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Abstract

We give an algorithm for solving unique games (UG) instances whenever low-degree sum-of-squares

proofs certify good bounds on the small-set-expansion of the underlying constraint graph via a hypercon-

tractive inequality. Our algorithm is in fact more versatile, and succeeds even when the constraint graph

is not a small-set expander as long as the structure of non-expanding small sets is (informally speaking)

“characterized” by a low-degree sum-of-squares proof. Our results are obtained by rounding low-entropy

solutions — measured via a new global potential function — to sum-of-squares (SoS) semidefinite pro-

grams. This technique adds to the (currently short) list of general tools for analyzing SoS relaxations for

worst-case optimization problems.

As corollaries, we obtain the first polynomial-time algorithms for solving any UG instance where

the constraint graph is either the noisy hypercube, the short code or the Johnson graph. The prior best

algorithm for such instances was the eigenvalue enumeration algorithm of Arora, Barak, and Steurer

(2010) which requires quasi-polynomial time for the noisy hypercube and nearly-exponential time for

the short code and Johnson graphs. All of our results achieve an approximation of 1 − ǫ vs δ for UG

instances, where ǫ > 0 and δ > 0 depend on the expansion parameters of the graph but are independent

of the alphabet size.
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1 Introduction

The Unique Games Conjecture (UGC) [Kho02] is a central open question in computational complexity and

algorithms. In short, the UGC stipulates that distinguishing between almost satisfiable (value ≥ 1 − ǫ)
and highly unsatisfiable (value ≤ ǫ) instances of a certain 2-variable constraint satisfaction problem called

Unique Games is NP-hard. The UGC is known to imply a vast number of hardness-of-approximation

results in combinatorial optimization (e.g. Vertex Cover [KR08], Max Cut [KKMO07], constraint sat-

isfaction problems [Rag08], and Sparsest Cut [CKK+06]), but it is still not known whether the conjec-

ture is true or false. In a significant recent breakthrough, Khot, Minzer, and Safra [KMS18] (building

on [KMS17, DKK+18, BKS19]) showed that it is NP-hard to distinguish 1
2 -satisfiable instances from ε-

satisfiable instances. While [KMS18]’s result leads to some hardness-of-approximation results [BK19], it is

not sufficient to recover most of the striking consequences of the UGC. Moreover, regardless of the UGC’s

truth, there may be mild, natural conditions on instances that allow for polynomial-time algorithms for both

the UG problem itself as well as “downstream” problems such as Max Cut.

The community-wide quest to potentially refute the UGC, as well as to understand conditions under

which UG instances are easy, has produced numerous advances in the broader theory of algorithms over

the past two decades. Notable examples include sophisticated graph partitioning tools [ABS15, LGT14,

KLL+13, LRTV12], local random walks and similar stochastic processes [GT12, AGPT16], and perhaps

most of all, new tools for analyzing and rounding semidefinite programs (SDPs). The groundbreaking

result of Raghavendra [Rag08] exposed a deep connection between the UGC and the performance of a

semidefinite programming relaxation called the basic SDP, showing that the UGC implies that the basic

SDP is the optimal polynomial-time algorithm for any constraint satisfaction problem. Efforts to refute the

UGC thus naturally led to the study of more powerful SDPs such as the sum-of-squares (SoS) hierarchy

[Las01, Par00]. The study of SoS (and specifically SoS algorithms for unique games) has since blossomed

in the algorithms community, leading to many algorithmic advances. These include the development of

general techniques for analyzing and rounding SoS SDPs, such as global correlation rounding [BRS11], and

the proofs-to-algorithms perspective [BBH+12]. These techniques have in turn led to numerous algorith-

mic breakthroughs, for problems originating in high dimensional statistics (e.g. [BKS14, MSS16, HL18,

KS17a, KS17b, BK20, DHKK20, CHK+20]), quantum computation [BKS17], statistical physics [JKR19],

and more [RT12].

In this work, we give new algorithms for a large family of structured instances of the Unique Games

problem. Our algorithms are obtained via a novel analysis of Sum-of-Squares SDPs. Specifically, we define

a new global potential function which is a proxy for the entropy of the distribution over non-integral SDP

solutions to the UG instance, and we show that when the entropy of the SDP solution is low, it is easy

to round. We are then able to control our potential function if the UG constraint graph satisfies certain

properties. Our potential function offers an alternative to the global correlation function introduced by

[BRS11], which is one of very few known tools for analyzing SoS relaxations of worst-case problems.

Using our new techniques, we show that polynomial-sized SoS relaxations solve Unique Games on graphs

which were out of reach of previous techniques, including Short Code graphs, the Noisy Hypercube, and

the Johnson graph.

To control our potential function, we exploit and deepen the connection between Unique Games and

the related Small-Set Expansion problem. A graph is said to be a (δ, η)-small-set expander if all sets of

measure at most δ have edge-expansion at least η, and the Small Set Expansion Hypothesis (SSEH) states

that for each ε > 0 there exists a sufficiently small constant δ such that it is NP-hard to decide whether

a given graph is a (δ, 1 − ε)-small set expander, or whether the graph contains a set of measure ≤ δ with
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expansion < ε. A sequence of works in this area uncovered a fundamental relationship between the two

problems [RS10, RST12]. Our current state of knowledge regarding the relationship between these problems

can be roughly summarized as follows. Raghavendra and Steurer [RS10] gave a reduction from the Small

Set Expansion problem to Unique Games. Raghavendra, Steurer, and Tulsiani [RST12] reduced Unique

games to Small Set Expansion, under the additional assumption that the UG constraint graph is itself a

small-set expander. Though a reduction in the opposite direction (without this additional assumption) has

been postulated, it is still not known whether UGC implies SSEH.

Both the reductions above were worst-case reductions, showing that if one problem is easy on all in-

stances (or all instances of certain type, in the case of [RST12]’s work) then the other is also easy on all

instances. In this work we show a “point-wise” reduction from UG instances on small-set expanders to the

small-set expansion problem within the sum-of-squares framework. Specifically, we show that for a graph G
for which SOS can certify small-set expansion, SOS can also solve any UG instance on G. More precisely,

we show that our global SoS potential function always reflects the fact that the entropy is low in a small-set

expander.

In addition to this pleasing qualitative statement, our result yields polynomial time algorithms for solv-

ing arbitrary Unique Games instances on algebraic families of constraint graphs such as the noisy hyper-

cube [KV15, BBH+12] and short code graphs [BGH+15] that have been extensively investigated in the

context of constructing integrality gaps for UG and related problems. The quantitative guarantees of our

rounding algorithm are substantially stronger than previously known and in particular we give the first

polynomial-time algorithms for instances over these graphs in the UGC parameter regime of distinguishing

between 1− ǫ satisfiable and ≤ δ satisfiable instances for small constant ǫ, δ > 0.

Our rounding technique is, in fact, more versatile and succeeds even when the constraint graph admits

non-expanding sets so long as the structure of non-expanding small sets is (informally speaking) “under-

stood” by the low-degree sum-of-squares proof system. Somewhat curiously, the main technical innovation

in the recent proof of NP-hardness of the 2-to-1-Games problem due to Khot, Minzer and Safra [KMS18]

(building on [KMS17, DKK+18, BKS19, KMMS18]) involves an exhaustive characterization of the struc-

ture of small non-expanding sets in algebraic families such as the Johnson and the Grassmann Graphs that

establish the truth of the 2-to-1 conjecture. We show that their proof in fact yields a low-degree sum-of-

squares certificate characterizing the non-expanding sets in the Johnson graph. Building on this, we obtain

a polynomial time algorithm for solving arbitrary Unique Games instances when the constraint graph is the

Johnson graph1.

1.1 Our Results

We now formally state our results. Our first theorem shows that unique games is easy on graphs which are

“certifiable small-set expanders.” In order to state our theorem we first need to define certifiable small-set

expanders. We use the well known relationship between hypercontractivity and small set expansion (e.g.,

[KKL88]). This is a relation between a polynomial inequality derived from the graph and the combinatorial

property that small sets have large expansion.

For a graph G = (V,E) and λ ≥ 0, we let Vλ(G) denote the linear subspace of RV that is spanned by

the eigenvectors of G’s normalized adjacency matrix that correspond to eigenvalues of value at least 1− λ.

We say that G is (λ,C) hypercontractive if every f ∈ Vλ(G) satisfies Ev∼V [f
4
v ] ≤ C Ev∼V [f

2
v ]

2.2 It is

1The second largest eigenvalue of the Grassman graph’s random walk matrix is already 1/2, and hence it is not an interesting

constraint graph for the UGC regime of nearly satisfiable instances which we study in this work.
2This is also called 2 to 4 hypercontractivity; we drop the “2 to 4” modifier as it is the only notion of hypercontractivity we use.
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known that if G is hypercontractive then subsets of size poly(λ)/C have expansion at least Ω(λ) and a

certain converse was given in [BBH+12].

We say that G is (λ,C,D)-certifiably hypercontractive if G is (λ,C) hypercontractive and furthermore

this fact is certifiable by a degree-D SoS proof (see Definition 4.1). Our main theorem shows that when a

graph is certifiably hypercontractive, it is also a tractable constraint graph for unique games instances.3

Theorem 1.1 (Unique games on certifiable small-set expanders). For every C > 0, λ ∈ (0, 1), D ∈ N there

exists a polynomial-time algorithm A such that if:

• G is (λ,C,D)-certifiably hypercontractive, and

• I is an affine unique games instance with constraint graph G, and val(I) = 1− ε, for ε ≤ λ2/100.

Then A(I) outputs an assignment to I with value at least ελ4

64C .

The algorithm is obtained by rounding the standard degree-D′ SoS relaxation for unique games, where

D′ is a constant depending on C, ε, λ,D. The degree-D′ SoS relaxation for a unique games over constraint

graph G = (V,E) and alphabet Σ can be computed in (|V | · |Σ|)O(D′) time (see [RW17]).

