
ar
X

iv
:2

01
2.

14
62

3v
1

 [
cs

.G
T

]
 2

9
D

ec
 2

02
0

The Communication Complexity of Payment Computation

Shahar Dobzinski Shiri Ron∗

January 1, 2021

Abstract

Let (f, P) be an incentive compatible mechanism where f is the social choice function and P
is the payment function. In many important settings, f uniquely determines P (up to a constant)
and therefore a common approach is to focus on the design of f and neglect the role of the payment
function.

Fadel and Segal [JET, 2009] question this approach by taking the lenses of communication com-
plexity: can it be that the communication complexity of an incentive compatible mechanism that
implements f (that is, computes both the output and the payments) is much larger than the com-
munication complexity of computing the output? I.e., can it be that ccIC(f) >> cc(f)?

Fadel and Segal show that for every f , ccIC(f) ≤ exp(cc(f)). They also show that fully computing
the incentive compatible mechanism is strictly harder than computing only the output: there exists
a social choice function f such that ccIC(f) = cc(f) + 1. In a follow-up work, Babaioff, Blumrosen,
Naor, and Schapira [EC’08] provide a social choice function f such that ccIC(f) = Θ(n · cc(f)),
where n is the number of players. The question of whether the exponential upper bound of Fadel
and Segal is tight remained wide open.

In this paper we solve this question by explicitly providing an f such that ccIC(f) = exp(cc(f)).
In fact, we establish this via two very different proofs.

In contrast, we show that if the players are risk-neutral and we can compromise on a randomized
truthful-in-expectation implementation (and not on deterministic ex-post implementation) gives that
ccTIE(f) = poly(n, cc(f)) for every function f , as long as the domain of f is single parameter or a
convex multi-parameter domain. We also provide efficient algorithms for deterministic computation
of payments in several important domains.

1 Introduction

In a mechanism design problem we have n players and a set A of alternatives. Each player i has a
valuation function vi : A → R that specifies his value for each alternative. We assume that each vi
belongs to some known set Vi. A basic question in mechanism design asks: given a social choice function
f : V1×· · ·×Vn → A, are there payment functions P1, . . . , Pn : V1×· · ·×Vn → R that make f incentive
compatible? For now, we interpret incentive compatibility as truthful, ex-post implementation of f ,
that is: P1, . . . , Pn satisfy that for every player i, vi, v

′
i ∈ Vi, and v−i that specifies the values of the

other players, vi(f(vi, v−i))− Pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− Pi(v

′
i, v−i).

A highly successful paradigm in mechanism design is the “prices do not matter” paradigm. One
pillar of this approach are various characterization theorems that provide relatively simple conditions for
the implementability of social choice functions. Examples for such conditions include cycle monotonicity
for all functions [Roc87], monotonicity for functions in “single parameter” domains [AT01, Mye81],
and weak monotonicity for “rich enough” multi-parameter domains [BCL+06]. Another pillar are
“uniqueness of payments” or “revenue equivalence” theorems. Those theorems state that in most

∗Weizmann Institute of Science. Emails: {shahar.dobzinski, shiriron}@weizmann.ac.il. Work supported by BSF
grant 2016192 and ISF grant 2185/19.

http://arxiv.org/abs/2012.14623v1

domains if P1, . . . , Pn and P ′
1, . . . , P

′
n are two possible payment functions for f , then for each i and v−i

there exists a constant c such that Pi(·, v−i)−P ′
i (·, v−i) = c (see, e.g., [Nis07]). The combination of the

two pillars justifies the focus on the social choice function: given f , one can easily determine whether
it is implementable, and if so, the prices are (almost) unique.

Fadel and Segal [FS09] were the first to make the important observation that this paradigm breaks
when computational considerations are taken into account. In other words, if computing the alternative
chosen by f is computationally “easy”, can it be that determining how much each player has to pay
is much harder? Note that the characterization theorems discussed above guarantee the existence of
“good” payment functions, but they do not guarantee an efficient way to actually compute the prices.

Specifically, Fadel and Segal consider an implementable social choice function f with communication
complexity cc(f). Denote by ccIC(f) the communication complexity of the implementation of f . The
implementation of f must output both the chosen alternative and the payments, so clearly ccIC(f) ≥
cc(f). But can it be that computing the prices P1(·), . . . , Pn(·) makes the computational task much
harder, that is ccIC(f) >> cc(f)?

Fadel and Segal showed that the gap is at most exponential: ccIC(f) ≤ 2cc(f) − 1. They also
showed that the inequality ccIC(f) ≥ cc(f) is strict by providing a specific f for which ccIC(f) =
cc(f) + 1. Although they were able to show that for bayesian implementations the gap indeed might
be exponential, determining whether it is exponential for the basic setting of ex-post implementations
was left as their main open question.

Babaioff, Blumrosen, Naor, and Schapira [BBNS08] managed to narrow the gap and prove that for
every n, there exists a function f for n players for which ccIC(f) ≥ n·cc(f).1 They also provided several
single-parameter domains for which the gap is small: for every f in these domains, ccIC(f) = O(cc(f)).

Our Results I: Impossibilities

Our first main result (Section 3) answers the open questions of [BBNS08,FS09] by showing that com-
puting the payments might be significantly harder than computing the output:

Theorem: For every k, there exists a function f for two players (or more, by adding players that do not
affect the outcome) for which cc(f) = O(k) and ccIC(f) = exp(k). Therefore, ccIC(f) = exp(cc(f)).2

In fact, the function f that we provide is simple enough in the sense that it is single parameter.
We note that a similar result was obtained concurrently and independently by [RST+20] (but their
function is not single parameter). Roughly speaking, we construct a function f : VA × VB → A, where
A = {a0, . . . , a2k}. The domain of valuations is single parameter, and Alice’s private information is
rA ∈ [0, 2k+1 − 1]. For each alternative ai ∈ A, let wA(ai) = |A|

4ik − 1. Alice’s value for alternative
ai is rA · wA(ai). Bob is also a single parameter player but his valuation takes a simpler form: he is
indifferent to the alternative chosen and his private information rB is also his value of each alternative.
However, the number of possible values that rB can take is doubly exponential in k. The function f
itself is defined by some arbitrary map that takes the possible values rB and projects each one to a
different partitioning of the possible values of Alice to the |A| alternatives, making sure that each such
partitioning is monotone: if r, r′ are two values such that r ≥ r′, then r is not mapped to a lower

1In fact they write: “We stress that achieving a better lower bound than the linear lower bound shown in this paper
may be hard. The communication cost is known to be at most linear (in the number of players) for welfare-maximization
objectives and in single-parameter domains (in FS)”. However, their interpretation of the results of Fadel and Segal is not
accurate, since as mentioned by Fadel and Segal, their results assume that the type space is sufficiently small. As will be
discussed later, we will be able to improve over this lower bound both for welfare maximization and for single parameter
domains.

2We stress that we show all truthful mechanisms for f require at least exp(cc(f)) bits, whereas the linear lower bound
of [BBNS08] applies only to the the normalized mechanism of f .

2

alternative than r′. The function f takes the value of Alice and outputs the alternative that it belongs
to according to the monotone map that is determined by Bob’s value.

Computing f is easy: Alice can send her private information rA (k + 1 bits) and Bob can then
compute the output of f and announce it (k + 1 bits). How about computing the payments? Bob is
always indifferent to the chosen alternative, so his payment is always 0. Computing the payment of
Alice is a bit more subtle. Recall that by Myerson’s formula the payment of Alice for an alternative
a is given by PA(vA, vB) = rA · wi(f(vA, vB)) −

∫ rA
0 wi(f(z · wi, vB))dz, where vB is Bob’s valuation.

Thus, the problem of computing the payments reduces to computing the integral in the formula. The
crux of the proof is showing that even if we know that the outcome is a2k , the value of the integral
is different for each map (this is why Alice’s value for an alternative is obtained by multiplying her
private information rA by a large number). Since each rB of Bob defines a different map and hence a
different payment, the number of distinct prices for the alternative a2k is doubly exponential. Standard
arguments imply that at least 2k bits are required to specify the payments, which completes the proof.

We note that f is not a very natural, but we can build on it to show that sometimes even welfare
maximization can be hard: there exists a multi-unit auction such that computing the welfare maximizing
solution requires k bits, but computing the payments requires exp(k) bits. This result has one additional
interesting feature: it provides an example of an auction domain where the approximation ratio to the
social welfare achievable by non-truthful algorithms that use polynomial communication (in our case,
the approximation ratio is 1) is strictly better than the approximation ratio that can be achieved by
truthful mechanisms that use only polynomial communication (in our case, we show that exponential
communication is needed for a truthful mechanism to achieve an approximation ratio of 1). This is only
the second such example, following [AKSW20] (other separations exist but in non-auction domains or
in auctions with restrictions). Unlike all previous separations, in which the hardness is based on the
hardness of computing the allocation, here computing the allocation is easy so the hardness stems from
the additional overhead of computing the prices.

Quite remarkably, the function f demonstrates that even if computing the output requires only k
bits, the number of possible payments in the truthful implementation might be as large as exp(exp(k)).
In fact, one can see that the possible number of distinct prices was the decisive factor in determining
the communication complexity of a mechanism for f . This is no coincidence. Denote by Pf the maxi-
mum possible payments for a single alternative that any player might face. Then, the communication
complexity of truthfully implementing an implementable function f for two players can be determined
up to a constant multiplicative factor:

cc(f) + logPf

2
≤ ccIC(f) ≤ cc(f) + 2 log Pf

The left inequality holds since obviously ccIC(f) ≥ cc(f) and since ccIC(f) ≥ log Pf , because log Pf

bits are needed to specify which price the player has to pay out of the possible Pf prices. The right
inequality holds since we can use cc(f) bits to compute the output of f , and then each of the two
players uses (at most) logPf bits to specify the price of the other player (recall that by the taxation
principle, the price of an alternative for a player depends only on the valuations of the other players).

We thus have that for any two-player function ccIC(f) = poly(cc(f), log Pf). Note that this charac-
terization is tight in the sense that it is easy to come up with examples where ccIC(f) >> log Pf , and
as discussed above log Pf is also necessary for characterizing the communication complexity.

When there are three players or more, this (or similar) characterization no longer holds. In fact we
can show a function f with a payment scheme P such that log | ImP | = poly(cc(f)), but computing P
(or every other payment scheme that implements f) is significantly harder than computing f alone.

Theorem: For every k, there exists a function f for three players (or more, by adding players that
do not affect the outcome) and a payment that implements it P for which cc(f) = O(k), log | ImP | =
poly(k), and ccIC(f) = exp(k). Therefore, ccIC(f) = exp(cc(f)).

3

The proof is very different than the previous proof. Rather than basing the hardness on the number of
payments, the hardness stems from carefully constructing the function so that determining the prices
for Alice requires to decide whether the bit representations of the types of Bob and Charlie share a
common 1 bit, whereas computing f requires to decide whether a single specific bit intersects. Of
course, determining whether Bob and Charlie share a common 1 bit is just the disjointness function in
disguise, which implies that computing the payments is indeed hard.

Our Results II: Algorithms for Payment Computation

We proceed with developing algorithms for payment computation. Our algorithms come in three
different flavours: truthful in expectation implementations of deterministic social choice functions,
deterministic implementations of single parameter functions, and deterministic implementations of
multi-parameter functions that satisfy uniqueness of payments.

We observe that if f is an implementable social choice function, then although ccIC(f) might
be exponential in cc(f), if we compromise on truthful-in-expectation implementation,3 the payment
might be computed very efficiently. In fact, if we let ccTIE(f) be the communication complexity of
implementing f as a truthful in expectation mechanism, we prove that ccTIE(f) = poly(n, cc(f)) for
single parameter domains and for multi-parameter domains that are convex. For single parameter
domains, we rely on the (well known) observation that the expected value of the integral in Myerson’s
formula can be estimated by measuring the height of the integral at a random point. For convex
multi-parameter domains, we develop another algorithm reyling on a characterization of the payments
in scalable domains by Babaioff, Kleinberg, and Slivkins [BKS15], by showing that convex domains are
essentially scalable.

In the rest of the paper, we return to consider the fundemental question of payment computation in
(deterministic) ex-post equilibrium. Babaioff et al. [BBNS08] consider several simple single parameter
problems. All of their problems are binary : for each player i, the set of alternatives is divided into a set of
“winning” alternatives for which his value is his private information ri, and a set of “losing” alternatives
for which his value is 0. Babaioff et al. [BBNS08] provide algorithms for payment computation for some
specific settings. Our first algorithm provides a general polynomial upper bound for all binary problems:

Theorem: Let f be an implementable social choice function for n players in a binary single parameter
domain. Then, ccIC(f) ≤ O(n · cc2(f)).

In fact, our algorithm extends to a much more general single parameter setting that may have many
alternatives, like the setting of our impossibility result discussed above. In this case we show that
ccIC(f) ≤ O(n · cc2(f) · |A|), where A is the set of alternatives. This bound is tight in the sense that if
we omit cc(f) or |A| from the RHS, ccIC(f) might become much bigger than the RHS.

We then proceed to considering multi-parameter settings. These turn out to be quite challenging.
However, we do provide an algorithm for those domains as well, assuming “uniqueness of payments”,
i.e., that the payment functions are uniquely determined by the allocation function (up to a constant).
Most interesting domains (combinatorial auctions, scheduling, etc.) satisfy uniqueness of payments.

Theorem: Let f be an implementable social choice function for n players that satisfies uniqueness
of payments. Then, ccIC(f) ≤ poly(n, cc(f), |A|).

To prove this theorem, we first prove that there exists a non-deterministic algorithm that computes the
payment of player i. We then leverage this result and the fact that non-deterministic and deterministic
communication complexity are polynomially related to establish our upper bound. We show that for

3Recall that, roughly speaking, in a truthful in expectation mechanism each player has a strategy that maximizes his
expected profit regardless of the strategies of the other players, where the expectation is taken over the random coins of
the mechanism.

4

every player i and every price, the prover can send O(|A|2) types in Vi that serve as a non-deterministic
witness. The proof of the theorem consists in explicitly describing those types, showing that they suffice
and that they can be described succinctly.

Our Results III: The Hardness of Computing the Payments in a Menu

We now change gears and consider a slightly different but very related problem (Section 7). Up until
now we assumed that we are given an instance (v1, . . . , vn) and we want to compute the payment of
each player. However, the taxation principle asserts that each truthful mechanism can be seen as fol-
lows: each player i is facing a menu that specifies a price for each alternative. The output of a truthful
mechanism is an alternative that maximizes the profit, i.e., maximizes value(a) − price(a) for each
player. The taxation principle leads to a definition of taxation complexity,4 which was shown to char-
acterize the communication complexity of truthful mechanisms in many settings [Dob16]. The notion
of taxation complexity was crucial in establishing a lower bound on the communication complexity of
truthful approximation mechanisms in the recent breakthrough of Assadi et al. [AKSW20].

Consider the notion of a “constructive taxation principle” or “menu reconstruction” [Dob16]: an
algorithm that efficiently finds the menu that v−i presents to player i. The basic building block of
this algorithm is a subroutine price(·) that assumes that the input of each player i′ 6= i is vi′ , gets an
alternative a and returns the price of a in the menu induced by the truthful mechanism M . We have
efficient and constructive taxation principle whenever cc(price) = poly(cc(M)).

We pinpoint the hardness of price(·) on deciding whether an alternative a is reachable, i.e., whether
there exists v such that f(v, v−i) = a. We denote this function with reach(·). We show that if reach(·)
is “easy”, price(·) is also “easy”, i.e.: cc(price) ≤ poly(cc(reach), cc(M), n). We use this observation to
show that for all the mechanisms of player decisive functions, cc(price) ≤ poly(n, cc(M)). Furthermore,
we show an instance M = (f, P) where cc(reach) = exp(cc(M)) and prove that this gap is tight.

