v/α, F )− u(v, b, F ) =

∫ v
α

b
αf(t)

(
v

α
−

1− F (t)

f(t)

)

dt

≥

∫ v
α

b
αf(t)

(

t−
1− F (t)

f(t)

)

dt

≥ 0

where the last inequality uses the fact that t− 1−F (t)
f(t) ≥ 0 for all t ≥ vm if F is regular.

5.2 Regular Distributions with Monopoly Quantile qm ≥ 0.62

In this subsection, we analyze the approximation ratio of the sample-bid mechanism over the class
of regular distributions with monopoly quantile qm ≥ 0.62.

Lemma 5.4. For the sample-bid mechanism with α = 0.7, the approximation ratio over the class
of regular distributions with monopoly quantile qm ≥ 0.62 is at most 1.835.
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Fix an arbitrary revenue curve R, let

v∗(R) , inf{v : b(v,R) ≥ vm(R)}

be the smallest value whose optimal bid b(v,R) for revenue curve R is at least the monopoly
reserve vm(R). Since Lemma 3.5 guarantees that b(v,R) is weakly non-decreasing in v, v∗(R) is
well-defined, b(v,R) ≥ vm(R) for all v ≥ v∗(R), and b(v,R) < vm(R) for all v < v∗(R). Denote
q(v∗(R), R) by q∗(R). We decompose the proof of Lemma 5.4 by considering the following two
subregimes – Lemma 5.5 for revenue curve R with v∗(R) ≤ vm(R); and Lemma 5.7 for revenue
curve R with v∗(R) ≥ vm(R).

Lemma 5.5. Given any concave revenue curve R such that qm(R) ≥ 0.62 and v∗(R) ≤ vm(R), the
revenue of the sample-bid mechanism with α = 0.7 is a 1.835-approximation of the optimal revenue.

Proof. Fix an arbitrary concave revenue curve R satisfying the requirement in the lemma statement,
i.e., qm(R) ≥ 0.62 and v∗(R) ≤ vm(R). Consider an arbitrary value v ≥ v∗(R). By Lemma 3.5, the
optimal bid of an agent with value v is at least vm(R). Thus, together with Lemma 3.4, her expected
payment in sample-bid mechanism is at least the expected payment p̃(vm(R), R) of bidding vm(R),
and

p̃(vm(R), R) = 0.7vm(R)qm(R) + 0.7

∫ 1

qm(R)

R(q)

q
dq = 0.7 + 0.7

∫ 1

qm(R)

R(q)

q
dq

≥ 0.7 + 0.7

∫ 1

qm(R)

1−q
1−qm(R)

q
dq = −

0.7 log(qm(R))

1− qm(R)
.

where the inequality uses the fact that (1) R is concave, which implies that R(q) ≥ 1−q
1−qm(R) for all

q ≥ qm(R); and (2) vm(R)qm(R) is normalized to 1 for the revenue curve R. Since v∗(R) ≤ vm(R),
each value with quantile smaller than qm(R) has p̃(vm(R), R) as a lower bound of its payment in
the sample-bid mechanism. Thus, a lower bound of the expected revenue RevR(SB) for revenue
curve R in the sample-bid mechanism is

RevR(SB) =

∫ 1

0
p(v(q, F ), F ) dq ≥ p(v∗(R), R) · q∗(R)

≥ p̃(vm(R), R) · qm(R) ≥ −
0.7 log(qm(R))qm(R)

1− qm(R)

which is at least 0.545 for all qm(R) ≥ 0.62. This finishes the proof, since we (without loss of
generality) consider revenue curve R with optimal revenue equal to 1, i.e., vm(R) · qm(R) = 1.

Before diving into the subregime where v∗(R) ≥ vm(R), we provide a characterization (Lemma 5.6)
of the optimal bid for concave revenue curves with monopoly quantile greater than 0.62. Specifically,
Lemma 5.6 guarantees that b(v,R) = 0 for all value v < v∗(R).

Lemma 5.6. In the sample-bid mechanism with parameter α = 0.7, given any value v and any
concave revenue curve R with qm(R) ≥ 0.62, the optimal bid b(v,R) for an agent with value v and
revenue curve R satisfies b(v,R) ∈ {0} ∪ [vm(R),∞).

Proof. We prove the lemma by contradiction. See Figure 2 for a graphical description of the
following construction. Suppose there exists an agent who has value v, revenue curve R1 s.t.
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q†q̂
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Figure 2: Graphical illustration for Lemma 5.6. The gray dashed (resp. black solid) curve is revenue
curve R1 (resp. R2). The slopes of two dotted lines from (0, 0) are vm(R1) and b† respectively.

qm(R1) ≥ 0.62 and strictly prefers a bid of b† ∈ (0, vm(R1)) over all other bids. Denote q(b†, R1)

by q†. Let q̂ , 1− 1−q†

R1(q†)
. Now consider another revenue curve R2 defined as follows,

R2(q) ,

{
1 q ∈ [0, q̂] ,
1−q
1−q̂ q ∈ [q̂, 1] .

By construction, R2 is a concave revenue curve s.t. (i) q̂ ≥ 0.62; (ii) b† ≤ 1/q̂; (iii) R1(q) ≤ R2(q)
for all q ∈ [0, q†]; and (iv) R1(q) ≥ R2(q) for all q ∈ [q†, 1].

Applying Lemma 5.2 on R1, R2, q
†, v and all b‡ ≥ b†, we conclude that the optimal bid for an agent

with value v and revenue curve R2 is in [0, b†]. Furthermore, note that u(v, b†, R2) ≥ u(v, b†, R1) > 0
where the first inequality holds by the construction of R2,

10 and the second inequality holds by our
assumption that b† is strictly preferred for R1. Hence, there exists an optimal bid in (0, b†] that is
strictly preferred to biding zero and weakly preferred to all other bids for R2. Next we argue that
this leads to a contradiction by considering v ≤ 1/q̂ and v ≥ 1/q̂ separately.

Case (i) v ≤ 1/q̂: Note that for any bid b ∈ [0, 1/q̂], the utility u(v, b,R2) has a closed-form expression
as follows,

u(v, b,R2) = v
b(1− q̂)

b(1− q̂) + 1
+ 0.7 log

(
1

b(1− q̂) + 1

)

.

Considering the first order condition of u(v, b,R2) with respect to bid b, after basic simplification,
we have

b =
v

0.7
−

1

1− q̂
.

10The allocation of bidding b† is the same for both revenue curves, while the payment of bidding b† is higher for
revenue curve R1.
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This leads to a contradiction since for all q̂ ∈ [0.62, 1]11 and v ∈ [0, 1/q̂], we have v
0.7 −

1
1−q̂ < 0, i.e.,

bidding 0 is weakly preferred than any bid b ∈ (0, b†).