Remark 1.2 (Completeness Gap vs Set Size). The completeness bound in Theorem 1.1 is independent of the

the parameter C corresponding to the set size. This is important, since, just as it works for expander graphs,

the basic SDP can solve unique games instances on small set expanders if the completeness parameter

can depend on the size of the sets that expand (see [AIMS10] and Theorem 1.1 of [RS09]). In contrast,

obtaining a guarantee where the set-size δ is independent of the completeness such as the one in Theorem 1.1

inherently requires using higher levels of the SOS hierarchy, since there are known integrality gap instances

for the basic SDP where the constraint graphs are certifiably hypercontractive (e.g., the short-code graph,

see [BGH+15, Cor. 7.2] and [BBH+12]). As we discuss below, our algorithm solves such instances in

polynomial time.

We prove Theorem 1.1 and give more precise quantitative bounds in Section 4. From this theorem, we

are able to obtain corollaries for the Noisy Hypercube and the Noisy Short Code graphs, since the latter are

known to have sum-of-squares certificates of small-set expansion via hypercontractivity [BBH+12].

Corollary 1.3 (Unique Games on the Noisy Hypercube). For every 0.001 > ε > 0 and 1
4 > α > 0 there

is a polynomial time algorithm A and a constant τ = τ(α, ε) > 0, such that if I is an affine unique games

instance over the α-noisy hypercube with val(I) ≥ 1 − ε then A(I) outputs an assignment to I with value

at least τ .

Corollary 1.4 (Unique Games on the Noisy Short Code Graph). There exists constant ε0 > 0 such that for

every ε ∈ [0, ε0), α ∈ (0, 1) there exists a polynomial-time algorithm A and a constant τ = τ(α, ε) > 0,

such that if I is an affine unique games instance over the α-noisy shortcode graph with val(I) ≥ 1− ε, then

A(I) outputs an assignment to I with value at least τ .

The value τ in both corollaries is of the form poly(ε) exp(−c
√
ε/α) for c > 0 a fixed constant. Cru-

cially, τ is independent of the alphabet size of I . Though there was prior work giving SOS certificates

for specific instances of this type (see Section 1.2), this is the first algorithm for all affine unique games

instances over these graphs in the UGC parameter regime. We derive these corollaries (with more precise

asymptotics) and give formal definitions of the relevant graphs in Section 5.

Finally, by extending our methods we are also able to obtain a result for the Johnson graph,4 despite the

fact that it is not a small-set expander.

3To reduce clutter, we state many of our results with explicit numerical constants. We have made no attempt to optimize these.
4For n, ℓ, α, the (n, ℓ, α) Johnson graph has the vertices

(

[n]
ℓ

)

with S ∼ S′ if |S ∩ S′| ≥ (1− α)ℓ, see Definition 2.3.
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Theorem 1.5 (Unique Games on the Johnson Graph). For every 0.001 > ε > 0, 1
2 > α > 0, and integer

ℓ ∈ N with ℓα ∈ N, there is a polynomial-time algorithm A and a constant τ = τ(ε, α, ℓ) > 0 with

the following guarantee: for n ∈ N sufficiently large, if I is an affine unique games instance over the

(n, ℓ, α)-Johnson graph with val(I) ≥ 1− ε, then A(I) returns an assignment to I of value at least τ .

The parameter τ is of the form poly

(
ε

(ℓr) exp(c′r)

)
for r = cε/α and c, c′ > 0 fixed constants; the

runtime is polynomial in n with exponent that depends on ℓ, α, and ε. We prove Theorem 1.5 in Section 6,

where we also give more precise quantitative guarantees.

Theorem 1.5 suggests that it may be possible to generalize Theorem 1.1 to establish that unique games is

easy not only on graphs G that are certifiably small-set expanders, but even on graphs that are not small-set

expanders but whose expansion profile has some “nice characterization” captured by low degree SoS proofs.

Finding a formal notion of such a “nice characterization” is an interesting open question that can lead to a

general understanding of the easy instances of unique games. It is also open whether the standard (i.e.,

non noisy) Boolean cube possesses such a characterization, and indeed it is not known whether constant-

degree SoS (or any other polynomial-time algorithm) can solve unique games on the Boolean cube (see

[AKKT15]).

1.2 Comparison with prior work

There has been an extensive prior literature on rounding sum-of-squares programs, solving unique games

on restricted instances, and relating the unique-games and small-set expansion problems. In this section we

discuss this literature and how our results relate to it.

Worst-case rounding techniques for higher-degree SoS Our main technical contribution is a new round-

ing technique that gives a new way to use higher-degree Sum-of-Squares relaxations for worst-case opti-

mization problems. Despite the proliferation of uses of the sum-of-squares method in average-case algo-

rithm design (e.g. [BKS14, MSS16], see recent survey [FKP19]), there are relatively few general techniques

that harness the power of the higher-degree SoS relaxations for worst-case combinatorial optimization prob-

lems. The main examples for such techniques are [BRS11]’s global correlation rounding and the gener-

alization via reweightings developed in [BKS17]. In this work we suggest a new way to round solutions

to SoS relaxations by considering a potential function that measures the entropy of the distribution over

non-integral SoS solutions via a proxy for the weighted collision probability of each variable’s assignment.

When the entropy is low (or collision probability is high), we show that it is easy to round to a solution

with high value. We expect that this technique may find applications for other worst-case combinatorial

optimization problems, including other CSPs, coloring, and the like.

Solving UG on restricted families of constraint graphs Our work naturally fits into the long-standing

investigation of efficient algorithms for various restricted families of instances of the Unique Games prob-

lem including expander graphs [AKK+08, MM10], perturbed random graphs [KMM11], and graphs with

small “threshold rank” [Kol10, ABS15, BRS11, GS11]. In addition to yielding new algorithmic techniques

and pointing out differences between hard CSPs such as 3-SAT (for which we do not know of any faster

algorithm for such restricted families), such works constitute the best known “evidence” against the truth

of the UGC. Our guarantees unify and extend these results by noting that each of these restricted families

4



admit (special kinds of) low-degree sum-of-squares certificates of the constraint graph being a small-set

expander.5

UG algorithms for general instances The best currently-known algorithmic result for general instances

of Unique Games is due to [ABS15] and runs in time exp(npoly(ε)) for all 1 − ε satisfiable instances.

This algorithm was shown to be captured by the SoS hierarchy (and extended to apply to other related

problems) by [BRS11, GS11] . The algorithms of [ABS15, BRS11, GS11] have better running times when

the constraint graph’s adjacency matrix has few large eigenvalues: if there are at most r eigenvalues larger

than 1− poly(ε), then they run in time exp(r).
Our work improves upon the guarantees of [ABS15, BRS11, GS11] for instances which have super-

logarithmically many large eigenvalues, yet have a constant degree sum-of-squares certificates of hypercon-

tractivity. In particular, prior to our work, no polynomial-time algorithms were known for unique games

instances over the noisy hypercube, noisy short code, and the Johnson graphs - the best known algorithm for

the noisy-hypercube ran in quasi-polynomial time and for the noisy-short code ran in subexponential time.

Noisy Hypercube, Short Code, and Johnson graphs Starting with Khot and Vishnoi [KV15], the noisy

hypercube (and more recently, the shortcode graph) has been intensely studied to construct integrality

gaps for natural SDPs for UG. These works constructed specific instances of unique games over the noisy

cube [RS09] and shortcode graph [BGH+15] that on one hand are very far from satisfiable but on the other

hand cannot be certified to be so by certain weak SDP and LP hierarchies. [BBH+12] showed that the par-

ticular instances of [KV15, RS09, BGH+15] are in fact “easy” for SoS in the sense that they can be certified

to be far from satisfiable by O(1)-degree SoS (see also [OZ13]). However, the analysis of [BBH+12, OZ13]

was tailored to the particular instances (specified by both the constraint graph and the edge constraints) of

[KV15, RS09, BGH+15], and did not yield an algorithm for general instances over these constraint graphs.6

Our analysis of the SoS algorithm for the Johnson graph (Theorem 1.5) uses structural properties of the

Johnson graph closely related to those shown by [KMMS18]. Similar structural properties of the Grassman

graph have been exploited in the recent works [DKK+18, KMS18] to prove the so called “2-to-2 conjec-

ture”. This has been a recurring motif in works on unique games. In the noisy hypercube, short code, and

now in the Johnson graph, structure that was exploited to prove soundness for reductions was later found

useful in giving efficient algorithms for the same instances.

Reductions from UGC to SSEH Raghavendra, Steurer and Tulsiani [RST12] (building on [RS10]) re-

duced the task of solving unique-games on small-set expanders to the small-set expansion problem (see also

[Ste11, Chap. 6]). Theorem 1.1 can be viewed as a “point-wise” version of their reduction for integrality

gaps. Specifically, [RST12] gave a reduction which maps any unique-game instance (Π, G) (where G is a

small set expander), into an instance G′ of the small-set expansion problem, where G′ is polynomially larger

than G. In contrast, Theorem 1.1 shows that for every graph G, if O(1)-degree SoS certifies the small-set

expansion of G then O(1)-degree SoS can also approximate unique games instances over the same graph G,

which implies that if G a small-set expander and an integrality gap instance for the Degree D SoS relaxation

of UG, then G is also an integrality gap instance for the Degree Ω(D) SoS relaxation for SSE. Our algo-

rithm for the Johnson graph suggests that there might be a way to extend this result to a reduction from UG

5For low threshold-rank graphs, we get an algorithm as a direct corollary only when they are small-set expanders.
6Specifically, [BBH+12] ported the analysis of the unsatisfiability proof from the works on integrality gaps into the SoS frame-

work. However, this analysis was specific to the constructed instances. Moreover, [BBH+12] did not provide any rounding

algorithm and is not directly applicable to analyzing satisfiable instances.
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to SSE even when the constraint graph is not a small set expander but whose expansion profile has a nice

characterization captured by SoS proofs, and hence is an easy instance of the small set expansion problem.