2 Preliminaries

Truthfulness We consider settings with n players. Each player i has a valuation function vi : A→ R

which is his private information. Let Vi be the set of all possible valuations of player i. A mechanism
M consists of a social choice function f : V1× · · · ×Vn → A, where A is the set of possible alternatives,
and a payment function Pi : V1 × · · · × Vn → R for each player i. A mechanism is ex-post incentive
compatible (or truthful) if for each player i, every valuations profile of the other players v−i ∈ V−i and
every vi, v

′
i ∈ Vi, it holds that:

vi(f(vi, v−i))− Pi(f(vi, v−i)) ≥ vi(f(v
′
i, v−i))− Pi(f(v

′
i, v−i))

f is called implementable if for some P1, . . . , Pn the resulting mechanism is ex-post incentive compatible.
We denote the image of a payment function Pi with ImPi.

In this paper we give special treatment to single parameter domains. A domain of a player Vi is
single parameter if there exists a public function wi : A → R and a set of real numbers Ri ⊆ R such
that Vi = {r · wi(·) | r ∈ Ri}. A single parameter domain Vi is binary if its public function wi satisfies
that Imwi = {0, 1}. If V1, . . . , Vn are all single parameter domains, we say that f : V1×· · ·×Vn → A is
single parameter. In particular, since we can assume that the private information of player i is rvi , we
often identify vi with rvi and slightly abuse notation by writing, e.g., vi > v′i where we mean rvi > rv′i .

A social choice function f is monotone with respect to player i, if Vi is a single parameter domain
and for every v−i ∈ V−i:

rv′i > rvi =⇒ wi(f(v
′
i, v−i)) ≥ wi(f(vi, v−i))

4The taxation complexity of a mechanism is log(maxi |Mi|), where Mi is the set of possible menus player i might face.

5

f is monotone if it is monotone with respect to each of its players.
Let M = (f, P) be a mechanism over a domain, where each Vi is single parameter and 0 ∈ Ri. M

is normalized if for each player i and every v−i ∈ V−i, rvi = 0 =⇒ Pi(vi, v−i) = 0.
The following proposition is well known [Mye81]:

Proposition 2.1 (Monotonicity and Myerson’s Payment Formula). Let V = V1 × · · · × Vn be a single
parameter domain. Then, a social choice function f : V → A is implementable if and only if it is
monotone. If Ri = [0, bi],

5 then the unique payment rule of player i that satisfies normalization is
given by:

Pi(vi, v−i) = rvi · wi(f(vi, v−i))−

∫ rvi

0
wi(f(z · wi, v−i))dz (1)

Communication Complexity In this paper communication complexity refers to the number-in-
hand model where vi is the input of player i. We denote by cc(f) the communication complexity of a
function f . We denote by ccIC(f) the cost of the most efficient mechanism that implements f , including
payments.6

Remark 2.2. Our focus in this paper is understanding that gap between the communication complexity
of computing the payments and the communication complexity of computing f . Therefore, for all the
social choice functions considered in the paper we assume that cc(f) is finite (otherwise, there is no
finite communication protocol for f and understanding the gap makes little sense).

3 The Cost of Payment Computation is Exponential

Recall that Fadel and Segal [FS09] showed that for every social choice function f we have that ccIC(f) ≤
exp(cc(f)). In this section we solve their main open question and show that their bound is tight, that
is, there exists a social choice function f such that ccIC(f) = exp(cc(f)). In fact, we provide two proofs
by constructing two social choice functions, each function highlights a different source of hardness of
payment computation.

The first source of hardness is the fact that the number of prices that a player might see in an
implementation of a social choice function f with cc(fk) = k is doubly exponential in k. Therefore,
just specifying the payments requires exp(k) bits, which immediately implies that ccIC(fk) = exp(k).

If there are only two players, we show that this is the only source of hardness in the sense that
payment computation becomes easy when the number of payments is not huge. However, when there are
more than two players we show that even when the number of payments is small, payment computation
might be hard because of the interaction between the players.

One possible criticism about those results is that the functions that we construct are quite contrived.
Thus, we conclude by showing a welfare maximizer in a multi-unit auction that satisfies that ccIC(f) =
exp(cc(f)).

3.1 Proof I: Hardness via the Number of Payments

In the two player case, we are able to fully characterize the relationship between ccIC(f) and cc(f). For
every implementable social choice function f , let P : V1× · · · × Vn → R

n be the payment scheme of the
most efficient mechanism for f , i.e. the one that satisfies cc(f, P) = ccIC(f). Let Pf be the maximum
number of prices for an alternative when using P . Formally:

Pf = max
i∈[N]

max
a∈A

∣
∣{p | ∃v ∈ V s.t. f(v) = a, Pi(v) = p}

∣
∣

5bi might be equal to ∞.
6The definition of [BBNS08] is slightly different: there, ccIC(f) is the cost of the most efficient normalized mechanism

for f .

6

Proposition 3.1. Let f be an implementable social choice function for two players. Then:

cc(f) + log(Pf)

2
≤ ccIC(f) ≤ cc(f) + 2 log(Pf) (2)

Proof. Obviously, ccIC(f) ≥ cc(f). Also, ccIC(f) ≥ log(Pf), because ccIC(f) ≥ log | Im(f, P)| ≥
log(Pf). For the RHS, denote the payment functions of players 1 and 2 with P1 and with P2, respectively.
By the taxation principle, P1 can be reformulated as a function of the alternative chosen and of V2,
and analogously P2 is a function of the alternative chosen and of V1.

We use this reformulation to explicitly provide a protocol for a truthful implementation fo f . Let
πf be the most efficient communication protocol of f . Fix types v1 ∈ V1, v2 ∈ V2. The players first
run πf (v1, v2), so they both know f(v1, v2) = a. By the above, once the alternative is known, player 1
knows P2(a, v1) and player 2 knows P1(a, v2). The players can now send to each other those payments,
using at most 2 log(Pf) bits.

As a direct corollary, to prove an exponential gap between cc(f) and ccIC(f) when there are only
two players, we must construct an f in which the number of possible payments Pf is doubly exponential
in cc(f). We now construct such an f , which gives us the first proof of our main result. We note that
the f that we construct is quite contrived. However, in Section 3.3 we use the same f to prove that
payment computation is hard even if we want to maximize the welfare in a multi-unit auction setting.

Fix some integer k. In our setting there are two players, Alice and Bob, and 2k + 1 alternatives:
A = {a0, a1, . . . , a2k}. The domains of Alice and of Bob are single parameter: rA ∈ [0, 2k+1 − 1] and

rB ∈ {0, 1, . . . , l − 1}, where l =
(2k+1−1

2k

)
. Notice that the domain of Bob’s valuations, VB, is of size

l. The value of Alice for alternative ai is rA · (|A|
4ik − 1), i.e., wA(ai) = |A|

4ik − 1. Bob’s value for all
alternatives is identical and equal to his private information rB (wB ≡ 1). Let C be the following set
of (2k + 1)-dimensional vectors:

C =
{(

c0, . . . , c|A|−1

)
∣
∣
∣∀i ci ≥ 1 and ci ∈ N,

|A|−1
∑

i=0

ci = 2k+1
}

(3)

Each vector c ∈ C defines a function c : {0, 1, . . . , 2k+1 − 1} → A, where cj is the number of integers
which are assigned to alternative aj : c =

(
c0, . . . , c|A|−1

)
maps the integers in {0, 1, . . . , c0 − 1} to a0,

the integers in {c0, c0 + 1, . . . , c0 + c1 − 1} to a1 and so on. Each c ∈ C is monotonically increasing in
the sense that it maps larger integers to alternatives with no smaller index. Note that:

|C| =

(
2k+1 − |A|+ |A| − 1

|A| − 1

)

=

(
2k+1 − 1

2k

)

= |VB | (4)

Since this is the number of ways to match the the integers in {0, 1, . . . , 2k+1 − 1} to alternatives in a
monotone way, with the constraint that each alternative is matched with at least one integer (for all i,
ci ≥ 1). It follows that there exists a bijective function between VB and the set C. Let map : VB → C
be such bijection. We define fk(vA, vB) = map(vB)(⌊rvA⌋). In words, computing fk(vA, vB) is done by
first computing map(vB) which returns a function-vector c ∈ C. Afterwards, we apply c to the integer
⌊rvA⌋, which returns an alternative.

Theorem 3.2. For the fk defined above, cc(fk) = O(k), whereas ccIC(fk) ≥ exp(k).

Proof. Observe that cc(fk) = O(k) since fk can be computed by a simple protocol where Alice sends
to Bob ⌊rvA⌋ using k + 1 bits, and then Bob computes fk and sends the outcome to her, using log |A|
bits. We now show that fk can be truthfully implemented, then we will analyze ccIC(fk).

Lemma 3.3. fk is monotone and hence implementable.

7

Proof. wB(·) is constant so fk is obviously monotone with respect to Bob. In order to show monotonicity
with respect to Alice as well, we fix vB ∈ VB and two types r, r′ ∈ [0, 2k+1−1] such that r > r′. Denote
the valuations r · wA(·) and r′ · wA(·) with v and with v′, respectively. Denote map(vB) with c, and
define index : A→ N as index(ai) = i. We wish to prove wA(fk(v, vB)) ≥ wA(fk(v

′, vB)).
r > r′ clearly implies ⌊r⌋ ≥ ⌊r′⌋. By definition, c = map(vB) is monotonically increasing with

respect to the index of alternative, so index(c⌊r⌋) ≥ index(c⌊r′⌋). wA assigns greater values to alterna-
tives with higher index, so wA(c⌊r⌋) ≥ wA(c⌊r

′⌋). By the definition of fk, we get that wA(fk(v, vB)) ≥
wA(fk(v

′, vB)).

We now analyze the hardness of computing the payments of Alice. By Proposition 2.1, her unique
normalized payment scheme is:

PA(vA, vB) = rvA · wA(fk(vA, vB))−

∫ rvA

0
wA(fk(z · wA, vB))dz (5)

Claim 3.4. cc(PA) ≤ 2 · ccIC(fk).

Proof. Let M∗ = (fk, P
∗) be the most efficient mechanism for fk, i.e. cc(M∗) = ccIC(fk). Denote

Alice’s valuation when rA = 0 with v0, i.e., v0 ≡ 0 ·wA. Run M∗ on the instances (vA, vB) and (v0, vB)
to obtain P ∗

A(vA, vB) and P ∗
A(v0, vB). By Proposition 2.1, Alice has a unique normalized payment

scheme, so we get that PA(vA, vB) = P ∗
A(vA, vB)− P ∗

A(v0, vB).

We now move to the main part of the proof which is showing that the image of PA is “large”. We
start with the following lemma. Recall that 〈b, c〉 stands for the dot product of the vectors b and c.

Lemma 3.5. Let w be the vector
(
wA(a0), wA(a1), . . . , wA(a2k)

)
. For every two vectors c 6= c′ ∈ C,

〈w, c〉 6= 〈w, c′〉.

Proof. Denote with j the largest index where c and c′ differ. Assume without loss of generality that
cj > c′j . If j = 0, it means that c and c′ differ in only one coordinate, so their dot products with w
cannot be equal to each other. Hence, we can assume from now on that j ≥ 1. We will show that
〈w, c〉 > 〈w, c′〉:

〈w, c〉 − 〈w, c′〉 =

|A|−1
∑

i=0

wi · (ci − c′i)

=

|A|−1
∑

i=0,ci>c′i

wi · (ci − c′i) +

|A|−1
∑

i=0,c′i>ci

wi · (ci − c′i)

≥ wj · (cj − c′j)
︸ ︷︷ ︸

≥1
since cj , c

′

j ∈ N

and cj > c′j

+

|A|−1
∑

i=0,c′i>ci

wi · (ci − c′i) (6)

≥ wj
︸︷︷︸

=|A|4jk−1

+

|A|−1
∑

i=0,c′i>ci

wi · (ci − c′i)

> |A|4jk − 1− |A|4jk + 1 = 0 (7)

8

which completes the proof. (6) holds because there are only positive summands in
∑|A|

i=0,ci>c′i
wi ·(ci−c

′
i),

one of them is wj ·(cj−c
′
j). We now explain (7), by proving that −

(∑|A|−1
i=0,c′i>ci

wi ·(ci−c
′
i)
)
< |A|4jk−1.

− (

|A|−1
∑

i=0,c′i>ci

wi · (ci − c′i)) =

|A|−1
∑

i=0,c′i>ci

wi
︸︷︷︸

≤ wj−1, since j is
the maximal coordinate

where c, c′ differ and cj > c′j

· (c′i − ci)
︸ ︷︷ ︸

≤2k+1

≤
︸︷︷︸

j ≥ 1, so
wj−1 is well defined

|A| · wj−1 · 2
k+1

< |A| · (|A|4(j−1)k − 1) · 22k
︸︷︷︸

<|A|2

< |A|4jk−4k+3 − |A|3 <
︸︷︷︸

k≥1

|A|4jk − 1

Claim 3.6. Let vA ∈ VA be a valuation such that rvA = 2k+1 − 1. Then, for all v1, v2 ∈ VB:

v1 6= v2 =⇒ PA(vA, v1) 6= PA(vA, v2) (8)

As a corollary, if we reformulate PA as a function of the alternative and of Bob’s value, we get that:

v1 6= v2 =⇒ PA(a2k , v1) 6= PA(a2k , v2)

We will use the corollary in Subsection 3.3.

Proof. Note that all elements in C are monotone and satisfy that c2k ≥ 1, thus for every vB ∈ VB , if
rvA = 2k+1 − 1, then fk(vA, vB) = a2k . In words, Alice always gets alternative a2k when bidding her
highest value. Combining (8) with the payment formula in (5), we get the following logical equivalences:

(2k+1 − 1) · wA(a2k)−

∫ 2k+1−1

0
wA(fk(z · wA, v1))dz

?
= (2k+1 − 1) · wA(a2k)−

∫ 2k+1−1

0
wA(fk(z · wA, v2))dz

∫ 2k+1−1

0
wA(fk(z, v1))dz

?
=

∫ 2k+1−1

0
wA(fk(z, v2))dz

∫ 2k+1−1

0
wA

(
map(v1)⌊z⌋

)
dz

?
=

∫ 2k+1−1

0
wA

(
map(v2)⌊z⌋

)
dz

Denote map(v1) with c1 and map(v2) with c2:

∫ 2k+1−1

0
wA

(
c1⌊z⌋

)
dz

?
=

∫ 2k+1−1

0
wA

(
c2⌊z⌋

)
dz

〈c1, w〉
?
= 〈c2, w〉

The last transition holds since the integral of wA

(
c1(·)

)
over the interval [0, 2k+1 − 1] equals to 〈w, c1〉

where w =
(
wA(a0), wA(a1), . . . , wA(a2k)

)
, and the same clearly applies also to the RHS. Note that c1

and c2 are interpreted as functions in the uppermost equation, and as vectors in the lower equation.
Recall that map(·) is one-to-one, so v1 6= v2 means that c1 6= c2. By Lemma 3.5, c1 6= c2 =⇒ 〈c1, w〉 6=
〈c2, w〉. Therefore, PA(vA, v1) 6= PA(vA, v2), as required.

As for the corollary, since bidding vA such that rvA = 2k+1 − 1 guarantees alternative a2k , it is
immediate from the taxation principle that:

PA(a2k , v1) = PA(vA, v1) 6= PA(vA, v2) = PA(a2k , v2) =⇒ PA(a2k , v1) 6= PA(a2k , v2)

9

Corollary 3.7. cc(PA) ≥ 2k.

Proof. By Claim 3.6, different values of Bob induce a different payment for Alice whenever her she bids

the valuation vA such that rvA = 2k+1 − 1. Thus, | ImPA| ≥ |VB |, where |VB | =
(
2k+1−1

2k

)
. Thus, we

deduce that every protocol that computes PA has at least
(2k+1−1

2k

)
leaves, so cc(PA) is bounded from

below by log
(
2k+1−1

2k

)
. Hence:

cc(PA) ≥ log

(
2k+1 − 1

2k

)

≥ 2k · log
2k+1 − 1

2k
≈ 2k · log 2 = 2k

where the second inequality is due to the binomial bound
(
n
k

)
≥ (n

k
)k.

To conclude the proof of Theorem 3.2, combining Claim 3.4 and Corollary 3.7 yields that ccIC(f) ≥
2k−1. In contrast, as discussed above, cc(f) ≤ k + 1 + log |A| ≤ 3k.

