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Abstract

We study the online stochastic matching problem. Consider a bipartite graph with offline
vertices on one side, and with i.i.d. online vertices on the other side. The offline vertices and
the distribution of online vertices are known to the algorithm beforehand. The realization of
the online vertices, however, is revealed one at a time, upon which the algorithm immediately
decides how to match it. For maximizing the cardinality of the matching, we give a 0.711-
competitive online algorithm, which improves the best previous ratio of 0.706. When the offline
vertices are weighted, we introduce a 0.7009-competitive online algorithm for maximizing the
total weight of the matched offline vertices, which improves the best previous ratio of 0.662.

Conceptually, we find that the analysis of online algorithms simplifies if the online vertices
follow a Poisson process, and establish an approximate equivalence between this Poisson arrival
model and online stochstic matching. Technically, we propose a natural linear program for the
Poisson arrival model, and demonstrate how to exploit its structure by introducing a converse
of Jensen’s inequality. Moreover, we design an algorithmic amortization to replace the analytic
one in previous work, and as a result get the first vertex-weighted online stochastic matching
algorithm that improves the results in the weaker random arrival model.
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1 Introduction

Building on three decades of research started by Karp, Vazirani, and Vazirani [20], online matching
has developed to be a central topic in the literature of online algorithms. Among other applications,
online advertising has been a main driving force behind this development.

Example (Search Ads). Consider a search engine. Advertisers want their ads to be shown to
the users who search for certain keywords. When a user performs a search, the search engine needs
to immediately pick an advertiser interested in the search term and show its ad to the user.

This problem is often modeled as an online bipartite matching problem. The vertices on one
side correspond to the advertisers, and are known upfront. We call them the offline vertices. The
vertices on the other side correspond to the searches by users, and are revealed one at a time. We
call them the online vertices. The edges represent if the advertisers are interested in the search
terms. If the advertisers pay the same amount, say, 1 cent, per display of their ads to the relevant
searches, it is an unweighted matching problem whose goal is to maximize the cardinality of the
matching. If different advertisers pay different amounts per display, it is a vertex-weighted matching
problem in which we aim to maximize the total weight of the matched offline vertices.

Worst Case Model. Karp, Vazirani, and Vazirani [20] considered the worst case model, which
measures an online algorithm’s performance in the worst graph and worst arrival order of the
online vertices. Concretely, for any online algorithm, consider the ratio of the expected size of the
algorithm’s matching to the maximum matching in hindsight, in the worst graph and arrival order
that minimize the ratio. This is called the competitive ratio. In this model, Karp, Vazirani, and
Vazirani [20] introduced the Ranking algorithm that achieves the optimal 1− 1

e
≈ 0.632 competitive

ratio in the unweighted problem. Aggarwal, Goel, Karande, and Mehta [1] generalized it to the
vertex-weighted problem.

Random Order Model. Subsequently, researchers found the competitive ratios from the worst
case model to be too pessimistic, and introduced stochasticity to obtain better results. The weakest
form of stochasticity is the random order model, which still considers the worst graph for any give
algorithm but assumes that the online vertices arrive in a random order. Mahdian and Yan [21]
proved that the competitive ratio of Ranking for unweighted matching improves to 0.696 in this
model, and Karande, Mehta, and Tripathi [19] showed that it is at best 0.727-competitive. For
the vertex-weighted case, Huang, Tang, Wu, and Zhang [15] proposed a generalization of Ranking
that exploits the random arrival order, and its competitive ratio was improved to 0.662 by Jin and
Williamson [18].

Online Stochastic Matching. This paper will focus on the online stochastic matching model,
which makes a stronger stochastic assumption that the online vertices are independently and iden-
tically distributed (i.i.d.) according to a distribution. The distribution is known to the algorithm,
but the realization of the online vertices is not. An online algorithm’s competitive ratio is defined
against the worst distribution. In the unweighted case of this model, Feldman, Mehta, Mirrokni,
and Muthukrishnan [10] first beat 1− 1

e
competitive ratio, under the assumption of integral arrival

rate. Without this assumption, Manshadi, Oveis Gharan, and Saberi [22] gave the first algorithm,
and the state-of-the-art is the 0.706-competitive algorithm by Jaillet and Lu [17]. In the vertex-
weighted online stochastic matching, however, there has been no improvement over the random
order model, unless we make extra assumptions. See Subsection 1.2 for further related work on
special cases of online stochastic matching.
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1.1 Our Contributions

We introduce new online algorithms to obtain improved competitive ratios in both the unweighted
and the vertex-weighted problems, from 0.706 to 0.711 and from 0.662 to 0.7009 respectively. Our
vertex-weighted algorithm and the analysis are the first in the literature that successfully exploit
the stronger stochasticity in online stochastic matching than in the random order model.

Table 1: A summary of the results in this paper and in previous work

Unweighted Vertex-weighted

Worst Case Model 1− 1
e
≈ 0.632 [20] 1− 1

e
≈ 0.632 [1]

Random Order Model 0.696 [21] 0.662 [18]
Online Stochastic Matching 0.706 [17] 0.662 [18]

Online Stochastic Matching (This Paper) 0.711 0.7009

Conceptual Contribution: Poisson Arrivals. We find that the competitive analysis of online
algorithms become easier in a variant of online stochastic matching in which the online vertices
follow a Poisson process. In other words, the number of online vertices in this model is drawn
from a Poisson distribution instead of a fixed number as in the original model. For example, the
asymptotic independence among some events in the analysis of Jaillet and Lu [17] becomes genuine
independence in the Poisson arrival model. Furthermore, we show that for a natural family of
online algorithms, their competitive ratios in the Poisson arrival model also apply to the original
online stochastic matching model. See Section 2 for detail.

Technical Contribution 1: Natural Linear Program. Similar to the previous work on online
stochastic matching, we compare the algorithm’s matching to an upper bound of the optimal given
by a linear program (LP). To this end, we consider arguably the most natural LP that one could
write for this problem. In fact, the LPs used by the previous work are all relaxations of this
natural LP. See Appendix A for a comparison. Although the natural LP has exponentially many
constraints, we give a polynomial-time separation oracle and thus demonstrate its computational
tractability. Moreover, from the LP’s constraints we derive a converse of Jensen’s inequality, which
is repeatedly used throughout the paper. Section 3 presents this natural LP and its properties.

Technical Contribution 2: Algorithmic Amortization. The previous online algorithms for
unweighted online stochastic matching rely on an amortized analysis. For each offline vertex, we can
decompose its probability of being matched by the algorithm into two parts, which we shall refer to
as the basic and extra parts. Instead of comparing the contribution of an offline vertex to the LP
and the probability that it gets matched, i.e., the sum of its basic and extra parts, the amortized
analysis considers the sum of its basic part and its contribution to the extra parts of the other
vertices. It fails in the vertex weighted-case because the contribution to the other vertices’ extra
parts could be negligible if their weights are much smaller. We overcome this obstacle in Section 6
by moving from the analytic amortization to an algorithmic one. When an online vertex samples
an offline vertex to matched to, we let it drop the sampled offline vertex with some probability and
let it resample, even if the offline vertex is not yet matched. The drop rates are carefully designed
based on how much the offline vertices are matched in the natural LP. See Section 6 for detail.
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1.2 Other Related Work