Organization

In Section 2, we give a high-level overview of our algorithm and our proofs. In Section 3, we prove that if

a certain potential function in the sum-of-squares relaxation has large value, then a simple algorithm pro-

duces assignments of value Ω(1). In Section 4 we prove that this potential is always large for certifiable

small-set expanders, and in Section 5 we derive corollaries for the hypercube and short code graphs. Fi-

nally, in Section 6 we give the proof of Theorem 1.5 for the Johnson graph. Section 7 describes low-degree

polynomials that approximate step functions, which we employ to define our potential. Appendix A con-

tains background on SoS, Appendix B reproduces for completeness a proof of a lemma relating small-set

expansion to hypercontractivity, and Appendix C contains SoS proofs of structural properties of Johnson

graphs.

Preliminaries and Notation

For a (weighted) graph G = (V,E), we use (u, v) ∼ E to denote an edge (u, v) sampled with probability

proportional to its weight. We use AG to denote the transition matrix of the random walk on G, LG = I−AG

to denote the Laplacian and πG to denote the corresponding stationary distribution over V (we take πG to be

the distribution where each vertex is sampled proportional to the sum of weights on its incident edges 7); we

will drop the subscript when G is clear from context. It is easy to see that picking a random edge from E, is

equivalent to picking a random vertex v ∼ π and a random neighbor w of v with probability proportional to

the weight of the edge (w, v). For v ∈ V (G), we use degG(v) to denote v’s (weighted) degree inside G. If

A is some probabilistic event or condition, we use I(A) to denote the indicator random variable of A (i.e.,

I(A) = 1 if A occurs and I(A) = 0 otherwise).

Definition 1.6 (Unique games). A unique games instance is a pair I = (G,Π) where G = (V,E) is a graph

and Π is a collection {πu,v}(u,v)∈E such that πu,v is a permutation over some finite set Σ. The graph G is

known as the constraint graph of I .

Given an instance I = (G,Π) of unique games and an assignment x ∈ ΣV of values to the vertices of

G = (V,E), the value of x with respect to I is valI(x) = E(u,v)∼E I(πu,v(xu) = xv). The value of I is the

maximum of valI(x) over all x ∈ ΣV . We may drop the subscript I when the instance is clear from context.

We say that (G,Π) is an affine unique games instance if Σ is an additive group and all the functions πu,v
are of the form πu,v(x) = x−au,v for some au,v ∈ Σ. That is, all constraints correspond to xu−xv = au,v.

It is known that the UGC is equivalent to its restriction on affine instances [KKMO07]. In this paper we

restrict attention to affine instances only. For the sake of simplicity, we will drop the qualifier “affine” in

future discussion, but all of our results are for this family of constraints.

Sum of squares proofs. Given a set of axioms A = {qi = 0}i ∪ {gj ≥ 0}j for polynomials qi, gj ∈ R[x],
we say that “there is a degree-d sum-of-squares proof that f ≥ h modulo A” if f = h + s +

∑
i ci · qi +∑

j rj · gj with real polynomials s, {ci}i, {rj}j ∈ R[x] such that s and {rj}j are sums of squares, and if the

7AG might not have a unique stationary measure, for instance when G is bipartite or disconnected, but πG is always a stationary

measure of AG.
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maximum degree among s, {ciqi}i, {rjgj}j is at most d. We will use the notation A ⊢d f(x) ≥ h(x) to

denote the existence of such an equality. We also sometimes use f(x) � h(x) to denote that the inequality

is a SoS inequality. See Appendix A for more.

Other notation. We use the standard big-O and big-Ω notation. We will also use f = Õ(x) to denote

that there exists some c, C independent of x such that limx→∞
f

Cx logc x ≤ 1. For a positive integer k,

we denote [k] = {1, . . . , k} and
(
S
ℓ

)
to denote the set of unordered simple ℓ-element subsets of S. For a

vector of variables x, we let x≤D denote the set of monomials of degree at most D in the variables. For

a measure π on S and f, g : S → R, we use 〈f, g〉π = Ev∼π f(v)g(v) and the corresponding p-norms

‖f‖π,p = (Ev∼π |f(v)|p)1/p. For a function f(x) and k ∈ R, we will use f◦k(x) = f(x)k to denote the

element-wise k-th power of f .

2 Overview of our techniques

We now describe our algorithm and give an overview of its analysis. Our algorithm is based on the SoS

semidefinite programming (SDP) relaxation, and in particular its view as optimizing over pseudo expectation

operators, see the surveys [BS14, RSS18, FKP19] and Appendix A.

Given a unique games instance I = (G,Π) over alphabet Σ, with G = (V,E), the value of I can be

computed by the following integer program over zero-one variables {Xu,a}u∈V,a∈Σ:

max
X

E
(u,v)∈E

∑

a∈Σ
Xu,aXv,πuv(a) (1)

s.t. X2
u,a = Xu,a ∀u ∈ V, a ∈ Σ

Xu,aXu,b = 0 ∀u ∈ V, a 6= b ∈ Σ
∑

a

Xu,a = 1 ∀u ∈ V

The variables Xi,a are the 0/1 indicator variables that vertex i ∈ V takes label a ∈ Σ. The objective

function asks us to maximize the fraction of edge constraints satisfied. Our algorithm is obtained by consid-

ering the degree D = O(1) SoS relaxation of the above program, obtaining a pseudo-expectation operator

Ẽ : X≤D → R, where X≤D is the set of all monomials in the X variables up to degree D, and Ẽ satisfies

the above equality constraints and the Booleanity constraints {X2
u,a = Xu,a} as axioms. For brevity, we

will refer to this set of axioms as AI , dropping the subscript when I is clear from context. The value of such

a pseudo-expectation operator whose corresponding pseudodistribution is µ, with respect to the instance

I is denoted by valµ(I) = Ẽ[valI(X)] = Ẽ[E(u,v)∈E
∑

a∈Σ Xu,aXv,πuv(a)]. (Note that this is the pseudo

expectation of a degree two polynomial in the variables {Xu,a}.)

2.1 Our rounding algorithm

The SoS SDP relaxation is standard, and the novelty of our work is in the rounding algorithm for it. A

(1 − ε, δ) rounding algorithm for the SoS relaxation is an algorithm that takes as an input an instance

I = (G,Π) and a pseudo-expectation operator Ẽ (satisfying AI ) of value at least 1 − ε and outputs an

assignment x ∈ ΣV with valI(x) ≥ δ. In this paper (and in the context of the UGC in general) we are

interested in finding (1 − ε, δ) rounding algorithms for ε, δ that are bounded away from zero by some

constant which is independent of the alphabet size |Σ|.
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Our rounding algorithm can be described as follows. We will define some low-degree polynomial ΦI
ε :

RV×Σ → [0,∞) (which we call the “approximate shift partition potential” for reasons explained below).

We then show (roughly speaking) the following three statements:

1. There is a rounding algorithm that given an instance I and a pseudo-expectation operator Ẽ such that

Ẽ[valI(X)] ≥ 1− ε and Ẽ[ΦI
ε(X)] ≥ δ, outputs an assignment x for I with valI(x) ≥ poly(ε, δ).

2. For every I = (G,Π), if G is a (δ, 100ε)-small-set expander,8 and if X is a random variable sampled

from an actual distribution over vectors in {0, 1}V ×Σ with expected value 1−ε for the integer program

(1), then E[ΦI
ε(X)] ≥ poly(δ).

3. There is an O(1)-degree SoS proof for Statement 2.

Using the standard “SoS paradigm,” the three steps above suffice to obtain algorithms for graphs that

are certifiably small set expanders. For such graphs we can combine the expansion certificate with the SoS

proof of Statement 2 to show that any pseudo-distribution over X obtained as a solution of the SoS program

will have to satisfy ẼΦI
ε ≥ Ω(1) and hence use the algorithm from Statement 1 to obtain an actual solution

with value bounded away from zero.

In the case of the Johnson graph, which is not a small set expander, we have to work harder. In this

case we use the characterization of non expanding sets in the Johnson graph to show that if the value is

sufficiently large then the potential ΦI
ε must be large on some (o(1)-sized) subgraph of the Johnson graph

(itself a Johnson graph with different parameters). We solve for a partial assignment on this subgraph and

iterate, and we are able to show that this process can continue until we have obtained an assignment with

value independent of the alphabet size.

2.2 Rounding for certified small set expanders

Since our algorithm for the Johnson graph is more complex, we will start by describing our algorithm for

certified small set expanders. In this section we will focus on the case that the pseudo expectation operator

corresponds to an actual distribution and the graph G is simply a small set expander (with or without a

certificate). This case is sufficient to illustrate the main ideas behind our algorithm. The full analysis is

presented in Sections 3 and 4.

Throughout this section we fix an instance I = (G,Π) of unique games, with G = (V,E). We let µ
be a distribution over strings X in {0, 1}V ×Σ satisfying the constraints AI . We will also identify X with

assignments in ΣV and so write Xu for the unique element s ∈ Σ such that Xu,s = 1.

For every vertex u ∈ V and symbol s ∈ Σ, we define the following random variable

Zu,s =
∑

a∈Σ
Xu,aX

′
u,a+s = I(Xu −X ′

u = s) ,

where X and X ′ are two independent samples from the distribution.9

We think of Zs as a subset of V , with Zu,s as the indicator variable for the membership of vertex u in Zs.