3.2 Proof II: Hardness via Interaction

We now show that if there are more than two players, then payment computation might be hard even
if the number of possible payments is small. The idea is to construct a social choice function such that
the payment is determined by the number of bit intersections of Bob’s and Charlie’s inputs (note that
determining this number is harder than solving the disjointness problem). The challenge is to design
such an f with the additional property that cc(f) is still small. We achieve that by constructing f in
which the chosen alternative depends only on vA and a constant number of bits of Bob and Charlie.
That is, determining the output can be done “locally” but determining the payments is done “globally”.

Theorem 3.8. For every integer k ≥ 1, there exists a single parameter social choice function fk over
three players and O(k) alternatives, where cc(fk) = Θ(log k), ccIC(fk) = Ω(k) and ImPA = O(k),
where ImPA is the image of the normalized payment function for Alice (by Proposition 2.1).

Proof. We describe the function fk. For every integer k ≥ 1, we define the set of alternatives as
A = {0, 1, ..., k}. There are three players, Alice, Bob and Charlie, with single parameter domains.
Alice’s private information is rA ∈ [0, k−1] and her value for each alternative a is rA ·a, i.e., wA(a) = a
for every alternative. The private information of Bob and Charlie is rB , rC ∈ {0, 1}

k . Their values for all
alternatives are identical and equal to the integer representations of their private information, so we use
vB and rB interchangeably, and the same applies to vC and rC . Denote with vB(j) and vC(j) the j′th
bits of vB and of vC . We define fk : VA×VB×VC → A as follows. For every vA ∈ VA, vB ∈ VB , vC ∈ VC :

fk(vA, vB , vC) =

{

⌊rvA⌋+ 1 vB(⌊rvA⌋) = vC(⌊rvA⌋) = 1

⌊rvA⌋ otherwise.

Lemma 3.9. fk is monotone and hence implementable.

Proof. fk is clearly monotone with respect to Bob and Charlie. In order to prove monotonicity with
respect to Alice, we fix vA, v

′
A ∈ VA, vB ∈ VB and vc ∈ Vc such that rv′

A
> rvA . We want to

show that wA(fk(v
′
A, vB , vC)) ≥ wA(fk(vA, vB , vC)). If ⌊r′⌋ = ⌊r⌋, by definition wA(fk(v

′
A, vB , vC)) =

wA(fk(vA, vB , vC)) and we are done. Otherwise, we know that ⌊rv′
A
⌋ > ⌊rvA⌋, so ⌊rv′A⌋ ≥ ⌊rvA⌋ + 1.

Therefore:

wA(fk(v
′
A, vB , vC)) =

︸︷︷︸

wA is
the identity
function

fk(v
′
A, vB , vC) ≥ ⌊rv′A⌋ ≥ ⌊rvA⌋+ 1 ≥ fk(vA, vB , vC) = wA(fk(vA, vB , vC))

10

By Proposition 2.1, the fact that Alice’s type space is an interval implies that the only normalized
payment scheme that implements fk for Alice is:

PA(vA, vB , vC) = rvA · wA(fk(vA, vB , vC))−

∫ rvA

0
wA(fk(z · wA, vB , vC))dz (9)

The following lemma is key in showing that Pfk is “small”. For all vB ∈ VB and vC ∈ VC , denote vjB
and vjC as the prefixes of length j of vB and of vC .

Lemma 3.10. Fix an alternative j ∈ A, and an integer t ∈ {0, ..., j}. Then, for all types (vB , vC) ∈
VB × VC where the intersection of vjB and vjC is of size t and alternative j is reachable from (vB , vC),
Alice’s price for j according to the payment scheme PA is one of the following:

1. j · (j − 1)− (j−1)·(j−2)
2 − t+ 1.

2. j2 − j·(j−1)
2 − t.

Proof. Fix t ∈ {0, ..., j}. Observe that there are at most two possible ways to reach alternative j.
The first is when the (j − 1)’th bits of vB and vC intersect and ⌊rvA⌋ = j − 1. Denote the valuation
(j − 1) · wA(·) with vA. In this case, the payment of Alice for all the types vB , vC that satisfy those
conditions is:

PA(vA, vB , vC) = (j − 1) · j −

∫ j−1

0
wA(fk(z · wA, vB , vC))dz (plug in (9))

= j · (j − 1)−

j−2
∑

i=0
i’th bit
does not
intersect

i−

j−2
∑

i=0
i’th bit

intersects

(i+ 1)

= j · (j − 1)− (

j−2
∑

i=0

i)− (t− 1) (10)

= j · (j − 1)−
(j − 2)(j − 1)

2
− t+ 1

(10) holds because the (j − 1)’th bits intersect and there are overall t intersections in the j-prefixes of
vB and of vC . Thus, there are t− 1 intersections in the (j − 1)-prefixes, i.e., in indices {0, ..., j − 2}.

The second case is when the j’th bits of vB and vC do not intersect. This time, denote with vA the
valuation j · wA(·). Similarly, the payment is:

PA(vA, vB , vC) = j2 −

∫ j

0
wA(fk(z, vB , vC))dz plug in (9) (11)

= j2 −

j−1
∑

i=0
i’th bit
does not
intersect

i−

j−1
∑

i=0
i’th bit

intersects

(i+ 1)

= j2 −
j(j − 1)

2
− t (12)

(12) holds because the j’th bits of vB and vC do not intersect and also do not belong in the prefixes of
length j, vjB and in vjC , so by definition there are t intersections in indices {0, ..., j − 1}.

Corollary 3.11. | ImPA| = O(k
2).

11

Proof. Fix some alternative j ∈ A. The size of the intersection of the first j bits of vB and of vC is in
the range {0, . . . , j}, where j ≤ k. By Lemma 3.10, every such intersection size induces at most two
possible prices for alternative j. Thus, the overall number of prices for alternative j is at most 2k + 2.
There are overall k + 1 alternative, so indeed | ImPA| = O(k

2).

Lemma 3.12. Computing PA requires Ω(k) bits of communication.

Proof. We reduce from disjointness with k−1 bits. Let Bob’s type be the input of the first player in the
disjointness problem with extra zero bit at the end, and let Charlie’s type be the input of the second
player with an extra zero bit at the end. Let Alice’s type be vA = (k−1) ·wA, i.e. rvA = k−1. Since the
(k−1)’th bits are by construction not intersecting, alternative k−1 is chosen. If there are no intersecting

bits in the (k− 1)-disjointness problem, then by equation (11), the payment is (k− 1)2 − (k−1)(k−2)
2 . If

there is an intersecting bit, then the payment is strictly smaller. Thus, computing the payment is at
least as hard as computing disjointness with k − 1 bits, and the lemma follows.

Lemma 3.13. 2 · ccIC(fk) ≥ cc(PA).

Proof. Let ΠM∗

be the most efficient protocol that implements fk, i.e., ccIC(fk) = cc(M∗). Fix the
valuations vA, vB , vC ∈ VA × VB × VC . For the payment of Alice, denote Alice’s payment scheme
according to ΠM∗

with P ∗
A. Denote Alice’s valuation when rA = 0 with v0. The uniqueness of PA as

a normalized payment scheme allows us to use a similar argument to the proof of Claim 3.4, and get
that PA(vA, vB , vC) = P ∗

A(vA, vB , vC) − P ∗
A(v0, vB , vC). Thus, PA can be computed using two calls to

ΠM∗

.

We now finish the proof of Theorem 3.8. cc(fk) ≤ log(k)+ 2, because fk can be easily computed by
a protocol where Alice sends ⌊rvA⌋ using log k bits, and Bob and Charlie send back their ⌊rvA⌋’th bits.
Also, there are k alternatives, so by standard communication complexity arguments, cc(f) ≥ log k.
Combining Lemmas 3.12 and 3.13, we get that ccIC(fk) = Ω(k). By Corollary 3.11, | ImPA| = O(k

2),
which completes the proof.

3.3 Hardness of Welfare Maximizing Mechanisms

In Subsections 3.1 and 3.2, we gave two examples for social choice functions for which there is an
exponential gap between computing the output and payment computation. In this section we show
that there are natural social choice functions that exhibit this exponential gap.

The natural social choice function that we construct is simply a welfare maximizer in a multi-unit
auction with m items. We use this multi-unit auction instance to show another gap: between the
approximation ratio of truthful and non-truthful algorithms. For this instance, non-truthful algorithms
achieve the optimal welfare with O(logm) communication (approximation ratio of 1), whereas their
truthful counterparts achieve the optimal welfare only if they use at least Ω(m) communication. It
means, that all truthful algorithms with running time o(m) have approximation ratio which is strictly
less than 1.

In a multi-unit auction with m = 2k items, all items are identical and values of players are deter-
mined solely by the number of items they get: v : {0, . . . ,m} → R+. The valuations are monotone
(l > j implies v(l) ≥ v(j)) and normalized (v(0) = 0).7

7Note that we use the term “normalized” to describe two different notions. The first one is a property of mechanisms
(bidding zero guarantees a payment of zero) and the second one is a property of multi-unit valuations (v(0) = 0).

12

Theorem 3.14. For every integer k ≥ 1, there exists a multi-unit auction instance with m = 2k items
such that a welfare maximizing allocation can be computed with O(k) = O(logm) bits, but every truthful
mechanism that maximizes the welfare requires at least exp(k) = Ω(m) communication. As a corollary,
there exists a welfare-maximizing allocation rule f such that ccIC(f) = exp(cc(f)).

Proof. The proof structure is as follows. First, we describe the multi-unit auction instance and prove
that the valuations of players are monotone and normalized. We proceed by presenting a welfare-
maximizing function f̂k for it, which is based on the social choice function fk described in Section 3.1.
We show that f̂k achieves the optimal welfare and can be computed using “few” bits (Claim 3.16). The
next step is showing hardness of truthful algorithms for this instance. There might be more than one
social choice function that maximizes the welfare, where functions differ by their tie-breaking rule, i.e.
by which alternative is chosen whenever more than one alternative yields the maximum welfare. Thus,
proving that implementing f̂k is “hard” is not enough. A stronger claim is needed: that every truthful
welfare-maximizing mechanism for this instance requires exp(k) = Ω(m) bits (Claim 3.17).

The instance is as follows. It is based on the construction of fk : VA × VB → A in Subsection
3.1. The set of alternatives is A = {a0, . . . , a2k} for this instance as well. Alternative ai now stands
for an allocation where Alice wins i items and Bob wins m − i items, where m = 2k. We now
describe the domains of the players, V̂A and V̂B . Alice’s domain in the instance of Subsection 3.1 is
VA = {r · wA(·) | r ∈ [0, 2k+1 − 1]} where wA(ai) = |A|4ik − 1. For each vA ∈ VA, we include the
valuation v̂A where v̂A(i) = rvA · wA(ai). Observe that for each i we have that vA(ai) = v̂A(i).

Similarly, we define a valuation v̂B ∈ V̂B for each vB ∈ VB. v̂B relies on PA(·, vB), i.e., on Alice’s
payment function induced by the normalized implementation of the function fk. In order to define the
valuation v̂B that vB induces, we reformulate PA(·, vB) to be a function of the alternative chosen and of
vB (using the taxation principle). Note that fk is player decisive for Alice, because for every alternative
ai and every vB ∈ VB , there is some vA ∈ VA such that fk(vA, vB) = ai.

8 Hence, PA(·, vB) is well defined
for all ai ∈ A. Fix vB ∈ VB . Include in V̂B the valuation v̂B which is defined as follows: for every
i ∈ {0, . . . ,m}, v̂B(i) = PA(am, vB)−PA(am−i, vB). Observe that vA → v̂A and vB → v̂B are bijections.
We conclude the construction of the domains by adding another valuation to V̂A, v̂

∗
A : {0, . . . ,m} → R.

v̂∗A(i) =

{

max
v̂B∈V̂B

{v̂B(m)}+ 1 i = m

0 i ∈ {0, . . . ,m− 1}
(13)

As we will prove later on, we add this valuation to V̂A because if Alice bids it, she “forces” every optimal
algorithm for this auction to allocate all m items to her, no matter what is the valuation of Bob or the
tie-breaking rule of the algorithm.

We now explain why all the valuations in V̂A and in V̂B are monotone and normalized. It is true
for V̂A because wA is monotone in the index of the alternative, and v̂A(0) = vA(a0) = rvA ·wA(a0) = 0.
Also, v̂∗A is monotone and normalized. Regarding Bob, fix a type v̂B ∈ V̂B. By construction, v̂B(0) =
PA(am, vB)− PA(am, vB) = 0. As for monotonicity, we show that for all j ∈ {0, . . . ,m− 1}:

v̂B(j + 1) > v̂B(j) ⇐⇒ PA(am, vB)− PA(am−j−1, vB) > PA(am, vB)− PA(am−j , vB) (14)

⇐⇒ PA(am−j , vB) > PA(am−j−1, vB)

Recall that PA implements fk which is player decisive for Alice, and that every valuation in VA is
strictly monotone in the index of the alternative chosen. Therefore, the truthfulness of PA implies that
PA(·, vB) must be strictly monotone in the index of the alternative, so PA(am−j , vB) > PA(am−j−1, vB)
holds.

In order to prove the theorem, we need the following technical lemma.

8We remind that vB partitions the integers in VA to alternatives in a way that guarantees that every alternative has
some vA that reaches it. This is due to the fact that in Section 3.1, we defined the set C such that every c ∈ C satisfies
ci ≥ 1 for all i ∈ {0, . . . , |A| − 1}.

13

Lemma 3.15. Every welfare maximizing function f : V̂A × V̂B → A satisfies that:

1. For all v̂B ∈ v̂B, v̂A ≡ 0 implies that f(v̂A, v̂B) = a0.

2. For all v̂B ∈ v̂B, f(v̂
∗
A, v̂B) = am. (where v̂∗A is the valuation described in (13))

In words, every welfare maximizing function satisfies that Alice gets no items at all if she bids her zero
valuation, and she gets all m items if she bids v̂∗A.

Proof. We want to show that if v̂A ≡ 0, then a0 is the only alternative that maximizes the welfare, and
that the same holds for v̂∗A and am.

For all v̂B ∈ V̂B , if Alice bids the constant valuation v̂A ≡ 0, then her value is unaffected by the
number of items that she gets, whilst Bob’s valuation is strictly increasing in the number of items (see
(14)). Hence, the optimal welfare is achieved solely by allocating all items to Bob, i.e. outputting a0.

As for the other case, if Alice bids v̂∗A and Bob bids some v̂B ∈ V̂B, the welfare that alternative am
achieves is:

v̂∗A(m) + v̂B(0)
︸ ︷︷ ︸

=0

=
︸︷︷︸

by (13)

max
v̂B∈V̂B

{v̂B(m)} + 1 (15)

For every i ∈ {0, . . . ,m− 1}, the welfare that ai obtains is:

v̂∗A(i)
︸ ︷︷ ︸

= 0, by (13)

+v̂B(m− i) ≤ v̂B(m) < max
v̂B∈V̂B

{v̂B(m)}+ 1 (16)

Combining (15) and (16), we get that am is the only alternative that achieves the maximal welfare.

Claim 3.16. There exists a social choice function f̂k : V̂A × V̂B → A such that:

1. f̂k is a welfare maximizer, i.e. for every v̂A ∈ V̂A, v̂B ∈ V̂B:

f̂k(v̂A, v̂B) ∈ argmax
i∈{0,1,...,m}

v̂A(i) + v̂B(m− i)

2. cc(f̂k) = O(k).

Proof. We define f̂k as follows:

f̂k(v̂A, v̂B) =

{

am v̂A = v̂∗A
fk(vA, vB) otherwise.

where fk is the social choice function described in Subsection 3.1, v̂A is induced by vA and v̂B is induced
by vB . We first explain why f̂k is a welfare maximizer.

