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ABSTRACT
Indistinguishability obfuscation, introduced by [Barak et. al. Crypto

2001], aims to compile programs into unintelligible ones while

preserving functionality. It is a fascinating and powerful object that

has been shown to enable a host of new cryptographic goals and

beyond. However, constructions of indistinguishability obfuscation

have remained elusive, with all other proposals relying on heuristics

or newly conjectured hardness assumptions.

In this work, we show how to construct indistinguishability

obfuscation from subexponential hardness of four well-founded

assumptions. We prove:

Informal Theorem: Let 𝜏 ∈ (0,∞), 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1) be ar-
bitrary constants. Assume sub-exponential security of the following
assumptions:
- the Learning With Errors (LWE) assumption with subexponential
modulus-to-noise ratio 2𝑘

𝜖
and noises of magnitude polynomial in 𝑘 ,

where 𝑘 is the dimension of the LWE secret,
- the Learning Parity with Noise (LPN) assumption over general prime
fields Z𝑝 with polynomially many LPN samples and error rate 1/ℓ𝛿 ,
where ℓ is the dimension of the LPN secret,
- the existence of a Boolean Pseudo-Random Generator (PRG) in NC0

with stretch 𝑛1+𝜏 , where 𝑛 is the length of the PRG seed,
- the Decision Linear (DLIN) assumption on symmetric bilinear groups
of prime order.
Then, (subexponentially secure) indistinguishability obfuscation for
all polynomial-size circuits exists. Further, assuming only polynomial
security of the aforementioned assumptions, there exists collusion
resistant public-key functional encryption for all polynomial-size
circuits.

CCS CONCEPTS
• Theory of computation→ Cryptographic primitives.
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1 INTRODUCTION
In this work, we study the notion of indistinguishability obfus-

cation (𝑖O) for general polynomial-size circuits [19, 66, 77]. 𝑖O
requires that for any two circuits C0 and C1 of the same size,

such that C0 (𝑥) = C1 (𝑥) for all inputs 𝑥 , we have that 𝑖O(C0)
is computationally indistinguishable to 𝑖O(C1). Furthermore, the

obfuscator 𝑖O should be computable in probabilistic polynomial

time. The notion of 𝑖O has proven to be very powerful, with over

a hundred papers published utilizing 𝑖O to enable a remarkable

variety of applications in cryptography and complexity theory;

indeed 𝑖O has even expanded the scope of cryptography (see, e.g.

[17, 26, 44, 57, 58, 66, 67, 76, 83, 83, 84, 99, 111]).

Despite this success, until this work, all previously known 𝑖O
constructions (see [68] and the references therein) required new

hardness assumptions that were postulated specifically for show-

ing security of the 𝑖O schemes proposed. Indeed, the process of

understanding these assumptions has been tortuous, with several

of these assumptions broken by clever cryptanalysis [18, 21, 33, 40,

53, 54, 60, 82, 85, 103, 105, 106]. The remaining standing ones are

based on new and novel computational problems that are different

in nature from well-studied computational problems (for instance,

LWE with leakage on noises).

As a result, there has been a lack of clarity about the state of 𝑖O
security [24]. Our work aims to place 𝑖O on terra firma.

Our contribution. We show how to construct 𝑖O from subexpo-

nential hardness of four well-founded assumptions. We prove:

Theorem 1.1. (Informal) Let 𝜏 be arbitrary constants greater than
0, and 𝛿 , 𝜖 in (0, 1). Assume sub-exponential security of the following
assumptions, where _ is the security parameter, 𝑝 is a _-bit prime,
and the parameters ℓ, 𝑘, 𝑛 below are large enough polynomials in _:
• the LWE assumption over Z𝑝 with subexponential modulus-
to-noise ratio 2𝑘

𝜖
and noises of magnitude polynomial in 𝑘 ,

where 𝑘 is the dimension of the LWE secret,
• the LPN assumption over general prime fields Z𝑝 with polyno-
mially many LPN samples and error rate 1/ℓ𝛿 , where ℓ is the
dimension of the LPN secret,
• the existence of a Boolean PRG in NC0 with stretch 𝑛1+𝜏 ,
• the DLIN assumption on symmetric bilinear groups of prime
order.
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Then, (subexponentially secure) indistinguishability obfuscation
for all polynomial-size circuits exists.

All four assumptions are based on computational problems with

a long history of study, rooted in complexity, coding, and number

theory. Further, they were introduced for building basic crypto-

graphic primitives (such as public key encryption), and have been

used for realizing a variety of cryptographic goals that have nothing

to do with 𝑖O.

1.1 Assumptions in More Detail
We now describe each of these assumptions in more detail and

briefly survey their history. Throughout the paper, when we say

that a primitive or assumption is polynomially or subexponentially

hard (alternatively, secure or indistinguishable), we mean that the

hardness of the primitive or assumption holds against all adver-

saries that run in polynomial time in the security parameter _ with

at most negligible or subexponential advantage 2
−_𝜖

for some 𝜖 > 0

respectively. More precisely, the security level of the assumptions

below is first measured in their own parameters, namely, the mod-

ulus length ⌈log𝑝⌉ of pairing groups for DLIN over symmetric

bilinear groups, the dimension 𝑘 of the LWE secret, the dimension

ℓ of the LPN secret, and the seed length 𝑛 of the PRG in NC0. In

our construction, modulus length ⌈log𝑝⌉ is set to _, and 𝑘, ℓ, 𝑛 are

sufficiently large polynomials in _. Therefore, polynomial or subex-

ponential hardness of these assumptions measured in their own

parameters translates into polynomial or subexponential hardness

in _.

TheDLINAssumption: The Decisional Linear assumption (DLIN)
is stated as follows: For an appropriate _-bit prime 𝑝 , two groups

G and G𝑇 are chosen of order 𝑝 such that there exists an efficiently

computable nontrivial symmetric bilinear map 𝑒 : G × G→ G𝑇 . A
canonical generator 𝑔 for G is also computed. Then, the DLIN as-

sumption requires that the following computational indistinguisha-

bility holds: {(
𝑔𝑥 , 𝑔𝑦, 𝑔𝑥𝑟 , 𝑔𝑦𝑠 , 𝑔𝑟+𝑠

)
| 𝑥,𝑦, 𝑟, 𝑠 ← Z𝑝

}
≈𝑐

{(
𝑔𝑥 , 𝑔𝑦, 𝑔𝑥𝑟 , 𝑔𝑦𝑠 , 𝑔𝑧

)
| 𝑥,𝑦, 𝑟, 𝑠, 𝑧 ← Z𝑝

}
This assumption was first introduced in the 2004 work of Boneh,

Boyen, and Shacham [30]. Since then DLIN and assumptions im-

plied by DLIN have seen extensive use in a wide variety of ap-

plications throughout cryptography, such as Identity-Based En-

cryption, Attribute-Based Encryption, Functional Encryption for

degree 2 polynomials, Non-Interactive Zero Knowledge, etc. (See,

e.g. [23, 42, 81, 93, 109]).

The LWE Assumption: The Learning With Errors LWE assump-

tion with respect to a modulus 𝑞, dimension 𝑘 , sample complexity

𝑛, and discrete Gaussian distribution 𝜒 over integers states that the

following computational indistinguishability holds:

{A, 𝒔 · A + 𝒆 mod 𝑞 | A← Z𝑘×𝑛𝑞 , 𝒔 ← Z1×𝑘𝑞 , 𝒆 ← 𝜒1×𝑛}

≈𝑐 {A, 𝒖 | A← Z𝑘×𝑛𝑞 , 𝒖 ← Z1×𝑛𝑞 }

In this work, the dimension of the secret 𝑘 is a sufficiently large

polynomial in _. Moreover, the sample complexity is polynomial

𝑛(𝑘), and we require the modulus-to-noise ratio to be subexponen-

tial in 𝑘 , i.e., 2𝑘
𝜖
for an arbitrary 𝜖 > 0, and the magnitude of the

noises to be polynomial in 𝑘 .

This assumption was first stated in the work of [110]. LWE has

been used extensively to construct applications such as Leveled

Fully Homomorphic Encryption [41, 43, 71], Lockable Obfuscation

[80, 114], Attribute Based Encryption [32, 78, 79] and Universal

Thresholdizers [31].

The existence of PRGs inNC0: The assumption of the existence of

a Boolean Pseudo-Random Generator PRG in NC0
states that there

exists a Boolean function 𝐺 : {0, 1}𝑛 → {0, 1}𝑚 where𝑚 = 𝑛1+𝜏

for some constant 𝜏 > 0, and where each output bit computed by G
depends on a constant number of input bits, such that the following

computational indistinguishability holds:

{𝐺 (𝝈) | 𝝈 ← {0, 1}𝑛} ≈𝑐 {𝒚 | 𝒚 ← {0, 1}𝑚}

Pseudorandom generators are a fundamental primitive in their

own right, and have vast applications throughout cryptography.

PRGs in NC0
are tightly connected to the fundamental topic of

Constraint Satisfaction Problems (CSPs) in complexity theory, and

were first proposed for cryptographic use by Goldreich [62, 75, 87]

20 years ago. The complexity theory and cryptography communities

have jointly developed a rich body of literature on the cryptanalysis

and theory of constant-locality Boolean PRGs [9, 10, 12, 13, 15, 16,

28, 29, 59, 61, 62, 75, 101, 107, 108].

LPN over large fields: Like LWE, the Learning Parity with Noise

LPN assumption over finite fields Z𝑝 is also a decoding problem.

The standard LPN assumption with respect to subexponential-size

modulus 𝑝 , dimension ℓ , sample complexity 𝑛, and a noise rate

𝑟 = 1/ℓ𝛿 for some 𝛿 ∈ (0, 1), states that the following computational

indistinguishability holds:

{A, 𝒔 · A + 𝒆 mod 𝑝 | A← Zℓ×𝑛𝑝 , 𝒔 ← Z1×ℓ𝑝 , 𝒆 ← D1×𝑛
𝑟 }

≈𝑐 {A, 𝒖 | A← Zℓ×𝑛𝑝 , 𝒖 ← Z1×𝑛𝑝 }.