The Zu,s’s satisfy partition constraints, hence they induce a partition of the graph into components on which

8That is, every set of G with size at most δ has expansion at least 100ε.
9Given a degree D pseudo-expectation operator corresponding to some pseudodistribution X , we can find in linear time a

degree-D/2 pseudodistribution that satisfies the constraints corresponding to taking two independent samples of X . See Ap-

pendix A and Fact A.1.
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the solutions X,X ′ agree up to a shift, so that Zu,s = 1 when Xu −X ′
u = s. We refer to this partition as

the “shift partition.” If we were to assign labels to the vertices arbitrarily, then each part Zs in the partition

would have size roughly ≈ 1
|Σ| . On the other hand, if there is a part in the partition of fractional size Ω(1),

this means the labels of two independent assignments are more correlated than one would expect, in that

they agree up to shift on a non-trivial fraction of vertices. This inspires our potential function.

We start by considering the following simplified version of our potential function:

Definition 2.1. For any β ∈ (0, 1), define the shift-partition potential to be the quantity

Φβ(X,X ′) =
∑

s∈Σ

(
E
u
(Zu,s · I(valu(X) ≥ β))

)2
,

for valu(X) the “local objective” at u, valu(X) = Ev∼u
∑

a∈Σ Xu,aXv,πuv(a) where v ∼ u denotes a

neighbor of u sampled according to the edge weight of (u, v).

This potential measures the average square size of components in the shift partition, where the indicator

ensures that we only include vertices which satisfy at least a β fraction of incident edges. A convenient

parameter setting will be to take β = ε.

Rounding from high shift partition potential. If µ is an actual distribution with respect to an instance

I , and EµΦε(X,X ′) ≥ Ω(1), then the following simple algorithm (see also Algorithm 3.1) will find in

expectation an assignment y for I with valI(y) ≥ Ω(1):

1. Pick u0 ∈ V uniformly at random.

2. Sample y1, . . . , yV ∈ Σ independently by letting Pr[yu = a] = E[Xu,a|Xu0,0 = 1]. (That is, y is

sampled from the product distributions whose marginals correspond to X|Xu0 = 0.)

The intuition behind the above is as follows: When E[Φε(X,X ′)] ≥ δ, then for a “typical” pair of

independent assignments drawn from µ, there will be a subset of vertices S of measure ≥ Ω(δ) on which

X and X ′ agree up to a shift in Σ. This implies that a random pair of vertices, will satisfy that the collision

probability of the random variable (Xv −Xu), i.e. Pr[Xu −Xv = X ′
u −X ′

v], is at least δ. Since we have

symmetry over the labels, the distribution of Xv − Xu is the same as the distribution of (Xv|Xu = 0),
hence we get that the collision probability of (Xv |Xu = 0) is high. Since we now choose u0 at random

and condition the distribution on Xu0 = 0, we have that the marginal distribution of a random vertex has

high collision probability. If in addition the value on the vertices with high collision probability is close to

1, we would immediately get that independent rounding gives high value on these vertices; this is because

if a vertex’s value and collision probability are high, the vertex’s neighbors must also have high collision

probability on the corresponding satisfying labels. Following this logic, independent rounding will satisfy

a Ω(δ2)-fraction of the edges incident on these vertices, so that in total we satisfy at least a Ω(δ3)-fraction

of the edges of the graph. The term I(valu(X) ≥ ε) in the function Φε ensures that the high-collision-

probability vertices also correspond to high value vertices (since those vertices that have low value do not

even contribute to the potential), and this suffices for us to make the above intuition go through. This

argument is made formal in Section 3 (see Algorithm 3.1 and Theorem 3.3).
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Low degree polynomials. The function Φβ above cannot be used for rounding pseudo-expectation oper-

ators, because it is not a low degree polynomial in the variables X. To tackle this issue, we introduce the

approximate shift-partition potential, replacing the high-degree indicator I(valu(X) ≥ β) with an approxi-

mating low-degree polynomial:

Definition 2.2. For any ν, β ∈ (0, 1), define the approximate shift-partition potential to be the quantity

Φβ,ν(X,X ′) =
∑

s∈Σ

(
E
u
(Zu,s · pβ,ν(valu(X)))

)2
,

for pβ,ν(x) the degree-Õ(1/ν) polynomial which SoS-certifiably ν-approximates the indicator I[x ≥ β] for

x ∈ [0, 1] described in Theorem 7.1.

The function ΦI
ε will be set as Φβ,ν for a suitable parameter setting β = ε and ν = poly(ε).

Small set expansion and the shift partition potential. The Zu,s variables define a partition of the graph.

Edges which cross this partition cannot be satisfied in both X and X ′ variables, since in an affine UG

instance the labels of a satisfied edge’s endpoints agree up to a shift: if (u, v) is an edge with u in the s shift

component (that is, Xu = X ′
u+s), and v in the t shift component (Xv = X ′

v+t), then Xu−Xv 6= X ′
u−X ′

v

unless s = t. Therefore, the shift partition corresponds to a partition induced by removing the (on average)

≤ 2ε fraction of edges that are unsatisfied in at least one of the two solutions, X or X ′. This means that

if G is a (δ, 100ε)-small-set expander, then on average the partition induced by Zu,s has parts of Ω(δ) size.

Since in an assignment of value 1 − ε there are at most O(ε) vertices with local objective ≤ ε, removing

such vertices by introducing the indicators I[valu(X) ≥ ε] removes at most O(ε) edges and therefore the

above reasoning is unaffected: the parts remain of size Ω(δ), so that E[Φε] = Ω(δ). We make this intuition

formal in Section 4 (see Theorem 4.2 and its proof).

2.3 Johnson Graphs

The Johnson Graph is not a small-set expander. However, we are able to use its spectral structure to obtain

a nontrivial approximation ratio. We start by formally defining this graph:

Definition 2.3 (Johnson Graph). For any 1 > α > 0 and ℓ, q ∈ N with αℓ ∈ N and n > ℓ, we define the

(n, ℓ, α)-Johnson graph Jn,ℓ,α to be the graph whose vertex set is
([n]

ℓ

)
and where edges are between pairs

of vertices U, V ∈
([n]

ℓ

)
if and only if |U ∩ V | = (1− α)ℓ. We refer to α as the noise parameter (analogous

to the α-noisy hypercube).

The (n, ℓ, α)-Johnson graph contains other Johnson graphs as subgraphs: consider the subgraph induced

by vertices which contain some S ⊂ [n] with |S| < ℓ. We call such subgraphs |S|-restricted subcubes. It is

not hard to see that such an r-restricted subcube contains at least an η := (1 − α)r fraction of its incident

edges—this is because neighbors (U, V ) differ in each element with probability ≈ α, and so for a random

neighbor V of U , the chance that none of the elements of S are changed is ≈ (1 − α)|S|. Notice that when

r < O( cα) and r ≪ ℓ, the fraction of internal edges in an r-restricted subcubes is at least η ≥ 1−O(c).
[KMMS18] showed that in the Johnson graph, every non-expanding set that has expansion ε is correlated

with some r-restricted subcube, for r = O(ε/α), that has expansion O(ε). We show a “distribution-version”

of this theorem: for any distribution over non-expanding sets, there exists an r-restricted subcube that is

correlated with these sets in expectation. Moreover, we give an SoS proof of this fact (Theorem 6.5), so that

the same statement holds for pseudodistributions too.

10



We then use this structure theorem to show that given a high value pseudodistribution for a unique games

instance I , there must exist at least one r-restricted subcube, so that the approximate shift partition potential

restricted to that subcube is high.

Lemma (Large potential on a subcube: special case of Lemma 6.9). If I is a unique games instance on the

(n, ℓ, α)-Johnson graph and X is sampled from a distribution over solutions with E[valI(X)] ≥ 1− ε, then

there exists an O( εα )-restricted subcube C such that the expected shift potential of the subgraph induced by

C is at least δ = δ(ℓ, ε, α) > 0. Furthermore, this is certifiable by a degree-Õ(1/δ) SoS proof.

The Johnson graph only has
(
n
r

)
≤
(
n
ℓ

)
r-restricted subcubes, and so in nr = poly(n) time we can

enumerate over the cubes to find one cube C with a large shift-partition potential (i.e., satisfying E[ΦC
ε ] ≥

δ). We can then find a δ-satisfying solution for the internal edges of C by using our rounding algorithm

(Algorithm 3.1). Since the fractional mass of C , µ(C) :=
( n
ℓ−r

)
/
(n
ℓ

)
≈ ℓr

nr , we only satisfy a negligible

fraction of edges this way. On the other hand, since C is just a o(1)-fraction of the graph, the unique

games instance restricted to the rest of the graph C must have high value too. Since the value remains high

even after removing C , we may iteratively repeat this process to find a sequence of r-restricted subcubes

C1, . . . , CT , while ensuring that each cube Ct does not intersect too much with the previous subcubes

C1, . . . , Ct−1. At each iteration, we fix an assignment on Ct satisfy an Ω(δ2)-fraction of Ct’s internal

edges, which in turn is an Ω(δ2η)-fraction of all edges incident on Ct; the remaining (1 − δ2η) fraction of

edges incident on the cube (including outgoing edges) may be unsatisfied. But since the ratio of satisfied

to unsatisfied edges incident on Ct is at least δ2η, the objective value drop (on the unassigned part of the

graph) in every step is proportional to the fraction of edges we satisfy in that step. We repeat the process

until the value drops by ε, so we end up satisfying an Ω(δ2ηε)-fraction of all the edges.

Modulo the proof of the “large potential on subcube” Lemma (which will be a corollary of Lemma 6.9),

this is nearly the complete argument. The only detail that remains is to apply the above lemma iteratively (we

cannot simply apply it on J \C since that graph is not a Johnson graph) and to ensure that the subcubes we

find at each iteration do not overlap too much. To handle both these issues, as we iterate we take additional

measures. The full proof is in Section 6; see Algorithm 6.1 and Theorem 6.2.