Fix v̂A ∈ V̂A, v̂B ∈ V̂B . By Lemma 3.15, if v̂A = v̂∗A, outputting am indeed achieves the optimal

welfare. If v̂A 6= v̂∗A, then we denote f̂k(v̂A, v̂B) = fk(vA, vB) with aj , i.e. Alice wins j items and Bob
wins m− j items. We want to prove that for all i ∈ {0, 1, . . . ,m}:

v̂A(j) + v̂B(m− j) ≥ v̂A(i) + v̂B(m− i)

Recall that PA is the payment function of Alice in the normalized implementation of fk, which is
player decisive for Alice (see footnote 8). Hence, the fact that PA implements fk truthfully implies that
for all i ∈ {0, . . . ,m}:

fk(vA, vB) = aj =⇒ vA(aj)− PA(aj , vB) ≥ vA(ai)− PA(ai, vB) (17)

14

By the construction of v̂B , PA(aj , vB) = PA(am, vB)− v̂B(m−j) and PA(ai, vB) = PA(am, vB)− v̂B(m−
i). We substitute those equalities into (17):

vA(aj)− PA(am, vB) + v̂B(m− j) ≥ vA(ai)− PA(am, vB) + v̂B(m− i)

Recall that vA(aj) = v̂A(j):

v̂A(j) + v̂B(m− j) ≥ v̂A(i) + v̂B(m− i)

which is the desired conclusion. We now show that cc(f̂k) = O(k). Consider the following protocol:
Alice sends a bit that specifies whether her valuation is v̂∗A or not. If it is v̂∗A, both players know that the
output is am. Otherwise, Alice and Bob translate their multi-unit valuations v̂A,v̂B to the valuations
that induce them, vA and vB , with no communication. Then, they execute the protocol of fk with
vA, vB and output the alternative. By Theorem 3.2, cc(fk) = O(k), so the total communication of the
protocol is O(k) as well.

Thus, a welfare-maximizing allocation can be computed non-truthfully with O(k) = O(logm) bits.
It remains to show that achieving this optimum truthfully requires exp(k − 1) = Ω(m) bits.

Claim 3.17. Let f∗
k : V̂A × V̂B → A be a welfare-maximizing function. Then, every mechanism M∗

that implements f∗
k requires Ω(2k) bits.

Proof of Claim 3.17. Fix a social choice function f∗
k and a truthful mechanism for itM∗ = (f∗

k , P
∗
A, P

∗
B).

We say that an auction mechanism is normalized if bidding a constant valuation of ~0 guarantees a
payment of 0.9 We explain why we can assume without loss of generality that M∗ is normalized. All
the valuations of Bob in V̂B are strictly increasing, so ~0 /∈ V̂B , and P ∗

B is trivially normalized. Regarding
P ∗
A, observe that P

∗
A(v̂A, v̂B)−P ∗

A(
~0, v̂B) is normalized and truthful (due to the same arguments applied

in Claim 3.4). Thus, a normalized mechanism can be obtained by executing twice the protocol of M∗,
so it suffices to prove that cc(M∗) = Ω(2k) where M∗ is normalized.

We do so by showing that cc(PA) ≤ cc(M∗)+cc(fk), where fk is the function described in Subsection
3.1, and PA is Alice’s payment according to its normalized implementation. Since cc(PA) ≥ 2k (by
Corollary 3.7) and cc(fk) = O(k) (by Theorem 3.2), cc(PA) ≤ cc(M∗) + cc(fk) implies that cc(M∗) =
Ω(2k). Intuitively, we prove that cc(PA) ≤ cc(M∗)+ cc(fk) by showing that M∗ can be used to extract
Bob’s type, which is “almost” sufficient for the computation of PA(vA, vB).

To this end, we explain why f∗
k : V̂A × V̂B → A has a unique normalized payment scheme. Note

that f∗
k is implementable because it is a welfare maximizing function. In particular, if we restrict f∗

k

to the domain V̂A/{v̂
∗
A}, it remains implementable. We remind that the domain V̂A/{v̂

∗
A} contains the

same valuations as the domain VA = {VA = {r ·wA(·) | r ∈ [0, 2k+1−1]} (because for all i ∈ {0, . . . ,m},
v̂A(i) = vA(ai)). Thus, we can apply Myerson’s Lemma (Proposition 2.1) on f∗

k : V̂A/{v̂
∗
A} × V̂B → A

and get that f∗
k has a unique normalized payment scheme for Alice, whenever the valuations of Alice

and Bob are drawn from the domains V̂A/{v̂
∗
A} and V̂B . It implies that f∗

k has a unique normalized
payment scheme also after including v̂∗A in Alice’s domain.10

Recall that f∗
k maximizes the welfare, so it is well known to be implemented by the payment

scheme Pvcg(j, v̂B) = v̂B(m) − v̂B(m − j). We now show that Pvcg is normalized, which means that
Pvcg ≡ P ∗

A, because f∗
k has a unique normalized payment. By Lemma 3.15, if Alice bids v̂A ≡ 0, then

f∗
k necessarily outputs a0, which means that Alice wins 0 items. Therefore, her payment according to

9Similarly to the definition of normalization for single parameter domains in Section 2.
10Because adding another valuation only restricts the set of truthful payment schemes, so it cannot increase their

number. Hence, the facts that f∗

k satisfies uniqueness of payments for V̂A/{v̂
∗

A} × V̂B and that f∗

k is implementable for
V̂A × V̂B jointly imply that f∗

k : V̂A × V̂B → A satisfies uniqueness of payments as well.

15

Pvcg is Pvcg(0, v̂B) = v̂B(m) − v̂B(m) = 0, so Pvcg is normalized. Hence, P ∗
A(aj , v̂B) = Pvcg(j, v̂B) =

v̂B(m)− v̂B(m− j). Thus, for j = m:

P ∗
A(am, v̂B) = v̂B(m)− v̂B(0)

︸ ︷︷ ︸

=0

=
︸︷︷︸

by construction
of v̂B

PA(am, vB)− PA(a0, vB)

We now explain why PA(a0, vB) = 0. Recall that fk is player decisive for Alice and monotone, so
bidding zero (rvA = 0) guarantees that a0 is chosen. Also, according to the formula of PA (specified in
(5)), we get that PA(vA, vB) = 0 if rvA = 0. Thus, a zero bid implies both that a0 is chosen and that
PA(vA, vB) = 0. Hence, by the taxation principle, PA(a0, vB) = 0. We also remind that m = 2k. We
get that:

P ∗
A(am, v̂B) = PA(am, vB)− PA(a0, vB)

︸ ︷︷ ︸

=0

= PA(a2k , vB) (18)

We now a describe a protocol for PA with cc(M∗) + cc(fk) bits. Let ΠM∗

and Πfk be protocols of
M∗ and of fk, respectively.

Fix vA, vB . Execute Π
M∗

(v̂∗A, v̂B), where v
∗
A is the valuation specified in (13) and v̂B is the valuation

induced by vB . M∗ maximizes the welfare, so by Lemma 3.15, f∗
k (v̂

∗
A, v̂B) = am. Thus, by executing

M∗(v̂∗A, v̂B), we get that alternative am is chosen, so by equation (18), Alice pays PA(a2k , vB). By
Claim 3.7, each vB ∈ VB induces a different value of PA(a2k , vB), so once Alice knows PA(a2k , vB),
she knows Bob’s valuation vB completely. Next, Alice and Bob execute Πfk(vA, vB). Afterwards, they
both know fk(vA, vB) and Bob’s valuation. Thus, according to the taxation principle, they both know
PA(fk(vA, vB), vB) = PA(vA, vB), which completes the proof.

Note that Claim 3.17 implies the corollary of Theorem 3.14. All welfare-maximizing truthful mecha-
nisms for this instance require Ω(2k) bits, so in particular every mechanism that implements f̂k requires
Ω(2k) bits. Thus, ccIC(f̂k) = Ω(2k) ≈ exp(cc(f̂k)).

4 Truthful in Expectation Mechanisms

Up until now we showed that the communication cost of ex-post implementations of social choice
functions might be exponential comparing to output computation. However, we observe that in many
domains the payments of the (deterministic) social choice function can be computed randomly so that
the expected value of the payment equals the value of the (deterministic) ex-post payment scheme. If
the players are risk neutral, this gives us a truthful-in-expectation implementation of the social choice
function. For all the domains below we prove that ccTIE(f) ≤ poly(n, cc(f)).

For single parameter domains, where the private information Ri of each player is either an interval
[0, bi] or a finite set with non-negative values, the computation of payment is based on the observation
that to compute the expected value of the integral in Myerson’s payment formula, it suffices to evaluate
the value of the integral at a random valuation and know the type of the player i, vi. One point
of potential complication is that representing the type of player i might be much more costly than
computing cc(f). We get around this problem by essentially providing a “similar” type to vi, which is
based on the communication protocol.

We then extend our results to some multi-parameter domains. We first consider scalable domains:
domains where for each constant λ ∈ [0, 1], if the type v(·) is in the domain, then so does λ · v(·). We
rely on a result of [BKS15] who show an integral-based payments formula similar to Myerson’s for this
domain. We rely on this formula in the sense that we compute a payment which is equal in expectation
to it, similarly to the single parameter case. Finally, we show that scalable and convex domains are
computationally equivalent. We begin by formally defining truthfulness in expectation.

16

Definition 4.1. Let f : V1 × · · · × Vn → A be a (deterministic) social choice function. A mechanism
M = (f, P) is truthful in expectation if for every player i, every v−i ∈ V−i and every vi, v

′
i ∈ Vi:

E[vi(f(vi, v−i))− Pi(vi, v−i)] ≥ E[vi(f(v
′
i, v−i))− Pi(v

′
i, v−i)] (19)

where the expectation is taken over the randomness of P .

We denote with ccTIE(f) the communication complexity of the optimal truthful-in-expectation
implementation for f .

4.1 Single Parameter Domains

We are especially interested in truthful in expectation implementation for single parameter mechanisms,
because they demonstrate an exponential gap between the communication complexities of deterministic
truthfulness and truthfulness in expectation. The gap is established by observing that the functions
used in Section 3 to derive lower bounds satisfy ccIC(f) = exp(cc(f)) and ccTIE(f) ≤ poly(cc(f)),
where the latter statement follows from Theorem 4.2.

Theorem 4.2. Let f : V = V1× · · ·×Vn → A be an implementable social choice function over a single
parameter domain where for every player i, Ri is an interval [0, bi] such that bi ∈ R. Then:

ccTIE(f) ≤ (n+ 1) · cc(f)

As a corollary, if Ri is a finite set with non-negative values for every player i, ccTIE(f) ≤ (n+1) ·cc(f).

For the proof of Theorem 4.2, we obtain an unbiased estimator for an integral using uniform sam-
pling, similarly to [APTT04] and [BKS15]. Let U [a, b] be the continuous uniform distribution over the
interval [a, b].

Lemma 4.3. Let g : [a, b]→ R be an integrable function. Define a random variable R = (b− a) · g(z),

where z ∼ U [a, b]. Then, R is an unbiased estimator of
∫ b

a
g(x)dx.

Proof.

Ez[(b− a) · g(z)] = (b− a) · Ez[g(z)]

= (b− a) ·

∫ ∞

−∞
g(z) · fZ(z)dz (law of the unconcious statistician)

= (b− a) ·

∫ b

a

g(z) ·
1

b− a
dz (fZ(z) =

1

b− a
for z ∈ [a, b], and 0 otherwise)

=

∫ b

a

g(z)dz

Proof of Theorem 4.2. Denote a protocol of f with π. We begin by running π(v1, .., vn). Fix a player
i. Vi is an interval, so Proposition 2.1 yields that f is deterministically implemented by:

Pi(vi, v−i) = rvi · wi(f(vi, v−i))−

∫ rvi

0
wi(f(z · wi, v−i))dz (20)

Hence, in order to obtain a payment which is truthful in expectation it suffices to compute a payment
scheme whose expected value is (20). Each leaf in the protocol π is a combinatorial rectangle, L =
L1 × · · · × Ln. For each leaf L, the players agree in advance on a profile which belongs in the leaf, i.e.
(vL1 , .., v

L
n) ∈ L. Denote the leaf that (v1, .., vn) reaches with L∗, and denote its agreed upon type for

player i with v∗i .

17

Lemma 4.4. Pi(v
∗
i , v−i) = Pi(vi, v−i).

Proof. By definition, (vi, v−i) ∈ L∗ and v∗i ∈ L∗
i , so by the mixing property (v∗i , v−i) ∈ L∗. Thus,

wi(f(v
∗
i , v−i)) = wi(f(vi, v−i)), so from truthfulness we get that P (v∗i , v−i) = P (vi, v−i).

Hence, it suffices to compute a random variable with expectation Pi(v
∗
i , v−i). Note that v

∗
i is known

to all players, due to the execution of π. Some player j 6= i samples z ∼ U [0, rv∗i]. Note that if we let
player i sample z he could have potentially misreport the sample in order to increase the profit. All
players in N/{i} simulate π(z · wi, v−i) in order to obtain f(z · wi, v−i). The output is:

P̂ = rv∗i · wi(f(v
∗
i , v−i))− rv∗i · wi(f(z · wi, v−i)) (21)

By Lemma 4.3, E[P̂] = Pi(v
∗
i , v−i). Due to the two executions of f , the players know all the components

of P̂ . Hence, we obtained a truthful in expectation payment for player i by making one extra call to π.
Thus, truthful in expectation implementation of f requires at most (n+ 1) · cc(f) bits.

For the corollary, let Ri be a finite domain with non-negative values. Fix a player i and a type
(v1, . . . , vn). The players simulate π(v1, . . . , vn). Let [0, bi] be an interval that contains all the elements
in Ri. We extend f to output for every x /∈ Ri the same alternative it assigns to the nearest ri which is
smaller than x. For all x smaller than min ri, the extension fext always outputs an arbitrary alternative
a such that wi(a) is minimal. This extension preserves the monotonicity of f and its new domain is an
interval, so by Proposition 2.1, fext is deterministically implemented by:

Pi(vi, v−i) = rvi · wi(fext(vi, v−i))−

∫ rvi

0
wi(fext(z · wi, v−i))dz

fext(v) = f(v) for all v ∈ V , so the truthfulness of the payment scheme for fext implies truthfulness
for f . Also, notice that π, the protocol of f , computes not only f , but also its extension. Thus, one
extra call to π is needed for the computation of a truthful in expectation payment for player i, so
ccTIE(f) ≤ (n+ 1) · cc(f).

4.2 Scalable Domains

Roughly speaking, scalable domains are multi-parameter domains that can be “stretched”. They are
useful because of two main properties. The first is that a scalable domain can be projected to a single
parameter domain, so upper bounds of payment computation in single parameter settings extend to
them. The latter is that they are essentially equivalent (up to translation) to convex domains, so we
use them as a means to derive upper bounds for them (as we define and prove formally in Subsection
4.3). Formally, scalable domains are:

Definition 4.5. A domain of a player Vi is scalable if for every vi ∈ Vi and every λ ∈ [0, 1], λ ·vi ∈ Vi.

By definition, a scalable domains necessarily contains a zero valuation, vi ≡ ~0. Thus, for scalable
domains, we say that a mechanism is normalized if Pi(~0, v−i) = 0 for all v−i. As observed by [BKS15],
a corollary of Rochet [Roc87] is:

Proposition 4.6 ([BKS15,Roc87]). Let f : V1 × · · · × Vn be an implementable social choice function
with scalable domains. Then, the mechanism (f, P) is truthful and normalized if and only if for every
player i:

Pi(vi, v−i) = vi(f(v))−

∫ 1

0
vi(f(t · vi, v−i))dt (22)

Theorem 4.7. Let f : V1 × · · · × Vn → A be a social choice function with scalable domains. Then,
ccTIE(f) ≤ (n+ 1) · cc(f).

18

Proof. Let π be a communication protocol for f . The players simulate π(v1, . . . , vn). By Proposition
4.6, the payment in (22) deterministically implements f , so for every player we wish to compute a
random variable whose expected value is equal to it. For every leaf in π, the players agree in advance
on a profile which belongs in the leaf. Denote the leaf that π(v1, . . . , vn) reaches with L∗, and its
agreed type with v∗i . Lemma 4.4 allows us to focus on computing a random variable with expectation
Pi(v

∗
i , v−i). We obtain such a random variable when a player j 6= i samples t ∼ U [0, 1]. The players

simulate π(t · v∗i , v−i) and output:

P̂i = v∗i (f(v
∗
i , v−i))− v∗i (f(t · v

∗
i , v−i))

By Lemma 4.3, E[P̂i] = Pi(v
∗
i , v−i). Due to the two executions of π, the players know all the components

of P̂ . By repeating for all players, we get a truthful-in-expectation implementation of f with (n+1)·cc(f)
bits.