Above 𝑒 ← D𝑟 is a generalized Bernoulli distribution, i.e. 𝑒 is

sampled randomly from Z𝑝 with probability 1/ℓ𝛿 and set to be 0

with probability 1 − 1/ℓ𝛿 . Thus, the difference between LWE and

LPN is the structure of the error distribution. In LWE the error

vector is a random (polynomially) bounded vector. In LPN, it is a
random sparse vector, but where it is nonzero, the entries have large

expectation. Again, we consider polynomial sample complexity

𝑛(ℓ), and the modulus 𝑝 is an arbitrary subexponential function in

ℓ .

The origins of the LPN assumption date all the way back to the

1950s: the works of Gilbert [74] and Varshamov [112] showed that

random linear codes possessed remarkably strong minimum dis-

tance properties. However, since then, almost no progress has been

made in efficiently decoding random linear codes under random

errors. The LPN over fields assumption above formalizes this, and

was introduced over Z2 for cryptographic uses in 1994 [27], and for-

mally defined for general finite fields and parameters in 2009 [88],

under the name “Assumption 2”.

While in [88], the assumption was used when the error rate is

constant, in fact, polynomially low error (in fact 𝛿 = 1/2) has an
even longer history in the LPN literature: it was used byAlekhnovitch
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in 2003 [4] to construct public-key encryption with the field F2, and
used to build public-key encryption over F𝑝 in 2015 [11]. The exact

parameter settings that we describe above, with both general fields

and inverse polynomial error rate corresponding to an arbitrarily

small constant 𝛿 > 0 was explicitly posed by [35], in the context of

building efficient secure two-party and multi-party protocols for

arithmetic computations.

Recently, the LPN assumption has led to a wide variety of ap-

plications (see for example, [11, 14, 22, 35, 36, 63, 73, 88]). A com-

prehensive review of known attacks on LPN over large fields, for

the parameter settings we are interested in, was given in [35, 37].

For our parameter setting, the running time of all known attacks

is Ω(2ℓ1−𝛿 ), for any choice of the constant 𝛿 ∈ (0, 1) and for any

polynomial number of samples 𝑛(ℓ).
The works of [10, 15] showed that the one-wayness of random

local functions implies the existence of PRGs inNC0
. More precisely,

for a length parameter𝑚 = 𝑚(𝑛), a locality parameter 𝑑 = 𝑂 (1),
and a 𝑑-ary predicate 𝑄 : {0, 1}𝑑 → {0, 1}, a distribution F𝑄,𝑚

samples a 𝑑-local function 𝑓𝐺,𝑄 : {0, 1}𝑑 → {0, 1} by choosing a

random 𝑑-uniform hypergraph𝐺 with 𝑛 nodes and𝑚 hyperedges,

where each hyperedge is chosen uniformly and independently at

random. The 𝑖’th output bit of 𝑓𝐺,𝑄 is computed by evaluating 𝑄

on the 𝑑 input bits indexed by nodes in the 𝑖’th hyperedge. The

one-wayness of F𝑄,𝑚 for proper choices of 𝑄,𝑚 has been conjec-

tured and studied in [12, 28, 59, 75, 107]. The works of [10, 15]

showed how to construct a family of PRG in NC0
with polynomial

stretch based on the one-wayness of F𝑄,𝑚 for any 𝑄 that is sensi-

tive (i.e., some input bit 𝑖 of 𝑄 has full influence) and any𝑚 = 𝑛1+𝛿

with 𝛿 > 0. The constructed PRGs have negligible distinguishing

advantage and the reduction incurs a multiplicative polynomial

security loss. Therefore, the subexponential pseudorandomness of

PRG in NC0
that we need is implied by the existence of F𝑄,𝑚 that

is hard to invert with noticable probability by adversaries of some

subexponential size.

1.2 Our Ideas in a Nutshell
Previous works [6, 7, 89, 90, 102] led to the recent construction of

𝑖O in [68] based on LWE,DLIN over symmetric bilinear groups, and

one other object, that we will encapsulate as a structured-seed PRG

(sPRG) with polynomial stretch and special efficiency properties
1
.

In an sPRG, the seed consists of both a public and private part. The

pseudorandomness property of the sPRG should hold even when

the adversary can see the public seed in addition to the output of the

sPRG. Crucially, the output of the sPRG should be computable by

a degree-2 computation in the private seed (where the coefficients

of this degree-2 computation are obtained through constant-degree

computations on the public seed).

Our key innovation is a simple way to leverage LPN over fields

to build an sPRG. The starting point for our construction is the

following observation. Assuming LPN and that𝐺 is an (ordinary)

PRG in NC0
with stretch𝑚(𝑛), we immediately have the following

1
In early version of [68], the notion of sPRGwas implicit in the sense that [68] directly

proposed a candidate sPRG based on a new assumption without formalizing the notion

of sPRG. They then constructed 𝑖O using this candidate sPRG, LWE, andDLIN. After

this work formalized the notion of sPRG, [68] has updated their construction to replace

their specific candidate with a general sPRG.

computational indistinguishability:

{(𝑨, 𝒃 = 𝒔 · 𝑨 + 𝒆 + 𝝈 , 𝐺 (𝝈))} ≈𝑐 {(𝑨, 𝒖, 𝒘) }

where 𝑨 ← Zℓ×𝑛𝑝 , 𝒔 ← Z1×ℓ𝑝 , 𝒆 ← D1×𝑛
𝑟 (𝑝), 𝝈 ← {0, 1}1×𝑛 ,

𝒖 ← Z1×𝑛𝑝 , and𝒘 ← {0, 1}1×𝑚 (𝑛) .
Roughly speaking, we can think of both 𝑨 and 𝒃 above as being

public. All that remains is to show that the computation of 𝐺 (𝝈)
can be performed using a degree-2 computation in a short-enough

specially-prepared secret seed. Because 𝐺 is an arbitrary PRG in

NC0
, it will not in general be computable by a degree-2 polynomial

in 𝝈 . To accomplish this goal, we crucially leverage the sparseness
of the LPN error 𝒆. The evaluation of our sPRG can be viewed to

take two steps: First, homomorphically evaluate the PRG on an

LPN-encryption of the seed 𝝈 (i.e., A, 𝒃 above) to obtain an LPN-
encryption of the PRG output𝐺 (𝝈) that is however corrupted with
sparse errors. Next, decrypt and correct the sparse errors all in just

degree 2, by means of a simple pre-computation idea. In particular,

the precomputation compresses the sparse errors to be corrected

into vectors of sublinear length that later can be expanded back

using a degree 2 computation. A gentle overview is provided in

Section 4, followed by our detailed construction and analysis.

1.3 Implications of 𝑖O
The notion of 𝑖O occupies an intriguing and influential position in

complexity theory and cryptography. Interestingly, if NP ⊆ BPP,
then 𝑖O exists for the class of all polynomial-size circuits, because

if NP ⊆ BPP, then it is possible to efficiently compute a canonical

form for any function computable by a polynomial-size circuit. On

the other hand, if NP ⊈ io-BPP, then in fact the existence of 𝑖O for

polynomial-size circuits implies that one-way functions exist [96].

And a large body of work has shown that 𝑖O plus one-way functions

imply a vast array of cryptographic objects, so much so that 𝑖𝑂 has

been conjectured to be a “central hub” [96, 111] for cryptography.

An impressive list of fascinating new cryptographic objects are

only known under 𝑖O or related objects such as functional en-

cryption and witness encryption. Hence, our construction of 𝑖O
from well-founded assumptions immediately implies these objects

from the same assumptions. Below, we highlight a subset of these

implications as corollaries.

Corollary 1.2 (Informal). Assume the subexponential hardness
of the four assumptions in Theorem 1.1, we have:
• Multiparty non-interactive key exchange in the plain model
(without trusted setup), e.g., [34, 95].
• Adaptively secure succinct garbled RAM, where the size of the
garbled program is poly(_, log𝑇 ) |𝑃 | depending linearly on the
description size of the RAM program 𝑃 , the size of the garbled
input is poly(_) |𝑥 | depending linearly on the size of the input
𝑥 , and evaluation time is quasilinear in the running time of 𝑃
on 𝑥 [5, 8, 25, 46, 48, 49, 52, 100].
• Indistinguishability obfuscation for RAM, where the size of ob-
fuscated program is poly(_, 𝑛, |𝑃 |) where |𝑃 | is the description
size of the RAM program 𝑃 and 𝑛 is its input length [5, 8, 25,
46, 48, 49, 52, 100].
• Selectively sound and perfectly zero-knowledge Succinct Non-
interactive ARGument (SNARG) for any NP language with
statements up to a bounded polynomial size in the CRS model,
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where the CRS size is poly(_) (𝑛 +𝑚), 𝑛,𝑚 are upper bounds
on the lengths of the statements and witnesses, and the proof
size is poly(_) [111]2.
• Sender deniable encryption [111], and fully deniable interactive
encryption [51].
• Constant round concurrent zero-knowledge protocols for any
NP language [57].
• (Symmetric or asymmetric) multilinear maps with boudned
polynomial multilinear degrees, following [2, 3, 65], and self-
bilinear map over composite and unknown order group, assum-
ing additionally the polynomial hardness of factoring [115].
• Correlation intractable functions for all sparse relations verifi-
able in bounded polynoimal size, assuming additionally the
polynomial hardness of input hiding obfuscators for evasive
circuits [47], or for all sparse relations, assuming additionally
the exponential optimal hardness of input hiding obfuscators
for multibit point functions [94].
• Witness Encryption (WE) for any NP language, following as a
special case of 𝑖O for polynomial size circuits.
• Secret sharing for any monotone function in NP [97].