Besides the aforementioned results [17, 22], online stochastic matching has also been studied in the
special case of integral arrival rates, i.e., when the expected number of online vertices of each type
is an integer. In fact, when Feldman, Mehta, Mirrokni, and Muthukrishnan [10] first introduced
online stochastic matching, they focused on this case and gave a 0.67-competitive algorithm. Their
algorithm is non-adaptive: its matching decisions are independent of what happened in previous
rounds. Later, the competitive ratio was improved in a series of works. Bahmani and Kapralov [2]
modified the algorithm of Feldman et al. [10] to make it 0.699-competitive. Manshadi, Oveis Gha-
ran, and Saberi [22] proposed a 0.705-competitive adaptive algorithm. They also showed that
no algorithm is better than 1 − 1

e2
≈ 0.862-competitive even in the special case of unweighted

matching with integral arrival rates, and for general arrival rates no algorithm is better than 0.823-
competitive. Further, Jaillet and Lu [17] designed LP-based algorithms that are 0.725-competitive
and 0.729-competitive in the vertex-weighted and unweighted problems respectively. Although the
constraints in their LP are looser than those in our natural LP, their constraints exploit the integral
arrival rates to ensure a semi-integral optimal solution. As a result, it is easier to convert their
LP solution into an online algorithm. Brubach, Sankararaman, Srinivasan, and Xu [3] proposed a
0.7299-algorithm by considering a different LP, which is between the LP of Jaillet and Lu [17] and
ours in terms of the tightness of constraints. See Appendix A for a comparison of the LPs.

In the more general edge-weighted problem, and still under the assumption of integral arrival
rates, Haeupler, Mirrokni, and Zadimoghaddam [13] proposed a 0.667-competitive algorithm, and
Brubach, Sankararaman, Srinivasan, and Xu [3] gave an improved 0.705-competitive algorithm.

The broader online matching literature is too vast to be covered extensively. Besides the men-
tioned results in the unweighted case [20] and vertex-weighted case [1], the edge-weighted case
was studied by Feldman, Korula, Mirrokni, Muthukrishnan, and Pál [9] and Fahrbach, Huang,
Tao, and Zadimoghaddam [8]. The algorithms and analysis have been unified under the online
primal dual framework [6, 7]. Other online matching problems from online advertising include
AdWords [4, 5, 11, 16, 25] and online matching with stochastic rewards [12, 14, 24, 26]. See the
survey by Mehta [23] for further references.

2 Online Stochastic Matching and Poisson Arrivals

Consider the matching in a bipartite graph. The offline vertices on one side are fixed. The online
vertices on the other side are i.i.d. Let I be the set of online vertex types. Let J be the set of
offline vertices. For any online type i ∈ I and any offline vertex j ∈ J , let wij ≥ 0 be the weight of
matching an online vertex of type i to the offline vertex j. The problem is unweighted if wij ∈ {0, 1},
and is vertex-weighted if wij ∈ {0, wi}, for any i ∈ I and any j ∈ J . Each online type i ∈ I further
has arrival rate λi, which equals the expected number of online vertices of type i in the graph.

Online Stochastic Matching. Online stochastic matching considers a random bipartite graph
G with Λ =

∑

i∈I λi online vertices1 arriving one at a time on one side, and with offline vertices

J on the other side. Each online vertex independently draws its type i ∈ I with probability λi

Λ .
The set of online types and the corresponding weights wij’s and arrival rates λi’s are known to the
algorithm, but the realization of the graph is not.

1In online stochastic matching setting the sum Λ is an integer, while in the Poisson arrival model it could be any

positive real number.
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Poisson Arrival Model. The competitive analyses of online algorithms substantially simplify
in a variant of the online stochastic matching model. Instead of having a fixed number of online
vertices, let each type independently follow a Poisson process with arrival rate λi. Equivalently,
draw the number of online vertices from a Poisson distribution with mean Λ.

Online Algorithms. An online algorithm makes the matching decision for each online vertex
irrevocably and immediately upon its arrival. Let Alg be the expected total weight of the edges in
the algorithm’s matching. We shall consider the standard competitive analysis with respect to the
expected total weight of the maximum weight matching of the realized graph G, denoted as Opt.
The competitive ratio of an online algorithm is the infimum of Alg

Opt
over all possible instances.

Theorem 1. Fix any distribution of online vertices and any Λ:

1. The optimal of online stochastic matching is at least the optimal of the Poisson arrival model.

2. The optimal of the Poisson arrival model is at least 1 −O(Λ− 1

2 ) times the optimal of online
stochastic matching.

Proof. For the fixed distribution, letOptn be the difference between the optimal of online stochastic
matching with n and n−1 online vertices. Since dropping a random online vertex from the optimal
solution with n vertices gives a solution to the case of n− 1 vertices, Optn is nonincreasing in n.

By definition, the optimal of online stochastic matching with the given Λ equals
∑Λ

n=1 Optn.

Similarly, the optimal of the Poisson arrival model equals
∑∞

m=1
Λme−Λ

m!

∑m
n=1 Optn. Since both

have Λ vertices in expectation, the first part of the theorem follows from the monotonicity of Optn.
Next we prove the second part. The optimal of the Poisson arrival model is lower bounded by:

∞∑

m=1

Λme−Λ

m!

min{Λ,m}
∑

n=1

Optn ≥

∞∑

m=1

Λme−Λ

m!

min{Λ,m}

Λ

Λ∑

n=1

Optn (monotone Optn)

=
(

1−O
(
Λ− 1

2

))
Λ∑

n=1

Optn . (tail bound of Poisson)

We include a proof of the tail bound in Appendix B.1 for completeness.

Monotone Online Algorithms. For any n ≥ 1, let Algn denote the expected weight that the
algorithm gets from matching the n-th online vertex. An online algorithm is monotone if Algn is
nonincreasing in n; it is α-approximately monotone if Algn ≤ α ·Algℓ for any n > ℓ. Intuitively,
natural online algorithms shall be monotone since there are fewer remaining offline vertices as n

increases. Indeed, our unweighted algorithm is monotone, and our vertex-weighted algorithm is
O(1)-approximately monotone. To our knowledge, so are the existing algorithms in the literature.

Theorem 2. Fix any distribution of online vertices and any Λ:

1. For any monotone algorithm, its objective in online stochastic matching is at least its objective
in the Poisson arrival model.

2. For any α-approximately monotone algorithm, its objective in online stochastic matching is
at least 1−O(αΛ− 1

2 ) times its objective in the Poisson arrival model.

4



Proof. (Part 1: Monotone Algorithms) By definition, the objective when there are m online
vertices equals

∑m
n=1Algn. Hence, its objective in online stochastic matching is

∑Λ
n=1Algn, and

its objective in the Poisson arrival model is
∑∞

m=1
Λme−Λ

m!

∑m
n=1Algn. Since both have Λ vertices

in expectation, the first part of the theorem follows from the monotonicity of Algn.

(Part 2: Approximately Monotone Algorithms) The difference between the algorithm’s
objectives in the Poisson arrival model and in online stochastic matching is:

∞∑

m=1

Λme−Λ

m!

m∑

n=1

Algn −

Λ∑

n=1

Algm =

∞∑

n=1

Algn

∞∑

m=n

Λme−Λ

m!
−

Λ∑

n=1

Algn .

Since
∑∞

m=n
Λme−Λ

m! <
∑∞

m=0
Λme−Λ

m! = 1, we can drop all Algn for 1 ≤ n ≤ Λ and bound it by:

∞∑

n=Λ+1

Algn

∞∑

m=n

Λme−Λ

m!
≤

∞∑

n=Λ+1

(α

Λ

Λ∑

ℓ=1

Algℓ

) ∞∑

m=n

Λme−Λ

m!
(α-approx. monotone Algn)

=
α

Λ

∞∑

m=Λ+1

Λme−Λ

m!
(m− Λ)

Λ∑

ℓ=1

Algℓ

= O
(
αΛ− 1

2

)
Λ∑

ℓ=1

Algℓ . (tail bound of Poisson)

Rearranging terms proves the theorem. See Appendix B.1 for a proof of the tail bound.