Case (ii) v ≥ 1/q̂: Let b‡ , v/0.7, and q‡ , q(b‡, R2) = 0.7/v. Since v ≥ 1/q̂, the construction of R2

guarantees that b‡ · q‡ = 1 = R2(q
‡). Note that the utility u(v, b‡, R2) has a closed-form expression

as follows,

u(v, b‡, R2) = v − 2vq‡ + 0.7(1 − q̂) + 0.7 log(q̂)

− 0.7(q̂ − q‡)(1 − b‡q‡)
(

q̂ − q‡ − q‡ log(q̂) + q‡ log(q‡)
)

.

This leads to a contradiction since for all q̂ ∈ [0.62, 1], v ∈ [1/q̂,∞), and
(

v
0.7 −

1
1−q̂

)

∈ [0, 1/q̂], we

have u(v, b‡, R2) ≥ u
(

v, v
0.7 − 1

1−q̂ , R2

)

,12 i.e., bidding 0 or v/0.7 is weakly preferred than any bid

b ∈ (0, b†).

Now, we provide the approximation guarantee for revenue curve R with v∗(R) ≥ vm(R).

Lemma 5.7. Given any concave revenue curve R such that qm(R) ≥ 0.62 and v∗(R) ≥ vm(R), the
revenue of the sample-bid mechanism with α = 0.7 is a 1.835-approximation of the optimal revenue.

Proof. The proof is done in four major steps:

Step 1- flattening the revenue curve for all quantile q ≥ qm(R1). Fix an arbitrary
revenue curve R1 satisfying the requirements in the lemma statement, i.e., qm(R) ≥ 0.62 and
v∗(R) ≥ vm(R). Consider another revenue curve R2 defined as follows (see Figure 3a for a graphi-
cal illustration)

R2(q) ,

{
R1(q) q ∈ [0, qm(R1)] ,
1 q ∈ [qm(R1), 1] .

We claim that the expected revenue of the sample-bid mechanism with α = 0.7 for revenue curve
R2 is at most that of revenue curve R1. To see this, consider the virtual surplus for both revenue
curves. By our assumption that v∗(R1) ≥ vm(R1), every quantile q > qm(R1) has negative virtual
value R′

1(q) in R1, bids zero (Lemma 5.6) and gains zero virtual surplus while their virtual value
R′

2(q) becomes zero in R2 and thus gains zero virtual surplus as well. On the other side, every
quantile q ≤ qm(R1) has identical virtual value by construction. We claim that the allocation for
each of these quantiles weakly decreases. To see this, note that the allocation of bidding any bid
b ≥ vm(R1) = vm(R2) is the same for both revenue curves R1 and R2, and the expected payment
increases by a constant when the revenue curve R1 is replace by R2. Thus the agent’s preference
among all bids b ≥ vm(R1) is the same in both revenue curves R1 and R2. However, the utility
of bidding b ≥ vm(R2) is lower when the revenue curve is R2, which implies that there may exist
value v such that the agent may prefer bidding 0 to bidding above the monopoly reserve in R2,
while strictly prefer bidding above the monopoly reserve in R1. By Lemma 5.6, the optimal bid for

11Note that qm ≥ 0.62 implies that q̂ ≥ 0.62.
12By first order condition, for revenue curve R2, if

(

v
0.7

−
1

1−q̂

)

> 1/q̂, then bidding b‡ already achieves higher

utility for the agent compared to bidding below b‡. Thus it is sufficient to compare b‡ with
(

v
0.7

−
1

1−q̂

)

in the case

that the latter is in [0, 1/q̂].
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enue curve R2 (resp. R3). The slope of the dotted
line from (0, 0) is v∗(R3).
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By construction, v∗(R3) = v∗(R4) (, v∗). The slope
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where b‡ (resp. b†) is the optimal bid for an agent
with value v∗ and revenue curve R3 (resp. R4). By
Lemma 3.2, b† ≤ b‡.

Figure 3: Graphical illustration for Lemma 5.7.
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any value v is not in (0, vm(R2)). Thus, we conclude that q∗(R2) ≤ q∗(R1) and (1) the optimal bid
(as well as the allocation) for every quantile q ≤ q∗(R2) in both R1 and R2 remains the same; and
(2) for every quantile q ∈ [q∗(R2), q

∗(R1)), the optimal bid quantile q is 0 when the revenue curve
is R2. This guarantees that the virtual surplus for every quantile q ≤ qm(R1) weakly decreases
since the virtual value is non-negative while the allocation decreases. Note that in sample-bid
mechanism, the payment for lowest type is always 0, i.e., p(0) = 0. By Theorem 2.2, the expected
revenue (a.k.a. virtual surplus) for R2 is at most the expected revenue (a.k.a. virtual surplus) for
R1.

Step 2- flattening the revenue curve for all quantiles q ≥ q∗. In this step, we start with

revenue curve R2 constructed in step 1, and consider a sequence of revenue curves R
(0)
2 , R

(1)
2 , . . .

where R
(0)
2 , R2 and R

(i+1)
2 is recursively defined on R

(i)
2 as follows,

R
(i+1)
2 (q) ,







R
(i)
2 (q) q ∈

[

0, q∗(R
(i)
2 )
]

,

R
(i)′
2 (q∗(R

(i)
2 )) · (q − q∗(R

(i)
2 )) +R

(i)
2 (q∗(R

(i)
2 )) q ∈

[

q∗(R
(i)
2 ),

1−R
(i)
2 (q∗(R

(i)
2 ))

R
(i)′
2 (q∗(R

(i)
2 ))

+ q∗(R
(i)
2 )

]

,

1 q ∈

[

1−R
(i)
2 (q∗(R

(i)
2 ))

R
(i)′
2 (q∗(R

(i)
2 ))

+ q∗(R
(i)
2 ), 1

]

.

where R
(i)′
2 (q∗(R

(i)
2 )) is the right-hand derivative of R

(i)
2 (q) at q = q∗(R

(i)
2 ). See Figure 3b for a

graphical illustration. Invoking Lemma 5.3 and Lemma 5.6, with the same argument for values

with positive virtual values in step 1, we can conclude that q∗(R
(i)
2 ) and the expected revenue for

R
(i)
2 in the sample-bid mechanism is weakly decreasing in i.

Note that by construction, the sequence of revenue curves R
(0)
2 , R

(1)
2 , . . . converges to a revenue

curve R3 whose expected revenue in the sample-bid mechanism is at most the revenue for R2, and
satisfying the following characterization,

R3(q) ,







R2(q) q ∈ [0, q∗(R3)] ,

R′
2(q

∗(R3)) · (q − q∗(R3)) +R2(q
∗(R3)) q ∈

[

q∗(R3),
1−R2(q∗(R3))
R′

2(q
∗(R3))

+ q∗(R3)
]

,

1 q ∈
[
1−R2(q∗(R3))
R′

2(q
∗(R3))

+ q∗(R3), 1
]

.