Corollary 1.3 (Informal). Assume the polynomial hardness of
the four assumptions in Theorem 1.1, we have:

• Attribute Based Encryption (ABE) for unbounded-depth
polynomial-size circuits, following as a special case of func-
tional encryption for unbounded-depth polynomial size cir-
cuits.
• Fully homomorphic encryption scheme for unbounded-depth
polynomial size circuits (without relying on circular security),
assuming slighly superpolynomial hardness of the four as-
sumptions [50].
• PPAD hardness [1, 26, 67, 86, 98].

Regarding PPAD hardness, another line of beautiful works

[45, 55, 56, 64, 92, 104] showed that the hardness of #SAT reduces

to that of PPAD, assuming the adaptive soundness of applying Fiat-

Shamir to certain protocols. Most recently, this led to basing the

PPAD hardness on that of #SAT and the sub-exponential LWE as-

sumption [92]. In comparison, relying on [67], using our Functional

Encryption construction, we can base the PPAD hardness on the

polynomial security of the four assumptions we make.

1.4 Other Recent Works
We briefly discuss three recent works [38, 69, 113]

3
that develop

a completely independent line of attack for constructing 𝑖O. At
present this line still requires new hardness assumptions, but has

other potential advantages, as we explain below.

Gay and Pass [69] proved the security of a variant of the candi-

date 𝑖O of [39], based on the subexponential hardness of i) LWE
with subexponential modulus-to-noise ratio, and ii) a new circu-

lar security leakage resilience conjecture, referred to as 1-circular
Shielded Randomness Leakage (SRL) resilient security, on the Gentry,

Sahai, and Waters (GSW) homomorphic encryption scheme [71].

2
This construction does not contradict the lower bound result by [72] showing that it

is impossible to base the adaptive soundness of SNARGs on falsifiable assumptions via

black-box reductions, since this construction only achieves selective soundness.

3
These works were posted online very shortly after the initial posting of our work.

The work of [38] proved the security of a similar construction

based on a new variant of the 2-circular SRL security assumption

proposed by [69], with respect to GSW and a packed variant of the

dual-Regev encryption scheme [70], which requires SRL security to

hold in the presence of a length-2 chain of circular encryptions of

the secret keys of GSW and packed dual-Regev. They also suggest

another assumption that may be a potential relaxation that consid-

ers a key-randomness encryption cycle, instead of a key cycle.

Wichs and Wee [113] proposed a different construction of 𝑖O
based on a new encryption scheme called dual-GSW that “mar-

ries” together dual-Regev and GSW encryption schemes. Their new

assumption also has a circular security flavor, but is significantly

different from the circular SRL security that [38, 69] proposed.

Comparing with the above constructions, our construction has

the advantage in relying solely on well-founded assumptions that

have a long history of study. On the other hand, these constructions

are based only on lattices and have the advantage of being plausibly

quantum-secure, whereas the SXDH assumption on bilinear maps

that our construction relies on is known to be broken by polynomial-

time quantum algorithms.

2 PRELIMINARIES
For any distribution X, we denote by 𝑥 ← X the process of sam-

pling a value 𝑥 from the distribution X. Similarly, for a set 𝑋 we

denote by 𝑥 ← 𝑋 the process of sampling 𝑥 from the uniform

distribution over 𝑋 . For an integer 𝑛 ∈ N we denote by [𝑛] the
set {1, .., 𝑛}. A function negl : N → R is negligible if for every

constant 𝑐 > 0 there exists an integer 𝑁𝑐 such that negl(_) < _−𝑐
for all _ > 𝑁𝑐 . Throughout, when we refer to polynomials in se-

curity parameter, we mean constant degree polynomials that take

positive value on non negative inputs. We denote by poly(_) an
arbitrary polynomial in _ satisfying the above requirements of non-

negativity. We denote vectors by bold-faced letters such as 𝒃 and 𝒖.
Matrices will be denoted by capitalized bold-faced letters for such

as 𝑨 and 𝑴 . For any 𝑘 ∈ N, we denote by 𝒗⊗𝑘 the vector obtained

by tensoring 𝒗 with itself for 𝑘 times. This vector contains all the

monomials in the variables inside 𝒗 of degree exactly 𝑘 .

We also introduce two new notations. First, for any vector 𝒗 we

refer by dim(𝒗) the dimension of vector 𝒗. For any matrix M ∈
Z𝑛1×𝑛2

𝑞 , we denote by |M| the bit length of M. In this case, |M| =
𝑛1 · 𝑛2 · log2 𝑞. We also overload this operator in that, for any set 𝑆 ,

we use |𝑆 | to denote the cardinality of 𝑆 . The meaning should be

inferred from context.

For any two polynomials 𝑎(_, 𝑛), 𝑏 (_, 𝑛) : N ×N→ R≥0, we say
that 𝑎 is polynomially smaller than 𝑏, denoted as 𝑎 ≪ 𝑏, if there

exists an 𝜖 ∈ (0, 1) and a constant 𝑐 > 0 such that 𝑎 < 𝑏1−𝜖 · _𝑐 for
all large enough _, 𝑛 ∈ N. The intuition behind this definition is to

think of 𝑛 as being a sufficiently large polynomial in _

Multilinear Representation of Polynomials and Representation over
Z𝑝 . A straightforward fact from analysis of boolean functions is

that every NC0
function 𝐹 : {0, 1}𝑛 → {0, 1} can be represented

by a unique constant degree multilinear polynomial 𝑓 ∈ Z[𝒙 =

(𝑥1, . . . , 𝑥𝑛)], mapping {0, 1}𝑛 to {0, 1}. At times, we consider a

mapping of such polynomial 𝑓 ∈ Z[𝒙] into a polynomial 𝑔 over

Z𝑝 [𝒙] for some prime 𝑝 . This is simply obtained by reducing the

coefficients of 𝑓 modulo 𝑝 and then evaluating the polynomial
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over Z𝑝 . Observe that 𝑔(𝒙) = 𝑓 (𝒙) mod 𝑝 for every 𝒙 ∈ {0, 1}𝑛
as 𝑓 (𝒙) ∈ {0, 1} for every such 𝒙 . Furthermore, given any NC0

function 𝐹 , finding these representations take polynomial time.

Definition 2.1 (𝜖-indistinguishability). We say that two ensembles

X = {X_}_∈N and Y = {Y_}_∈N are 𝜖-indistinguishable where

𝜖 : N→ [0, 1] if for every probabilistic polynomial time adversary

A it holds that: For every sufficiently large _ ∈ N,���� Pr

𝑥←X_
[A(1_, 𝑥) = 1] − Pr

𝑦←Y_
[A(1_, 𝑦) = 1]

���� ≤ 𝜖 (_).
We say that two ensembles are polynomially indistinguishable if

they are 𝜖-indistinguishable for 𝜖 (_) = negl(_) for some negligible

negl, and that two ensembles are sub-exponentially indistinguish-

able if they are 𝜖-indistinguishable for 𝜖 (_) = 2
−_𝑐

for some positive

real number 𝑐 .

Below if the security a primitive or the hardness of an assump-

tion are defined through indistinguishability, we say the primitive

or assumption is 𝜖 secure, hard, or indistinguishable, or (subexpo-

nentially) secure, hard, or indistinguishable if the appropriate 𝜖-

indistinguishability or (subexponentially) indistinguishability holds.

Remark 2.1 (On security levels). We denote by _ the global
security parameter and set all other parameters as functions of _.
The security of different assumptions, DLIN over symmetric bilinear
groups, LWE, LPN, and PRG inNC0 depends on their own parameters,
namely the order 𝑝 of the bilinear pairing group, the dimension of
the LWE secrets, the dimension of the LPN secrets, and the length of
the PRG seeds, and thus are indirectly related to the global security
parameter _. For our FE construction, we need all assumptions to be
polynomially hard (in _), and for our 𝑖O construction, we need all
assumptions to be sub-exponentially hard (in _).

Indistinguishability Obfuscation. We now define our object of

interest, Indistinguishability Obfuscation (𝑖O). The notion of indis-

tinguishability obfuscation (iO), first conceived by Barak et al. [20],

guarantees that the obfuscation of two circuits are computation-

ally indistinguishable as long as they both are equivalent circuits,

i.e., the output of both the circuits are the same on every input.

Formally,

Definition 2.2 (Indistinguishability Obfuscator (iO) for Circuits). A
uniform PPT algorithm 𝑖O is called a 𝛾-secure indistinguishability

obfuscator for polynomial-sized circuits if the following holds:

• Completeness: For every _ ∈ N, every circuit𝐶 with input

length 𝑛, every input 𝑥 ∈ {0, 1}𝑛 , we have that

Pr
[
𝐶 ′(𝑥) = 𝐶 (𝑥) : 𝐶 ′ ← 𝑖O(1_,𝐶)

]
= 1 .

• Indistinguishability: For every two ensembles {𝐶
0,_} and

{𝐶
1,_} of polynomial-sized circuits that have the same size,

input length, and output length, and are functionally equiv-

alent, that is, ∀_, 𝐶
0,_ (𝑥) = 𝐶

1,_ (𝑥) for every input 𝑥 , the

following distributions are polynomially indistinguishable.

{𝑖O(1_,𝐶
0,_)} {𝑖O(1_,𝐶

1,_)}

LPN over Fields Assumption. In this work, we use the LPN as-

sumption over a large field. This assumption has been used in a

various works (see for example, [11, 14, 22, 35, 36, 63, 73, 88]). We

adopt the following definition from [35]. We use the assumption

with error rate ℓ−𝛿 , for any constant 𝛿 > 0, where ℓ is the dimension

of the LPN secret.

We set up some notation for the definition below. Let 𝑝 be any

prime modulus. We define the distribution D𝑟 (𝑝) as the distribu-
tion that outputs 0 with probability 1 − 𝑟 and a random element

from Z𝑝 with the remaining probability. Below we define 𝛿-LPNF
Assumption [11, 27, 35, 88].

Definition 2.3 (𝛿-LPNF Assumption). Let _ be the security pa-

rameter. We denote positive integer dimension ℓ = ℓ (_), noise rate
𝑟 = 𝑟 (ℓ) ∈ (0, 1], and positive integer sample complexity 𝑛 = 𝑛(ℓ).