3 Rounding instances with large shift potential

In this section, we will show that when the objective value is large and the approximate-shift-partition

potential Φ has large pseudoexpectation, then the Condition & Round Algorithm (Algorithm 3.1) succeeds

in returning a good assignment for the unique games instance.

Algorithm 3.1 (Condition & Round).

Input: A degree-D (for D ≥ 2) shift-symmetric pseudodistribution10 µ for a UG instance I = (G =
(V,E),Π) over alphabet Σ.

Goal: Return an assignment x ∈ ΣV satisfying Ω(1) fraction of the constraints in expectation.

Sample a random solution Y :

1. Sample a vertex u ∼ π and condition on Xu = 0 to obtain the new marginals Ẽµ[· | Xu = 0].
2. Sample a solution Y by choosing each collapsed variable’s labels independently according to its

marginals: Yv ∼ Ẽµ[Xv | Xu = 0].

10Any pseudodistribution can be efficiently transformed into a shift-symmetric one without losing value. See Definition 3.7 and

Lemma 3.8 for details.
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Recall the approximate shift-mass potential Φβ,ν(X,X ′) from Definition 2.2. We define the potential of

a pseudo distribution µ to be the expectation of Φβ,ν over µ:

Definition 3.2 (Approximate shift mass potential of a pseudodistribution). For a pseudodistribution µ of

degree at least 2 deg(Φβ,ν) + 2, define the approximate shift mass potential of µ to be the quantity

Φβ,ν(µ) = Ẽ
µ
[Φβ,ν(X,X ′)].

We will prove the following theorem:

Theorem 3.3. Let I = (G,Π) be an affine instance of Unique Games over the alphabet Σ. Let µ be a

degree-O(deg(Φβ,ν))) shift-symmetric pseudodistribution satisfying the axioms AI specified by program

(1). If Φβ,ν(µ) ≥ δ, then on input µ Algorithm 3.1 runs in time poly(|V (G)|) and returns an assignment of

expected value at least (δ − ν)(β − ν) for I .

While Algorithm 3.1 is randomized, we can derandomize it and obtain a deterministic polynomial-

time algorithm with the same guarantee on the approximation factor. To derandomize we can use standard

techniques such as the method of conditional expectations [Vad12]. We will refer to such an algorithm as

derandomized Condition & Round.

Proof of Theorem 3.3. Throughout this proof, we let µ be a pseudo-distribution satisfying the conditions of

the theorem, and all pseudo-expectations are taken with respect to µ. Our overall strategy will be as follows:

we will define an alternate potential function Ψ(µ), relate its value to Φ(µ), and then show that when Ψ(µ)
is large a single step of conditioning and independent rounding gives a large expected objective value.

To define our alternate potential, let us introduce some concise notation. For an event E whose indicator

I(E) has degree at most deg(µ) define P̃r[E ] = Ẽ[I(E)] (see Definition A.3 for a formal definition). Similarly,

for conditional probabilities, for events E and F with deg(I(E ∧ F)) ≤ deg(µ), let P̃r[E | F ] := P̃r[E∧F ]

P̃r[F ]
.

For simplicity of notation, when P̃r[F ] = 0, we define P̃r[E | F ] := 0.

Now we define the conditioned shift potential Ψ(µ):

Definition 3.4. The conditioned shift potential of a degree-D ≥ 4 pseudodistribution µ is given by

Ψ(µ) := E
u,v∼π

[
∑

s∈Σ
P̃r
µ
[Xv −Xu = s]2 · Ẽ[valv(X) | Xv −Xu = s]

]
,

where π is the stationary measure on G and valv(X) is the “local objective” at the vertex v, valv(X) =

Ew∼v[P̃rµ[X satisfies (v,w)]] for w ∼ v a neighbor of v sampled proportional to the weight on (v,w).

Roughly, the conditioned shift potential measures the average collision probability of the random vari-

able (Xu −Xv), but it gives more preference to those pairs (u, v) that have high local objective value.

We will show that when Φ(µ) is large, then Ψ(µ) is also large:

Lemma 3.5. If the approximate shift mass potential of µ is large, then the conditioned shift potential of µ
must be large as well:

Φβ,ν(µ) ≤
Ψ(µ)

β − ν
+ ν.

We prove this lemma in Section 3.1 below. Next, we will show that when the conditioned shift potential

is large, a single step of conditioning and rounding returns a solution of high objective value:
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Lemma 3.6. Let I = (G,Π) be an affine instance of Unique Games over the alphabet Σ. Let µ be a

degree-4 shift-symmetric pseudodistribution for I . When Ψ(µ) ≥ δ, then the Condition & Round algorithm

(Algorithm 3.1) returns a solution of expected value at least δ.

We prove this lemma below in Section 3.1 as well. Given the two lemmas, the first statement of the

theorem clearly follows.

3.1 Relating the potentials and rounding

In this section, we will prove Lemmas 3.5 and 3.6. Before we dive into these lemmas, let us define a

symmetrization operation on pseudodistributions. Intuitively it makes sense for a pseudodistribution on an

affine unique games instance I to be symmetric with respect to shifts, since if X is a (1 − ε)-satisfying

solution for I , then so is X+s for all s ∈ Σ. Pseudodistributions obtained by symmetrization will satisfy

useful symmetry properties that are amenable to the analysis of Algorithm 3.1.

Definition 3.7 (Symmetrization). Given a pseudodistribution µ, we define the corresponding symmetrized

pseudodistribution µsym as: For each s ∈ Σ, define µ+s to be the pseudodistribution in which the labels

receive the global affine shift +s, so that

Ẽ
µ+s

[Xu1,a1 · · ·Xut,at ] := Ẽ
µ
[Xu1,a1−s · · ·Xut,at−s]

for all {(u1, a1), . . . , (ut, at)} ∈ ([n] × Σ)≤D. Now, define µsym to be the uniform mixture over µ+s

with s ∈ Σ. We say that a pseudodistribution is shift-symmetric if it is invariant under the symmetrization

operation defined above, that is, µ = µsym.

Firstly note that this operation can be efficiently performed on µ. Furthermore it yields a valid pseu-

dodistribution that has the same value as µ.

Lemma 3.8 (Symmetrization). Let µ be a degree-D pseudodistribution satisfying the unique games axioms

AI given by (1) for an affine unique games instance I . Let µsym be a pseudoexpectation operator obtained

by symmetrizing µ. Then we have that,

1. µsym is a valid pseudoexpectation operator of degree-D that satisfies the unique games axioms AI .

2. The time taken to perform symmetrization on µ is subquadratic in the description of µ.

3. The objective value of µ and µsym are equal, i.e. valµ(I) = valµsym(I).

The proof of this lemma is fairly straightforward, so we omit it. Since the value is invariant under

symmetrization and performing the operation is efficient, all our algorithms symmetrize the pseudodistri-

butions obtained by solving the degree D SoS relaxation, and hence in our analysis we always work with

shift-symmetric pseudodistributions henceforth.

Symmetrized distributions satisfy some nice symmetry properties with respect to shifts, such as, every

vertex has uniform marginals, and value of µ conditioned on Xu = s for any shift s, is the same as the

original value without conditioning. Additionally we have the following:

Lemma 3.9 (Shift-Symmetry properties). Let µ be a degree-D shift-symmetric pseudodistribution satisfying

the unique games axioms AI given by (1) for an affine unique games instance I . Then µ satisfies the

following symmetry properties:
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1. For all vertices u, v ∈ V (G) and shifts s ∈ Σ, P̃r[Xv = s | Xu = 0] = P̃r[Xv −Xu = s].

2. For all polynomials f(X) with deg(f) ≤ D − 2, such that f(X) = f(X + s) for every global shift

s ∈ Σ,

Ẽ[f(X) | Xv −Xu = s] = Ẽ[f(X) | Xu = 0,Xv = s].

This lemma follows easily from the fact that µ is invariant under global shifts. See Appendix A for a

proof.

We first prove that when the potential Ψ is large, conditioning and then independently rounding succeeds.

Lemma (Restatement of Lemma 3.6). Let I = (G,Π) be an affine instance of Unique Games over the

alphabet Σ. Let µ be a degree-4 shift-symmetric pseudodistribution for I . When Ψ(µ) ≥ δ, then the

Condition & Round algorithm (Algorithm 3.1) returns a solution of expected value at least δ.

Proof. Suppose that Ψ(µ) ≥ δ. Define the following,

Ψu(µ) := E
v∼π

[
∑

s∈Σ
P̃r[Xv −Xu = s]2 · Ẽ[valv(X) | Xv −Xu = s]

]
,

so that Ψ(µ) = Eu∼π[Ψu(µ)]. Suppose we sample a random vertex u ∼ π and condition the pseudodis-

tribution on Xu = 0, then pick a random label Y u
v for every vertex v ∈ V (G) according to its marginal

Y u
v ∼ Ẽ[Xv | Xu = 0]. We have that in expectation, after conditioning on u the rounded value is equal to:

E
Y u

[val(Y u)] = E
v∼π

E
w∼v

[
∑

s

P̃r[Xv = s | Xu = 0] P̃r[Xw = πvw(s) | Xu = 0]

]
.