Hence, we will analyze our monotone or O(1)-approximately monotone algorithms in the Poisson
arrival model. By Theorem 1 and Theorem 2, the competitive ratios then hold in both models, up
to a 1−O(Λ− 1

2 ) factor which is negligible for sufficiently large instances. We remark that previous
works by Manshadi et al. [22] and Jaillet and Lu [17] also assumed sufficiently large instances.

3 Natural Linear Program

We consider the following LP relaxation, and let Nat denote its optimal value.

maximize
∑

i∈I

∑

j∈J

wijxij

subject to
∑

j∈J

xij ≤ λi ∀i ∈ I

∑

i∈S

xij ≤ 1− exp
(

−
∑

i∈S

λi

)

∀j ∈ J,∀S ⊆ I

xij ≥ 0 ∀i ∈ I,∀j ∈ J

(Nat)

It is natural in the sense that the second constraint holds naturally in the Poisson arrival model.
Although it does not hold in the general case of online stochastic matching, it is asymptotically
true when there are sufficiently many online vertices, which is focal case in existing works such as
Manshadi et al. [22] and Jaillet and Lu [17]. In deed, both works used the constraint xij ≤ 1 − 1

e

in their LPs which is a special case of the second constraint in our natural LP. See Appendix A for
further discussions.

Theorem 3. In the Poisson arrival model, Opt ≤ Nat.
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Proof. We will construct a feasible solution to the natural LP whose objective equals the expected
size of the optimal matching of the realized graph. Let xij be the probability that offline vertex j

is matched to an online vertex of type i. Then, the objective of the natural LP equals the expected
total weight of the matching.

It remains to show feasibility. For any online type i,
∑

j∈J xij is the expected number of matched
online vertices of type i, which is no more than the expected number of online vertices of type i,
i.e., λi. For any offline vertex j, and any subset of online types in j’s neighborhood S ⊆ I,

∑

i∈S xij
is the probability that j is matched to an online vertex whose type is in S, which is no more than
the probability that there is an online vertex whose type is in S, i.e., 1− exp

(
−
∑

i∈S λi

)
. Finally

for any i ∈ I and any j ∈ J , xij is nonnegative by definition.

3.1 Computational Tractability

The natural LP has an exponential number of constraints. Nonetheless, this subsection shows how
to solve it in polynomial time using a separation oracle and the ellipsoid method. We first introduce
an equivalent form of the second constraint.

Lemma 4. The second constraint of the natural LP is equivalent to the following condition. For
any offline vertex j, and any non-negative weights 0 ≤ µi ≤ λi for i ∈ I:

∑

i∈I

µixij

λi
≤ 1− exp

(

−
∑

i∈I

µi

)

.

Proof. On the one hand, the second constraint of the natural LP is the special case of the condition
in the lemma when µi ∈ {0, λi} for all i ∈ I.

On the other hand,
∑

i∈I
µixij

λi
+ exp

(
−

∑

i∈I µi

)
is convex in µi for each i ∈ I. Hence, its

maximum is achieved at a vertex of the feasible hyperrectangle, i.e., µi ∈ {0, λi} for all i ∈ I. In
other words, the special case is sufficient for ensuring the general case.

Theorem 5. The natural LP is solvable in polynomial time.

Proof. It suffices to find a separation oracle, in particular, for the second constraint of the natural
LP. To do so, we propose an algorithm that for each offline vertex j finds a subset of its neighborhood
S ⊆ I that maximizes:

∑

i∈S

xij + exp
(

−
∑

i∈S

λi

)

.

By Lemma 4, this is equivalent to finding 0 ≤ µi ≤ λi for i ∈ I that maximizes:

∑

i∈I

µixij

λi
+ exp

(

−
∑

i∈I

µi

)

.

For any fixed value of
∑

i∈I µi and thus the second term, the first term
∑

i∈I
µixij

λi
is maximized

when we assign µi greedily in descending order of
xij

λi
. Hence, the algorithm sorts j ∈ J in descending

order of
xij

λj
, and checks the constraint only for subsets S comprised of the first k elements in that

order for 1 ≤ k ≤ |I|.
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3.2 A Converse of Jensen’s Inequality

For any convex function f , Jensen’s inequality asserts that for any j ∈ J (recall that Λ =
∑

i∈I λi):

∑

i∈I

λif
(xij

λi

)

≥ Λf
(
∑

i∈I xij

Λ

)

.

On the other hand, the constraints of the natural LP bound how wide-spread the mass could
be, leading to a converse of Jensen’s inequality.

Lemma 6. For any convex function f satisfying f(0) = 0, any offline vertex j ∈ J , and any
feasible assignment

(
xij

)

(i,j)∈E
of the natural LP:

∑

i∈I

λif
(xij

λi

)
≤

∫ − ln(1−xj)

0
f
(
e−λ

)
dλ .

Proof. We will prove a more general result. Let G(λ) = min
{
xj, 1− e−λ

}
and let its derivate be:

g(λ) =

{

e−λ if λ ≤ − ln(1− xj) ;

0 otherwise.

Further consider an arbitrary differentiable H such that H(λ) ≤ G(λ) for all λ ≥ 0; let h denote
its derivative. We claim that:

∫ ∞

0
f
(
h(λ)

)
dλ ≤

∫ − ln(1−xj)

0
f
(
e−λ

)
dλ , (1)

where equality holds when H = G. Assume without loss of generality that I = {1, 2, . . . , |I|} and
xij

λi
is nonincreasing in i. The lemma follows as a special case when:

H(λ) =

{
∑k−1

i=1 xij +
λ−

∑k−1

i=1
λi

λk
xkj if

∑k−1
i=1 λi ≤ λ <

∑k
i=1 λi for some 1 ≤ k ≤ |I|;

xj if λ ≥
∑

i∈I λi .

Next we prove the general inequality in Eqn. (1):

∫ ∞

0
f
(
h(λ)

)
dλ =

∫ ∞

0

∫ h(λ)

0
f ′(y)dydλ

=

∫ ∞

0

∫ h(λ)

0

∫ y

0
f ′′(z)dzdydλ

=

∫ 1

0

(
H
(
h−1(z)

)
− zh−1(z)

)
f ′′(z)dz (change order of integration)

≤

∫ 1

0

(
G
(
h−1(z)

)
− zh−1(z)

)
f ′′(z)dz . (H(λ) ≤ G(λ))

Since G(y) − zy is a concave function of y and its derivative equals 0 when g(y) = z, the
maximum is achieved when g(h−1(z)) = z, i.e., if G = H and g = h.
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4 Meta Algorithm

This section presents a meta algorithm and establishes its properties. It captures the algorithms
in this paper, and the algorithms by Manshadi et al. [22] and Jaillet and Lu [17] as special cases.

Upon the arrival of an online vertex, sample a pair of neighbors (j, k) from a distribution that
depends on its type i, independent to the sampled pairs for previous online vertices. Then try j as
the first option. If j is already matched, continue to try k as the second option. We further define
a dummy neighbor ⊥, which will always be treated as already matched. Hence, we may drop the
first or the second option by letting j = ⊥ or k = ⊥. Let J∗ = J ∪ {⊥} be the extended set of
offline vertices.

Formally, the algorithm is parameterized by a collection of distributions Di = ∆(J∗ × J∗) for
all i ∈ I. Let Di(j, k) denote the probability of sampling (j, k) from Di. See Algorithm 1.