We say that the 𝛿-LPNF Assumption is 𝛾-hard if the following

holds:

For any constant [𝑝 > 0, any function 𝑝 : N → N s.t., for

every _ ∈ N, 𝑝 (_) is a prime of 𝑘[𝑝 bits, any constants [ℓ ≥ 1,

and [𝑛 > 0, we set 𝑝 = 𝑝 (_), ℓ = ℓ (_) = _[ℓ , 𝑛 = 𝑛(ℓ) = ℓ[𝑛 , and
𝑟 = 𝑟 (ℓ) = ℓ−𝛿 , and we require that the following two distributions

are 𝛾-indistinguishable:{
(𝑨, 𝒃 = 𝒔 · 𝑨 + 𝒆) | 𝑨← Zℓ×𝑛𝑝 , 𝒔 ← Z1×ℓ𝑝 , 𝒆 ← D1×𝑛

𝑟 (𝑝)
}

{
(𝑨, 𝒖) | 𝑨← Zℓ×𝑛𝑝 , 𝒖 ← Z1×𝑛𝑝

}
We refer the reader to [35, 37] for a comprehensive discussion

of the history and security of this assumption.

3 DEFINITION OF STRUCTURED-SEED PRG
Definition 3.1 (Syntax of Structured-Seed Pseudo-Random Genera-

tors (sPRG)). Let 𝜏 be a positive constant. A structured-seed Boolean

PRG, sPRG, with stretch 𝜏 that maps (𝑛 ·poly(_))-bit binary strings
into (𝑚 = 𝑛𝜏 )-bit strings, where poly is a fixed polynomial, is

defined by the following PPT algorithms:

• IdSamp(1_, 1𝑛) samples a function index 𝐼 .

• SdSamp(𝐼 ) jointly samples two binary strings, a public seed

and a private seed, sd = (𝑃, 𝑆). The combined length of these

strings is 𝑛 · poly(_).
• Eval(𝐼 , sd) computes a string in {0, 1}𝑚 .

Remark 3.1 (Polynomial Stretch.). We say that an sPRG has
polynomial stretch if 𝜏 > 1 for some constant 𝜏 .

Remark 3.2 (On poly(_) multiplicative factor in the seed

length.). As opposed to a standard Boolean PRG definition where
the length of the output is set to be 𝑛𝜏 where 𝑛 is the seed length, we
allow the length of the seed to increase multiplicatively by a fixed
polynomial poly in a parameter _. Looking ahead, one should view
𝑛 as an arbitrary large polynomial in _, and hence sPRG will be
expanding in length.

Definition 3.2 (Security of sPRG). A structured-seed Boolean PRG,

sPRG, satisfies
𝛾-pseudorandomness: For every integer 𝑛 = 𝑛(_) ≥ _, the

following distributions are 𝛾 indistinguishable.

{𝐼 , 𝑃, Eval(𝐼 , 𝑃)}
{𝐼 , 𝑃, 𝒓},
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where 𝐼 ← IdSamp(1_, 1𝑛), sd ← SdSamp(𝐼 ) and 𝒓 ←
{0, 1}𝑚 (𝑛) .

Definition 3.3 (Complexity and degree of sPRG). Let𝑑 ∈ N, let _ ∈
N and 𝑛 = 𝑛(_) be arbitrary positive polynomial in _, and 𝑝 = 𝑝 (_)
denote a prime modulus which is an efficiently computable function

in _. Let C be a complexity class. A sPRG has complexity C in the

public seed and degree𝑑 in private seed overZ𝑝 , denoted as, sPRG ∈
(C, deg 𝑑), if for every 𝐼 in the support of IdSamp(1_, 1𝑛), there
exists an algorithm Process𝐼 in C and an𝑚(𝑛)-tuple of polynomials

𝑄𝐼 that can be efficiently generated from 𝐼 , such that for all sd in

the support of SdSamp(𝐼 ), it holds that:
Eval(𝐼 , sd) = 𝑄𝐼 (𝑃, 𝑆) over Z𝑝 , 𝑃 = Process𝐼 (𝑃) ,

where 𝑄𝐼 has degree 1 in 𝑃 and degree 𝑑 in 𝑆 .

We remark that the above definition generalizes the standard

notion of families of PRGs in two aspects: 1) the seed consists of

a public part and a private part, jointly sampled and arbitrarily

correlated, and 2) the seed may not be uniform. Therefore, we

obtain the standard notion as a special case.

Definition 3.4 (Pseudo-RandomGenerators, degree, and locality). A
(uniform-seed) Boolean PRG (PRG) is an sPRGwith a seed sampling

algorithm SdSamp(𝐼 ) that outputs a public seed 𝑃 that is an empty

string and a uniformly random private seed 𝑆 ← {0, 1}𝑛 , where the
polynomial poly is fixed to be 1.

Let 𝑑, 𝑐 ∈ N. The PRG has multilinear degree 𝑑 if for every 𝑛 ∈ N
and 𝐼 in the support of IdSamp(1𝑛), we have that Eval(𝐼 , sd) can
be written as an𝑚(𝑛)-tuple of degree-𝑑 polynomials over Z in 𝑆 .
It has constant locality 𝑐 if for every 𝑛 ∈ N and 𝐼 in the support of

IdSamp(1𝑛), every output bit of Eval(𝐼 , sd) depends on at most 𝑐

bits of 𝑆 .

4 CONSTRUCTION OF STRUCTURED SEED
PRG

In this section, we construct a family of structured-seed PRGswhose

evaluation has degree 2 in the private seed, and constant degree in

the public seed.

Theorem 4.1. Let _ be the security parameter. Let 𝑑 ∈ N, 𝛿 ∈
(0, 1), 𝜏 > 1 be arbitrary constants.

Assuming the following:
• the existence of a constant locality Boolean PRG with stretch
𝜏 > 1 and multilinear degree 𝑑 over Z, and,
• 𝛿-LPNF-assumption holds,

Then, there exists an sPRG with polynomial stretch in (deg 𝑑, deg 2).
Additionally, if both assumptions are subexponentially secure, then,
sPRG is subexponentially secure.

Technical Overview. Let PRG = (IdSamp, Eval) be the Boolean
PRG with multilinear degree 𝑑 and stretch 𝜏 . Our sPRG will simply

evaluate PRG on an input 𝝈 ∈ {0, 1}𝑛 and return its output 𝒚 ∈
{0, 1}𝑚 where𝑚 = 𝑛𝜏 . The challenge stems from the fact that the

evaluation algorithm Eval𝐼 (𝝈) of PRG has degree 𝑑 in its private

seed 𝝈 , but the evaluation algorithm Eval′
𝐼
(𝑃, 𝑆) of sPRG can only

have degree 2 in the private seed 𝑆 . To resolve this, we pre-process

𝝈 into appropriate public and private seeds (𝑃, 𝑆) and leverage the

LPN over Z𝑝 assumption to show that the seed is hidden.

Towards this, sPRG uses a _-bit prime 𝑝 and “encrypts” the seed

𝝈 using LPN samples over Z𝑝 as follows:

Sample: A← Zℓ×𝑛𝑝 , 𝒔 ← Z1×ℓ𝑝 , 𝒆 ← D1×𝑛
𝑟 (𝑝)

Add to the function index 𝐼 ′: A
Add to public seed 𝑃 : 𝒃 = 𝒔A + 𝒆 + 𝝈

It follows directly from the LPN over Z𝑝 assumption that (A, 𝒃) is
pseudorandom and hides 𝝈 . Furthermore, due to the sparsity of

LPN noises, the vector 𝝈 + 𝒆 differs from 𝝈 only at a ℓ−𝛿 fraction

of components – thus it is a sparsely erroneous version of the seed.

Given such “encryption”, by applying previous techniques

[6, 68, 89, 90] that work essentially by “replacing monomials” (pre-

vious works replace monomials in the PRG seed with polynomials

in the LWE secret, and we here replace the monomials in the er-

roneous seed with polynomials in the LPN secret) we can com-

pute PRG on the erroneous seed 𝝈 + 𝒆 via a polynomial map

𝐺 (1)= (𝐺 (1)
1
, . . . ,𝐺

(1)
𝑚 ) that depends on A and has degree 𝑑 in the

public component 𝒃 and only degree 2 in all possible degree ⌈𝑑
2
⌉

monomials in 𝒔. More precisely, each polynomial 𝐺
(1)
𝑗

denotes the

polynomial computing the 𝑗𝑡ℎ output coordinate and is defined as

follows:

𝐺 (1)
(
𝒃 , (𝒔⊗⌈

𝑑
2
⌉ )

)
B Eval𝐼 (𝒃 − 𝒔A) = Eval𝐼

(
𝝈 + 𝒆

)
, 𝒔 = 𝒔 | |1 (1)

where for any vector 𝒗, we denote by 𝒗⊗𝑘 the tensoring of the

vector 𝒗 with itself 𝑘 times, yielding a vector of dimension dim(𝒗)𝑘 .
In particular, observe that by setting the dimension ℓ of secret

𝒔 sufficiently small, the polynomial map 𝐺 (1) can be expanding;

namely, set ℓ (𝑛) so that 𝑛′ = dim((𝒃, 𝒔⊗⌈
𝑑
2
⌉ )) =

(
𝑛 + ℓ ⌈

𝑑
2
⌉
)
≪𝑚 =

𝑛𝜏 . In this overview, we compare the number of output bits𝑚 with

the number of field elements in the seed of sPRG because we will

choose a _-bit modulus 𝑝 . Thus, the seed length is 𝑛′_, with 𝑛′ ≪𝑚,

satisfying the notion of polynomial stretch for sPRG (in particular,

we have polynomial expansion as _ is asymptotically smaller than

𝑛′ and𝑚).