We will now lower bound this quantity by Ψu(µ). We have that

Ψu(µ) = E
v∼π

[
∑

s∈Σ
P̃r[Xv −Xu = s]2 · Ẽ[valv(X) | Xv −Xu = s]

]

= E
v

[
∑

s∈Σ
P̃r[Xv = s|Xu = 0]2 · Ẽ[valv(X) | Xu = 0,Xv = s]

]

where we have applied Lemma 3.9 along with the shift-symmetry of µ and of valu(X), where the latter is a

shift-symmetric function because I is an affine unique games instance. Now, by definition of the local value,

= E
v∼π

[
∑

s∈Σ
P̃r[Xv = s|Xu = 0]2 · E

w∼v

[
P̃r[X satisfies (v,w) | Xu = 0,Xv = s]

]]

= E
v∼π

[
∑

s∈Σ
P̃r[Xv = s|Xu = 0]2 · E

w∼v

[
P̃r[Xv = s,Xw = πvw(s) | Xu = 0]

P̃r[Xv = s | Xu = 0]

]]

= E
v∼π

[
∑

s∈Σ
P̃r[Xv = s|Xu = 0] · E

w∼v

[
P̃r[Xv = s,Xw = πvw(s) | Xu = 0]

]]

≤ E
v∼π

E
w∼v

[
∑

s∈Σ
P̃r[Xv = s|Xu = 0] · P̃r[Xw = πvw(s) | Xu = 0]

]
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= E
Y u

[val(Y u)]

Further note that the expected value of rounding of Algorithm 3.1 is Eu∼π[EY u [val(Y u)]] which is greater

than Ψ(µ) by the above inequality. Since Ψu(µ) ≥ δ, we sample a solution with expected value at least

δ.

Now, we will relate the two potentials.

Lemma (Restatement of Lemma 3.5). If the approximate shift mass potential of µ is large, then the condi-

tioned shift potential of µ must be large as well:

Φβ,ν(µ) ≤
Ψ(µ)

β − ν
+ ν.

Proof. We begin by recalling that in the definition of Φβ,η, we used an η-additive polynomial approxima-

tion p(x) of degree Õ(1/η) to the indicator function I[x ≥ β] on the interval x ∈ [0, 1], guaranteed by

Theorem 7.1.

We begin by expanding the definition of Φβ,ν(µ):

Φβ,ν(µ) = Ẽ

[
∑

s∈Σ

(
E

u∼π
I[Xu −X ′

u = s] · p(valu(X))
)2
]

= Ẽ

[
∑

s∈Σ
E

u,v∼π
I[Xu −X ′

u = Xv −X ′
v = s] · p(valv(X)) · p(valu(X))

]

=
∑

s∈Σ
E

u,v∼π
Ẽ
[
I[X ′

u −X ′
v = s]

]
· Ẽ [I[Xu −Xv = s] · p(valv(X)) · p(valu(X))] ,

where in the last step we have replaced the condition on the difference of Xu,X
′
u with a condition on the

difference of Xu,Xv (and the same for v). Now, we use that 0 ≤ p(x) ≤ 1 and p(x) ≤ x
β−ν + ν for all

x ∈ [0, 1], and furthermore this is SoS-certifiable (see Fact 7.6). Therefore, we can pull out a factor of p and

apply this inequality to the second one to obtain

Φβ,ν(µ) ≤
(
∑

s∈Σ
E

u,v∼π
Ẽ [I[Xu −Xv = s]] · Ẽ

[
I[Xu −Xv = s] · valu(X)

β − ν

])
+ ν

=

(
1

β − ν
E

u,v∼π

∑

s∈Σ
Ẽ[I[Xu −Xv = s]]2 · Ẽ[valu(X) | Xu −Xv = s]

)
+ ν

=
1

β − ν
Ψ(µ) + ν,

where we have applied the definition of conditional pseudoexpectation. This completes the proof of the

lemma.

4 Certifiable Small-Set Expanders

In this section, we give an algorithm for unique games on certifiable small set expander graphs, when the

certificate is via 2-to-4 hypercontractivity. To state our theorem, we will require the following definition:
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Definition 4.1. (Certifiable 2 to 4 hypercontractivity) For C ∈ R+, λ ∈ (0, 2), and D ≥ 2 an integer, a

graph G = (V,E) is said to be (λ,C,D)-certifiably 2 to 4 hypercontractive if for any f : V → R,

⊢D ‖Πλf‖4π,4 ≤ C · ‖f‖4π,2,

where ‖f‖π,p = (Ev∼π f(v)
p)1/p, and Πλ is the projection to the right eigenspace of eigenvalues at most λ

of G’s normalized Laplacian.

We will also say that a graph is a (ε, δ,D)-certifiable SSE if there is a degree-D SoS proof that sets of

size ≤ δ have expansion at least ε.

Our main theorem is the following (more fleshed out version of Theorem 1.1):

Theorem 4.2. For any (λ,C,D)-certifiable 2 to 4 hypercontractive graph G and for all ε < 1
100λ

2, given

a degree-(D + Õ(C/ελ4)) shift-symmetric pseudodistribution µ of value ≥ (1 − ε) for an affine Unique

Games instance I = (G,Π) on G, Algorithm 3.1 runs in time poly(|V (G)|) and outputs an assignment with

expected value at least ελ4

64C .

Proof. We start with the fact that a graph which is certifiably 2 to 4 hypercontractive is also a certifiable

small-set expander. This was shown in [BBH+12], but we will state and use stronger guarantees about the

form of the certificate which were implicit in their proof (we give a proof in Appendix B for completeness).

Lemma 4.3 (Lemma 6.7 in [BBH+12]). If G = (V,E) is (λ,C,D)-certifiably 2 to 4 hypercontractive, G
is a (λ/2, λ4/(16C),D)-certifiable small-set expander: for any f : V → R,

{
‖Πλf‖4π,4 ≤ C · ‖f‖4π,2

}
∪
{
f(v)2 = f(v)

}
v∈V ∪

{
E
π
f ≤ λ4

16C

}
⊢4+D 〈f, Lf〉π ≥ λ

2
E
π
[f ],

Where Πλ is the projector to the right eigenspace of eigenvalue ≤ λ in G’s normalized Laplacian. Further,

{
‖Πλf‖4π,4 ≤ C‖f‖4π,2

}
∪{0 ≤ f(v) ≤ 1}v∈V ⊢4+D 〈f, Lf〉π ≥ λ

2
E
π
[f ]+c

(
λ4

16C
E
π
[f ]− E

π
[f ]2

)
+B(f)

For c a positive constant and B(f) = 2(Eπ[f
◦2 − f ]) + 〈f◦3 − f,Πλf〉π.

Letting α := λ
2 and γ := λ4

16C , our assumptions together with Lemma 4.3 give us a small-set expansion

certificate of the following form:

SSEα,γ(G) ≡ {0 ≤ f(u) ≤ 1}u∈V ⊢D+4 〈f, Lf〉π ≥ αE
π
[f ] + c1 ·

(
γ E

π
[f ]− E

π
[f ]2

)
+B(f), (2)

for c1 a positive constant, B(f) = 2(Eπ[f
◦2 − f ]) + 〈f◦3 − f, Pf〉π and P a projection operator.

Next, we will show that if a graph has such a certificate of small-set expansion, then one can also obtain

a lower bound on the approximate shift potential Φβ,ν(X,X ′) (whose definition we now recall), which gives

a condition under which we can round. Theorem 7.1 guarantees the existence of a family Pβ,ν of degree-

Õ(1/ν) polynomials SoS-certifiably which approximate I[x ≥ β] within an additive ν in the intervals

[0, β − ν] ∪ [β + ν, 1]. Fix p ∈ Pβ,ν to be one such polynomial. The functions {fs : V → R[X,X ′]}s∈Σ
defined such that

fs(u) = I(Xu −X ′
u = s) · p(val(Xu)) (3)
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give disjoint approximate vertex subsets of G (approximate only because p is not exactly an indicator).

Recall the definition of the approximate shift-mass potential (Definition 2.2):

Φβ,ν(X,X ′) =
∑

s∈Σ

(
E
u
fs(u)

)2
=
∑

s∈Σ

(
E
u

(
1(Xu −X ′

u = s) · p(val(Xu))
))2

.

Edges crossing this partition must be unsatisfied in either X or X ′ (see the discussion in Section 2 and

Fact 4.10). In a certifiable small-set expander with large objective value, this partition cannot cut too many

edges, and therefore its pieces must be large. We will make this formal via the following lemma:

Lemma 4.4. Let I be a unique games instance over a graph G = (V,E) in which functions f : V → [0, 1]
with support ≤ γ are SoS-certifiably α-expanding via the following certificate:

SSEα,γ(G) :≡ {0 ≤ f(v) ≤ 1}v∈V ⊢D

{
〈f, Lf〉π ≥ αE

π
[f ] + c ·

(
γ E

π
[f ]− E

π
[f ]2

)
+B(f)

}
,

where B(f) = 2(Eπ[f
◦2−f ])+〈f◦3−f, Pf〉π, c is a fixed positive constant and P is a projection operator.

Then we have that, for all β ∈ (0, 1), ν ∈ (0, 13 (1 − β)), and η ∈ R+, there is an SoS lower bound on

the approximate shift mass potential Φβ,ν:

AI ∪ {p ∈ Pβ,ν} ∪ SSEα,γ(G) ⊢D+Õ(1/ν) Φβ,ν(X,X ′) ≥ γ

(
1− viol(X)

1− β − ν
− ν

)
+Kα,η

β,ν (X,X ′),

where AI are the axioms defined for I by program (1), viol(X) = 1− val(X) is the fraction of constraints

X violates, and Kα,η
β,ν (X,X ′) = c′ ·

(
α− (4 + α+ η)

(
viol(X)
1−β−ν + ν

)
− 1

2η − (viol(X) + viol(X ′))
)

for

c′ ∈ R+.

We give the proof in Section 4.1. Informally, the quantity Kα,η
β,ν (X,X ′) can be made non-negative when

the fraction of violations viol(X) and viol(X ′) are small relative to the expansion α.