Algorithm 1 (Pair Sampling).
For each online vertex coming, say, of type i:

1. Sample (j, k) from Di.

2. Match i to j if j 6=⊥ and it is not yet matched.

3. Otherwise, match i to k if it is not yet matched.

4.1 Extended Types and Independence Properties

We extend the type i of an online vertex to be a tuple (i, j, k) if the meta algorithm samples (j, k).
Further, we say that an online vertex has type (i, ∗, ∗) if its type is (i, j, k) for some j, k, and likewise
for types (∗, j, ∗) and (∗, j, k). Let µjk =

∑

i∈I λiDi(j, k) be the expected number of online vertices
for which the algorithm samples pair (j, k), for any j, k ∈ J∗. Similarly, let µj =

∑

k∈J∗ µjk be
the expected number of online vertices for which the algorithm samples j as the first entry, for
any j ∈ J . Here we intentionally leave out the case of j = ⊥ in the definition of µj because the
analysis will handle the dummy vertex separately. The Poisson arrival model implies the following
independence properties, which hold only asymptotically in online stochastic matching (see, e.g.,
Lemma 4 of Jaillet and Lu [17]).

Lemma 7. In the Poisson arrival model, for any j, k ∈ J∗, online vertices of type (∗, j, k) follow a
Poisson process with arrival rate µjk, independent across different (j, k) pairs.

Proof. It holds because the online vertices follow a Poisson process and the probability that an
online vertex samples (j, k) is µjk.

As a corollary, we have a similar property for types (∗, j, ∗) for all j ∈ J .

Lemma 8. In the Poisson arrival model, independently for any j ∈ J∗, online vertices of type
(∗, j, ∗) follow a Poisson process. The arrival rate is µj for any j ∈ J .

4.2 Probability of Matching an Offline Vertex

For an offline vertex type j ∈ J , j may be matched in the following ways:

1. j is matched by an online vertex of type (∗, j, ∗);

2. j is matched by an online vertex of type (∗,⊥, j);

3. Some k 6= j is matched by type (∗, k, ∗) before the appearance of (∗, k, j).

8



We remark that the above list is not exhaustive in general. For example, three consecutive online
vertices of type (∗, ℓ, ∗), (∗, ℓ, k), (∗, k, j) for some k, ℓ 6= j may match ℓ, k and finally j.

The probability that j is matched by the first two cases is straightforward. We next compute
the probability that j is matched by the last case.

Lemma 9. Consider any offline vertex j ∈ J . For any other offline vertex k ∈ J \ {j}, the
probability that there is at least one online vertex of type (∗, k, j) after the first appearance of type
(∗, k, ∗) is:

{

1− µk

µk−µkj
e−µkj +

µkj

µk−µkj
e−µk µk 6= µkj ;

1− e−µk − µke
−µk µk = µkj .

Further, this is independent for different k ∈ J\ {j}, and is independent to online vertices of type
(∗, j, ∗) and (∗,⊥, ∗).

Proof. By Lemma 8, the probability of having ℓ ≥ 2 online vertices of type (∗, k, ∗) is
µℓ
k
e−µk

ℓ! . For
each of these online vertices, except the first one, its type is (∗, k, j) independently with probability
µkj

µk
by Lemma 7. Therefore, the probability in the lemma is:

∞∑

ℓ=2

µℓ
ke

−µk

ℓ!

(

1−
(

1−
µkj

µk

)ℓ−1)

=
∞∑

ℓ=2

µℓ
ke

−µk

ℓ!
−

∞∑

ℓ=2

µk(µk − µkj)
ℓ−1e−µk

ℓ!
.

By the Taylor series of ex:

∞∑

ℓ=2

µℓ
ke

−µk

ℓ!
= 1− e−µk − µke

−µk

∞∑

ℓ=2

µk(µk − µkj)
ℓ−1e−µk

ℓ!
=







µke
−µk

µk−µkj
(eµk−µkj − 1− (µk − µkj)) µk 6= µkj ;

0 µk = µkj .

Grouping terms by e−µk and e−µkj gives the probability in the lemma. Finally, the independence
follows by Lemma 7 and Lemma 8.

Auxiliary Function φ. Define φ(x, y) so that eφ(µj ,µjk) equals the probability of having no online
vertex of type (∗, j, k) after the first appearance of type (∗, j, ∗), including the case of having no
vertex of type (∗, j, k). In other words, with probability eφ(µj ,µjk) the algorithm has never tried to
match an online vertex of type (∗, j, ∗) to k. By Lemma 9:

φ(x, y)
def
=







ln
(

x
x−y

e−y − y
x−y

e−x
)

x 6= y ;

ln(1 + x)− x x = y .

Lemma 10. For any offline vertex j ∈ J , the meta algorithm matches it with probability at least:

1− e−µj · e−µ⊥j · e
∑

k∈J\{j} φ(µk ,µkj) .

Proof. The algorithm does not match j if and only if none of the following events happen: (1) there
is no online vertex of type (∗, j, ∗); (2) there is no online vertex of type (∗,⊥, j); and (3) there is
no online vertex of type (∗, k, j) after the first online vertex of type (∗, k, ∗), for some k ∈ J \ {j}.
There events are independent, and happen with probability e−µj , e−µ⊥j , and eφ(µk ,µkj) respectively
by Lemma 7, Lemma 8, and the definition of auxiliary function φ.
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4.3 Properties of the Auxiliary Function

Lemma 11. For any x, y ∈ [0, 1], φ(x, y) is non-increasing and convex w.r.t. each coordinate.

Proof. By symmetry, it suffices to prove it for y. Equivalently, we need the following first-order
and second-order partial derivatives in y to be non-positive and non-negative respectively.

∂

∂y
f(x, y) =

x
(
(1− x+ y)e−y − e−x

)

(xe−y − ye−x)(x− y)
,

∂2

∂y2
φ(x, y) =

x
(
xe−2y − y(x− y)2e−(x+y) − (x− 2y)e−2x

)

(xe−y − ye−x)2(x− y)2
.

The first-order derivative is non-positive since 1−x+y ≤ e−x+y. For the second-order derivative,
consider the equation within the parentheses in the numerator. Since x− y ∈ [−1, 1], it is at least:

xe−2y − ye−(x+y) − (x− 2y)e−2x .

Rearranging terms, we can write it as the sum of x
(
e−y − e−x

)2
, 2(x − y)e−x

(
e−y − e−x

)
, and

ye−(x+y), all of which are nonnegative for any x, y ≥ 0.

As a corollary of its convexity, we obtain an upper bound of the value of f .

Lemma 12. For any x, y ∈ [0, 1], φ(x, y) ≤ (ln 2− 1)xy.

Proof. By the convexity in Lemma 11, and that φ(x, 0) = φ(0, y) = φ(0, 0) = 0:

φ(x, y) ≤ φ(x, 1) · y ≤ φ(1, 1) · xy .

The lemma then follows by φ(1, 1) = ln 2− 1.

4.4 Monotonicity in Unweighted Matching

This subsection shows that the meta algorithm (Algorithm 1) is monotone in the unweighted setting.
Hence, by Theorems 1 and 2, the competitive ratios in Poisson arrival model also holds in online
stochastic matching, up to a 1−O(Λ− 1

2 ) factor.

Lemma 13. For any distributions Di’s, the meta algorithm is monotone in the unweighted case of
online stochastic matching.

Proof. The expected gain from the ℓ-th online vertex equals the probability that at least one of
its sampled offline vertices j, k is still unmatched. Since the distribution of online types and the
distributions Di’s are time invariant, the above probability is non-increasing in n.