However, a new problem arises: even though the degree fits,

𝐺 (1) only evaluates an erroneous output 𝒚′ = Eval𝐼 (𝝈 + 𝒆), but
we want to obtain the correct output 𝒚 = Eval𝐼 (𝝈). To correct

errors, we further modify the polynomial and include more pre-

processed information in the private seeds. Our key observation is

the following: Because LPN noises are sparse, and because Eval𝐼
has only constant locality, only a few outputs depend on erroneous

seed locations. We refer to them as bad outputs and let BAD denote

the set of their indices. The probability that a single output bit is

bad is bounded by 𝑂 (1)
ℓ𝛿

. By a simple Markov argument, the number

of bad outputs is bounded by Γ =
𝑚 log𝑛

ℓ𝛿
with probability 1 − 𝑜 (1).

Leveraging this sparsity, we devise a method for correcting the bad
outputs below.

We describe a sequence of ideas that lead to the final correction

method. To start with, we describe two wrong ideas that illustrate

the challenges we will overcome. Then, we show how to correct bad
outputs in three simple cases that are increasingly less restrictive,

which lead to our final solution.

Challenges to Correction:
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• The first wrong idea is correcting by adding the difference

Corr = 𝒚 − 𝒚′ between the correct and erroneous outputs,

𝒚 = Eval𝐼 (𝝈) and 𝒚′ = Eval𝐼 (𝝈 + 𝒆); we refer to Corr as the
correction vector. To obtain the correct output, evaluation

can compute the polynomial map 𝐺 (1)
(
𝒃 , (𝒔⊗⌈

𝑑
2
⌉ )

)
+ Corr.

The problem is that Corr must be included in the seed, but

it is as long as the output and would kill expansion.

• To fix expansion, the second wrong idea is adding correction

only for bad outputs, so that the seed only stores non-zero

entries in Corr, which is short (bounded by Γ elements).

More precisely, the 𝑗 ’th output can be computed as 𝐺
(1)
𝑗

(
𝒃 ,

(𝒔⊗⌈
𝑑
2
⌉ )

)
+Corr𝑗 if output 𝑗 is bad and without addingCorr𝑗

otherwise. This fixes expansion, but now the evaluation poly-

nomial depends on the location of bad outputs. If these lo-

cations are included in public information, this would leak

information of the location of LPN noises, and jeopardize

security. If on the other hand the locations are included in

the private seed, then it is unclear how to maintain the re-

quirement that the polynomial map computes only a degree

2 polynomial in the private seed.

These two wrong ideas illustrate the first difficulty: The tension

between the expansion and security of our sPRG. Our construction
takes care of both, by compressing the correction vector Corr to be

polynomially shorter than the output and stored in the seed, and

expanding it back during evaluation in a way that is oblivious of the

location of bad output bits. This is possible thanks to the sparsity

of the correction vector and the allowed degree 2 computation

on the private seed. The second challenge stems from the fact

that with noticeable probability, the number of bad outputs is not

bounded by Γ. We will overcome this via parallel repetition: Instead

of having one LPN encryption of the seed, we will have _ copies

𝒃 (𝑘) = 𝒔 (𝑘)A + 𝒆 (𝑘) + 𝝈 , so that with overwhelming probability at

least one copy has sparse bad outputs. This copy can be used to

compute the output of the PRG. However, we must be careful to

hide which copies have sparse bad outputs.

Simple Case 1: Much fewer than

√
𝑚 bad outputs. Suppose hypo-

thetically that the number of bad outputs is bounded by 𝑧 which is

much smaller than

√
𝑚. Thus, if we convert Corr into a

√
𝑚 ×
√
𝑚

matrix
4
, it has low rank 𝑧. We can then factorize Corr into two

matrixes U and V of dimensions

√
𝑚 × 𝑧 and 𝑧 ×

√
𝑚 respectively,

such that Corr = UV, and compute the correct output as follows:

∀𝑗 ∈ [𝑚], 𝐺 (2)
𝑗

(
𝒃 , (𝒔⊗⌈

𝑑
2
⌉ , U,V)

)
= 𝐺
(1)
𝑗

(
𝒃 , (𝒔⊗⌈

𝑑
2
⌉ )

)
+(UV)𝑘 𝑗 ,𝑙 𝑗 ,

where (𝑘 𝑗 , 𝑙 𝑗 ) is the corresponding index of the output bit 𝑗 , in the√
𝑚 ×
√
𝑚 matrix. When 𝑧 ≪

√
𝑚, the matrices U,V have 2𝑧

√
𝑚

field elements, which is polynomially smaller than𝑚 = 𝑛𝜏 . As such,

𝐺 (2) is expanding.
Moreover, observe that 𝐺 (2) has only degree 2 in the private

seed and is completely oblivious of where the bad outputs are.

Simple Case 2: Up to Γ bad outputs, which are however evenly

spread. The above method however cannot handle more than

√
𝑚

bad outputs, whereas the actual number of bad outputs can be up

to Γ =𝑚(log𝑛)/ℓ𝛿 , much larger than

√
𝑚 since 𝛿 is an arbitrarily

4
Any injective mapping from a vector to a matrix that is efficient to compute and

invert will do.

small constant. Consider another hypothetical case where the bad
outputs are evenly spread in the following sense: Suppose that if

we divide the matrix Corr into 𝑚/ℓ𝛿 blocks, each of dimension

ℓ𝛿/2 × ℓ𝛿/2, there are at most log𝑛 bad outputs in each block. In

this case, we can “compress” each block of Corr separately using

the idea from case 1. More specifically, for every block 𝑖 ∈ [𝑚/ℓ𝛿 ],
we factor it into U𝑖V𝑖 , with dimensions ℓ𝛿/2 × log𝑛 and log𝑛× ℓ𝛿/2
respectively, and correct bad outputs as follows:

∀𝑗 ∈ [𝑚], 𝐺
(2)
𝑗

(
𝒃 ,

(
𝒔⊗⌈

𝑑
2
⌉ , (U𝑖 ,V𝑖 )𝑖∈[ 𝑚

ℓ𝛿
]
))

= 𝐺
(1)
𝑗

(
𝒃 , (𝒔⊗⌈

𝑑
2
⌉ )

)
+ (U𝑖 𝑗V𝑖 𝑗 )𝑘 𝑗 ,𝑙 𝑗 ,

where 𝑖 𝑗 is the block that output 𝑗 belongs to, and (𝑘 𝑗 , 𝑙 𝑗 ) ∈ [ℓ𝛿/2]×
[ℓ𝛿/2] is its index within this block. We observe that𝐺 (2) is expand-
ing, since each matrix U𝑖 or V𝑖 has ℓ𝛿/2 log𝑛 field elements, and the

total number of elements is ℓ𝛿/2 log𝑛 · 𝑚
ℓ𝛿

which is polynomially

smaller than𝑚 as long as 𝛿 is positive and𝑚 is polynomially related

to ℓ . Moreover, 𝐺 (2) is oblivious of the location of bad outputs just

as in case 1.

At this point, it is tempting to wish that bad outputs must be

evenly spread given that the LPN noises occur at random locations.

This is, however, not true because the input-output dependency

graph of PRG is arbitrary, and the location of bad outputs are

correlated. Consider the example that the PRG output dependency

graph is such that for the first 𝐾 = ℓ𝛿 · log2 𝑛 seed bits, the 𝑖’th seed

bit impacts all the output positions in the 𝑖’th block. In this case,

with overwhelming probability, one of the first𝐾 seed bits would be

errorneous, and hence at least one block will be completely corrupt.

Simple Case 3: Up to Γ bad outputs. To overcome this, our next

idea is to “force” the even spreading of the bad outputs, by assign-

ing output bits randomly into 𝐵 buckets, and then compress the

correction vector corresponding to each bucket.

Step 1: Randomly assign outputs. We assign the outputs

into 𝐵 buckets, via a random mapping 𝜙bkt : [𝑚] → [𝐵].
The number of buckets is set to 𝐵 =𝑚𝑡/ℓ𝛿 where 𝑡 is a slack
parameter set to _. By a Chernoff-style argument, we can

show that each bucket contains at most 𝑡2ℓ𝛿 output bits, and

at most 𝑡 of them are bad, except with negligible probability

in 𝑡 = _. As such, bad outputs are evenly spread among a

small number of not-so-large buckets.

Step 2: Compress the buckets. Next, we organize each
bucket 𝑖 into a matrix M𝑖 of dimension 𝑡ℓ𝛿/2 × 𝑡ℓ𝛿/2 and

then compute its factorization M𝑖 = U𝑖V𝑖 with respect to

matrices of dimensions 𝑡ℓ𝛿/2 × 𝑡 and 𝑡 × 𝑡ℓ𝛿/2 respectively.
To form matrixM𝑖 , we use another mapping 𝜙ind : [𝑚] →
[𝑡ℓ𝛿/2] × [𝑡ℓ𝛿/2] to assign each output bit 𝑗 to an index

(𝑘 𝑗 , 𝑙 𝑗 ) in the matrix of the bucket 𝑖 𝑗 it is assigned to. This

assignment must guarantee that no two output bits in the

same bucket (assigned according to 𝜙bkt) have the same

index; other than that, it can be arbitrary. (M𝑖 )𝑘,𝑙 is set to
Corr𝑗 if there is 𝑗 such that 𝜙bkt ( 𝑗) = 𝑖 and 𝜙ind ( 𝑗) = (𝑘, 𝑙),
and set to 0 if no such 𝑗 exists. Since every matrix M𝑖 has at

most 𝑡 non-zero entries, we can factor them and compute

66



STOC ’21, June 21–25, 2021, Virtual, Italy Jain, Lin, and Sahai

the correct output as:

∀𝑗 ∈ [𝑚], 𝐺 (2)
𝑗

(
𝒃 ,

(
𝒔⊗⌈

𝑑
2
⌉ , (U𝑖 ,V𝑖 )𝑖∈[𝐵 ]

)
︸                        ︷︷                        ︸

𝑆

)
= 𝐺
(1)
𝑗

(
𝒃 , (𝒔⊗⌈

𝑑
2
⌉ )

)
+ (U𝜙bkt ( 𝑗) · V𝜙bkt ( 𝑗) )𝜙ind ( 𝑗) ,

𝐺 (2) is expanding, because the number of field elements in

U𝑖 ’s and V𝑖 ’s are much smaller than𝑚, namely: 2𝑡2ℓ𝛿/2𝐵 =

𝑂 (𝑚_3/ℓ𝛿/2) ≪ 𝑚 (recall that 𝑡 = _), if ℓ is a large enough

polynomial in _. Note that it is important that the assign-

ments 𝜙bkt and 𝜙ind are not included in the seed as their

description is as long as the output. Fortunately, they are

reusable and can be included in the function index 𝐼 ′ =

(𝐼 ,A, 𝜙bkt, 𝜙ind).
Final Case: More than Γ bad outputs with noticable probability.