From equation (2) and Lemma 4.4, we may choose β = ε ≤ .01, ν = εγ, and η = 1
2
√
ε
, and the

conditions of our theorem imply that we have a degree-(D + Õ(1/εγ)) sum-of-squares proof that

Φε,εγ(X,X ′) ≥ γ

(
1− viol(X)

1− ε− εγ
− εγ

)
+K

α,
√

1/4ε
ε,εγ (X,X ′). (4)

In order to apply our rounding Theorem 3.3, we require that the pseudoexpectation Ẽ[Φε,εγ(X,X ′)]
is large, where Ẽ is the pseudoexpectation operator corresponding to the pseudodistribution µ given to us.

Since by assumption Ẽ[viol(X)] = Ẽ[viol(X ′)] ≤ ε, Ẽ has degree (D + Õ(C/ελ4)) = D + Õ(1/εγ) and

Ẽ satisfies AI , we take the pseudoexpectation of (4) to get

Ẽ
[
Φε,εγ(X,X ′)

]
≥ γ

(
1− ε

1− ε− εγ
− εγ

)
+ Ẽ

[
K

α,
√

1/4ε
ε,εγ (X,X ′)

]
. (5)

We show now that for our chosen parameters, Ẽ[K
α,1/

√
4ε

ε,εγ (X,X ′)] ≥ 0. Expanding the expression for

K and using our bound on Ẽ[viol(X) + viol(X ′)],

Ẽ
[
Kα,1/

√
4ε

ε,εγ (X,X ′)
]
≥ c′ ·

(
α−

(
4 + α+

1

2
√
ε

)(
ε

1− ε− εγ
+ εγ

)
−√

ε− 2ε

)
≥ c′(α− 5

√
ε),
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where to obtain the final inequality we have used that γ < 1
2 , ε < 1

25 , and α < 1. Since α = λ
2 ≥ 5

√
ε by

assumption and since c′ ∈ R+, this quantity is non-negative.

Returning to (5) and simplifying with our upper bounds ε < 1
25 , γ < 1

2 , we have that

Ẽ [Φε,εγ] ≥
3

4
γ.

Applying Theorem 3.3, we conclude that conditioning and rounding a degree-(D+Õ(C/ελ4)) pseudodistri-

bution according to Algorithm 3.1 results in a solution of expected value ≥ (34γ−εγ)(ε−γε) ≥ 1
4εγ = ελ4

64C ,

as desired.

4.1 Bounding the shift potential in certifiable SSE graphs

In this section, we will use that in a small-set expander, when the expansion of the approximate partition

defined the fs is low and the objectives val(X), val(X ′) are high, then the shift-partition potential Φ(X,X ′)
(which is a proxy for the size of the partition parts) is large. Further, we will show that this fact has an SOS

proof when the graph has an SOS certificate of expansion.

Lemma (Restatement of Lemma 4.4). Let I be a unique games instance over a graph G = (V,E) in which

functions f : V → [0, 1] with support ≤ γ are SoS-certifiably α-expanding via the following certificate:

SSEα,γ(G) :≡ {0 ≤ f(v) ≤ 1}v∈V ⊢D

{
〈f, Lf〉π ≥ αE

π
[f ] + c ·

(
γ E

π
[f ]− E

π
[f ]2

)
+B(f)

}
,

where B(f) = 2(Eπ[f
◦2−f ])+〈f◦3−f, Pf〉π, c is a fixed positive constant and P is a projection operator.

Then we have that, for all β ∈ (0, 1), ν ∈ (0, 13 (1 − β)), and η ∈ R+, there is an SoS lower bound on

the approximate shift mass potential Φβ,ν:

AI ∪ {p ∈ Pβ,ν} ∪ SSEα,γ(G) ⊢D+Õ(1/ν) Φβ,ν(X,X ′) ≥ γ

(
1− viol(X)

1− β − ν
− ν

)
+Kα,η

β,ν (X,X ′),

where AI are the axioms defined for I by program (1), viol(X) = 1− val(X) is the fraction of constraints

X violates, and Kα,η
β,ν (X,X ′) = c′ ·

(
α− (4 + α+ η)

(
viol(X)
1−β−ν + ν

)
− 1

2η − (viol(X) + viol(X ′))
)

for

c′ ∈ R+.

Proof of Lemma 4.4. Given assignments (X,X ′) consider the approximate partition defined by the {fs}s∈Σ
as in (3) and identify fs with an approximate component Cs. We note that the fs are close to indicator

functions, as they are the product of an indicator and an approximate indicator p. As noted after equation

(3), Φβ,ν(X,X ′) =
∑

s Eu∼π[fs(u)]
2. Further, our axioms easily imply that fs are bounded functions,

Claim 4.5. From our Unique Games axioms and the axiom that p ∈ Pβ,ν , we may conclude that the fs are

bounded:

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν) {0 ≤ fs(v) ≤ 1}s∈Σ,v∈V .

We provide the proof below in Section 4.2. Thus, we may apply the SSE certificate SSEα,γ(G) guaran-

teed by the condition of the lemma to all the functions fs and sum up the equality over s ∈ Σ. This gives

us,

∑

s

〈fs, Lfs〉π ≥ α
∑

s

E
π
[fs] + c

(
γ
∑

s

E
π
[fs]−

∑

s

E
π
[fs]

2

)
−
(
∑

s

2B1(fs) +
∑

s

B2(fs)

)
.
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For B1(f) = Eπ[f−f◦2] and B2(f) = 〈f−f◦3, Pf〉π, and c ≥ 0. Substituting
∑

s Eπ[fs]
2 = Φβ,ν(X,X ′)

and re-arranging the expression,

Φβ,ν(X,X ′) ≥ γ
∑

s

E
π
[fs] +

1

c

(
α
∑

s

E
π
[fs]−

(
∑

s

2B1(fs) +
∑

s

B2(fs)

)
−
∑

s

〈fs, Lfs〉π
)
. (6)

We now bound and simplify the remaining terms. Our goal will be to obtain as large as possible a quantity

on the right-hand side.

First, we would like a lower bound on
∑

s∈Σ Eπ[fs], which measures the total number of vertices in-

cluded in the approximate partition. If we were working with the pure shift partition I[Xu = X ′
u + s], then

this quantity would be 1; since we have dropped vertices of low objective value, we must prove that we did

not remove too many.

Claim 4.6. Under the axioms guaranteed by our lemma, the total number of vertices participating in the

approximate partition {fs}s∈Σ is large,

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

E
π
[fs] ≥ 1− viol(X)

1− β − ν
− ν.

This claim follows easily from an averaging argument if we replace p(x) with I[x ≥ β], since this

amounts to removing vertices with at least 1 − β incident violated edges in X. Below, we will show that

this claim still holds as an SoS inequality when we use the η-approximate indicator p. See Section 4.2.

Second, we must argue that the total expansion of the approximate partition is not too large. The fol-

lowing claim shows that the expansion is bounded by the total violations of X and X ′:

Claim 4.7. Under the axioms guaranteed by our lemma, the total expansion of the partition is bounded as

a function of the total violations in X and X ′:

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

〈fs, Lfs〉π ≤ viol(X) + viol(X ′) + 2

(
viol(X)

1− β − ν

)
+ 2ν.

The proof of this claim uses the fact that in any satisfying assignment for an edge (u, v), Xu = Xv + s
for a fixed s ∈ Σ, and therefore an edge that crosses the shift partition must be violated in either X or X ′

since the endpoints differ by a different shift in each assignment. To account for vertices dropped because

their violations are ≥ 1− β, we again use an averaging argument. We will prove this formally below.

Finally, if the fs were 0/1-valued functions, B1(fs) and B2(fs) would have value 0. Since fs are instead

approximately 0/1 valued, we must show that B1(fs) and B2(fs) are close to 0:

Claim 4.8. Under the axioms of our lemma, the B1(fs) are small,

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

E
π
[fs − f◦2

s ] ≤ viol(X)

1− β − ν
+ ν.

Claim 4.9. Under the axioms of our lemma, for any η ∈ R+ and ν < 1
3(1−β), the B2(fs) may be bounded

by

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

〈fs − f◦3
s , Pfs〉π ≤ 1

2η
+ η

(
viol(X)

1− β − ν
+ ν

)
.

When we combine these claims with equation (6) and simplify, we have the desired inequality, where

the parenthesized right-hand side term becomes Kα,η
β,ν . We prove our claims below in Section 4.2
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4.2 Proofs of Claims

We now prove the outstanding claims. We first record some consequences of our unique games axioms AG,

which will be useful to us:

Fact 4.10. The unique games constraints AG imply the following bounds:

1. The local values and violations of variables are in [0, 1]: AG ⊢2 {0 ≤ valu(X) ≤ 1} ∪ {0 ≤
viol(X) ≤ 1}

2. The variables {I[Xu −X ′
u = s]}s∈Σ,u∈V (G) satisfy Booleanity and partition constraints,

AG ⊢4 {I[Xu −X ′
u = s]2 = I[Xu −X ′

u = s]}u∈V (G),s∈Σ ∪ {
∑

s∈Σ
I[Xu −X ′

u = s] = 1}

3. The partition crossing edges are bounded by the sum of violations:

AG ⊢8 E
(u,v)∼E(G)

I[Xu −Xv 6= X ′
u −X ′

v] ≤ viol(X) + viol(X ′).

See Fact A.2 in the appendix for a proof (the guarantees are phrased in terms of the variables Zu,s =
I[Xu −X ′

u = s].11)

Much of the work in these proofs will consist of arguing that the approximate indicator p behaves like a

true indicator. We will appeal to the following facts, which are proven later in Section 7:

Fact 4.11 (Approximate Markov Inequality). Under the axioms of the lemma, p ∈ Pβ,ν approximately obey

Markov’s inequality over [0, 1]:

AG ∪ {p ∈ Pβ,ν} ∪ {0 ≤ x ≤ 1} ⊢Õ(1/ν) p(x) ≥ 1− 1− x

1− β − ν
− ν.

See Fact 7.6 for a proof of a slightly more general statement.