See Figure 3c for a graphical illustration.

Step 3- flattening the revenue curve for all quantile q ≤ qm(R3). For any revenue curve R,
let p(v∗(R), R) be the expected payment in the sample-bid mechanism of an agent with value v∗(R)
and revenue curve R. Due to Lemma 3.4 and Lemma 3.5, p(v∗(R), R) ·q∗(R) is a valid lower bound
of the expected revenue in the sample-bid mechanism for an agent with revenue curve R. In this
step, instead of analyzing the expected revenue, we argue that we can convert any revenue curve
R3 (constructed in step 2) into another revenue curve R4, such that (i) v∗(R4) = v∗(R3) (, v∗); (ii)
q∗(R4) ≤ q∗(R3); and (iii) p(v∗, R4) ≤ p(v∗, R3). Finally, by showing that p(v∗(R4), R4) · q

∗(R4) ≥
0.545, we finish the proof of the lemma.

Given the revenue curve R3 constructed in step 2, for any r0 ∈ [0, 1], we define a revenue curve
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R
(r0)
4 as follows,

R
(r0)
4 ,

{
r0 + (1− r0)

q
qm(R3)

q ∈ [0, qm(R3)] ,

1 q ∈ [qm(R3), 1] .

See the black curves in Figure 3d as an example. We claim that there exists r∗0 ∈ [0, 1] s.t.

R
(r0)
4 (, R4) satisfies properties (i) (ii) (iii) mentioned above. To see this, consider the argument

as follows.

By construction, for all every value v, every bid b, the utility u(v, b,R
(r0)
4 ) is decreasing continuously

in r0. Thus, v∗(R
(r0)
4 ) is decreasing continuously in r0. Let b‡ be the optimal bid of an agent

with value v∗(R3) and revenue curve R3. Denote q(b‡, R3) by q‡. Consider revenue curve R
(r0)
4

where r0 , 1 − qm(R3)
qm(R3)−q‡

(1 − R3(q
‡)). By construction, R

(r0)
4 (q) ≥ R3(q) for all q ≤ q‡, and

R
(r0)
4 (q) ≤ R3(q) for all q ≥ q‡. See Figure 3d for a graphical illustration. Note that by construction,

u(v∗(R3), b
‡, R

(r0)
4 ) = v∗(R3) · (1 − q‡)− αb‡ · q‡ − α

∫ 1

q‡

R
(r0)
4 (q)

q
dq

≥ v∗(R3) · (1 − q‡)− αb‡ · q‡ − α

∫ 1

q‡

R3(q)

q
dq = u(v∗(R3), b

‡, R3) = 0

Thus, v∗(R
(r0)
4 ) ≤ v∗(R3). Next, consider revenue curve R

(r̄0)
4 where r̄0 , 1 − qm(R3)

qm(R3)−q∗(R3)
(1 −

R3(q
∗(R3)). By construction, R

(r̄0)
4 (q) ≥ R3(q) for all q ∈ [0, 1]. See Figure 3d for a graphical

illustration. Thus, v∗(R
(r̄0)
4 ) ≥ v∗(R3) with the similar argument for R

(r0)
4 Therefore, we know that

there exists r∗0 ∈ [r0, r̄0] such that v∗(R
(r∗0)
4 ) = v∗(R3). We denote R

(r∗0)
4 by R4 and show that R4

satisfies properties (ii) q∗(R4) ≤ q∗(R3) and (iii) p(v∗, R4) ≤ p(v∗, R3) with the argument below.

Lemma 5.3 implies that b‡ > v∗(R3). Combining with the fact that r∗0 ≥ r0, we know that property
(ii) q∗(R4) ≤ q∗(R3) is satisfied. See Figure 3e for a graphical illustration.

Combining the first order condition in Lemma 3.2 and construction of R4, it is guaranteed that the
optimal bid b† of value v∗ for revenue curve R4 is at most b‡. Furthermore, q(b†, R4) ≥ q(b‡, R4) ≥
q(b‡, R3) = q‡ by construction. By the definition, the optimal utility of value v∗(R) for any revenue
curve R is zero. Thus, p(v∗, R3) = v∗ · (1− q‡) ≥ v∗ · (1− q(b†, R4)) = p(v∗, R4).

Step 4- lower-bounding the expected revenue on R4. So far, we have shown that for an
arbitrary revenue curve satisfying the assumptions in lemma statement, its expected revenue in
the sample-bid mechanism is lower-bounded by p(v∗(R4), R4) · q

∗(R4) for R4 pinned down by some
(r0, qm) as follows,

R4 ,

{
r0 + (1− r0)

q
qm

q ∈ [0, qm] ,

1 q ∈ [qm, 1] .

By numerically verifying p(v∗(R4), R4) · q
∗(R4) ≥ 0.545 for all (r0, qm) ∈ [0, 1]2, we finish the proof.

The details of this numerical evaluation is elaborated on in Appendix A.

5.3 Regular Distributions with Monopoly Quantile qm ≤ 0.62

In this subsection, we analyze the prior-independent approximation ratio of the sample-bid mech-
anism over the class of regular distributions with monopoly quantile qm ≤ 0.62.
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1

0 1qm q

1−q
1−qm

Figure 4: Graphical illustration for Lemma 5.9. The gray dashed (resp. black solid) curve is
revenue curve R (resp. lower bound of R).

Lemma 5.8. For the sample-bid mechanism with α = 0.7, the prior-independent approximation
ratio over the class of regular distributions with monopoly quantile qm ≤ 0.62 is at most 1.835.

Fix an arbitrary revenue curve R, let

v∗(R) , inf{v : b(v,R) ≥ vm(R)}

be the smallest value whose optimal bid b(v,R) for revenue curve R is at least vm(R). Since
Lemma 3.5 guarantees that b(v,R) is weakly non-decreasing in v, v∗(R) is well-defined, b(v,R) ≥
vm(R) for all v ≥ v∗(R). Furthermore, by Lemma 5.3, we know that b(v,R) ≥ vm(R)/0.7 for all v ≥
max{v∗(R), vm(R)}. Denote q(v∗(R), R) by q∗(R). By Lemma 3.4 and Lemma 3.5, the expected
revenue RevR(SB) of the sample-bid mechanism for revenue curve R can be lower-bounded as
follows,

RevR(SB) =

∫ 1

0
p(v(q,R), R) dq

=

∫ min{q∗(R),qm(R)}

0
p(v(q,R), R) dq +

∫ q∗(R)

min{q∗(R),qm(R)}
p(v(q,R), R) dq

+

∫ 1

q∗(R)
p(v(q,R), R) dq

≥ p̃(vm(R)/0.7, R) ·min{q∗(R), qm(R)}+ p̃(vm(R), R) ·max{0, q∗(R)− qm(R)}

+

∫ 1

q∗(R)
p(v(q,R), R) dq.