5 Unweighted Matching

5.1 Wasteful Correlated Sampling

Our starting point is the algorithm by Jaillet and Lu [17], which we restate below. We will refer
to it as Wasteful Correlated Sampling because it may sample k = j in some cases, and thus waste
the second entry. Further, we shall denote the sampling distributions as D1

i for i ∈ I because they
fall into a broader family of distributions Dc

i for any c ≥ 1, which we shall explain shortly in the
next subsection. Our final algorithm will be the limit case when c = ∞.

Let {xij}i∈I,j∈J be the optimal solution of Nat. Define xj =
∑

i∈i xij for all j ∈ J , and
xi⊥ = λi −

∑

j∈J xij so that
∑

j∈J∗ xij = λi.

10



I1 I2 I3 I⊥

0.4 0.24 0.16 0.2

i

1 2 3

λi = 1

xi1 = 0.4
xi2 = 0.24

xi3 = 0.16

Figure 1: Illustration of intervals I1, I2, I3 and I⊥ for online type i ∈ I with neighbors 1, 2, 3.

Definition 1 (Wasteful Correlated Sampling). For any online type i ∈ I, a sample (j, k) from D1
i

is generated as follows:

1. Consider an interval [0, λi). Align subintervals Ij ⊂ [0, λi) of lengths xij for j ∈ J∗ from left
to right. See Figure 1.

2. Sample ν ∈ [0, λi) uniformly at random. Let ν ′ = ν ± λi

2 such that ν ′ ∈ [0, λi). Note that ν
and ν ′ are equally distributed.

3. Let j, k ∈ J∗ be such that ν ∈ Ij and ν ′ ∈ Ik.

Let µjk(1) =
∑

i∈I λkD
1
i (j, k) for any j, k ∈ J∗, and µj(1) =

∑

k∈J∗ µjk(1) denote the arrival
rates of online vertices of type (∗, j, k) and (∗, j, ∗) w.r.t. distributions D1

i ’s.

Lemma 14. Wasteful Correlated Sampling satisfies the following properties:

1. For any j ∈ J , µj(1) = xj .

2. For any j ∈ J ,
∑

k∈J∗\{j} µkj(1) is at most 1.

3. For any j ∈ J ,
∑

k∈J∗\{j} µjk(1) is at least:

κ(xj)
def
=







− ln(1− xj)− xj 0 ≤ xj ≤
1
2 ;

xj − 1 + ln 2 1
2 < xj ≤ 1 .

4. For any j 6= k ∈ J∗, µjk(1) = µkj(1).

Proof. (Part 1) By definition, the probability that an online vertex of type i samples j as the
first entry is

xij

λi
. Hence, we get that µj(1) =

∑

i∈I λi ·
xij

λi
= xj.

(Part 2) By changing the order of summation, we get that:
∑

k∈J∗\{j}

µkj(1) =
∑

k∈J∗\{j}

∑

i∈I

λiD
1
i (k, j) =

∑

i∈I

λi

∑

k∈J∗\{j}

D1
i (k, j) .

Further, an online vertex of type i samples j ∈ J as second entry with probability at most
xij

λi
;

it may be smaller because the two entries may be equal in some cases. Hence:
∑

k∈J∗\{j}

µkj(1) ≤
∑

i∈I

λi
xij

λi
=

∑

i∈I

xij ≤ 1 .

(Part 3) The probability that an online vertex of type i samples j ∈ J as the first entry, and
further samples a second entry k 6= j equals min{

xij

λi
, 1−

xij

λi
}, or equivalently,

xij

λi
−max{2·

xij

λi
−1, 0}.

Hence, letting f(x) = max{2x− 1, 0}, we have:
∑

k∈J∗\{j}

µjk(1) =
∑

i∈I

λi

(xij

λi
− f

(xij

λi

))

= xj −
∑

i∈I

λif
(xij

λi

)

.
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Further by the converse of Jensen’s inequality in Lemma 6, this is at most:

xj −

∫ − ln(1−xj)

0
f
(
e−λ

)
dλ =







− ln(1− xj)− xj xj ≤
1
2 ;

xj − 1 + ln 2 xj >
1
2 .

(Part 4) It follows by the symmetric joint distribution of (ν, ν ′).

We now present an analysis of the Pair Sampling algorithm with Wasteful Correlated Sampling
that is simpler but weaker than the 0.706 competitive raito by Jaillet and Lu [17]. Nonetheless, we
develop in the process some lemmas that are useful in the analysis of the final algorithm.

Theorem 15. The competitive ratio of Pair Sampling with Wasteful Correlated Sampling in the
unweighted case of online stochastic matching is at least:

1−
1

e
+

1

e

(
1−

2

e

)
ln 2 > 0.699 .

Proof. We follow the framework of Jaillet and Lu [17], except that the Poisson arrival model ensures
true independence among online vertices of type (∗, j, ∗) for all j ∈ J , instead of the asymptotic
independence in Jaillet and Lu [17]. Since µj(1) = xj for any j ∈ J due to Lemma 14, by Lemma 10
the expected size of the algorithm’s matching is at least:

Alg ≥
∑

j∈J

(

1− e−xj · e−µ⊥j(1) · e
∑

k∈J\{j} φ(xk,µkj(1))
)

.

Further by φ(x, y) ≤ (ln 2− 1)xy according to Lemma 12, it is at least:

∑

j∈J

(

1− e−xj · e−µ⊥j(1)−(1−ln 2)
∑

k∈J\{j} xkµkj(1)
)

.

We artificially decrease µ⊥j(1) = µj⊥(1) (Lemma 14) to (1 − ln 2)xjµj⊥(1) to mimic the form
of the other terms as a preparation for the amortized argument. Alg is then lower bounded by:

∑

j∈J

(

1− e−xj · e−(1−ln 2)(xjµj⊥(1)+
∑

k∈J\{j} xkµkj(1))
)

.

Splitting each term as 1− e−xj + e−xj
(
1− e

−(1−ln 2)(xjµj⊥(1)+
∑

k∈J\{j} xkµkj(1))
)
, we get:

Alg ≥
∑

j∈J

(

1− e−xj

︸ ︷︷ ︸

(basic)

+
1

e

(
1− e

−(1−ln 2)(xjµj⊥(1)+
∑

k∈J\{j} xkµkj(1))
)

︸ ︷︷ ︸

(extra)

)

.

The key step is an amortized analysis that bounds the extra part above. We state it as a lemma
so that it can be used in the analysis the final algorithm. Informally, the amortization counts each
vertex j’s basic part, and its contribution to the extra part of the other vertices.

Lemma 16. The extra part is at least:

1

e

(
1−

2

e

)∑

j∈J

xj
∑

k∈J∗\{j}

µjk(1) .
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Proof of Lemma 16. By 1− e−cx ≥ (1− e−c)x for any c ≥ 0 and any 0 ≤ x ≤ 1, this is at least:

1

e

(
1−

2

e

)∑

j∈J

(

xjµj⊥(1) +
∑

k∈J\{j}

xkµkj(1)
)

Changing the order of summations in the second term proves the lemma.

By Lemma 16 and further by the third property of Lemma 14, we have:

Alg ≥
∑

j∈J

(

1− e−xj +
1

e

(
1−

2

e

)
xjκ(xj)

)

.

For xj ≤
1
2 , the basic part alone is sufficient because 1− e−x ≥ (1− e−

1

2 )2x > 0.786 · x for any
0 ≤ x ≤ 1

2 . For xj >
1
2 , we have κ(xj) = xj − 1 + ln 2. We shall use the next lemma, whose proof

is deferred to Appendix B.2 since it is simple but tedious calculus.

Lemma 17. The function 1−e−x

x
+ 1

e

(
1− 2

e

)
x is decreasing in x ∈ [12 , 1].