Unfortunately, the number of bad output bits are only bounded by Γ
with probability noticably away from 1. This is inevitable: Consider

the example that every output bit of PRG depends on the first seed

bit, and with inverse polynomial probability
1

ℓ𝛿
, it is erroneous and

so are all outputs. When bad outputs are not sparse, our analysis

above does not apply, in particular, some bucket may be assigned

more than 𝑡 = _ bad outputs. We resort to parallel repetition to deal

with this. Instead of generating a single LPN encryption of the seed

𝝈 , generate _ instances,
{
𝒃 (𝑘) = 𝒔 (𝑘)A + 𝝈 + 𝒆 (𝑘)

}
𝑘∈[_]

. For each

instance 𝑘 , we can compute the corresponding correction vector

Corr(𝑘) and set a flag flag(𝑘) = 1 if 𝑘 is the smallest index such that

the number of bad outputs is bounded by Γ (flag(𝑘) = 0 otherwise).

By that fact that each instance satisfies the desired sparsity with

high probability and is independent, with all but exponentially

small probability, some flag is set flag(𝑘
★) = 1 and 𝑘★ is unique.

If no flag is set, we set err = 1, which occurs with exponentially

small probability (err = 0 otherwise). For the special 𝑘★, we can

compress its correction vector Corr𝑘
★
into (U(𝑘

★)
𝑖

,V(𝑘
★)

𝑖
)𝑖∈[𝐵 ] and

set the secret seed 𝑆 (𝑘
★)

as before, which satisfies:

𝐺 (2)
(
𝒃 (𝑘

★) ,
((
𝒔 (𝑘

★)
)⊗⌈𝑑

2
⌉
,

(
U(𝑘

★)
𝑖

,V(𝑘
★)

𝑖

)
𝑖∈[𝐵 ]

)
︸                                           ︷︷                                           ︸

𝑆 (𝑘★)

)
= Eval𝐼 (𝝈) .

The tricky part is that we must hide the value of 𝑘★ as it leaks a

single bit of information about the noise vector 𝒆 (𝑘
★)
, namely, it

leads to sparse bad outputs. To do so, we set 𝑆 (𝑘
★) = 0 for every

other instance 𝑘 ≠ 𝑘★, and aim to compute the boxed part the in

following equation.

𝐺 (3)
( ({

𝒃 (𝑘)
}
𝑘
, err

)
︸            ︷︷            ︸

𝑃 ′

,

{
flag(𝑘) , 𝑆 (𝑘) , flag(𝑘) · 𝑆 (𝑘)

}
𝑘︸                                 ︷︷                                 ︸

𝑆′

)

B (1 − err)
(∑

𝑘∈[_] flag
(𝑘) ·𝐺 (2) (𝒃 (𝑘★) , 𝑆 (𝑘★) )

)
= (1 − err)Eval𝐼 (𝝈) .

The last equality holds since when err = 0, there is a unique 𝑘★ for

which the flag is 1. The boxed part can be computed by a polynomial

𝐺 (3) with degree 𝑑 + 1 in the public seed 𝑃 ′ and degree 2 in the

private seed 𝑆 ′, since the multiplication between flag(𝑘) and 𝑆 (𝑘)

is pre-computed in 𝑆 ′. Furthermore, we observe that comparing

with polynomial𝐺 (2) , the length of the seed for𝐺 (3) has increased
by a factor of 𝑂 (_), which does not hurt expansion.

For security, observe that the polynomial map𝐺 (3) is oblivious of
LPN noises in all instances, while the public seed leaks the error flag

err, which is 1 with only exponentially small probability. Therefore,

by the LPN over Z𝑝 assumption, the seed 𝝈 of PRG is hidden in

all _ instances and the security of PRG ensures that the output is

pseudorandom. We now proceed to the formal construction and

proof.

Construction. Assume the premise of the theorem. Let (IdSamp,
Eval) be the function index sampling algorithm and evaluation

algorithm for the PRG. Recall that its seed consists of only a private
seed sampled uniformly at random.

We first introduce and recall some notation. The construction is

parameterized by

• the security parameter _,

• the seed length parameter 𝑛′ of the sPRG and output length

𝑚′ = (𝑛′)𝜏′ ,
• the stretch Γ and degree 𝑑 of PRG, where Γ can be an ar-

bitrary positive constant greater than 1, and 𝑑 can be an

arbitrary positive integer,

• the input length parameter 𝑛 and output length𝑚 = 𝑛𝜏 of

the PRG (as we see below, by construction,𝑚′ =𝑚 and 𝑛′

is larger than 𝑛, but still sublinear in𝑚′),
• the LPN secret dimension ℓ = 𝑛1/⌈𝑑/2⌉ andmodulus 𝑝 , which

is a _ bit prime,

• a threshold Γ = 𝑚 · log𝑛/ℓ𝛿 of the number of bad outputs

that can be tolerated,

• a slack parameter 𝑡 used for bounding the capacity of each

bucket and number of bad outputs in each bucket, which is

set to 𝑡 = _,

• a parameter 𝐵 =𝑚 · 𝑡/ℓ𝛿 that indicates the number of buck-

ets used, and

• a parameter 𝑐 = 𝑡2ℓ𝛿 that indicates the capacity of each

bucket.

𝐼 ′ ← IdSamp′(1_, 1𝑛′): (Note that the PRG seed length𝑛 below

is an efficiently computable polynomial in 𝑛′, and can be

inferred from the next seed sampling algorithm. See Claim

4.1 for the exact relationship between 𝑛 and 𝑛′.)
Sample 𝐼 ← IdSamp(1_, 1𝑛) and A ← Zℓ×𝑛𝑝 . Prepare two

functions 𝝓 = (𝜙bkt, 𝜙ind) as follows:
• Sample a random function 𝜙bkt : [𝑚] → [𝐵] mapping

every output location to one of 𝐵 buckets. Let 𝜙−1bkt (𝑖) for
𝑖 ∈ [𝐵] denote the set of preimages of 𝑖 through 𝜙bkt. This

set contains all outputs assigned to the bucket 𝑖 .

• Prepare 𝜙ind : [𝑚] → [
√
𝑐] × [

√
𝑐] in two cases:

– If some bucket exceeds capacity, that is, there exists 𝑖 ∈
[𝐵] such that |𝜙−1bkt (𝑖) | > 𝑐 , set 𝜙ind to be a constant

function always outputting (1, 1).
– Otherwise if all buckets are under capacity, for every in-

dex 𝑗 ∈ [𝑚], 𝜙ind maps 𝑗 to a pair of indexes (𝑘 𝑗 , 𝑙 𝑗 ) ∈
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[
√
𝑐] × [

√
𝑐], under the constraint that two distinct out-

put bits 𝑗1 ≠ 𝑗2 that are mapped into the same bucket

𝜙bkt ( 𝑗1) = 𝜙bkt ( 𝑗2) must have distinct pairs of indices

𝜙ind ( 𝑗1) ≠ 𝜙ind ( 𝑗2).
Output 𝐼 ′ = (𝐼 , 𝝓 = (𝜙bkt, 𝜙ind),A).

sd← SdSamp′(𝐼 ′): Generate the seed as follows:

• Sample a PRG seed 𝝈 ← {0, 1}𝑛 .
• For every𝑘 ∈ [_], run (flag(𝑘) , 𝑃 (𝑘) , 𝑆 (𝑘) ) ← 1SdSamp(𝐼 ′,𝝈),
where the 1SdSamp algorithm is described below.

• Set err = 1 −max𝑘∈[_] (flag(𝑘) ). That is err is 1 if no flag

is set, and otherwise, it is zero.

• If err = 0, let 𝑘★ = min{𝑘 : flag(𝑘) = 1} and for every

𝑘 > 𝑘★, overwrite flag𝑘 = 0. (This ensure that there is a

unique 𝑘 for which the flag is set to 1.)

• Set 𝑃 ′ = ({𝑃 (𝑘) }𝑘∈[_] , err) and 𝑆 ′ = ({flag(𝑘) , 𝑆 (𝑘) , flag(𝑘) ·
𝑆 (𝑘) }𝑘∈[_] ).

Output sd = (𝑃 ′, 𝑆 ′),
Sampling Algorithm 1SdSamp(𝐼 ′,𝝈)

Input: sPRG index 𝐼 ′ = (𝐼 , 𝝓 = (𝜙bkt, 𝜙ind),A) and
random seed 𝝈 .
Output: A flag flag ∈ {0, 1}, and a pair of public and

private seeds (𝑃, 𝑆).
• Prepare samples of LPN over Z𝑝 : Sample 𝒔 ← Z1×ℓ𝑝 ,

𝒆 ← D1×𝑛
𝑟 (𝑝), and set

𝒃 = 𝒔A + 𝝈 + 𝒆 .
• Find indices 𝑖 ∈ [𝑛] of seed bits where 𝝈 + 𝒆 and 𝝈
differ, which are exactly these indices where 𝒆 is not
0, and define:

ERR = {𝑖 | 𝜎𝑖 + 𝑒𝑖 ≠ 𝜎𝑖 } = {𝑖 | 𝑒𝑖 ≠ 0} .
We say a seed index 𝑖 is erroneous if 𝑖 ∈ ERR. Since
LPN noise is sparse, errors are sparse.

• Find indices 𝑗 ∈ [𝑚] of outputs that depend on one

or more erroneous seed indices. Let Vars𝑗 denote
the indices of seed bits that the 𝑗 ’th output of Eval𝐼
depends on. Define:

BAD =
{
𝑗 | |Vars𝑗 ∩ ERR| ≥ 1

}
.