Denote q(vm(R)/0.7, R) by q‡(R), and
∫ qm(R)

q‡(R)
R(q)
q dq by w(R). In Lemma 5.9, we lower-bound the

expected payment p̃(vm(R)/0.7, R) and p̃(vm(R), R) as the function of qm(R), q‡(R), w(R) and v∗(R).
In Lemma 5.10, we lower-bound q∗(R) as the function of qm(R), q‡(R) and v∗(R). In Lemma 5.11,
we upper-bound of v∗(R) as the function of qm(R), q‡(R) and w(R). In Lemma 5.12, we lower-
bound p(v(q,R), R) as a function of qm(R) for all quantile q ∈ [qm(R), 1]. Putting all pieces
together, we show Lemma 5.8 by providing a lower bound of expected revenue in the sample-bid
mechanism as a function of qm(R), q‡(R) and w(R), and numerically evaluating its value for all
possible parameters. The details of the numerical evaluations in this section are similar to those of
Lemma 5.7, which are elaborated on in Appendix A.

Lemma 5.9. For the sample-bid mechanism with α = 0.7, given any concave revenue curve R, the
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expected payment p̃(b,R) of bidding b ∈ [0, vm(R)] is at least

p̃(b,R) ≥
0.7 log(b · (1− qm(R)) + 1)

1− qm(R)
;

and the expected payment p̃(vm(R)/0.7, R) of bidding vm(R)/0.7 is at least

p̃(vm(R)/0.7, R) ≥

(
q‡(R)

qm(R)
+ 0.7w(R) −

0.7 log(qm(R)))

1− qm(R)

)

.

Proof. By definition, for any b ∈ [0, vm(R)],

p̃(b,R) = 0.7b · q(b,R) + 0.7

∫ 1

q(b,R)

R(q)

q
dq

≥ 0.7b · q(b,R) + 0.7

∫ 1

q(b,R)

1−q
1−qm(R)

q
dq

= 0.7b · q(b,R)− 0.7
1 − q(b,R)

1 − qm(R)
−

0.7 log(q(b,R))

1− qm(R)

≥
0.7 log(b · (1− qm(R)) + 1)

1− qm(R)

where the first inequality uses the fact that R(q) ≥ 1−q
1−qm(R) for all q ≥ qm(R) from the regularity of

R, and the second inequality use the fact that b · q(b,R) ≥ 1−q(b,R)
1−qm(R) , and q(b,R) ≤ (b · (1− qm(R))+

1)−1 from the regularity of R. See Figure 4 for a graphical illustration.

Similarly,

p̃(vm(R)/0.7, R) = 0.7
vm(R)

0.7
q‡(R) + 0.7

∫ 1

q‡(R)

R(q)

q
dq

=
q‡(R)

qm(R)
+ 0.7w(R) + 0.7

∫ 1

qm(R)

R(q)

q
dq

≥
q‡(R)

qm(R)
+ 0.7w(R) −

0.7 log(qm(R))

1− qm(R)
.

Lemma 5.10. For any concave revenue curve R, the quantile q(v,R) for value v ≤ vm(R) is at
least

q(v,R) ≥
1

1 + v · (1− qm(R))
;

and the quantile q(v,R) for value v ∈ [vm(R), vm(R)/0.7] is at least

q(v,R) ≥
2qm(R)− q‡(R) · (1 + 1/0.7)

1 + v · (1− qm(R))
.

Proof. Given any concave revenue curve R1, consider another revenue curve R2 defined as follows,

R2(q) ,







R1(q) q ∈ [0, q‡(R1)] ,

R1(q
‡(R1)) +

q−q‡(R1)
qm(R1)−q‡(R1)

(1−R1(q
‡(R1))) q ∈ [q‡(R1), qm(R1)] ,

1−q
1−qm(R1)

q ∈ [qm(R1), 1] .
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1

vm/0.7

0 1qmq‡

Figure 5: Graphical illustration for Lemma 5.10. The gray dashed (resp. black solid) curve is
revenue curve R1 (resp. R2). The slope of the dotted line from (0, 0) is vm(R1)/0.7.

1

0 1q̂qm q†

b†

Figure 6: Graphical illustration for Lemma 5.11. The gray dashed (resp. black solid) curve is
revenue curve R1 (resp. R2). The slope of the dotted line from (0, 0) is b†.

Since R1 is regular, we have R2(q) ≤ R1(q) for all q ∈ [0, 1] by construction. See Figure 5 for
graphical illustration. Thus, for any value v ≤ vmR1, we have

q(v,R1) ≥ q(v,R2) =
1

1 + v · (1− qm(R1))
.

Moreover, for any value v ∈ [vm(R1), vm(R1)/0.7], we have

q(v,R1) ≥ q(v,R2) =
2qm(R1)− q1(R1) · (1 + 1/0.7)

1 + v · (1− qm(R1))
.

Lemma 5.11. In the sample-bid mechanism with parameter α = 0.7, given any value v and any
concave revenue curve R, the optimal bid b(v,R) for an agent with value v and revenue curve R is
at least vm(R) if for all q̂ ∈ [qm(R), 1],

v · (1− q‡(R))− vm(R) · q‡(R)− 0.7

(

w(R) + log

(
q̂

qm(R)

)

−
ln(q̂)

1− q̂

)

≥ v(1 − q̃) +
0.7 log(q̃)

1− q̂

(2)

where q̃ ,

(

1 + min{1/q̂,max{0, v
0.7 −

1
1−q̂}} · (1− q̂)

)−1
.
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Proof. Fix an arbitrary concave revenue curve R. We show that inequality (2) in the lemma
statement is a sufficient condition that bidding vm(R)/0.7 is weakly preferred than bidding any bids
in [0, vm(R)]. The argument is similar to Lemma 5.6.

We prove by contradiction, suppose there exists an revenue curve R1, and value v such that in-
equality (2) in the lemma statement is satisfied but the optimal bid of an agent with value v and

revenue curve R1 is b† ∈ [0, vm(R1)). Denote q(b†, R1) by q†. Let q̂ , 1− 1−q†

R1(q†)
. By construction,

q̂ ≥ qm(R1). Now consider another revenue curve R2 defined as follows,

R2(q) ,







R1(q) q ∈ [0, qm(R1)] ,
1 q ∈ [qm(R1), q̂] ,
1−q
1−q̂ q ∈ [q̂, 1] .

By construction, R2 is a concave revenue curve s.t. (i) R1(q) = R2(q) for all q ∈ [0, qm(R1)]; (ii)
R1(q) ≤ R2(q) for all q ∈ [qm(R1), q

†]; and (iii) R1(q) ≥ R2(q) for all q ∈ [q†, 1]; See Figure 6 for a
graphical illustration.

Applying Lemma 5.2 on R1, R2, q
†, v and all b‡ ≥ b†, we conclude that the optimal bid for an agent

with value v and revenue curve R2 is in [0, b†].