By Lemma 17, we have:

1− e−xj +
1

e

(
1−

2

e

)
xj
(
xj − 1 + ln 2

)
≥

(

1−
1

e
+

1

e

(
1−

2

e

)
ln 2

)

xj > 0.699 · xj .

Hence, summing the inequalities for all offline vertices j ∈ J proves the theorem.

5.2 Correlated Sampling

Consider the wasteful case of D1
i in the previous subsection for some online vertex type i ∈ I,

i.e., when there is some offline vertex j∗ such that xij∗ > 1
2λi. In this case, Wasteful Correlated

Sampling has a simpler and equivalent interpretation:

1. Sample j ∈ J with probability
xij

λi
.

2. If j 6= j∗, let k = j∗.

3. If j = j∗, sample k ∈ J∗ \ {j∗} with probability xik

xij∗
, and k = j∗ with probability

λi−xij∗

xij∗
.

This subsection considers a variant that is not wasteful by increasing the probability of sampling
k ∈ J∗ \ {j∗} to xik

λi−xij∗
in the third step and, as a result, eliminating the case of k = j∗. As

intermediate steps in the analysis, we will more generally consider a family of β-Correlated Sampling
algorithms for any β ≥ 1. Denote the corresponding distributions as Dβ

i for all online vertex types
i ∈ I. The unwasteful algorithm is the limit case when β → ∞, for which case we omit β and call
it Correlated Sampling.

Definition 2 (β-Correlated Sampling). For any online type i ∈ I, let Dβ
i = D1

i if xij ≤
1
2λi for all

j ∈ J∗. Otherwise, a sample (j, k) from D
β
i is generated as follows:

1. Sample j with probability
xij

λi
.

2. If j 6= j∗, let k = j∗.

3. If j = j∗, sample k ∈ J∗ with probability:






xik

xij∗
·min

{

β,
xij∗

λi−xij∗

}

k 6= j∗ ;

max
{

1−
β(λi−xij∗ )

xij∗
, 0
}

k = j∗ .
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Let µjk(β) =
∑

i∈I λkD
β
i (j, k) for any j, k ∈ J∗, and µj(β) =

∑

k∈J∗ µjk(β) denote the arrival

rates of online vertices of type (∗, j, k) and (∗, j, ∗) w.r.t. distributions Dβ
i ’s.

Lemma 18. For any β ≥ 1, the following properties hold for β-correlated sampling.

1. For any j ∈ J , µj(β) = xj.

2. For any j ∈ J ,
∑

k∈J∗\{j} µkj(β) is at most β.

3. For any j ∈ J ,
∑

k∈J∗\{j} µjk(β) is at least:

κ(β, xj)
def
=







−β
(
ln(1− xj) + xj

)
0 ≤ xj ≤

1
β+1 ;

xj − 1 + β ln β+1
β

1
β+1 < xj ≤ 1 .

4. For any j 6= k ∈ J∗, µjk(β) ≤ β · µjk(1).

5. For any j 6= k ∈ J∗, µjk(β) ≤ β · µkj(β).

Proof. (Part 1) This is verbatim to the case of β = 1. By definition, the probability of an online
vertex of type i samples j as the first entry is

xij

λi
. Hence, we get that µj(β) =

∑

i∈I λi ·
xij

λi
= xj .

(Part 2) It follows by comparing the definitions, as the probabiltiy D
β
i (jk) ≤ βD1

i (j, k), then
applying lemma 14.

(Part 3) By changing the order of summation:

∑

k∈J∗\{j}

µjk(β) =
∑

k∈J∗\{j}

∑

i∈I

λiD
β
i (j, k) =

∑

i∈I

λi

∑

k∈J∗\{j}

D
β
i (j, k) .

An online vertex of type i samples j ∈ J as first entry and further some k 6= j as the second
entry with probability min

{xij

λi
, β

(
1−

xij

λi

)}
, or equivalently,

xij

λi
−max{(β + 1)

xij

λi
− β, 0}. Hence,

letting f(x) = max{(β + 1)x− β, 0}:

∑

k∈J∗\{j}

µjk(β) =
∑

i∈I

λi

(xij

λi
− f

(xij

λi

))

= xj −
∑

i∈I

λif
(xij

λi

)

.

Further by Lemma 6, this is at most:

xj −

∫ − ln(1−xj)

0
f
(
e−λ

)
dλ =







−β
(
ln(1− xj) + xj

)
xj ≤

1
β+1 ;

xj − 1 + β ln β+1
β

xj >
1

β+1 .

(Part 4) It follows by D
β
i (jk) ≤ βD1

i (j, k).

(Part 5) By the second part we have µjk(1) ≤ µjk(β) ≤ β · µjk(1) for any j 6= k ∈ J∗. Hence,
this part follows by µjk(1) = µkj(1) due to Lemma 14.

With these properties of β-correlated sampling, we now prove our main theorem.

Theorem 19. Pair Sampling with Correlated Sampling is at least 0.711-competitive.
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Proof. Since µj(∞) = xj for any j ∈ J due to Lemma 18, by Lemma 10 the expected size of the
algorithm’s matching is at least:

Alg ≥
∑

j∈J

(

1− e−xj · e−µ⊥j(∞) · e
∑

k∈J\{j} φ(xk,µkj(∞))
)

.

By the monotonicity of µjk(β)’s in β, for c = 1
1−ln 2 , the above bound is at least:

∑

j∈J

(

1− e−xj · e−µ⊥j(c) · e
∑

k∈J\{j} φ(xk,µkj(c))
)

.

By φ(x, y) ≤ (ln 2 − 1)xy (Lemma 12), by µ⊥j(c) ≥ 1
c
µj⊥(c) = (1 − ln 2)µj⊥(c) (Lemma 18),

and by xj ≤ 1, this is at least:

Alg ≥
∑

j∈J

(

1− e−xj · e−(1−ln 2)(xjµj⊥(c)+
∑

k∈J\{j} xkµkj(c))
)

.

Splitting the term as 1 − e−xj + e−xj
(
1 − e

−(1−ln 2)(xjµj⊥(c)+
∑

k∈J\{j} xkµkj(c))
)
for each offline

vertex j ∈ J , by xj ≤ 1 this is at least:

1− e−xj +
1

e

(
1− e

−(1−ln 2)(xjµj⊥(c)+
∑

k∈J\{j} xkµkj(c))
)
.

Further split the second part to get:

1− e−xj

︸ ︷︷ ︸

(basic)

+
1

e

(
1− e

−(1−ln 2)(xjµj⊥(1)+
∑

k∈J\{j} xkµkj(1))
)

︸ ︷︷ ︸

(extra)

+
1

e

(
e
−(1−ln 2)(xjµj⊥(1)+

∑
k∈J\{j} xkµkj(1)) − e

−(1−ln 2)(xjµj⊥(c)+
∑

k∈J\{j} xkµkj(c))
)

︸ ︷︷ ︸

(advanced)

.

Amortizing the Extra Part. We will use the same amortized analysis in the previous subsection
to bound the extra part above. By Lemma 16, the extra part summing over j is at least:

∑

j∈J

1

e

(
1−

2

e

)
xj

∑

k∈J∗\{j}

µjk(1) .

To simplify notation, for any β ≥ 1 define:

µj→(β)
def
=

∑

k∈J∗\{j}

µjk(β) .

Hence, we rewrite the bound as:

∑

j∈J

1

e

(
1−

2

e

)
xjµj→(1) .
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Amortizing the Advanced Part. This part, omitting the 1
e
, can be written as:

−

∫

β∈[1,c]
de

−(1−ln 2)(xjµj⊥(β)+
∑

k∈J\{j} xkµkj(β))

= (1− ln 2)

∫

β∈[1,c]
e
−(1−ln 2)(xjµj⊥(β)+

∑
k∈J\{j} xkµkj(β))d

(

xjµj⊥(β) +
∑

k∈J\{j}

xkµkj(β)
)

.