4.3 Convex Domains

Convex domains are useful for mechanism design since they are weak monotonicity domains [SY05],
i.e., domains where social choice function that satisfy weak monotonicity are necessarily truthful.11 We
will prove properties of convex domains by reducing them to scalable ones: we show that for every
function, translating its domain by a constant has no effect on it, and that all convex domains translate
to scalable domains.

Definition 4.8. (Translation) Let f : V = V1 × · · · × Vn → A and f t : V t = V t
1 × · · · × V t

n → A
be two social choice functions. Then, (f, V) and (f t, V t) are translations if there exist n vectors
t1, . . . , tn ∈ R

|A| such that:

1. For every player i, V t
i = {vi − ti|vi ∈ Vi}.

2. For every (vt1, . . . , v
t
n), f

t(vt1, . . . , v
t
n) = f(vt1 + t1, . . . , v

t
n + tn).

We write tai for the coordinate of alternative a in the translation vector of player i.

Lemma 4.9. Let (f, V) and (f t, V t) be translations of one another with the vectors t1, . . . , tn. Then,
if the payment scheme P implements (deterministically or in expectation) f , the following payment
implements f t (deterministically or in expectation) :

P t
i (v

t
1, . . . , v

t
n) = Pi(v

t
1 + t1, . . . , v

t
n + tn) + tai (23)

where a = f t(vt1, . . . , v
t
n).

Proof. We prove for deterministic implementation, and the proof for for truthful in expectation im-
plementation is identical. Fix a player i and vt−i ∈ V t

−i. We want to show that for all vt, v̂t ∈ V t
i :

vt(f t(vt, vt−i))− P t
i (v

t, vt−i) ≥ vt(f t(v̂t, vt−i))− P t
i (v̂

t, vt−i) (24)

We denote v = vt+ ti and v̂ = v̂t+ ti. Similarly, v−i = (vt1+ t1, . . . , v
t
i−1+ ti−1, v

t
i+1+ ti+1, . . . , v

t
n+ tn).

By definition, f t(vt, vt−i) = f(v, v−i) and f t(v̂t, vt−i) = f(v̂, v−i). We denote these alternatives with a
and â, respectively. Similarly, by (23), P t

i (v
t, vt−i) = Pi(v, v−i) + tai and P t

i (v̂, v
t
−i) = Pi(v̂, v−i) + tâi .

Hence, (24) is equivalent to:

vt(f(v, v−i)
︸ ︷︷ ︸

a

)− Pi(v, v−i)− tai ≥ vt(f(v̂, v−i)
︸ ︷︷ ︸

â

)− Pi(v̂, v−i)− tâi (25)

By definition, vt(a) = v(a) + tai and vt(â) = v(â) + tâi . Hence, the truthfulness of (f, P) implies that
(25) holds. (25) holds only if (24) holds, so P t implements f t.

11A function f satisfies weak monotonicity if for every player i, v−i ∈ V−i and v, v′ ∈ Vi, if f(v, v−i) = a and
f(v′, v−i) = b, it implies that v(a)− v(b) ≥ v′(a)− v′(b).

19

We show that f and f t require the same amount of communication for truthful implementation.

Lemma 4.10. Let (f, V) and (f t, V t) be translations of one another. Then, cc(f) = cc(f t), ccTIE(f) =
ccTIE(f

t) and ccIC(f) = ccIC(f
t).

Proof. It is clear that cc(f) = cc(f t) for every pair of translations f and f t. We explain why ccIC(f) =
ccIC(f

t) and the proof of ccTIE(f) = ccTIE(f
t) is identical. The proof is by reduction of (f t, V t)

to (f, V). Denote their translations with t1, . . . , tn, and the protocol of a truthful mechanism for
f with π. For (vt1, . . . , v

t
n) ∈ V t, the players run π(vt1 + t1, . . . , v

t
n + tn). By construction, f(vt1 +

t1, . . . , v
t
n + tn) = f t(vt1, . . . , v

t
n) = a. For the payment of every player i, the players output Pi + tai ,

where a = f(vt1 + t1, . . . , v
t
n + tn). It is truthful by Lemma 4.9.

Lemma 4.11. Let f : V = V1×..×Vn social choice with convex domains. Then, (f, V) has a translation
(f t, V t) such that V t

1 , . . . , V
t
n are scalable.

Proof. The translation is as follows. Fix a function f and a convex domain V . For every domain Vi, we
take an arbitrary type v∗i ∈ Vi and form a translation of Vi by taking V t

i = {vi− v∗i |vi ∈ Vi} and setting
f t(vt1, . . . , v

t
n) = f(vt1 + v∗1 , . . . , v

t
n + v∗n) for all (v

t
1, . . . , v

t
n) ∈ V t

1 × · · · × V t
n. We want to show that for

all i, V t
i is scalable. V t

i is convex, because translating sets preserves convexity. Also, by construction
it contains ~0. Hence, V t

i is scalable because every v ∈ V t
i and every λ ∈ [0, 1] satisfy by convexity that

λv + (1− λ) ·~0 = λv ∈ V t
i .

Theorem 4.12. Let f : V = V1 × ..× Vn → A be a social choice function with convex domains. Then,
ccTIE(f) ≤ (n+ 1) · cc(f).

Proof. By Lemma 4.11, (f, V) has a translation (f t, V t) such that V t is scalable. Therefore:

ccTIE(f) =
︸︷︷︸

By Lemma 4.10

ccTIE(f
t) ≤

︸︷︷︸

by Theorem 4.7

(n+ 1) · cc(f t) =
︸︷︷︸

by Lemma 4.10

(n+ 1) · cc(f)

5 An Algorithm for Single Parameter Settings

We now return to considering deterministic ex-post implementations. Notice that the exponential
lower bounds of Section 3 were proven using single parameter social choice functions. We provide an
algorithm for all such domains. The upper bound on the communication complexity of the algorithm
has a linear in |A| factor. The communication complexity of the algorithm is optimal in the sense that
the dependence on |A| is necessary, as demonstrated by the examples in Theorems 3.2 and 3.8.

Theorem 5.1. For all single parameter environments, ccIC(f) = O(n · cc
2(f) · |A|). As a corollary,

for binary single parameter domains, ccIC(f) = O(n · cc
2(f)).

Proof. Recall that in single parameter settings, the valuations set of each player is composed of a public
function wi : A → R and a type space which contains scalar private information Ri. Each valuation
vi(·) is equal to ri ·wi(·) for some ri ∈ Ri. For brevity, throughout the proof we slightly abuse notation
by writing vi both for a valuation and for the scalar private information associated with it, rvi .

We will show that ccIC(f) ≤ O(n·cc
2(f)·maxi | Imwi|). It implies the theorem, because maxi | Imwi| ≤

|A|. Since binary single parameter functions satisfy that Imwi = {0, 1} for every player i, it is imme-
diate that they satisfy ccIC(f) = O(n · cc

2(f)).
The proof is based on the observations that the payment fully depends on wi(f(·, v−i)) and that by

multiple binary searches, the players know wi(f(vi, v−i)) for all vi ∈ Vi. The binary searches are for the

20

sake of finding the “threshold” values of each alternative. The theorem has no assumptions at all about
neither the domain nor the function, but it comes at a price: the proof involves a lot of technicalities
in order to include all single parameter domains.

Lemma 5.2. Let f : V1 × · · · × Vn → A be an implementable social choice function. Then, there exists
a payment scheme P which implements f such that for every player i and and every v1−i, v

2
−i ∈ V−i:

wi(f(·, v
1
−i)) ≡ wi(f(·, v

2
−i)) =⇒ Pi(·, v

1
−i) ≡ Pi(·, v

2
−i) (26)

If two types in V−i have the same effect on the alternative chosen for player i, then they can clearly
be implemented with the same payment. Therefore, ccIC(f) is at most the communication complexity
of fully characterizing the function wi(f(·, v−i)) for every player i.

Fix a player i. Denote the number of elements in Imwi with m, and the elements in Imwi with
w1, . . . , wm. For brevity, from now on we call wi(f(·, v−i)) simply w(·, v−i). Note that each v−i ∈ V−i

defines a partition of Vi to V1 ·∪ . . . ·∪ Vm where Vj = {vi
∣
∣wi(vi, v−i) = wj}. We define the infimum of

unbounded from below sets as −∞, and the supremum of unbounded from above sets as ∞, so the
infimum and supremum of Vj are always well defined. Clearly, knowing the partition of Vi that v−i

induces V1 ·∪ . . . ·∪ Vm is equivalent to fully computing w(·, v−i). f is monotone, so we can focus on
computing the “thresholds” of those subsets:

Lemma 5.3. Let v1−i, v
2
−i ∈ V−i be two types, and denote the partition of Vi that they induce as

V11 ·∪ . . . ·∪ V1m and as V21 ·∪ . . . ·∪ V2m, respectively. Suppose that for all j ∈ [m], inf V1j = inf V2j and

w(inf V1j , v
1
−i) = w(inf V2j , v

2
−i) (if inf V

1
j , inf V

2
j belong in Vi). Then, w(·, v1−i) ≡ w(·, v2−i).

For every j ∈ [m], we define a function infj : V−i → R ∪ {±∞} which returns inf V
v−i

j . We define
supj : V−i → R ∪ {±∞} similarly.

Lemma 5.4. For every j ∈ [m], cc(f) ≥ log | Im infj| and cc(f) ≥ log | Im supj|. Hence, Im infj and
Im supj are finite.

Proof of Lemma 5.4. The first part of the lemma implies its second part, because cc(f) is assumed to be
finite (Remark 2.2). The proof is by a projection of the single-parameter domain to a multi-dimensional
domain.

We “spread” each v ∈ Vi to an m−dimensional representation: (v(1), . . . , v(m)) where v(j) =
rv · wj . We unite the alternatives by their wi(·) values, so there are now m alternatives, denoted
with w1, . . . , wm. Thus, the value of player i for alternative wj is v(j). We define δj1 = inf{v(j) −
v(1) | f(v, v−i) = wj}. Notice that if infj(v−i) = x in the single dimensional perspective, it means
that δj1(v−i) = x(wj − w1). Therefore, | Im infj| = | Im δj1|. By Lemma 6.5, cc(f) ≥ log | Im δj1|, so
cc(f) ≥ log | Im infj|. cc(f) ≥ log Im supj is proved analogously.

Lemma 5.5. For every j ∈ [m], cc(infj) ≤ cc2(f).

Proof. We describe a protocol which is a variant of binary search over the elements in Im infj. Denote
the elements in Im infj which differ from ∞ as i1 < . . . < ir.

12 Note that the infimums do not
necessarily belong in Vi, so we cannot just do a binary search over the set of infimums. In order to
overcome this problem, we need to find types in Vi such that the following conditions hold:

1. i1 ≤ v1 < i2 ≤ . . . < ir ≤ vr.

2. For every v−i ∈ V−i such that infj(v−i) = il, w(vl, v−i) = wj or w(il) = wj.

12Im infj is countable by Lemma 5.4.

21

Fix an index 1 ≤ l ≤ r. For il+1 to be always well defined, we set ir+1 as ∞. Define:

sup(l) = min{sup ∈ Im supj | ∃v−i s.t. infj(v−i) = il ∧ supj(v−i) = sup ∧ sup 6= il} (27)

In words, this is the smallest supremum of Vj whenever infj(v−i) = il, which is strictly larger than
il.

13 If the subset is empty, sup(l) ← ∞. Denote min{sup(l), il+1} with min(l). Both sup(l) and il+1

are by definition strictly larger than il, so il < min(l). If there exists v ∈ Vi such that il < v < min(l),
we take it to be vl. Otherwise, vl ← il.

We explain why the chosen v1, . . . , vr satisfy the desired properties. First, it is immediate from the
construction that il ≤ vl < il+1 for all l ∈ [r]. For the second condition, let v−i ∈ V−i be a type such
that infj(v−i) = il. Recall that v−i defines a partition of Vi to V1 ·∪. . . ·∪Vm. By definition, inf Vj = il. If
infj(v−i) = supj(v−i) = il, it implies that Vj is a singleton, so Vj = {il} and w(il, v−i) = wj , as needed.
Otherwise,v−i satisfies that infj(v−i) < supj(v−i). We now handle two cases separately: il < vl and
il = vl. If il < vl:

infj(v−i) = il < vl <
︸︷︷︸

by construction

min(l) ≤ sup(l) ≤ supj(v−i)

which implies that w(vl, v−i) = wj, as needed. If il = vl, the way we have chosen vl allows us to
deduce that there is no type in Vi that belongs in the interval (il,min(l)). Since Vj ⊆ Vi, it implies
that Vj ∩ (il,min(l)) = ∅. However, il is the greatest lower bound of Vj, so clearly il ∈ Vj and thus
w(il, v−i) = wj .

Then, using these types, we do a binary search for infj(v−i), by looking up for an element il such
that w(vl−1, v−i) < wj and w(vl, v−i) = wj or w(il, v−i) = wj. Due to monotonicity, w(vl−1, v−i) < wj

implies that infj(v−i) > il−1. If w(vl, v−i) = wj or w(il) = wj, it implies that Vj contains il or vl, so
infj(v−i) < il+1. Hence, infj(v−i) = il. Clearly, if infj(v−i) = ∞, there is no index l that satisfies
those conditions and the protocol outputs ∞. It is easy to see that the properties of the sequence
i1 ≤ v1 < . . . < ir ≤ vr guarantee that whenever the algorithm focuses on the left half or on the right
half of the sequence i1, . . . , ir, the element that we look for, infj(v−i), belongs in it (if it differs from
∞).

As for communication, each step in the binary search requires at most 2 · cc(f) bits due to the
computations of w(f(vl, v−i)) and w(f(il, v−i)). Combining well known properties of binary search
with Lemma 5.4 yields that there are at most O(log r) = O(log | Im infj|) = O(cc(f)) steps. Hence,
the total communication of computing infj is O(cc2(f)) bits.

Thus, computing infj(·) and executing f on the instance (infj(v−i), v−i) for all j ∈ [m] takes at
most O(m · cc2f) bits. By Lemmas 5.2 and 5.3, it suffices for payment computation. Recall that
m = | Imwi|. By repeating for all players, we get that the total communication of the suggested
protocol is O(n · cc2(f) ·maxi | Imwi|).

Tightness. We explain why the factors |A| and cc(f) cannot be omitted, i.e. that it cannot be the
case that for all functions, or even for all single parameter functions that ccIC(f) ≤ poly(n, cc(f))
or ccIC(f) ≤ poly(n, |A|). For non-degenerate functions cc(f) ≥ n, so we consider the n factor to
be less significant. The social choice functions in Section 3 serve as counterexamples to ccIC(f) ≤
poly(n, cc(f)). All of them satisfy that ccIC(f) = exp(cc(f)) with a constant number of players.

Similarly, we can easily provide a function with two alternatives and two players where the com-
munication complexity of its implementation is arbitrarily large: let fk : V1 × V2 → {a0, a1}. The
valuations of the players are their private information, and they do not depend on the alternative

13Im supj is finite by Lemma 5.4, so the set in (27) has a minimum if it is not empty.

22

chosen: R1 = V1 = R2 = V2 = {0, 1, . . . , 2k − 1}. fk(v1, v2) = a1 if and only if the bit representa-
tions of v1, v2 are disjoint. Clearly, fk is harder than the function DISJk and it is well known that
cc(DISJk) = Ω(k) [KN96]. fk is implementable with no payments, because the valuations of both
players do not depend on the outcome. Hence, ccIC(fk) = cc(fk) = Ω(k), whereas n = 2 and |A| = 2.

6 Payment Computation in Multi-Parameter Settings

So far, we considered deterministic algorithms only for single-parameter domains. In this section, we
venture into the more challenging multi-parameter setting. We begin by proving an efficient algo-
rithm for functions that satisfy uniqueness of payments. There is a vast literature on the topic of
characterizing domains and functions where implementability guarantees uniqueness of payments (for
example, [HMUV09, Nis07]). Notice that “uniqueness of payments” is often called “revenue equiva-
lence”.