Note that for any bid b ∈ [0, 1/q̂], the utility u(v, b,R2) has a closed-form expression as follows,

u(v, b,R2) = v ·
b(1− q̂)

b(1− q̂) + 1
+ 0.7 log

(
1

b(1− q̂) + 1

)

.

Considering the first order condition of u(v, b,R2) with respect to bid b, after basic simplification,
we have

b =
v

0.7
−

1

1− q̂
.

Thus, the optimal bid in [0, 1/q̂] for revenue curve R2 is b̃ , min{1/q̂,max{0, v
0.7 − 1

1−q̂}}. Plugging

u(v, b,R2) with b = b̃, we get

v(1− q̃) +
0.7 log(q̃)

1− q̂
,

i.e., the right hand side of inequality (2).

Moreover, note that the utility u(v, vm(R1)/0.7, R2) has a closed-form expression as follows,

v · (1− q‡(R))− vm(R) · q‡(R)− 0.7

(

w(R) + log

(
q̂

qm(R)

)

−
ln(q̂)

1− q̂

)

i.e., the left hand side of inequality (2). This leads to a contradiction, which finishes the proof.

Definition 5.2. A pentagon revenue curve R parameterized by the quantile qk ∈ [qm(R), 1] of kink

and the revenue rk ∈
[

1−qk
1−qm(R) , 1

]

on this kink is defined as follows

R(q) ,







1 q ∈ [0, qm(R)] ,

rk +
q−qm(R)
qk−qm(R) (1− rk) q ∈ [qm(R), qk] ,

1−q
1−qk

· rk q ∈ [qk, 1] .
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(a) Case (i) b† ≤ ṽ.
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(b) Case (ii) b† ≥ ṽ.

Figure 7: Graphical illustration for Lemma 5.12. The gray dashed (resp. black solid) curve is
revenue curve R1 (resp. R2 in (a) and R3 in (b)). The slope of the dotted line from (0, 0) is b†.

An example of a pentagon revenue curve is illustrated as the solid curve in Figure 7a as the solid
line.

Lemma 5.12. In the sample-bid mechanism, given any quantile q̂ ∈ [0, 1], quantile q̃ ∈ [q̂, 1], and
bid b ∈ [0, 1/q̂], if for all pentagon revenue curves RP with qm(RP) ≥ q̂, the optimal bid of an agent
with value v(q̃, RP) and revenue curve RP is at least b; then for all concave revenue curves R with
qm(R) = q̂, the optimal bid of an agent with value v(q̃, R) and revenue curve R is at least b as well.

Proof. Fix arbitrary q̂ ∈ [0, 1], q̃ ∈ [q̂, 1], and concave revenue curve R1 with qm(R1) = q̂. Let b†

be the optimal bid for an agent with value v(q̃, R1) (, ṽ) and revenue curve R1. To show this
lemma, it is sufficient to assume b† ≤ 1/qm(R1). Now we consider two cases, i.e., b† ≤ ṽ and b† ≥ ṽ
separately.

Case (i) b† ≤ ṽ: Consider the pentagon revenue curve R2 with

qm(R2) = q̃ +
1−R1(q̃)

R′
1(q̃)

, qk =
q̃R′

1(q̃)−R1(q̃) +
R1(q†)
1−q†

R′
1(q̃) +

R1(q†)
1−q†

,

rk =
1− qk
1− q†

R1(q
†).

where R′
1(q̃) is the right-hand derivative of R1(q) at q = q̃. By construction, we have (i) R2(q̃) =

R1(q̃) and thus v(q̃, R2) = v(q̃, R1) = ṽ; (ii) R2(q
†) = R1(q

†); and (iii) R2(q) ≥ R1(q) for all
q ∈ [0, q†]. See Figure 7a for a graphical illustration.

Applying Lemma 5.2 on R1, R2, q
†, ṽ and all b‡ ≥ b†, we conclude that the optimal bid for value

ṽ is weakly smaller than b†. Thus, for any bid b ∈ [0, 1/q̂], if the optimal bid for value v(q̃, R2) in
revenue curve R2 is at least b, then the optimal bid b† for value v(q̃, R1) in revenue curve R1 is at
least b as well.
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Case (ii) b† ≥ ṽ: Consider the pentagon revenue curve R3 with

qm(R3) = 1−
1− q†

R1(q†)
, qk = qm(R3), rk = 1.

By construction, we have (i) q(ṽ, R3) ≤ q(ṽ, R1) and thus v(q̃, R3) ≤ v(q̃, R1); (ii) R3(q
†) = R1(q

†);
and (iii) R3(q) ≥ R1(q) for all q ∈ [0, q†]. See Figure 7b for a graphical illustration.

Applying Lemma 5.2 on R1, R3, q
†, ṽ and all b‡ ≥ b†, we conclude that the optimal bid for value

ṽ is weakly smaller than b†. Thus, for any bid b ∈ [0, 1/q̂], if the optimal bid for value v(q̃, R3)
in revenue curve R3 is at least b, then combining with Lemma 3.5, the optimal bid b† for value
v(q̃, R1) in revenue curve R1 is at least b as well.

Now we are ready to prove Lemma 5.8.

Proof of Lemma 5.8. Fix an arbitrary concave revenue curve R with qm(R) ≤ 0.62. We consider
v∗(R) ≤ vm(R), vm(R) ≤ v∗(R) ≤ vm(R)/0.7, and v∗(R) ≥ vm(R)/0.7 separately.

Case (i) v∗(R) ≤ vm(R): By Lemma 3.4 and Lemma 3.5, the expected revenue RevR(SB) of the
sample-bid mechanism for revenue curve R can be lower-bounded as follows,

RevR(SB) =

∫ 1

0
p(v(q,R), R) dq

=

∫ qm(R)

0
p(v(q,R), R) dq +

∫ q∗(R)

qm(R)
p(v(q,R), R) dq +

∫ 1

q∗(R)
p(v(q,R), R) dq

≥ p̃(vm(R)/0.7, R) · qm(R) + p̃(vm(R), R) · (q∗(R)− qm(R)) +

∫ 1

q∗(R)
p(v(q,R), R) dq.

Invoking Lemma 5.9 and Lemma 5.10, we can rewrite the lower bound of Rev[R] as

≥

(
q‡(R)

qm(R)
+ 0.7w(R) −

0.7 log(qm(R)))

1− qm(R)

)

· qm(R)

−
0.7 log(qm(R))

1− qm(R)
·

(
1

1− v∗(R) · (1 + qm(R))
− qm(R)

)

+

∫ 1

q∗(R)
p(v(q,R), R) dq.