We say an output index 𝑗 is bad if 𝑗 ∈ BAD, and
good otherwise.

• Set flag = 0 if

(1) Too many bad output bits: |BAD| > Γ,
(2) or Some bucket exceeds capacity:∃𝑖 ∈ [𝐵], |𝜙−1bkt (𝑖) | >

𝑐 ,

(3) or Some bucket contains too many bad outputs:
∃𝑖 ∈ [𝐵], |𝜙−1bkt (𝑖) ∩ BAD| > 𝑡 .

Otherwise, set flag = 1.

• Compute the outputs of PRG on input the correct

seed and the erroneous seed, 𝒚 = Eval𝐼 (𝝈) and 𝒚′ =
Eval𝑰 (𝝈 + 𝒆). Set the correction vector Corr = 𝒚−𝒚′.
• Construct matricesM1, . . . ,M𝐵 , by setting

∀𝑗 ∈ [𝑚],
(
M𝜙bkt ( 𝑗)

)
𝜙ind ( 𝑗)

= Corr𝑗

Every other entry is set to 0.

• “Compress” matricesM1, . . . ,M𝐵 as follows:

– If flag = 1, for every 𝑖 ∈ [𝐵] compute factorization

M𝑖 = U𝑖V𝑖 , U𝑖 ∈ Z
√
𝑐×𝑡

𝑝 , V𝑖 ∈ Z𝑡×
√
𝑐

𝑝

This factorization exists because when flag = 1,

condition 3 above implies that eachM𝑖 has at most

𝑡 nonzero entries, and hence rank at most 𝑡 .

– If flag = 0, for every 𝑖 ∈ [𝐵], set U𝑖 and V𝑖 to be 0

matrices.

• Set the public seed to 𝑃 = 𝒃 .
• Prepare the private seed 𝑆 as follows. Let 𝒔 = 𝒔 | |1.

𝑆 =

(
𝒔⊗⌈

𝑑
2
⌉ , {U𝑖 ,V𝑖 }𝑖∈[𝐵 ]

)
(2)

Output (flag, 𝑃, 𝑆) as Z𝑝 elements.

𝒚′ ← Eval′(𝐼 ′, sd): Compute 𝒚 ← Eval(𝐼 ,𝝈), and output 𝒛 =

(1− err) ·𝒚. This computation is done via a polynomial map

𝐺 (4) , such that,

𝐺 (4) (𝑃 ′, 𝑆 ′) =∑
𝑘∈[_]

𝐺 (3)
(
𝑃 (𝑘) ,

(
flag(𝑘) , 𝑆 (𝑘) , flag(𝑘) · 𝑆 (𝑘)

))
=

∑
𝑘∈[_]

flag(𝑘) · Eval𝐼 (𝝈) = (1 − err) · 𝒚 .

where the second equality follows from the fact that when

err = 0, there is a unique 𝑘 ∈ [_] such that flag(𝑘) = 1, and

when err = 1, all flags are zero. Furthermore, the polynomial

mapping 𝐺 (3) computing flag(𝑘) · Eval𝐼 (𝝈) is described be-

low. 𝐺 (3) has constant degree 𝑑 in the public seed 𝑃 (𝑘) and
only degree 2 in the private seed (flag(𝑘) , 𝑆 (𝑘) , flag(𝑘) ·𝑆 (𝑘) ).
Hence 𝐺 (4) also has constant degree 𝑑 in 𝑃 ′ and degree 2 in

𝑆 ′.

The Polynomial 𝐺 (3) (𝑃, (flag, 𝑆, flag · 𝑆))
Constant: 𝐼 ′ = (𝐼 , 𝝓 = (𝜙bkt, 𝜙ind),A)
Input: 𝑃 = 𝒃 = 𝒔A + 𝝈 + 𝒆, 𝑆 = (𝒔⊗⌈

𝑑
2
⌉ , {U𝑖 ,V𝑖 }𝑖∈[𝐵 ] )

Output: flag · Eval𝐼 (𝝈).
We describe𝐺 (3) using intermediate polynomials 𝐺 (1)

and 𝐺 (2) .
• Every output bit of Eval is a linear combination of de-

gree𝑑 monomials (without loss of generality, assume

that all monomials have exactly degree 𝑑 which can

be done by including 1 in the seed 𝝈 ).
Notation Let us introduce some notation for mono-

mials. A monomial ℎ on a vector 𝒂 is represented

by the set of indices ℎ = {𝑖1, 𝑖2, . . . , 𝑖𝑘 } of variables
used in it. ℎ evaluated on 𝒂 is

∏
𝑖∈ℎ 𝑎𝑖 if ℎ ≠ ∅ and

1 otherwise. We will use the notation 𝑎ℎ =
∏

𝑖∈ℎ 𝑎𝑖 .
We abuse notation to also use a polynomial 𝑔 to

denote the set of monomials involved in its compu-

tation; hence ℎ ∈ 𝑔 says monomial ℎ has a nonzero

coefficient in 𝑔.

With the above notation, we can write Eval as

∀𝑗 ∈ [𝑚], 𝑦 𝑗 = Eval𝑗 (𝝈) = 𝐿𝑗 ((𝜎ℎ)ℎ∈Eval𝑗 ),
for a linear 𝐿𝑗 .
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• (A, 𝒃 = 𝒔A+𝒙) in the public seed encodes 𝒙 = 𝝈 + 𝒆.
Therefore, we can compute every monomial 𝑥𝑣 as

follows:

𝑥𝑖 = ⟨𝒄𝑖 , 𝒔⟩,
𝑥𝑣 = ⟨⊗𝑖∈𝑣𝒄𝑖 , ⊗𝑖∈𝑣𝒔⟩,

where, 𝒄𝑖 = −𝒂T𝑖 | |𝑏𝑖 and 𝒂𝑖 is the 𝑖th column of A.
(Recall that ⊗𝑖∈𝑣𝒛𝑖 = 𝒛𝑖1 ⊗ · · · ⊗𝒛𝑖𝑘 if 𝑣 = {𝑖1, . . . , 𝑖𝑘 }
and is not empty; otherwise, it equals 1.) Combin-

ing with the previous step, we obtain a polynomial

mapping 𝐺 (1) (𝒃, 𝑆) that computes Eval(𝝈 + 𝒆):

𝐺
(1)
𝑗
(𝒃, 𝑆) B 𝐿𝑗

(
(⟨⊗𝑖∈𝑣𝒄𝑖 , ⊗𝑖∈𝑣𝒔⟩)𝑣∈Eval𝑗

)
. (3)

Note that 𝐺 (1) implicitly depends on A contained

in 𝐼 ′. Since all relevant monomials 𝑣 have degree 𝑑 ,

we have that 𝐺 (1) has degree at most 𝑑 in 𝑃 , and

degree 2 in 𝑆 . The latter follows from the fact that 𝑆

contains 𝒔⊗⌈
𝑑
2
⌉
(see Equation (1)), and hence 𝑆 ⊗ 𝑆

contains all monomials in 𝒔 of total degrees 𝑑 .
Since only bad outputs depend on erroneous seed

bits such that 𝜎𝑖 + 𝑒𝑖 ≠ 𝜎𝑖 , we have that the output
of 𝐺 (1) agrees with the correct output 𝒚 = Eval(𝝈)
on all good output bits.

∀𝑗 ∉ BAD, Eval𝑗 (𝝈) = 𝐺 (1)𝑗
(𝒃, 𝑆) .

• To further correct bad output bits, we add to 𝐺 (1)

all the expanded correction vectors as follows:

𝐺
(2)
𝑗
(𝑃, 𝑆) B 𝐺

(1)
𝑗
(𝒃, 𝑆) +

(
U𝜙bkt ( 𝑗)V𝜙bkt ( 𝑗)

)
𝜙ind ( 𝑗)

= 𝐺
(1)
𝑗
(𝒃, 𝑆) +

(
M𝜙bkt ( 𝑗)

)
𝜙ind ( 𝑗)

.

We have that 𝐺 (2) agrees with the correct output

𝒚 = Eval(𝝈) if flag = 1. This is because under

the three conditions for flag = 1, every entry 𝑗

in the correction vector Corr𝑗 is placed at entry(
M𝜙bkt ( 𝑗)

)
𝜙ind ( 𝑗)

. Adding it back as above produces

the correct output.

Observe that the function is quadratic in 𝑆 and de-

gree 𝑑 in the public component of the seed 𝑃 .

• When flag = 0, however, sPRG needs to output all

zero. This can be done by simply multiplying flag to
the output of 𝐺 (2) , giving the final polynomial

𝐺 (3) (𝑃, 𝑆) = flag ·𝐺 (2) (𝑃, 𝑆) . (4)

At last,𝐺 (3) still has degree 𝑑 in the public seed, and

only degree 2 in the private seed, sincemultiplication

between flag and 𝑆 is precomputed.

Analysis of Stretch. We derive a set of constraints, under which

sPRG has polynomial stretch. Recall that PRG output length is

𝑚 = 𝑛𝜏 , degree 𝑑 , LPN secret dimension ℓ = 𝑛1/⌈𝑑/2⌉ , modulus 𝑝 a

_-bit prime, and the slack parameter 𝑡 = _.

Claim 4.1. For the parameters as set in the Construction, sPRG
has stretch of 𝜏 ′ for some constant 𝜏 ′ > 1.

Proof. Let’s start by analyzing the length of the public and

private seeds.

• The public seed contains 𝑃 ′ = ({𝒃 (𝑘) }𝑘∈[_] , err), where���𝒃 (𝑘) ��� = 𝑂 (𝑛 log𝑝) = 𝑂 (𝑛 · _) .
• The private seed 𝑆 ′ contains {flag(𝑘) , 𝑆 (𝑘) , flag(𝑘) · 𝑆 (𝑘) },
where each 𝑆 (𝑘) contains the following

𝑆
(𝑘)
1

=

(
𝒔 (𝑘)

)⊗⌈𝑑
2
⌉
, 𝑆

(𝑘)
2

=

{
U(𝑘)
𝑖
,V(𝑘)

𝑖

}
𝑖∈[𝐵 ]

.