Next we bound the magnitude of the exponent. First, by xj, xk ≤ 1:

xjµj⊥(β) +
∑

k∈J\{j}

xkµkj(β) ≤ µj⊥(β) +
∑

k∈J\{j}

µkj(β) .

Further by µjk(β) ≤ βµjk(1) and µj⊥(1) = µ⊥j(1), it is at most:

β
(

µ⊥j(β) +
∑

k∈J\{j}

µkj(β)
)

≤ β .

Hence, the advanced part is at least:

(1− ln 2)

∫

β∈[1,c]
e−(1−ln 2)βd

(

xjµj⊥(β) +
∑

k∈J\{j}

xkµkj(β)
)

.

Summing over j allows us to amortize as follows:

(1− ln 2)

∫

β∈[1,c]
e−(1−ln 2)βd

(∑

j∈J

xjµj⊥(β) +
∑

j∈J

∑

k∈J\{j}

xkµkj(β)
)

.

= (1− ln 2)

∫

β∈[1,c]
e−(1−ln 2)βd

∑

j∈J

∑

k∈J∗\{j}

xjµjk(β)

=
∑

j∈J

(1− ln 2)xj

∫

β∈[1,c]
e−(1−ln 2)βdµj→(β) .

Integrate by parts, for each j the above equals:

(1− ln 2)xj

(

e−(1−ln 2)cµj→(c)−
2

e
µj→(1) +

∫

β∈[1,e]
µj→(β)e−(1−ln 2)β(1− ln 2)dβ

)

.

Putting Everything Together. The sum of the lower bounds above for the extra and advanced
parts is:

∑

j∈J

xj

e

((
1− ln 2

)
e−(1−ln 2)cµj→(c) +

(

1−
2

e
−

2(1 − ln 2)

e

)

µj→(1)

+
(
1− ln 2

)
∫

β∈[1,e]
µj→(β)e−(1−ln 2)β(1− ln 2)dβ

)

.

Since the coefficients of µj→(β) are positive for all β ∈ [1, c], the minimum is achieved when
µj→(β) = κ(β, xj) subject to the fourth property of Lemma 18. Hence we conclude that:

Alg ≥
∑

j∈J

(

1− e−xj +
1

e

(
1−

2

e

)
xjκ(1, xj) +

1− ln 2

e
xj

∫

β∈[1,c]
e−(1−ln 2)βdκ(β, xj)

)

.

16



For xj ≤
1
2 , the basic part alone is sufficient because 1− e−x ≥ (1− e−

1

2 )2x > 0.786 · x for any

0 ≤ x ≤ 1
2 . For xj >

1
2 , we have κ(β, xj) = xj − 1 + β ln β+1

β
. Hence j’s contribution equals:

1− e−xj +
1

e

(
1−

2

e

)
xj
(
xj − 1 + ln 2

)
+

1− ln 2

e
xj

∫ c

1
e−(1−ln 2)β

(
ln β+1

β
− 1

β+1

)
dβ .

By Lemma 17, the first three terms sum to at least
(

1− 1
e
+ 1

e

(
1− 2

e

)
ln 2

)

xj. The last integral

does not seem to admit a closed-form solution so we calculate it numerically, and the above value
is greater than 0.711xj . Hence, summing over all offline vertices j ∈ J proves the theorem.

6 Vertex-weighted Matching

This section considers the vertex-weighted problem. Each offline vertex j ∈ J has a non-negative
weight wj. The objective is to maximize the sum of weights of the matched offline vertices.

6.1 Failure of Correlated Sampling in Vertex-weighted Matching

Recall the amortized analysis of correlated sampling in the last section. It divides the probability
that an offline vertex is matched into two parts, basic and extra. Then, it proves for any offline
vertex that the sum of its basic part and its contribution to the extra parts of the other vertices is
at least its contribution to the LP objective times the competitive ratio. In the presence of vertex
weights, however, the contribution of an offline vertex to the extra parts of the other vertices are
scaled by their weights, which could be negligible compared to its own weight.

Why do we need amortization to begin with? Recall the probability that an offline vertex is
matched given by Lemma 10:

1− e−µj · e−µ⊥j · e
∑

k∈J\{j} φ(µk ,µkj) .

Although we can lower bound the total resampling mass
∑

k∈J\{j} µkj, their contribution to the
above equation could be negligible if they come from many vertices k whose µk are close to 0. It
would be great if we could replace eφ(µk ,µkj) in the above equation with e−β·µkj for some constant
β > 0 by modifying the sampling distributions Di’s appropriately.

6.2 Amortized Correlated Sampling

This subsection demonstrates how to obtain the above property for β = 0.299. The key observation
is that the problematic vertices k with tiny µk satisfy:

1− e−µk ≈ µk .

Therefore, the probability that such a vertex is matched by the algorithm is well above its
contribution to the LP times the competitive ratio. We could afford to drop it in the first option
with some probability even if it is not yet matched, and to directly consider the second option.

Definition 3 (Amortized Correlated Sampling). For any online type i ∈ I, define Di as:

1. Sample (j, k) from D1
i as defined in Subsection 5.1.

2. With probability δ(xj) = max
{

β−(1−ln 2)xj

1−2(1−ln 2)xj
, 0
}

, replaces j with ⊥.
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Recall that µj(1)’s and µjk(1)’s are the probability given by D1
i ’s in Wasteful Correlated Sam-

pling, i.e., without the second step above that replaces j with ⊥ with certain probability. We
establish below the properties of µj’s and µjk’s from Amortized Correlated Sampling in relation to
their counterparts in Wasteful Correlated Sampling.

Lemma 20. Amortized Correlated Sampling satisfies the following properties:

1. For any j ∈ J , µj = (1− δ(xj))µj(1);

2. For any j 6= k ∈ J , µjk = (1− δ(xj))µjk(1);

3. For any k ∈ J , µ⊥k = µ⊥k(1) +
∑

j 6=k δ(xj)µjk(1);

We can now state the modified version of Lemma 10.

Lemma 21. For any offline vertex j ∈ J , Pair Sampling with Amortized Correlated Sampling
matches j with probability at least:

1− e−(1−δ(xj ))µj (1) · e−µ⊥j(1) · e−β
∑

k∈J\{j} µkj(1) .

Proof. By Lemma 10 and Lemma 20, the probability in the lemma equals:

1− e−(1−δ(xj ))µj (1) · e−µ⊥j(1)−
∑

k∈J\{j} δ(xk)µkj(1) · e
∑

k∈J\{j} φ((1−δ(xk))µk ,(1−δ(xk))µkj )

Comparing to the equation in the lemma, it remains to show that for any k 6= J \ {j}:

−δ(xk)µkj(1) + f
(
(1− δ(xk))µk(1), (1 − δ(xk))µkj(1)

)
≤ −βµkj(1) .

By Lemma 12, the second term above is bounded by:

f
(
(1− δ(xk))µk(1), (1 − δ(xk))µkj(1)

)
≤ −(1− ln 2)(1 − δ(xk))

2µk(1)µkj(1)

≤ −(1− ln 2)(1 − 2δ(xk))µk(1)µkj(1) .

Hence, it reduces to:
δ(xk) + (1− ln 2)(1 − 2δ(xk))µk(1) ≥ β .

Recall that µk(1) = xk. The choice of δ(x) ensures the inequality (1−ln 2)(1−2δ(x))x+δ(x) ≥ β

for any 0 ≤ x ≤ 1.