Note that this lower bound is weakly decreasing in v∗(R) while holding everything else fixed.
Let v∗(qm(R), q‡(R), w(R)) be the upper bound of v∗(R) as the function of qm(R), q‡(R), w(R)
established in Lemma 5.11. From Lemma 5.10, we can lower bound v∗(qm(R), q‡(R), w(R))) by

q∗(qm(R), q‡(R), w(R)) ,
(
1− v∗(qm(R), q‡(R), w(R)) · (1 + qm(R))

)−1
. Let b(q, qm(R)) be the

lower bound of the optimal bid for an agent with value v(q,R) and revenue curve R as the function
of q, qm(R) established in Lemma 5.12. Then, we can further rewrite the lower bound of Rev[R]
as

≥

(
q‡(R)

qm(R)
+ 0.7w(R) −

0.7 log(qm(R)))

1− qm(R)

)

· qm(R)

−
0.7 log(qm(R))

1− qm(R)
·
(

q∗(qm(R), q‡(R), w(R)) − qm(R)
)

+

∫ 1

q∗(qm(R),q‡(R),w(R))

0.7 log(b(q, qm(R)) · (1− qm(R)) + 1)

1− qm(R)
dq.
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where the bid b(q, qm(R)) in the last term can be lower-bounded using Lemma 5.9.

Therefore, we lower-bound RevR(SB) as the function of qm(R), q‡(R), w(R). By numerically enu-
merating all possible parameters, we conclude that RevR(SB) ≥ 0.545 in this case.

Case (ii) vm(R) ≤ v∗(R) ≤ vm(R)/0.7: The analysis is similar to case (i). By Lemma 3.4 and
Lemma 3.5, the expected revenue RevR(SB) of the sample-bid mechanism for revenue curve R can
be lower-bounded as follows,

RevR(SB) =

∫ 1

0
p(v(q,R), R) dq

≥

∫ q∗(R)

0
p(v(q,R), R) dq +

∫ 1

qm(R)
p(v(q,R), R) dq

≥ p̃(vm(R)/0.7, R) · q∗(R) +

∫ 1

qm(R)
p(v(q,R), R) dq.

Invoking Lemma 5.9 and Lemma 5.10, we can rewrite the lower bound of Rev[R] as

≥

(
q‡(R)

qm(R)
+ 0.7w(R) −

0.7 log(qm(R)))

1− qm(R)

)

·
2qm(R)− q‡(R) · (1 + 1/0.7)

1 + v∗(R) · (1− qm(R))

+

∫ 1

qm(R)
p(v(q,R), R) dq.

Note that this lower bound is weakly decreasing in v∗(R) while holding everything else fixed. Let
v∗(qm(R), q‡(R), w(R)) be the upper bound of v∗(R) established in Lemma 5.11. Let b(q, qm(R)) be
the lower bound of the optimal bid for an agent with value v(q,R) and revenue curve R established
in Lemma 5.12. Then, we can further rewrite the lower bound as

≥

(
q‡(R)

qm(R)
+ 0.7w(R) −

0.7 log(qm(R)))

1− qm(R)

)

·
2qm(R)− q‡(R) · (1 + 1/0.7)

1 + v∗(qm(R), q‡(R), w(R)) · (1− qm(R))

+

∫ 1

qm(R)

0.7 log(b(q, qm(R)) · (1− qm(R)) + 1)

1− qm(R)
dq.

where the bid b(q, qm(R)) in the last term can be lower-bounded using Lemma 5.9.

Therefore, we lower-bound RevR(SB) as the function of qm(R), q‡(R), w(R). By numerically enu-
merating all possible parameters, we conclude that RevR(SB) ≥ 0.545 in this case.

Case (iii) v∗(R) ≥ vm(R)/0.7: Lemma 5.11 upper-bounds v∗(R) as the function of qm(R), q‡(R) and
w(R). By numerically enumerating all possible parameters, we conclude that v∗(R) ≥ vm(R)/0.7 is
not possible for any revenue curve R with qm(R) ≤ 0.62.

6 Prior-independent Approximation Lower Bound

In this section, we show that no mechanism can achieve prior-independent approximation better
than 1.07 even when the class of distributions are uniform distributions. Note that point mass
distributions are special cases of the uniform distributions. The lower bound we will prove in this
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section holds for more general families of mechanisms than the single-round mechanisms that we
introduced in Section 2. Here we will show that even when the agent and the seller have multiple
rounds of communication in general messages spaces, no mechanism can achieve prior-independent
approximation better than 1.07. However, since our analysis does not hinge on the exact format of
the mechanism, we will not formally introduce the model for multi-rounds of communication.

Theorem 6.1. For a single item, a single uniformly distributed agent, and a single valuation
sample, the prior-independent approximation ratio for revenue maximization is at least 1.07.

The main idea for proving Theorem 6.1 is as follows. Consider two scenarios where the valuation
distribution of the agent is either uniform between [1, 2] or a pointmass with some value v ∈ [1, 2].
Note that the optimal mechanism for an agent with value from the uniform distribution U[1, 2]
is to always allocate the item with expected payment 1. Thus if the mechanism is optimal for
this setting, when the valuation distribution for the agent is actually a pointmass with some value
v ∈ [1, 2], the agent can always imitate the type in a uniform distribution U [1, 2] to win the item
and pay at most 1 in expectation. This indicates that the optimal prior-independent approximation
ratio is strictly above 1. By leveraging the approximation ratio in those two cases, we show that
the optimal ratio is at least 1.07.

Before the proof of Theorem 6.1, we first introduce several notations and present several properties
for non-truthful mechanisms M with prior-independent approximation ratio β.

Lemma 6.2. For single item, single agent, any distribution F with support [v, v], for non-truthful
mechanism with prior-independent approximation ratio β, the interim allocation for agent with
highest value v is x(v, F ) ≥ 1

β .

Proof. Suppose the interim allocation for agent with value v is x(v, F ) < 1
β . Since the interim

allocation is monotone, the maximum expected virtual welfare for mechanism under distribution
F is less than 1/β of the optimal expected virtual welfare, which implies the revenue is less than
1/β of the optimal revenue and the approximation ratio for distribution F is higher than β, a
contradiction.

Lemma 6.3. For single item, single agent, and any uniform distribution F with support [v, v]
such that 2v ≥ v, for a non-truthful mechanism with prior-independent approximation ratio β, the

interim utility for agent with highest value v is u(v, F ) ≥ 1
2

(

v −
√

v2 − 4v
β (v − v)

)

.

Proof. For uniform distribution F with support [v, v] such that 2v ≥ v, the optimal mechanism
OPTF is to post price v with expected revenue v. Suppose the utility for agent with value v is

u(v, F ) < 1
2

(

v −
√

v2 − 4v
β (v − v)

)

, the optimal mechanism subject to this constraint is to post

price v − u(v, F ), with expected revenue u(v,F )
v−v · (v − u(v, F )) < v

β , a contradiction.

Lemma 6.4. For single item, single agent, any point mass distribution F with support v, for non-
truthful mechanism with prior-independent approximation ratio β, the interim utility for agent with
value v is u(v, F ) ≤ v(1− 1/β).