We conclude by showing that an efficient algorithm for functions that satisfy uniqueness of payments
yields efficient algorithms for implementable functions with scalable and convex domains (Claims 6.9
and 6.10).

The intuition to the proof is as follows. Instead of providing a deterministic protocol that proves
this bound as usual, we provide a non-deterministic protocol that shows it. A deterministic mechanism
follows by relying on the known fact that the connection between deterministic and non-deterministic
mechanisms is polynomial (in fact, this known fact was not proven for promise problems that are needed
in our proofs, so we extend the connection to hold also for promise problems in Section A).

Thus, the problem boils down to providing a succinct witness that determines the price of the
altrnative chosen. We make the observation that a payment can be determined by a conjunction of
O(|A|2) inequalities. For illustration, fix v−i. Let va be such that f(va, v−i) = a and vb such that
f(vb, v−i) = b. Then, it obviously holds that va(a) − pa ≥ va(b) − pb and vb(b) − pb ≥ vb(a) − pa, so
va(a) − va(b) ≥ pa − pb ≥ vb(a) − vb(b). We show that if we choose, for each such a and b, va and vb

such that the inequality is “tight” as possible, then the payment of an alternative can be determined.
These O(|A|2) types will serve as our non-deterministic witness, which completes the proof except that
the description of the types might be huge. We rely on the communication protocol of f to provide a
succinct description of them. We begin with some formalities.

Definition 6.1. (Uniqueness of Payments) A social choice function f : V = V1×· · ·×Vn → A satisfies
uniqueness of payments if for every pair of truthful mechanisms (f, P) and (f, P ′), it holds that there
exist n functions h1, .., hn where hi : V−i → R, such that for every player i and every (v1..., vn) ∈ V :

Pi(v1, . . . , vn) = P ′
i (v1, . . . , vn) + hi(v−i) (28)

In Section 2, we define normalized mechanisms for single parameter settings. We generalize the
definition to multi-parameter domains.

Definition 6.2. (Multi-Parameter Normalization) For every player i, let v0i ∈ Vi be its zero type. We
say that a mechanism M = (f, P) is normalized if for every player i and every v−i ∈ V−i, Pi(v

0
i , v−i) =

0.

For every v−i, define f(v0, v−i) = a0 as the zero alternative with respect to v−i. It is easy to see that
if f satisfies uniqueness of payments, there exists a unique normalized mechanism which implements it.

Theorem 6.3. Let f : V1 × · · · × Vn → A be an implementable social choice function that satisfies
uniqueness of payments. Then, ccIC(f) ≤ poly(n, |A|, cc(f)).

23

Proof of Theorem 6.3. Fix an implementable function f that satisfies uniqueness of payments, and
denote the normalized mechanism for it as M . We show an upper bound for ccIC(f) by presenting a
communication protocol for M . Computing the outcome requires cc(f) bits, so clearly the tricky part
is computing the payments. By the taxation principle, the payment of every player is a function of v−i

and of the alternative chosen. Hence, we define a promise function for the price of an alternative a ∈ A
given v−i, price

a
i : V−i → R, with the promise that a is reachable from v−i.

14

Claim 6.4. For every player i, a ∈ A and price p ∈ Im priceai , it holds that N(priceai) ≤ O(|A|
2 ·cc(f)).

The proof of Claim 6.4 can be found in Section 6.1. Combining the polynomial relation between
deterministic and non-deterministic communication complexity (Section A) with Claim 6.4, we get
that:

ccIC(f) ≤ cc(f)
︸ ︷︷ ︸

computing
f(v=a)

+
n∑

i=1

cc(priceai) ≤
︸︷︷︸

by
Theorem A.2

cc(f) +
n∑

i=1

poly(n,N(priceai)) ≤
︸︷︷︸

by
Claim 6.4

poly(n, |A|, cc(f))

Observe that f(v) = a implies that for every player i, a is reachable from v−i, so v−i satisfies the
promise.

6.1 Proof of Main Claim

Proof of Claim 6.4. Fix a player i and an alternative a∗. We will prove the claim by presenting a proof
system for pricea

∗

i . Since pricea
∗

i is a promise function, a valid proof system for it satisfies that if v−i

breaks the promise, i.e., a∗ is not reachable from v−i, then the players reject all witnesses for it.15

First, we make some definitions and prove useful properties. Following the notation of [BCL+06],
let δab : V−i → R∪{±∞} be a function that maps v−i ∈ V−i to inf{v(a)−v(b) | f(v, v−i) = a} for every
pair of alternatives a, b ∈ A.16 Because of truthfulness, inf{v(a) − v(b) | f(v, v−i) = a} is un upper
bound of the difference between the payment of a and the payment of b in every payment scheme that
implements f . We begin with the following technical lemma:

Lemma 6.5. Let f : V1 × · · · × Vn → A be a social choice function.Then, for every player i and every
pair of alternatives a, b ∈ A, cc(f) ≥ log | Im δab|. In particular, Im δab is finite.

Proof of Lemma 6.5. First, cc(f) ≥ log | Im δab| implies that Im δab is finite, because we assume that
cc(f) is finite (see Remark 2.2). In order to prove cc(f) ≥ log | Im δab|, we take an arbitrary finite subset
T of Im δab. Denote the t elements with δ1 < . . . < δt. The proof is by the fooling set method. For
every j ∈ [t], we take a type vj−i such that δab(v

j
−i) = δj . We pair it with a type vji ∈ Vi in the following

way. If δt =∞, we take vti to be an arbitrary type in Vi. Otherwise, we take vti such that f(vti , v
t
−i) = a

and δt ≤ vti(a)− vti(b). For j < t, we take vji such that f(vji , v
j
−i) = a and δj ≤ vji (a)− vji (b) < δj+1.

We need to show that every vj−i has a matching vji that satisfies those requirements. If δt = ∞,
it is trivial that an arbitrary type in Vi exists. If δt < ∞, a matching vti for vt−i necessarily exists
because {v(a)− v(b) | f(v, vt−i) = a} is non empty and δt is its real lower bound. For j < t, such a type

necessarily exists, since δj is by definition the greatest lower bound of {v(a)−v(b) | f(v, vj−i) = a}. The
fact that δj+1 is not the infimum even though it is larger than δj implies that it is not a lower bound

of the subset, so there exists a type vji such that δj ≤ vji (a)− vji (b) < δj+1 and f(vji , v
j
−i) = a.

14All elements in Im priceia are real. The reason for it is as follows. The price of a reachable alternative a given v−i

cannot be −∞, because then a player would be incentivized to misreport his type whenever it is v0, by reporting instead
a type that reaches a. Similarly, the price cannot be ∞, because in this case the player would deviate from truthfulness
whenever his real type is the type that reaches a.

15See Definition A.1.
16If the set defined by v−i is not bounded from below, δab(v−i) outputs −∞.

24

Let S = {(vji , v
j
−i)

∣
∣1 ≤ j ≤ t}. We will show that any two inputs in S cannot belong in the same

leaf in any communication protocol for f . Let (vki , v
k
−i), (v

l
i, v

l
−i) be two inputs in S where k < l. If

δl = ∞, clearly f(vli, v
l
−i) 6= a, whereas f(vki , v

k
−i) = a. Then, they clearly do not belong in the same

leaf. If δab(v
l
−i) <∞, we know that f(vki , v

k
−i) = (vli, v

l
−i) = a. Note that δk ≤ vki (a) − vki (b) < δk+1.

17

k < l means that δk+1 ≤ δl. Combining these two inequalities yields: vki (a) − vki (b) < δl = inf{v(a) −
v(b) | f(v, vl−i) = a}. Thus, by the definition of infimum, f(vki , v

l
−i) 6= a so (vki , v

k
−i) and (vli, v

l
−i) cannot

belong in the same leaf because they violate the mixing property. Hence, the number of leaves is at
least t, so cc(f) ≥ log t. If every finite subset T of the set Im δab is of size at most 2cc(f), then the size
of the set itself is at most 2cc(f). Therefore, 2cc(f) ≥ | Im δab| =⇒ cc(f) ≥ log | Im δab|.

Proposition 6.6. Let f be function that satisfies uniqueness of payments and suppose that Im δab is
countable for all a, b ∈ A. Then, for every v−i and for every reachable alternative from it a∗, there
exists a set R ⊆ Vi of types v1, . . . , vt, t = O(|A|

2), such that if v′−i ∈ V−i satisfies f(v, v−i) = f(v, v′−i)
for all v ∈ R, then pricea

∗

i (v−i) = pricea
∗

i (v′−i). Moreover, R contains the zero type v0 and a type v∗

such that f(v∗, v−i) = a∗.

Fix a function f that satisfies those assumptions. By the taxation principle, we interpret a truthful
mechanism as a process where a menu Mv−i

is presented to every player i with her prices for all
alternatives, and then an alternative which maximizes the utilities of all players is chosen. We assume
that if an alternative is not reachable from v−i, its price in the menu is ∞ and otherwise by definition
Mv−i

(a) = priceai (v−i). Let M ∈ R
|A| be a menu. Given a menu M and a subset of alternatives

A ⊆ A, we denote withMA the “restricted” version ofM, with prices only for the alternatives in A.
We say that a menuM is truthful for v−i if player i never increases his utility by misreporting his type
given the prices inM.

Lemma 6.7. Fix a type v−i, denote its reachable alternatives as A and its zero alternative as a0. Let
M be a normalized menu vector, i.e., M(a0) = 0. Then, M(a) −M(b) ≤ δab(v−i) for every a, b ∈ A
if and only if MA =MA

v−i
. Moreover, every truthful menu M for v−i satisfies that for all reachable

alternatives a, b ∈ A, M(a)−M(b) ≤ δab(v−i).

Proof. We first show that Mv−i
satisfies the constraints. Let a, b be two reachable alternatives from

v−i. Recall that mechanism M implements f , so for all v such that f(v, v−i) = a:

v(a)−Mv−i
(a) ≥ v(b) −Mv−i

(b) =⇒ v(a)− v(b) ≥Mv−i
(a)−Mv−i

(b)

This weak inequality holds for all the elements in {v(a) − v(b) | f(v, v−i) = a}, so it also holds for the
infimum:

δab(v−i) = inf{v(a) − v(b) | f(v, v−i) = a} ≥ Mv−i
(a)−Mv−i

(b) (29)

Clearly, the same argument implies that every truthful menuM for v−i satisfies (29).
Now, let MA 6=MA

v−i
be a normalized menu vector that satisfies M(a) −M(b) ≤ δab(v−i) for all

a, b ∈ A. It means that f(v, v−i) = a implies that:

v(a) − v(b) ≥ inf{v(a)− v(b) | f(v, v−i) = a} = δab(v−i) ≥M(a)−M(b) =⇒

v(a)− v(b) ≥M(a)−M(b) =⇒ v(a)−M(a) ≥ v(b) −M(b)

In words, the menuMA induces truthful behaviour for player i given v−i. We extendMA with the same
prices asMA

v−i
for all a /∈ A and obtain a non-restricted menu,M. By assumption,M is normalized,

so we get that it is truthful and normalized, but differs from Mv−i
, which is a contradiction to the

uniqueness of payments assumption.

17δk+1 is well defined because k < l.

25

Denote the elements in Im δab with {δ1 < . . . < δj < . . .}. The fact that Im δab is countable allows
us to enumerate its elements.

Lemma 6.8. Fix a type v−i and a pair of reachable alternatives a, b ∈ A from v−i. Fix δj ∈ Im δab
where j < | Im δab|. Then, δab(v−i) ≤ δj if and only if there exists a type v ∈ Vi such that:

1. f(v, v−i) = a.

2. v(a)− v(b) < δj+1.

Therefore, the existence of a type that satisfies conditions 1 and 2 implies that every truthful menuM
for v−i satisfies that M(a)−M(b) ≤ δj .

Proof. Assume δab(v−i) ≤ δj . δj < δj+1, so δab(v−i) < δj+1. Recall that by definition, δab(v−i) =
inf{v(a)− v(b) | f(v, v−i) = a}. The fact that δab(v−i) is the greatest lower bound and not δj+1 implies
that it is not a lower bound at all, and thus there exists a type v ∈ Vi such that f(v, v−i) = a and
v(a)− v(b) < δj+1.

For the other direction, assume that there exists v ∈ Vi such that f(v, v−i) = a and v(a) − v(b) <
δj+1. It means that v(a) − v(b) ∈ {v(a) − v(b) | f(v, v−i) = a}, so a lower bound for this subset
is necessarily smaller than v(a) − v(b), which is strictly smaller than δj+1. Thus, δab(v−i) < δj+1.
Combining it with the fact that δab(v−i) ∈ Im δab yields that δab(v−i) belongs in {δ1, . . . , δj} and
thus δab(v−i) ≤ δj . Recall that by Lemma 6.7 every truthful menu M for v−i satisfies that M(a) −
M(b) ≤ δab(v−i). Combining the two inequalities gives that every truthful menu M of v−i satisfies
M(a)−M(b) ≤ δj .

Proof of Proposition 6.6. Fix a type v−i and an alternative a∗ which is reachable from it. Denote its
set of reachable alternatives with A, its zero alternative with a0 and its normalized menu withMv−i

.
We construct a subset R ⊆ Vi as follows. First, we add the zero type v0 to R. Then, for every

reachable alternative a ∈ A, we add to R a type vi such that f(vi, v−i) = a. For every ordered pair
(a, b) ∈ A, where δab(v−i) is not the largest element in Im δab, we add to R the following type: denote
with jab the index of δab(v−i) in Im δab. By Lemma 6.8, there exists a type vab such that f(vab, v−i) = a
and vab(a)− vab(b) < δjab+1. We add it to R. Notice that |R| = O(|A|2).

Let v′−i ∈ V−i be a type such that f(v, v−i) = f(v′, v−i) for all v ∈ R. We want to prove that
pricea

∗

i (v−i) = pricea
∗

i (v′−i). Denote the set of reachable alternatives of v′−i as A
′. By construction, all

alternatives in A are reachable from v′−i as well, so A ⊆ A′. Also, f(v0, v
′
−i) = f(v0, v

′
−i) = a0, i.e. v−i

and v′−i have the same zero alternative, so a normalized menu for v′−i necessarily satisfiesM(a0) = 0.
Fix an ordered pair (a, b) ∈ A, and denote δab(v−i) with δjab . If jab < | Im δab|, by construction there
exists vab ∈ R such that a = f(vab, v−i) = f(vab, v

′
−i) and vab(a)−vab(b) < δjab+1. Recall that A ⊆ A′, so

a and b are reachable from v′−i as well. Hence, we can use Lemma 6.8 for v′−i and get that δab(v
′
−i) ≤ δjab

and that every truthful menu M for v′−i satisfies that M(a) −M(b) ≤ δjab . If jab = | Im δab|, Im δab
is necessarily finite. By Lemma 6.7, the fact that alternatives a and b are reachable from v′−i implies
that every truthful menu for v′−i satisfies:

M(a)−M(b) ≤ δab(v
′
−i) ≤ max

v−i∈V−i

δab(v−i) = δjab

Denote with MA
v−i

and with MA
v′
−i

the menus presented by the mechanism M for v−i and for v′−i,

restricted to the alternatives in A. By Lemma 6.7,MA
v−i

is the only menu that satisfiesM(a0) = 0 and
M(a) −M(b) ≤ δab(v−i) = δjab for every a, b ∈ A. As we have just shown, a truthful and normalized
menuM for v′−i must satisfy those conditions as well. Therefore,MA

v−i
≡MA

v′
−i
, because otherwise we

get a contradiction to the uniqueness of MA
v−i

. By definition, a∗ ∈ A, so MA
v−i

(a∗) =MA
v′
−i
(a∗), and

thus pricea
∗

i (v−i) = pricea
∗

i (v′−i), which completes the proof.