Theorem 22. Pair Sampling with Amortized Correlated Sampling is at least 0.7009-competitive.

Proof. It suffices to show that for any offline vertex j, the algorithm matches it with probability at
least 0.7009xj . By Lemma 21, j is matched with probability:

1− e−(1−δ(xj ))µj (1) · e−µ⊥j(1) · e−β
∑

k∈J\{j} µkj(1) ≥ 1− e−(1−δ(xj ))µj (1) · e−β
∑

k∈J∗\{j} µkj(1) .

By Lemma 14, we have µj(1) = xj and
∑

k∈J∗\{j} µkj(1) ≥ κ(xj). Hence, this is at least:

1− e−(1−δ(xj ))xj−βκ(xj) .

We numerically verified that 1− e−(1−δ(x))x−βκ(x) ≥ 0.7009x for any 0 ≤ x ≤ 1.
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6.3 Approximate Monotonicity

Unlike the unweighted case, we can only prove an approximate monotonicity of the vertex-weighted
matching algorithm. By Theorems 1 and 2, the competitive ratio in the Poisson arrival model also
holds in online stochastic matching, up to a 1−O(αΛ− 1

2 ) factor for a constant α.

Lemma 23. Pair Sampling with Amortized Correlated Sampling is O(1)-approximately monotone
in the vertex-weighted case of online stochastic matching.

Proof. For any offline vertex j ∈ J , let Pj(n) be the probability that j is unmatched at the arrival
of n-th online vertex. By definition Pj(n) is non-increasing over n.

Let aj be the probability that j is at least one of the two options in one round. Let bj be the
probability that j is the first choice in one round. Since the distribution of online types and the
sampling distributions Di’s are time invariant, aj, bj are constant throughout the process. Hence
the probability that j is matched exactly by n-th online vertex is upper bounded by ajPj(n), and
lower bounded by bjPj(n). Recall that for any n ≥ 1, Algn denote the expected weight that the
algorithm gets from matching the n-th online vertex. We have:

∑

j∈J

wjbjPj(n) ≤ Algn ≤
∑

j∈J

wjajPj(n).

Further using the monotonicity of Pj(n), for any ℓ < n:

Algn

Algℓ
≤

∑

j∈J wjajPj(n)
∑

j∈J wjbjPj(ℓ)
≤ max

j∈J

wjajPj(n)

wjbjPj(ℓ)
≤ max

j∈J

aj

bj
.

To give an upper bound of
aj
bj
, note that in D1

i defined in Subsection 5.1, the two options are

equally distributed. In amortized correlated sampling, the first choice is dropped with probability
δ(xj). Therefore,

aj
bj

≤ 2
1−δ(xj )

≤ 2
1−β

, which is a constant (recall that β = 0.299). Therefore, the

algorithm is O(1)-approximately monotone.
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A Comparisons with Existing Linear Programs

This section compares the natural LP with those in the previous works, and show that the previosu
LP are all relaxations of the natural LP. We first restate the natural LP.

maximize
∑

i∈I

∑

j∈J

wijxij

subject to
∑

j∈J

xij ≤ λi ∀i ∈ I

∑

i∈S

xij ≤ 1− exp
(

−
∑

i∈S

λi

)

∀j ∈ J,∀S ⊆ I

xij ≥ 0 ∀i ∈ I,∀j ∈ J

(Nat)
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A.1 General Arrival Rates

Jaillet-Lu Linear Program. Jaillet and Lu [17] considered the following LP for the unweighted
matching with general arrival rates. Let JL denote its optimal value.

maximize
∑

(i,j)∈E

xij

subject to
∑

j∈J

xij ≤ λi ∀i ∈ I

∑

i∈I

xij ≤ 1 ∀j ∈ J

∑

i∈I

(2xij − λi)
+ ≤ 1− ln 2 ∀j ∈ J

xij ≥ 0 ∀i ∈ I,∀j ∈ J

(JL)

The main difference between this Jaillet-Lu LP and ours is the third constraint, due to Manshadi,
Oveis Gharan, and Saberi [22]. We now show that the constraints of the natural LP imply this
constraint, therefore the natural LP is a better upper bound of Opt.

Lemma 24. Nat ≤ JL.

Proof. We will prove that any feasible solution of the natural LP is also feasible for the Jaillet-
Lu LP. The first constraint is in both LPs. The second constraint holds in the natural LP since
∑

i∈I xij ≤ 1−exp
(∑

i∈I λi

)
≤ 1. The third constraint follows by the converse of Jensen’s inequality

in Lemma 6. Let f(x) = max{2x− 1, 0}:

∑

i∈I

(2xij − λi)
+ =

∑

i∈I

λif
(xij

λi

)

≤

∫ ∞

0
f(e−λ)dλ = 1− ln 2 .

A.2 Integral Arrival Rates

Jaillet-Lu Linear Program. For the special case of integral arrival rates, i.e., when λi = 1 for
all online types i ∈ I, Jaillet and Lu [17] considered a different LP.

maximize
∑

(i,j)∈E

xij

subject to
∑

j∈J

xij ≤ 1 ∀i ∈ I

∑

i∈I

xij ≤ 1 ∀j ∈ J

0 ≤ xij ≤
2

3
∀i ∈ I,∀j ∈ J

This is a relaxation of the natural LP, keeping only a subset of the second constraint, either at
the limit with S = I and 1 on the right-hand-side, or when S = {i} is a singleton set, i.e.:

∑

i∈I

xij ≤ 1−
1

e
.

It further relaxes the 1− 1
e
to 2

3 .
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Brubach-Sankararaman-Srinivasan-Xu Linear Program. The LP employed by Brubach,
Sankararaman, Srinivasan, and Xu [3] in the special case of integral arrival rates is the closest to
ours. It is a relaxation of the natural LP, keeping only a subset of the second constraint, either at
the limit with S = I and 1 on the right-hand-side, or when the subset S consists of only one or two
online types.

maximize
∑

(i,j)∈E

wixij

subject to
∑

j∈Ni

xij ≤ 1 ∀i ∈ I

∑

i∈Nj

xij ≤ 1 ∀j ∈ J

0 ≤ xij ≤ 1− e−1 ∀i ∈ I, j ∈ J

xi1j + xi2j ≤ 1− e−2 ∀i1 6= i2 ∈ I, j ∈ J

B Omitted Proofs

B.1 Poisson Tail Bound

Lemma 25.
∞∑

m=Λ+1

Λme−Λ

m!

m− Λ

Λ
= O(Λ− 1

2 ).

Proof. We shall simplify the left-hand-side as follows:

∞∑

m=Λ+1

Λme−Λ

m!

m− Λ

Λ
=

∞∑

m=Λ+1

Λm−1e−Λ

m!
(m− Λ)

=

∞∑

m=Λ+1

Λm−1e−Λ

(m− 1)!
−

∞∑

m=Λ+1

Λme−Λ

m!

=
ΛΛe−Λ

Λ!
.

It then follows by Stirling’s formula.

B.2 Proof of Lemma 17

Proof. To prove that 1−e−x

x
+ 1

e

(
1− 2

e

)
x is decreasing in x ∈ [12 , 1], consider its derivative:

(x+ 1)e−x − 1

x2
+

1

e

(
1−

2

e

)
=

(x+ 1)e−x − 1 + 1
e

(
1− 2

e

)
x2

x2
.

It suffices to prove that the numerator is negative. Take the derivative of the numerate:

x
(2

e
(1−

2

e
)− e−x

)

≤ x
(2

e
(1−

2

e
)−

1

e

)

≤ 0 .

Hence, the numerator less than its value at x = 0, which is 0.
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