The bit-lengths are:���𝑆 (𝑘)
1

��� =(ℓ + 1) ⌈𝑑/2⌉ log 𝑝
=𝑂

(
𝑛

1

⌈𝑑/2⌉
) ⌈𝑑/2⌉

log𝑝 = 𝑂 (𝑛 · _)

( by ℓ = 𝑛 ⌈𝑑/2⌉ , log𝑝 = _)���𝑆 (𝑘)
2

��� =2𝐵 · 𝑡 · √𝑐 · log𝑝
=
2𝑚𝑡

ℓ𝛿
· 𝑡 · 𝑡ℓ𝛿/2 · log𝑝 =

2𝑚𝑡3 log𝑝

ℓ𝛿/2

(by 𝐵 =
𝑚𝑡

ℓ𝛿
, 𝑐 = 𝑡2ℓ𝛿 )

=
2𝑚_4

ℓ𝛿/2
( by 𝑡 = log𝑝 = _)

Because ℓ𝛿/2 = 𝑛
𝛿

2⌈𝑑
2
⌉
,𝑚 = 𝑛𝜏 , and 𝑘 ∈ [_], we have:

|sd| = 1 +
∑

𝑘∈[_]

(���𝒃 (𝑘) ��� + 2���𝑆 (𝑘)
1

��� + 2���𝑆 (𝑘)
2

��� + 1)
= 𝑂 ((𝑛 + 𝑛

𝜏− 𝛿

2⌈𝑑
2
⌉ ) · _5)

We set 𝑛′ = 𝑂 (𝑛 +𝑛
𝜏− 𝛿

2⌈𝑑
2
⌉ ), therefore𝑚 = 𝑛′𝜏

′
for some 𝜏 ′ > 1 and

the seed length is 𝑛′poly(_). This concludes the proof. □

Proof of Pseudorandomness. We prove the following proposition

which implies that sPRG is pseudorandom and the security loss

from the Boolean PRG and the LPNF assumption is polynomial

in _. Therefore, our sPRG is polynomially or subexponentially

secure, if the underlying Boolean PRG and the LPNF assumptions

are polynomially or subexponentially secure respectively.

Proposition 4.2. For parameters as set in the Construction, if
𝛿-LPNF is 𝜖-hard, and PRG is 𝜖-pseudorandom, the following two
distributions are 𝛾-indistinguishable, where 𝛾 = 𝑂 (_𝜖).

H0 =

{
(𝐼 , 𝝓,A, {𝒃 (𝑘) }𝑘∈[_] , err, 𝒛)

}
H3 =

{
(𝐼 , 𝝓,A, {𝒃 (𝑘) }𝑘∈[_] , err, 𝒓)

}
,

where 𝐼 ′ ← IdSamp′(1_, 1𝑛′), (𝑃 ′, 𝑆 ′) ← SdSamp′(𝐼 ′),
𝒛 ← Eval′(𝐼 ′, sd), and 𝒓 ← {0, 1}𝑚 . (Recall that 𝐼 ′ = (𝐼 , 𝝓, A),
𝑃 ′ = ({𝒃 (𝑘) }𝑘∈[_] , err).)
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Proof. We show thatH0 andH3 are 𝛾-indistinguishable via the

following two hybrids.

H1 =

{
(𝐼 , 𝝓,A, {𝒃 (𝑘) }𝑘∈[_] , 0, 𝒚 )

}
H2 =

{
(𝐼 , 𝝓,A, {𝒃 (𝑘) }𝑘∈[_] , 0 , 𝒓)

}
,

where 𝐼 ′ ← IdSamp′(1_, 1𝑛′), (𝑃 ′, 𝑆 ′) ← SdSamp′(𝐼 ′),
𝒚 ← Eval(𝐼 ,𝝈), and 𝒓 ← {0, 1}𝑚 . Observe that the only difference

betweenH0 andH1 (highlighted in the box) is that in the former

err is the flag set by the SdSamp′ algorithm and the sPRG output

𝒛 = (1 − err)𝒚, whereas in the latter err is replaced with a constant

0 and the output is replaced with 𝒚. Similarly, the only difference

between H2 and H3 (highlighted in the box) is whether err is
replaced with 0. We show in Claim 4.2 that the probability that

err = 1 is exponentially small.

Claim 4.2. For parameters as set in the Construction, it holds
that Pr[ err = 1 ] ≤ 2

−_ , where IdSamp′(1_, 1𝑛′), and (𝑃 ′ =

({𝒃 (𝑘) }𝑘∈[_] , err), 𝑆 ′) ← SdSamp′(𝐼 ′).

Therefore, the statistical distance betweenH0 andH1, as well as

H2 and H3, is bounded by 2
−_
. Due to space limit, we defer the

proof to the full version [91].

It remains to show thatH1 andH2 are 𝑂 (_𝜖)-indistinguishable.
This follows from the facts that i) 𝝓 is completely independent of

(𝐼 ,A, {𝒃 (𝑘) }𝑘∈[_] ,𝒚) or (𝐼 ,A, {𝒃 (𝑘) }𝑘∈[_] , 𝒓), and ii) (𝐼 ,A,
{𝒃 (𝑘) }𝑘∈[_] ,𝒚) and (𝐼 ,A, {𝒃 (𝑘) }𝑘∈[_] , 𝒓) are indistinguishable fol-
lowing from the LPN assumption and the pseudorandomness of

PRG. This indistinguishability is is the heart of the security of sPRG,
and is captured in Lemma 4.3 below.

Lemma 4.3. For parameters set as in the construction, assuming
that (IdSamp, Eval) is a 𝜖-secure Boolean pseudorandom generator
and 𝛿-LPNF is 𝜖-hard, the following two distributions are 𝑂 (_𝜖)-
indistinguishable:

D0 =

{
𝐼 , 𝑨, {𝒃 (𝑘) = 𝒔 (𝑘) · 𝑨 + 𝒆 (𝑘) + 𝝈 }𝑘∈[_] , 𝒚

}
D_+1 =

{
𝐼 , 𝑨, {𝒖 (𝑘) }𝑘∈[_] , 𝒘

}
where 𝑨← Zℓ×𝑛𝑝 , 𝒔 (𝑘) ← Z1×ℓ𝑝 , 𝒆 (𝑘) ← D1×𝑛

𝑟 (𝑝), 𝝈 ← {0, 1}1×𝑛 ,
𝐼 ← IdSamp(1_, 1𝑛),𝒚 ← Eval(𝐼 ,𝝈), 𝒖 ← Z1×𝑛𝑝 , and𝒘 ← {0, 1}1×𝑚 .

Proof. We introduce intermediate distributions D𝑖 defined as

follows:

D𝑖 =

{
𝐼 , 𝑨, {𝒖 (𝑘) }𝑘∈[𝑖 ] , {𝒃 (𝑘) = 𝒔 · 𝑨 + 𝒆 (𝑘) + 𝝈 }𝑖<𝑘≤_, 𝒚

}
where the first 𝑖 LPN samples 𝒃 (1) · · · 𝒃 (𝑖) are replaced with random
strings 𝒖 (1) · · · 𝒖 (𝑖) .

Now observe that for every 𝑖 ∈ [_], D𝑖−1 and D𝑖 are 𝜖-indistin

guishable following immediately from the 𝜖-indistinguishability

of the 𝛿-LPNF assumption. Finally, observe that D_ and D_+1 are
𝜖-indistinguishable due to the 𝜖-security of the PRG (IdSamp, Eval).
Therefore, the lemma holds. □

□

5 BOOTSTRAPPING TO
INDISTINGUISHABILITY OBFUSCATION

A sequence of prior works led to the work of [68] that constructs

𝑖𝑂 from a structured-seed PRG, and the bilateral-DLIN assumption

and LWE assumptions. We first recall their theorem (See Theorem

10.2 in [68]):

Theorem 5.1 ([68]). Let 𝜏 be arbitrary constant greater than 0, 𝜖
in (0, 1) and𝑑 ∈ N be any constants. Assume sub-exponential security
of the following assumptions, where _ is the security parameter, 𝑝 is a
_-bit prime, and the parameter 𝑘 is a large enough polynomial in _:

• Bilateral-DLIN assumption on asymmetric bilinear groups of
order 𝑝 (implied by the DLIN assumption on symmetric bilin-
ear groups of order 𝑝),
• LWE assumption over Z𝑝 with subexponential modulus-to-
noise ratio 2𝑘

𝜖
, where 𝑘 is the dimension of the LWE secret.

• Existence of a structured-seed PRG with stretch 1 + 𝜏 and com-
plexity (deg𝑑, deg 2) over Z𝑝 as in Definition 3.1.

Then, there exists a (subexponentially secure) indistinguishability
obfuscation scheme for all circuits. Further if these assumptions are
polynomially secure, then there exists a compact functional encryption
scheme for all circuits.

Combining the Theorem above with Theorem 4.1, where we

construct a structured seed PRG, we get the the following theorem.

Theorem 5.2. Let 𝜏, 𝜖 be arbitrary constants greater than 0, and
𝛿 in (0, 1) be a constant. Assume sub-exponential security of the
following assumptions,

• the LWE assumption with subexponential modulus-to-noise
ratio 2𝑘

𝜖
and noises of magnitude polynomial in 𝑘 , where 𝑘 is

the dimension of the LWE secret,
• the 𝛿-LPNF assumption (as in Definition 2.3),
• the existence of a Boolean PRG in NC0 with stretch 1 + 𝜏 ,
• Bilateral-DLIN assumption on asymmetric bilinear groups of
prime order (implied by the DLIN assumption on symmetric
bilinear groups of prime order),

Then, (subexponentially secure) indistinguishability obfuscation
for all polynomial-size circuits exists. Further if these assumptions are
polynomially secure, then there exists a compact functional encryption
scheme for all circuits.
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