26

Observe the following naive proof system. Denote the most efficient protocol of f with Πf . Fix
a type v−i. Notice that by Lemma 6.5, Im δab is finite for all a, b ∈ A and f satisfies uniqueness of
payments, so there exists a set R ⊆ Vi of O(|A|2) types that satisfies the conditions of Proposition
6.6. The protocol is as follows: the prover sends all the types in R, and the players simulate Πf (r, v−i)
for every r ∈ R. By Proposition 6.6, it suffices for the players for the extraction of the price of a∗.
However, this naive protocol might be too costly, because if the size of the domain Vi is large, pointing
to a single index in it might require too many bits.

We overcome this problem as follows. Instead of sending the types in R themselves, the prover
sends for each r ∈ R the leaf in Πf that (r, v−i) reaches. By that, we take advantage of the facts that
the protocol Πf is public and has at most 2cc(f) leaves. We denote the leaf (combinatorial rectangle)
of each r ∈ R with Lr = Lr

1 × · · · ×Lr
n, and the set of leaves sent by the prover with L. We also define

a set of types in V−i which are congruent with L, cands(L) = {v−i ∈ V−i | ∀L ∈ L, v−i ∈ L−i}. Before
outputting a price, the players verify that:

1. For every player j ∈ N/{i}, and for every L ∈ L, vj ∈ Lj. In other words, the leaves sent by the
prover are congruent with the players’ types.

2. cands(L) 6= ∅.

3. There exists a leaf L0 such that (v0, v−i) ∈ L0. The alternative associated with this leaf is the
zero alternative.

4. There exists a leaf L ∈ L labelled with alternative a∗.

5. For every v1−i, v
2
−i ∈ cands(L), pricea

∗

i (v1−i) = pricea
∗

i (v2−i). Denote this price as pricea
∗

i (L).

Note that verifying all conditions does not require any communication between the players. If the
verification fails, they reject. Otherwise, they output pricea

∗

i (L).

Correctness. First, we will show that for every v−i and every reachable a∗, if the prover sends the
set R specified in Proposition 6.6, the players output pricea

∗

i (v−i). By construction, the set of leaves
L sent by the prover satisfies that v−i ∈ L−i for all Lr ∈ L because Πf (r, v−i) reaches the leaf Lr, so
conditions 1 and 2 hold. Proposition 6.6 guarantees that conditions 3 and 4 hold as well.

For condition 5, fix a type v′−i ∈ cand(L). We will show that for all r ∈ R, (r, v−i) and (r, v′−i)
belong in the same leaf of Πf , and thus f(r, v−i) = f(r, v′−i). Using Proposition 6.6, it implies that
pricea

∗

i (v′−i) = pricea
∗

i (v−i) as needed.
To this end, fix a type r ∈ R, and denote the leaf sent for it in L with Lr. By construction, (r, v−i)

reaches Lr and v′−i ∈ Lr
−i because v′−i ∈ cand(L). Lr is a combinatorial rectangle, so using its mixing

property, we get that (r, v′−i) reaches L
r as well.

We still need to prove that if a∗ is not reachable from v−i, i.e., v−i violates the promise, then the
players reject all witnesses for it. We also need to prove that if pricea

∗

i (v−i) = p, there is no witness
that convinces the players that the price is different.

If a∗ is not reachable from v−i, no witness for v−i satisfies conditions 1 and 4 simultaneously, so the
players always reject types in V−i that violate the promise. Fix a type v−i such that pricea

∗

i (v−i) = p,
and denote its set of reachable alternatives with A. f satisfies uniqueness of payments, so MA

v−i
is

the only restricted menu which is truthful and normalized for A. By definition, MA
v−i

(a∗) = p. If the

players return a payment other than p, it means that there exist leaves in the protocol Πf that point at
outcomes of f that disqualify p from being the price of a∗ for v−i because of violations of truthfulness
or normalization. If p is disqualified, the menuMA

v−i
is invalidated as well. However,MA

v−i
is truthful

and normalized, so it cannot be invalidated and we get a contradiction.

27

Communication. The total communication of the protocol is O(|A|2 · cc(f)) bits, because R is of
size O(|A|2) and for every type in R the prover sends an index of a leaf in Πf , using cc(f) bits.

6.2 Scalable and Convex Domains

Scalable domains satisfy unique payments (Proposition 4.6) and convex domains are basically equivalent
to scalable domains, so we get the following claims for free.

Claim 6.9. Let f : V1×· · ·×Vn → A be an implementable social choice function with scalable domains.
Then, ccIC(f) ≤ poly(n, cc(f), |A|).

Proof. By Proposition 4.6, f satisfies uniqueness of payments. Hence, by Theorem 6.3, ccIC(f) ≤
poly(n, |A|, cc(f)).

Claim 6.10. Let f : V1× ..×Vn → A be a social choice function with convex domains. Then, ccIC(f) ≤
poly(n, cc(f), |A|).

Proof. By Lemma 4.11, (f, V) has a translation (f t, V t) where the domains V t are scalable.

ccIC(f) =
︸︷︷︸

By Lemma 4.10

ccIC(f
t) ≤

︸︷︷︸

by Claim 6.9

poly(n, |A|, cc(f t)) =
︸︷︷︸

By Lemma 4.10

poly(n, |A|, cc(f))

7 Hardness of Computing Payments in a Menu

In most of the paper we have assumed that we are given an implementable social choice function f ,
an instance (v1, . . . , vn) and our goal was to compute the payment of each player. In this section we
explore a very related but slightly different setting. In this setting, we are given the mechanism M
(which is stronger than having f), but now we are only given the valuations v−i of all players except
player i. We ask the following fundamental questions: for a given alternative a, is there some vi such
that f(vi, v−i) = a? If so, can we efficiently find it and compute its price?

Formally, let M = (f, P) : V1×. . .×Vn → A×R
n be a mechanism. For every player i and alternative

a ∈ A, we define reachai : V−i → {0, 1} as a function that indicates whether a is reachable from v−i or
not. We also define a search variant of reach, reachWitnessai : V−i → Vi ∪ {⊥}. reachWitnessai (v−i)
outputs a type vi such that f(vi, v−i) = a, or ⊥ if a is not reachable from v−i. The third function we
define is priceai : V−i → R ∪ {∞} that returns the price of alternative a presented by v−i. Through-
out this section, we assume that M assigns non-reachable alternatives a ∞ price. The deterministic
communication complexity of reachability of a mechanisms, denoted with cc(reach(f)), is defined to
be maxi,a{cc(reach

a
i)}. Similarly, we write cc(reachWitness(f)) for maxi,a{cc(reachWitnessai)} and

cc(price(P)) for maxi,a{cc(price
a
i)}.

7.1 Reachability is Hard

Proposition 7.1. There exists a mechanism M = (fk, P) with single parameter domain, three players
and a constant number of alternatives such that cc(reach(fk)) ≥ exp(cc(M)).

Proof. Fix some integer k. The mechanism M = (fk, P) is as follows. There are three players: Alice,
Bob and Charlie. The set of alternatives is A = {b, c, bc, n}. The domains of Alice and Bob are single
parameter: rA ∈ {0, . . . , k − 1} and rB, rC ∈ {0, 1}

k . We define a function that converts the types of
Bob and Charlie to integers, int : {0, 1}k → N. Alice’s value for all alternatives is identical and equal
to her private information rA, i.e., wA ≡ 1. Thus, we use vA and rA interchangeably. Bob’s value

28

for alternative a is int(rB) · wB(a), where wB(b) = wB(bc) = 1 and wB(c) = wB(n) = 0. Similarly,
Charlie’s value for alternative a is int(rC) ·wC(a), where wC(c) = wC(bc) = 1 and wC(b) = wC(n) = 0.
Denote with rB(j) and rC(j) the j’th bits of the binary string associated with vB and with vC . The
social choice function fk : VA × VB × VC → A is as follows. For every vA ∈ VA, vB ∈ VB , vC ∈ VC :

fk(vA, vB , vC) =







bc rvB (vA) = rvC (vA) = 1

b rvB (vA) = 0, rvC (vA) = 1

c rvB (vA) = 1, rvC (vA) = 0

n otherwise.

In words, Bob gets an alternative he values more if Charlie’s vA’th bit is on, and vice versa.
Therefore, for every player i, wi is either constant or depends entirely on the types of other players.
Thus, a constant zero payment implements f . Observe that cc(M) = O(log k), because M is computed
by a trivial protocol where Alice sends vA using log k bits, and then Bob and Charlie send a single bit
each: rB(vA) and rC(vA).

In order to show a gap, consider reachbcAlice : VB × VC → {0, 1}. Observe that alternative bc is
reachable for Alice if and only if rvB and rvC are not disjoint. Hence, reachbcAlice can be trivially reduced
to DISJk, which requires k bits of communication [KN96]. Thus, cc(reach(fk)) ≥ k.

7.2 Hardness of Reachability Determines Hardness of Computing Payments

[Dob16] shows that every truthful mechanism M = (f, P) for domain with additive valuations satisfies
that cc(price(P)) ≤ cc(M). We add that for player decisive functions, cc(price(P)) ≤ poly(n, cc(M)).
Furthermore, we demonstrate that the hardness of price(·) stems from the hardness of reach(·) (Propo-
sition 7.3). In contrast, we prove that we cannot derive a similar upper bound for ReachWitness(·)
(Proposition 7.4).

Definition 7.2. (Player Decisiveness) We say that a function f : V1 × · · · × Vn → A is player decisive
if for every player i, alternative a ∈ A and type v−i ∈ V−i, there exists vi ∈ Vi such that f(vi, v−i) = a.

Proposition 7.3. Let M = (f, P) be a truthful mechanism. Then:

cc(price(P)) ≤ cc(reach(f)) + poly(n, cc(M))

As a corollary, if f is player decisive, cc(price(P)) ≤ poly(n, cc(M)).

Proof. Fix a player i and an alternative a ∈ A. Fix a type v−i ∈ V−i. First, the players execute
the protocol of reachai (v−i). If alternative a is not reachable from v−i, they output ∞. Otherwise,
they know that it is reachable. By Theorem A.2, deterministically computing the price of a reachable
alternative takes poly(n,N(priceai)), where N(priceai) is the number of bits needed for the prover to
present a witness for priceai (v−i) = Pi, with the guarantee that no witness is ever approved if a is not
reachable from v−i.

Observe the following naive proof system. Denote the protocol of the mechanism M with π, and
observe that is has at most 2cc(M) leaves. A prover sends to the players a name of a leaf L such that
L is labelled with alternative a and v−i ∈ L−i. It takes CC(M) bits. Each player j 6= i accepts if
vj ∈ Lj . Notice that such a leaf exists if and only if a is reachable from v−i, so all witnesses for inputs
that violate the promise are indeed rejected. Since the leaf belongs to a protocol of the mechanism, it
is labelled with the payment of player i Pi, so the leaf serves as a proof that priceai (v−i) = Pi. Thus,
N(priceai) ≤ cc(M). Therefore, for every player i and alternative a ∈ A:

cc(priceai) ≤ cc(reachai) + poly(n,N(priceai)) (by Theorem A.2)

≤ cc(reachai) + poly(n, cc(M))

=⇒ cc(price(P)) ≤ cc(reach(f)) + poly(n, cc(M))

29

An observant reader might wonder whether this protocol can be used to derive an upper bound for
reachAndWitness(f) as well. Note that an a−leaf that v−i belongs to contains information not only
about price of player i, but also about types in Vi that reach a given v−i. However, this line of thought
fails. The reason for it is that Theorem A.2 applies to functions, not to relations. Given v−i, the
mechanism presents a single price for alternative a, so priceai (v−i) is a function. In contrast, v−i has
numerous types in Vi that reach a.

Is it possible that cc(reachWitness(f)) ≤ cc(reach(f)) + poly(n, cc(M)), but our proof technique
fails to show it? We answer this question in the negative.

Proposition 7.4. Let k be a number divisible by 3. Then, there exists a mechanism M = (fk, P) with
single parameter domain, three players and a constant number of alternatives such that cc(reach(fk)) =
cc(M) = O(log k), but cc(reachWitness(fk)) = Ω(k).

We use the following relation in the proof of Proposition 7.4.

Definition 7.5. Set k = 3m. Let X be the set of all graphs of k vertices with a matching of size
m, and let Y be the set of all graphs of k vertices with no matching of size m. Define the relation
MATCH ⊆ X × Y × {1, . . . ,

(
k
2

)
} as following. (x, y, i) ∈MATCH if edge i is in the graph x, but not

in the graph y.

Recall that a protocol computes a relation if for every (x, y) ∈ X × Y , the protocol outputs i such
that (x, y, i) ∈ R.

Theorem 7.6 ([KN96,RW92]). cc(MATCH) = Ω(k).

Proof of Proposition 7.4. The mechanism is as follows. There are three players: Bob, Charlie and
Diane with single-parameter domains. The set of alternatives is A = {b, c, bc, n}. Bob’s type space
is X and Charlie’s is Y , where X and Y are defined in Definition 7.5. We define arbitrary mappings
intX : X → N and intY : Y → N that convert Bob’s and Charlie’s graph types to some integers. Bob’s
value for an alternative a is intX(x) · wB(a), where wB(b) = wB(bc) = 1 and wB(c) = wB(n) = 0.
Similarly, Charlie’s value for a is intY (y) · wC(a), where wC(c) = wC(bc) = 1 and wC(b) = wC(n) = 0.
We define VX and VY to be the valuations sets of Bob and Charlie, respectively. Diane’s valuations set
is {1, . . . ,

(
k
2

)
+ 3}, i.e. her value for all alternatives is identical and equal to her private information

(wD ≡ 1). Recall that wB, wC , wD : A → R are public. For every valuation vx ∈ Vx and every
1 ≤ j ≤

(
k
2

)
, let vx(j) be 1 if the j’th edge exists in the graph x associated with the valuation vx, and

define vy(j) similarly. fk : VX × VY × {1, . . . ,
(
k
2

)
} → A is as follows. For every vx ∈ VX , vy ∈ VY and

e ∈ {1, . . . ,
(
k
2

)
+ 3}:

fk(vx, vy, e) =







bc e =
(
k
2

)
+ 1 or (e ≤

(
k
2

)
and vx(e) = vy(e) = 1)

n e =
(
k
2

)
+ 2 or (e ≤

(
k
2

)
and vx(e) = vy(e) = 0)

b e =
(
k
2

)
+ 3 or (e ≤

(
k
2

)
and vx(e) = 0 and vy(e) = 1)

c vx(e) = 1 and vy(e) = 0

Intuitively, Diane has three “special” valuations that make the alternative chosen be one of {bc, n, b},
regardless of the other players’ valuations. If she does not hold one of them, then if e ∈ x (i.e. the edge
e belongs in Bob’s graph), an alternative that benefits Charlie is chosen, and vice versa.

Due to those special types, {bc, n, b} are reachable from (vx, vy) for all (vx, vy) ∈ Vx×Vy. Alternative
c is reachable from all (vx, vy) as well: by construction x has an m−matching, and y does not, so there
necessarily exists an edge that belongs in x but not in y. Therefore, cc(reachaDiane) = 0 for all a ∈ A.

Consider reachaBob : VY × {1, . . . ,
(
k
2

)
} → {0, 1} for some a ∈ A. Diane can send her type e using

30

O(log k) bits, and then Charlie sends back whether y contains the edge e or not. If it contains e,
only alternatives {b, bc} are reachable, otherwise only alternatives {c, n} are reachable. Therefore,
cc(reachaBob) = O(log k) for every a ∈ A. Similarly, cc(reachaCharlie) = O(log k) for every a ∈ A.
Therefore, CC(reach(fk)) = O(log k).

Observe that none of the players benefit from misreporting, because for all of them wi is either
constant or depends entirely on the valuations of the other players. Thus, a mechanism M with no
payments at all implements f . Observe that M has the following trivial protocol: Diane sends her
valuation e, and Bob and Charlie reply with vx(e) and vy(e). Thus, all players know the alternatives
chosen and that everyone pays zero. Therefore, cc(M) = O(log k).

We now want to show that the computation of reachWitness(fk) is hard. Consider reachWitnesscDiane,

the function that outputs a valuation in {1, . . . ,
(
k
2

)
} that reaches alternative c, given (vx, vy) ∈ VX×VY .