Proof. Suppose the interim utility in this case is u(v, F ) > v(1 − 1/β), the expected revenue is at
most the social welfare minus the expected utility, which is at most v − u(v, F ) < v

β , contradicting
the fact that mechanism M achieves prior-independent approximation ratio β.
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Proof of Theorem 6.1. Suppose mechanism M inducing interim allocation and payment rule x and
p achieves prior-independent approximation ratio β. Consider uniform distribution F with support
[1, 2]. By Lemma 6.2 and 6.3, we have x(2, F ) ≥ 1

β , and u(2, F ) ≥ 1 −
√

1− 1/β). For any sample
s ∈ [1, 2], the expected allocation and payment of agent with value 2 given the sample s satisfies
the constraint that

s · x(2, F, s) − p(2, F, s) ≤ s

(

1−
1

β

)

(3)

otherwise for distribution Fs with point mass on s, an agent with value s can imitate the behavior of
an agent with value 2 in uniform distribution to achieve utility strictly higher than s (1− 1/β), and
by Lemma 6.4, this contradicts to the assumption that mechanism M achieves prior-independent
approximation ratio β. Taking expectation over sample s for the left hand side of equation (3), we
have

Es[s · x(2, F, s) − p(2, F, s)] ≥ Es[s · x(2, F, s)]− (2− u(2, F )) ≥

∫ 1+1/β

1
s ds− (2− u(2, F ))

where the last inequality holds because x(2, F ) ≥ 1
β and the worst case happens when x(2, F, s) = 0

for any sample s ≥ 1 + 1/β. Taking expectation over sample s for the right hand side of equation
(3), we have

Es

[

s

(

1−
1

β

)]

=
3

2

(

1−
1

β

)

.

Combining the inequalities, we have

1

2

(

1 +
1

β

)2

−
1

2
− (1 +

√

1− 1/β) ≤
3

2

(

1−
1

β

)

.

By solving the inequality, we have β ≥ 1.0737.

7 Revelation Gap

Feng and Hartline (2018) proposed the revelation gap to quantify the difference between the worst
case performance of the optimal truthful mechanism and the optimal non-truthful mechanism in
prior-independent mechanism design. They showed that a non-trivial revelation gap exists for the
welfare maximization problem for agents with budgets. In this section, we show that a revelation
gap also exists for the revenue maximization problem when considering the single-item single-agent
setting with single-sample access.

Let Mr be the family of truthful mechanisms, the family of mechanisms such that the agent maxi-
mizes her utility by truthfully revealing her valuation to the seller, i.e., b∗(v, F ) = v for all value v
and valuation distributions F . Let M be the family of all mechanisms. We define

β(MECHS,DISTS) , min
M∈MECHS

Γ (M,DISTS)

as the optimal prior-independent approximation ratio among the family of mechanisms MECHS.
The revelation gap for a family of distributions DISTS is then defined as the ratio β(Mr ,DISTS)

β(M,DISTS) .

Definition 7.1. A mechanism is scale-invariant if the interim allocation is invariant of the scale,
i.e., x(αv, αF ) = x(v, F ) for any distribution F , valuation v and any α > 0.
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Allouah and Besbes (2019) characterized the prior-independent approximation ratio of the truthful
mechanisms under the assumption of scale-invariance for sample-based pricing mechanisms. Note
that in contrast, our lower bound result shown in Theorem 6.1 does not require the assumption on
scale-invariance. Here is the formal definition of sample-based pricing mechanisms.

Definition 7.2. Given function α : R → ∆(R) mapping from the sample to the randomized price,
for sample s, the sample-based pricing mechanism solicits a non-negative bid b ≥ 0, allocates the
item to the agent if b ≥ α(s), and charges the agent α(s) · 1{b ≥ α(s)}.

It can be observed that the bid allocation rules of both sample-bid mechanism and sample-based
pricing are similar (i.e. competing against the sample), and the difference is the payment semantics.

Theorem 7.1 (Allouah and Besbes, 2019). Under the assumption of scale-invariance, for single-
item setting with regular valuation distribution, when seller has access to a single sample, the
prior-independent approximation ratio of the optimal sample-based pricing mechanism is bounded
in [1.957, 1.996]. Moreover, when the valuation distribution is MHR, the prior-independent approx-
imation ratio is bounded in [1.543, 1.575].

Given an arbitrary valuation distribution and any mechanism that is incentive compatible only for
the given valuation distribution, the mechanism may not be equivalent to any sample-based pricing
mechanism. The is because the agent only maximizes her utility by taking expectation over the
sample. However, we can show that if the mechanism is incentive compatible for all possible prior
distributions, then it is equivalent to consider posting a randomized price to the agent based on
the realization of the sample, i.e., a sample-based pricing mechanism.

Lemma 7.2. For any mechanism with allocation x̃ and payment p̃ that is incentive compatible and
individual rational for all valuation distributions, there exists a sample-based pricing mechanism
that generates the same expected allocation and payment pointwise for any valuation of the agent
and any realization of the sample.

Proof. First we claim that, for any truthful mechanism with allocation x̃ and payment p̃, the
induced allocation rule x̃(·, s) and payment rule p̃(·, s) are incentive compatible and individual
rational given any realization of the sample s.

First we prove the incentive compatibility. Suppose by contradiction, there exists constant ǫ > 0,
sample s and value v, v′ such that

vx̃(v′, s)− p̃(v′, s) ≥ vx̃(v, s) − p̃(v, s) + ǫ.

Let F be an arbitrary distribution with positive density everywhere on the support [0,∞). Define
H , u(v, v, F )−u(v, v′ , F ) as the utility loss for value v to misreport v′ when the distribution is F .
Given constant δ > 0, let F ′ be the distribution such that with probability 1 − δ, the value of the
agent is s and with probability δ, the value is drawn from distribution F . It is easy to verify that
both v and v′ are in the support of distribution F ′. Moreover, the utility loss for misreporting v′ is

u(v, v, F ′)− u(v, v′, F ′) ≥ (1− δ)ǫ + δH

where (1 − δ)ǫ + δH > 0 for sufficiently small δ. This implies that the mechanism is not incentive
compatible for distribution F ′, a contradiction.

Similarly, for individual rationality, if there exists constant ǫ > 0, sample s and value v, v′ such
that

vx̃(v, s)− p̃(v, s) ≤ −ǫ,
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there exists a distribution F ′ supported on [0,∞) such that agent with value v is not individual
rational given distribution F ′.

Finally, since for any sample s, the induced mechanism is incentive compatible, the allocation x̃(v, s)
is monotone in v for any sample s. Moreover, individual rationality implies that the payment of the
agent is 0 if she does not win the item. Thus the mechanism can be implemented as sample-based
pricing mechanism for any realized sample.

Lemma 7.2 suggest that under the assumption of scale invariance, the bounds on prior-independent
approximation ratio of sample-based pricing in Theorem 7.1 carry over to truthful mechanisms.
Then combining it with Theorem 5.1 and 6.1, we have the following corollary characterizing the
revelation gap under the assumption of scale-invariance.

Corollary 7.3. Under the assumption of scale-invariance, for single-item setting with regular val-
uation distribution, when seller has access to a single sample, the revelation gap is bounded in
[1.066, 1.859]. Moreover, when the valuation distribution is MHR, the revelation gap is bounded in
[1.190, 1.467].
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A Numerical Analysis

In Section 5, we bound the prior-independent approximation ratio of the sample-bid mechanism
by enumerating the possible choices of given parameters. One concern is that the parameters are
selected from a continuous interval, and the revenue for valuation distributions with parameters
that are not evaluated on discretized points may be far from the revenue on discretized points. In
this section, we formally show that this is not the case for our analysis. To provide a theoretical
lower bound on all possible distributions, we will present a unified lower bound on the revenue for
distributions with parameters between discretized points. We will formalize this approach for the
numerical calculation for Lemma 5.7, and the numerical calculation for other lemmas and theorems
hold similarly.

By the proof of Lemma 5.7, for any revenue curve R in Figure 3e parameterized by monopoly
quantile qm ∈ [

¯
qm, q̄m] and revenue r0 ∈ [

¯
r0, r̄0] for quantile 0, the revenue of the seller is lower

bounded by p(v∗(R), R) · q∗(R) where v∗(R) is the critical value with bid above monopoly price
and q∗(R) is the quantile for critical value. Note that it is sufficient for us to consider revenue
curves R such that v∗(R) is at least the monopoly price. Next we show how to provide bounds
on parameters

¯
qm, q̄m,

¯
r0, r̄0, as well as lower bounds on p(v∗(R), R) and q∗(R) using parameters

¯
qm, q̄m,

¯
r0, r̄0.

Lemma A.1. There exists efficiently computed set S ⊆ R
4 and function τ : R4 → R such that for

any revenue curve R in Figure 3e parameterized by monopoly quantile qm ∈ [
¯
qm, q̄m] and revenue

r0 ∈ [
¯
r0, r̄0] for quantile 0, we have

1. v∗(R) ≥ vm(R) only if (
¯
qm, q̄m,

¯
r0, r̄0) ∈ S;

2. p(v∗(R), R) · q∗(R) ≥ τ(
¯
qm, q̄m,

¯
r0, r̄0) if (

¯
qm, q̄m,

¯
r0, r̄0) ∈ S.

Proof. First we illustrate how to find the desirable set S by numerical calculation. Note that the
requirement is such that the critical value for bidding above the monopoly price is above monopoly
price, i.e., v∗(R) ≥ vm(R). By Lemma 5.6, it is sufficient to verify that the optimal utility of value
vm(R) for bidding above vm(R) is positive. Note that by Lemma 3.2, the optimal bid above the
monopoly price is b = vm

α + 1−r0
1−qm

, with expected utility

u(vm, b) =
1

qm
· (1− qb)− α

(

b · qb + r0 log(
qm
qb

) +
(1− r0)(qm − qb)

qm
− log qm

)

where qb =
r0

b−
1−r0
qm

. Since qm ∈ [
¯
qm, q̄m] and r0 ∈ [

¯
r0, r̄0], a sufficient condition for u(vm, b) > 0 is

that

1

q̄m
· (1− q̄b)− α

(

b̄ · q̄b + r̄0 log(
q̄m

¯
qb

) +
(1−

¯
r0)(q̄m −

¯
qb)

¯
qm

− log
¯
qm

)

> 0,

where b̄ = 1
α
¯
qm

+ 1−
¯
r0

1−q̄m
, q̄b =

αr̄0q̄m(1−
¯
qm)

1−q̄m+α(1−r̄0)
and

¯
qb =

α
¯
r0
¯
qm(1−q̄m)

1−
¯
qm+α(1−

¯
r0)

. Note that the above inequality

can be easily verified on discretized points.

Next we construct the function τ(
¯
qm, q̄m,

¯
r0, r̄0) lower bound the revenue p(v∗(R), R) · q∗(R). First

note that we can enumerate the value above monopoly price and find the minimum value that the
interim utility is strictly positive. That is, given value v ≥ vm, the optimal bid above the monopoly
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price is b = v
α + 1−r0

1−qm
, with expected utility

u(v, b) = v · (1− qb)− α

(

b · qb + r0 log(
qm
qb

) +
(1− r0)(qm − qb)

qm
− log qm

)

≥ v · (1− q̄b)− α

(

b̄ · q̄b + r̄0 log(
q̄m

¯
qb

) +
(1−

¯
r0)(q̄m −

¯
qb)

¯
qm

− log
¯
qm

)

> 0,

where b̄ = v
α + 1−

¯
r0

1−q̄m
, q̄b =

αr̄0q̄m(1−
¯
qm)

v
¯
qm(1−q̄m)+α(1−r̄0)

and
¯
qb =

α
¯
r0
¯
qm(1−q̄m)

vq̄m(1−
¯
qm)+α(1−

¯
r0)

. Let v∗ be the minimum

value that satisfies the above inequality. Then we have v∗ ≥ v∗(R), and hence

q∗(R) ≥ q(v∗, R) =
αr0qm(1− qm)

vqm(1− qm) + α(1 − r0)
≥

α
¯
r0
¯
qm(1− q̄m)

vq̄m(1−
¯
qm) + α(1−

¯
r0)

.

Moreover, we can similar construct an upper bound on the utility u(v, b) and let
¯
v∗ be the largest

value such that the upper bound on the utility is at most 0. Thus, we have v∗(R) ≥
¯
v∗ and hence

p(v∗(R), R) ≥ p(
¯
v∗, R) = α

(

b · qb + r0 log(
qm
qb

) +
(1− r0)(qm − qb)

qm
− log qm

)

≥ α

(

¯
b ·

¯
qb +

¯
r0 log(¯

qm

q̄b
) +

(1− r̄0)(
¯
qm − q̄b)

q̄m
− log q̄m

)

where
¯
b = ¯

v∗

α + 1−r̄0
1−

¯
qm

, q̄b =
αr̄0q̄m(1−

¯
qm)

¯
v∗

¯
qm(1−q̄m)+α(1−r̄0)

and
¯
qb =

α
¯
r0
¯
qm(1−q̄m)

¯
v∗ q̄m(1−

¯
qm)+α(1−

¯
r0)

. By combining the

inequalities, we have an lower bound on p(v∗(R), R) · q∗(R) as a function of (
¯
qm, q̄m,

¯
r0, r̄0). By

discretizing the feasible set and enumerating for all discretized points, we have a unified lower
bound on revenue for all possible distributions.
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