As we explained earlier, such a valuation always exists. Observe that f(vx, vy, e) = c if and only if the
edge e belongs in x and not in y. Therefore, computing a valuation e that reaches alternative c is
equivalent to computing the relation MATCH. Thus, The lower bound on MATCH (Theorem 7.6)
implies cc(reachWitness(fk)) = Ω(k).

7.3 Exponential Upper Bounds on Reachability and on Payment Computation

We now show that for every mechanismM = (f, P), cc(reach(f)), cc(reachWitness(f)) and cc(price(P))
are at most exp(cc(M)). Thus, the lower bounds presented in Propositions 7.1 and 7.4 are tight.

Proposition 7.7. Let M = (f, P) be a truthful mechanism. Then, cc(reachWitness(f)) ≤ exp(cc(M)).
As a corollary, cc(reach(f)) ≤ exp(cc(M)) and cc(price(P)) ≤ exp(cc(M)).

The proof is motivated by Fadel and Segal [FS09]. It relies on the inner structure of protocols, so
we define them as follows. The definition is based on [BKS15].

Definition 7.8. (Communication Protocol) A protocol π is defined for n players, type spaces V =
V1 × · · · × Vn and an outcome space O. It is a binary tree with decision nodes U , and leaves L. Each
decision node u ∈ U is associated with a player i and with a decision function su : Vi → {0, 1}. The
computation of a protocol is as follows. If su(vi) = 1, the players proceed to its right child, and otherwise
to its left child. We say that a protocol computes a function f if for all v ∈ V , π(v) = f(v).

Proof. First, we see that the proposition implies its corollaries. By definition, cc(reach(f)) ≤ CC(reachWitness(f)),
so an upper bound for cc(reachWitness(f)) applies to cc(reach(f)) as well. Regarding price(P), ob-
serve that for each player i and alternatives a ∈ A, priceai can be computed by one execution of the
protocol of reachWitnessai and another execution of the protocol of M . The first execution yields a
type vi such that f(v, v−i) = a or a price of ∞, and the second execution simulates M(v, v−i) and
outputs the price. Thus:

cc(price(P)) ≤ cc(reachWitness(f)) + cc(M) ≤ exp(cc(M))

Now, we prove that cc(reachWitness(f)) ≤ exp(cc(M)). Denote the optimal protocol of M with
π. The players agree in advance on a profile (v1, . . . , vn) ∈ L = L1 × · · · × Ln for every leaf in π. Fix
a player i and an alternative a. The computation of reachWitnessai (v−i) is as follows. For every inner
node u ∈ U , the player j who is in charge of it sends su(vj). If an inner node belongs to player i, the
players skip it. There are at most 2cc(M) decision nodes, so it takes 2cc(M) bits.

The next phase of the protocol requires no communication, so all players perform it simultaneously.
Observe that each leaf is associated with a path in the binary tree, which might include decision nodes
of player i. Each player goes over each L ∈ L labelled with alternative a in a an agreed upon order, and
checks whether the bits of decision nodes sent by all the players are compatible with the path of the leaf.

31

If there is a compatible a-leaf L, the players output his agreed upon type vi ∈ Li. If there is no such
leaf, it means that a is not reachable from v−i, and the players output ⊥. The total communication is
2cc(M) bits.

References

[AKSW20] Sepehr Assadi, Hrishikesh Khandeparkar, Raghuvansh R Saxena, and S Matthew Wein-
berg. Separating the communication complexity of truthful and non-truthful combinatorial
auctions. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1073–1085, 2020.

[APTT04] Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Éva Tardos. An approximate
truthful mechanism for combinatorial auctions with single parameter agents. Internet Math-
ematics, 1(2):129–150, 2004.

[AT01] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In Proceed-
ings 42nd IEEE Symposium on Foundations of Computer Science, pages 482–491. IEEE,
2001.

[BBNS08] Moshe Babaioff, Liad Blumrosen, Moni Naor, and Michael Schapira. Informational over-
head of incentive compatibility. In Proceedings of the 9th ACM conference on Electronic
commerce, pages 88–97, 2008.

[BCL+06] Sushil Bikhchandani, Shurojit Chatterji, Ron Lavi, Ahuva Mu’alem, Noam Nisan, and
Arunava Sun. Weak monotonicity characterizes deterministic dominant-strategy imple-
mentation. Econometrica, 74(4):1109–1132, 2006.

[BKS15] Moshe Babaioff, Robert D Kleinberg, and Aleksandrs Slivkins. Truthful mechanisms with
implicit payment computation. Journal of the ACM (JACM), 62(2):1–37, 2015.

[DF92] Danny Dolev and Tomás Feder. Determinism vs. nondeterminism in multiparty communi-
cation complexity. SIAM Journal on Computing, 21(5):889–895, 1992.

[Dob16] Shahar Dobzinski. Computational efficiency requires simple taxation. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 209–218. IEEE,
2016.

[FS09] Ronald Fadel and Ilya Segal. The communication cost of selfishness. Journal of Economic
Theory, 144(5):1895–1920, 2009.

[HMUV09] Birgit Heydenreich, Rudolf Müller, Marc Uetz, and Rakesh V. Vohra. Characterization of
revenue equivalence. Econometrica, 77(1):307–316, 2009.

[KN96] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1996.

[KNSW94] Mauricio Karchmer, Ilan Newman, Mike Saks, and Avi Wigderson. Non-deterministic
communication complexity with few witnesses. Journal of Computer and System Sciences,
49(2):247–257, 1994.

[Mye81] Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,
1981.

32

[Nis07] Noam Nisan. Introduction to Mechanism Design (for Computer Scientists), page 209–242.
Cambridge University Press, 2007.

[Roc87] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-
linear context. Journal of mathematical Economics, 16(2):191–200, 1987.

[RST+20] Aviad Rubinstein, Raghuvansh R. Saxena, Clayton Thomas, S. Mathew Weinberg, and
Junyao Zhao. Exponential communication separations between notions of selfishness. 2020.

[RW92] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. Journal
of the ACM (JACM), 39(3):736–744, 1992.

[SY05] Michael Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex domains.
In Proceedings of the 6th ACM Conference on Electronic Commerce, EC ’05, page 286–293,
New York, NY, USA, 2005. Association for Computing Machinery.

A Deterministic and Nondeterministic Communication Complexity

The proofs of the unique payments algorithm (Theorem 6.3) and the upper bound on price(M) (Propo-
sition 7.3) rely on the polynomial relations between deterministic and non-deterministic communication
complexity of promise problems. We hereby prove this assertion. We stress that despite the fact that
we focus on promise problems, all the results of this section can be easily extended to non-promise
problems. Usually, given a deterministic function f : X = X1 × · · · ×Xn → O and a protocol π we say
that π computes f if f(x) = π(x) for all x ∈ X. For promise problems, we allow π to err sometimes.
Formally:

Definition A.1. (Promise Problems) Let f : X = X1 × · · · ×Xn → O ∪ {∗} be a function. We call x
such that f(x) ∈ O promise inputs, and denote them with P ⊆ X. We say that a deterministic protocol
π computes f if π(x) = f(x) for all x ∈ P . We say that a non-deterministic protocol computes f if it
presents a valid witness for x ∈ P , whilst all witnesses are rejected if x violates the promise. We denote
with N(f) the non-deterministic communication complexity of f .

Recall that a non-deterministic protocol is equivalent to a cover of inputs. Thus, we require that the
cover associated with a non-deterministic protocol for f satisfies that every o-monochromatic rectangle
in it does not contain ∗-inputs, i.e. inputs which violate the promise. Our goal is to prove that:

Theorem A.2. Let f : X1×· · ·×Xn → O∪{∗} be a promise function. Then, there exists a deterministic
protocol that computes f using poly(n,N(f)) bits.

To this end, we define for each o ∈ O a verifier function which is a promise problem as well:
V o
f : X → {0, 1, ∗}. V o

f has the same promise inputs as the original f . It outputs 1 if f(x) = o,
0 if f(x) ∈ O but differs from o and ∗ if x /∈ P . We define the most costly verifier with Vf , i.e.
Vf = argmaxo∈O cc(V o

f). We prove the theorem by combining the two following propositions:

Proposition A.3. Let f : X1×· · ·×Xn → O∪{∗} be a promise problem. Then, cc(f) ≤ O
(

n2
(
log2 |O|+

log |O| · cc(Vf) + cc2(Vf)
))

.

Proposition A.4. Let f : X = X1 × · · · × Xn → {0, 1, ∗} be a boolean promise function. Then,
there exists a deterministic protocol that computes f using O(n2 · N0(f) ·N1(f)) bits. Thus, cc(f) ≤
poly(n,N(f)).

33

Proof of Theorem A.2. By Proposition A.3, we get that:

cc(f) ≤ O
(

n2
(
log2 |O|+ log |O| · cc(Vf) + cc2(Vf)

))

N(f) ≥ log |O|, so we only need to upper bound cc(Vf). By Proposition A.4, cc(Vf) ≤ poly(n,N(Vf)).
Clearly, N(Vf) ≤ N(f) because a non-deterministic protocol for f can be used to compute every V o

f

because f and V o
f share the same promise P ⊆ X. Therefore:

cc(f) ≤ O
(

n2
(
log2 |O|+ log |O| · cc(Vf) + cc2(Vf)

))

≤ poly(n,N(f), cc(Vf))

≤ poly(n,N(f), N(Vf)) (by Proposition A.4)

≤ poly(n,N(f))

A.1 Reduction of Computation to Verification

The proof is by a reduction to unique-disjointness. unique-disjointness is a search problem, where
each player holds l bits, with the promise that at most one of them is intersecting. A bit is said to be
intersecting if it is turned on for all players. A protocol solves the problem if it returns the index of
the intersecting bit if it exists, and ⊥ otherwise.18

Theorem A.5. [Dob16,KNSW94] There is a protocol with communication complexity O(n2 · log2 l)
which solves unique-disjointness.

Proof of Proposition A.3. The reduction of f to unique-disjointness is as follows. First, each player
translates her input xi ∈ Xi to a new form bi as follows. Let πo be the most efficient communication
protocol for V o

f . Each player holds a bit in bi for every 1-leaf in πo for all o ∈ O. Denote the number of

bits each player holds as l, and note that l ≤ |O| · 2cc(Vf), since there are |O| protocols and the number
of leaves in each of them is at most the exponent of its height. Recall that a leaf is a combinatorial
rectangle, i.e., it is of the form

∏n
j=1 Sj , where Sj ⊆ Xj . For player i, the bit that represents a 1-leaf

in bi is turned on only if her input belongs in the leaf, i.e. xi ∈ Si. Hence, if the players hold x ∈ X, a
bit of a 1-leaf in πo is intersecting if and only if the execution of πo(x) ends at this particular leaf.

Recall that we are promised to get x such that f(x) ∈ O. Denote f(x) = o∗. It means that
V o∗

f (x) = 1, so Πo∗(x) reaches a 1−leaf. For all other outcomes o 6= o∗, by design the protocol Πo(x)
reaches a 0-leaf because x satisfies the promise, so none of the 1-leaves of those protocols are intersecting.
Hence, there is a single 1-leaf whose bit is intersecting, and it belongs to Πo∗ . Thus, the following
protocol computes f : the players simulate the communication protocol for unique-disjointness with
b1, . . . , bn. Afterwards, they return the outcome whose protocol has 1−leaf whose bit is intersecting.
By Theorem A.5, it takes:

O(n2 · log2 l) = O(n2 · log2(|O| · 2cc(Vf))) = O
(

n2
(
log2 |O|+ log |O| · cc(Vf) + cc2(Vf)

))

18The definition of unique-disjointness is similar to the one in [Dob16], except that we redefine it as a search problem
instead of a decision problem.

34

A.2 Deterministic and Nondeterministic Communication of Boolean Promise Prob-

lems

We show that the proof in the two party model in [KN96, Theorem 2.11] can be extended to a multi-
player promise setting. Dolev and Feder [DF92] provide a similar result, but they do not address the
promise scenario. We begin by proving the following simple combinatorial fact.

Lemma A.6. Let R be a set of objects, and let R1, ..., Rn ⊆ R be n subsets such that
⋂n

j=1Rj = ∅.

Then, there exists j ∈ [n] such that |Rj | ≤
n−1
n
· |R|.

Proof of Lemma. For every j, denote with Rj = {x ∈ S, x /∈ Rj}. If for all j, |Rj | >
n−1
n
· |R|, it means

that there exists ǫ > 0 such that |Rj| >
n−1
n
· |R|+ ǫ, so by definition |Rj | ≤

1
n
· |R| − ǫ. By the union

bound, |
⋃n

j=1Rj| < |R|, so there exists x such that x ∈ Rj for all j ∈ [n], a contradiction.

Proof of Proposition A.4. We use the same protocol as the one in [KN96, Theorem 2.11], with minor
adjustments. Let π0 and π1 be non-deterministic protocols for the promise problem f , whose commu-
nication complexities are N0(f) and N1(f), respectively. Denote with C0 and C1 the covers associated
with π0 and with π1, and recall that by definition all the rectangles in them do not contain ∗−inputs.
For every i ∈ [n], we say that two rectangles R1 = R1

1 × · · · ×R1
n and R2 = R2

1 × · · · ×R2
n i−intersect

if R1
i ∩R2

i 6= ∅.
In each iteration t, the players holds a subset of 0-rectangles from C0(f). We call this list live(t),

and initialize it to be C0(f). The protocol is as follows: in each iteration t, if Live(t) = ∅, the
players output 1. Otherwise, every player i in his turn checks whether there exists a 1−rectangle
Rt = Rt

1 × · · · × Rt
n in C0 such that Rt i−intersects at most n−1

n
of the rectangles in live(t) and also

xi ∈ Ri. If a player found such a rectangle, he sends its name to the other players and they all update:
live(t+1)← {R i−intersects Rt | R ∈ live(t)} and proceed to the next iteration. If none of the players
found a rectangle which satisfies those conditions, the players output 0.

For correctness, denote a rectangle that x belongs to with R∗. If x is a 0−input, by construction it
remains inside live(t) in every iteration, so live(t) never empties out and the players indeed output 0.
If x is a 1−input, we will show that in each iteration where live(t) 6= ∅, R∗ satisfies the conditions to
be for Rt for at least one of the players. Fix an iteration t, and divide the set of 0−rectangles live(t)
to n subsets: live1(t), . . . , liven(t) where livei(t) is the set of rectangles in live(t) that i−intersect R∗.
R∗ is a 1-rectangle, so

⋂n
i=1 livei(t) is necessarily empty, because if there exists a 0−rectangle which

i−intersects with R∗ for all i ∈ [n], it means that they have a shared input, which is a contradiction.19

Since
⋂n

i=1 livei(t) is empty, by Lemma A.6, there exists an index j such that |livej(t)| ≤
n−1
n
· live(t),

so player j necessarily finds a rectangle.
Regarding the communication complexity, observe that in each iteration at most n + log |C1| bits

are sent. Also, live(t) decreases by a multiplicative factor of n−1
n

in each iteration, so there are at most
O(n · log |C0|) iterations. Thus, the total communication is O(n2 ·N0(f) ·N1(f)).

19This is why we do not allow monochromatic rectangles to contain promise inputs. If we had allowed them to contain
promise inputs, a 0-rectangle and 1-rectangle could have been intersecting.

35

	1 Introduction
	2 Preliminaries
	3 The Cost of Payment Computation is Exponential
	3.1 Proof I: Hardness via the Number of Payments
	3.2 Proof II: Hardness via Interaction
	3.3 Hardness of Welfare Maximizing Mechanisms

	4 Truthful in Expectation Mechanisms
	4.1 Single Parameter Domains
	4.2 Scalable Domains
	4.3 Convex Domains

	5 An Algorithm for Single Parameter Settings
	6 Payment Computation in Multi-Parameter Settings
	6.1 Proof of Main Claim
	6.2 Scalable and Convex Domains

	7 Hardness of Computing Payments in a Menu
	7.1 Reachability is Hard
	7.2 Hardness of Reachability Determines Hardness of Computing Payments
	7.3 Exponential Upper Bounds on Reachability and on Payment Computation

	References
	A Deterministic and Nondeterministic Communication Complexity
	A.1 Reduction of Computation to Verification
	A.2 Deterministic and Nondeterministic Communication of Boolean Promise Problems