Fact 4.12 (Approximate Union Bound). The approximate events p(x), p(y) satisfy the union bound:

{0 ≤ x, y ≤ 1} ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν) 1− p(x)p(y) ≤ (1− p(x))(1 − p(y)).

See Fact 7.5 for a proof of a slightly more general statement.

Now, we are ready to prove our claims.

Claim (Restatement of Claim 4.5). From our Unique Games axioms and the axiom that p ∈ Pβ,ν , we may

conclude that the fs are bounded:

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν) {0 ≤ fs(v) ≤ 1}s∈Σ,v∈V .

Proof of Claim 4.5. By definition, fs(v) = I[Xv − X ′
v = s] · p(valv(X)). From Fact 4.10 we have the

axioms I[Xv − X ′
v = s] and 0 ≤ valv(X) ≤ 1 in degree-4, and from Theorem 7.1 we have the axiom

that 0 ≤ p(x) ≤ 1 in degree Õ(1/ν). The conclusion follows as a consequence of these axioms, since for

0 ≤ A,B ≤ 1, (1−A)B ≥ 0 and (A− 0)B ≥ 0.

11The proof of the final claim follows from Fact A.2 sub-claim “Crossing edges violate an assignment” and from noting that

from the Booleanity and partition constraints, I[Xu − X ′
u 6= Xv − X ′

v] =
∑

s6=t Zu,sZv,t =
∑

s6=t Zu,sZv,t(Y(u,v) + (1 −

Yu,v))(Y
′
(u,v) + (1− Y ′

u,v)) ≤ (1− Yu,v) + (1− Y ′
u,v); the claim is required for the final inequality.
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Claim (Restatement of Claim 4.6). Under the axioms guaranteed by our lemma, the total number of vertices

participating in the approximate partition {fs}s∈Σ is large,

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

E
π
[fs] ≥ 1− viol(X)

1− β − ν
− ν.

Proof of Claim 4.6. By the partition constraints (Fact 4.10), for each v ∈ V (G)
∑

s∈Σ
fv(s) = p(valv(X)).

From Fact 4.11 we further have that

p(valv(X)) ≥
(
1− violv(X)

1− β − ν
− ν

)
,

where violv(X) = 1 − valv(X), and the inequality is a sum-of-squares inequality of degree deg(p) +
2. Finally, we use that π is the stationary measure to conclude that Ev∼π violv(X) = viol(X), and the

conclusion follows.

Claim (Restatement of Claim 4.7). Under the axioms guaranteed by our lemma, the total expansion of the

partition is bounded as a function of the total violations in X and X ′:

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

〈fs, Lfs〉π ≤ viol(X) + viol(X ′) + 2

(
viol(X)

1− β − ν

)
+ 2ν.

Proof of Claim 4.7. We begin by expanding the left-hand side. By definition of the Laplacian,

∑

s∈Σ
〈fs, Lfs〉π =

∑

s∈Σ
E

(u,v)∼E(G)

1

2
fs(u)

2 +
1

2
fs(v)

2 − fs(u)fs(v). (7)

We now apply the fact that the I(Xu − X ′
u = s) satisfy Booleanity and partition axioms (Fact 4.10) to

obtain that
∑

s fs(v)
2 =

∑
s I(Xv −X ′

v = s)p(valu(X))2 = p(valu(X))2 ≤ 1, where the inequality is a

sum-of-squares inequality, and also that
∑

s fs(u)fs(v) = p(valv(X))p(valv(X)) I(Xu−Xv = X ′
u−X ′

v).
Combining these, we have the sum-of-squares inequality

(7) ≤ E
(u,v)∼E(G)

(
1− p(valu(X))p(valv(X)) I[Xu −Xv = X ′

u −X ′
v]
)

(8)

Now we can add and subtract I[Xu−Xv = X ′
u−X ′

v] to the right hand side and then apply the approximate

union bound Fact 7.5 to obtain

(8) ≤ E
(u,v)∼E(G)

(
I[Xu −Xv 6= X ′

u −X ′
v] + I[Xu −Xv = X ′

u −X ′
v](1 − p(valu(X))p(valv(X)))

)

≤ E
(u,v)∼E(G)

(
I[Xu −Xv 6= X ′

u −X ′
v] + (1− p(valv(X))) + (1− p(valu(X)))

)
, (9)

with both inequalities certifiable by O(deg(p)) sum-of-squares proofs. To bound the first term I[Xu−Xv 6=
X ′

u −X ′
v ], we use the third claim of Fact 4.10, and to bound the remaining terms we apply our approximate

Markov’s inequality Fact 4.11, concluding that

(9) ≤ viol(X) + viol(X ′) + E
(u,v)∼E(G)

(
violu(X)

1− β − ν
+

violv(X)

1− β − ν
+ 2ν

)
,

and finally applying the property of the stationary measure that Eu∼π g(u) = E(u,v)∼E(G) g(u), and that

Eu∼π violu(X) = viol(X), we obtain our conclusion.
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Claim (Restatement of Claim 4.8). Under the axioms of our lemma, the B1(fs) are small,

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

E
π
[fs − f◦2

s ] ≤ viol(X)

1− β − ν
+ ν.

Proof of Claim 4.8. For any v ∈ V (G), the Booleanity and partition constraints (Fact 4.10) give us that
∑

s∈Σ
fs(v) − fs(v)

2 =
∑

s∈Σ
I[Xv −X ′

v = s]
(
p(valv(X))− p(valv(X))2

)

= p(valv(X)) − p(valv(X))2 ≤ 1− p(valv(X)),

where we note the final inequality is an SoS inequality by applying the axiom that p(x) ∈ [0, 1] for x ∈ [0, 1],
and that valv(X) ∈ [0, 1]. Now applying our approximate Markov’s inequality (Fact 4.11) and the fact that

valv(X) = 1 − violv(X), and finally noting that Ev∼π violv(X) = viol(X) by definition of the stationary

measure, we have our conclusion.

Claim (Restatement of Claim 4.9). Under the axioms of our lemma, for any η ∈ R+ and ν < 1
3 (1− β), the

B2(fs) may be bounded by

AG ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

∑

s

〈fs − f◦3
s , Pfs〉π ≤ 1

2η
+ η

(
viol(X)

1− β − ν
+ ν

)
.

Proof of Claim 4.9. We apply Cauchy-Schwarz,

∑

s∈Σ
〈fs − f◦3

s , Pfs〉π ≤ 1

2η

∑

s

‖Pfs‖2π,2 +
η

2

∑

s

‖fs − f◦3
s ‖2π,2.

To bound the first term on the right-hand side, we note that P is a projection matrix, and therefore we can

bound the sum
∑

s ‖Pfs‖2π,2 ≤ ∑
s ‖fs‖2π,2 ≤ 1. Further, the inequality is an SoS inequality since the fs

satisfy approximate partition constraints and we can certify that fs(v) ∈ [0, 1] (Fact 4.10 and Claim 4.5). To

bound the second term on the right-hand side, we expand,
∑

s∈Σ
‖fs − f◦3

s ‖2π,2 =
∑

s∈Σ
E

u∼π
(fs(u)− fs(u)

3)2

=
∑

s∈Σ
E

u∼π
I[Xu −X ′

u = s]p(valu(X))2(1− p(valu(X))2)2,

= E
u∼π

p(valu(X))2(1− p(valu(X))2)2,

where we have used the Booleanity and partition constraints from Fact 4.10. The same fact ensures that we

have as an SoS axiom that valu(X) ∈ [0, 1] and therefore p(valu(X))1(1− p(valu(X))2) ≤ 1, so we have

as an SoS inequality of degree O(deg(p)),
∑

s∈Σ
‖fs − f◦3

s ‖2π,2 ≤ 1− E
u∼π

p(valu(X))2.

Now applying Observation 7.1, we have that p2 shares all of the characteristics of Pβ,2ν save for the degree

bound, and combining this with our approximate Markov inequality (Fact 7.5) we get that

∑

s∈Σ
‖fs − f◦3

s ‖2π,2 ≤ E
u∼π

(
violu(X)

1− β − 2ν
+ 2ν

)
.

The conclusion now follows by noting that Eu∼π violu(X) = viol(X), and by using our bound ν < 1
3(1−β)

to argue that 1
2 · 1

1−β−2ν ≤ 1
1−β−ν .

22



5 UG on Noisy-Hypercube and Short-code graphs

Here, we derive two corollaries of Theorem 4.2: we show that polynomial-time sum-of-squares relaxations

solve Unique Games on the noisy hypercube graph and the short-code graph. These results follow easily by

combining our results with the prior results of Barak et al. [BBH+12], who showed that these graphs are

certifiably 2 to 4 hypercontractive in sum-of-squares degree 4.

We first treat the noisy hypercube:

Definition 5.1 (Noisy Hypercube Graph). For each ε ∈ [0, 1] and d ∈ N+, the ε-noisy d-dimensional

hypercube is the graph on {±1}d, with weighted edges {wuv}u,v∈{±1}d where wu,v = (ε)(d−〈u,v〉)/2(1 −
ε)(d+〈u,v〉)/2 .

Motivated by breaking known Unique Games integrality gaps, the work of [BBH+12] showed that the

classical proof of hypercontractivity for the noisy hypercube (see e.g. [O’D14]) can be recast as a degree-4

sum-of-squares proof.

Theorem 5.2 (Noisy-Hypercube Certificate ([BBH+12], Lemma 5.1)). Suppose G is the d-dimensional

α-noisy hypercube. Then for any t ∈ [d], G is (1− (1− 2α)t, 9t, 4)-certifiably 2 to 4 hypercontractive.

In the same work, Barak et al. [BBH+12], building on [BGH+15], noted that the same argument shows

that the short code graph is also SOS-certifiably 2 to 4 hypercontractive.

Definition 5.3 (Short Code Graph). For each d < n ∈ N+, the (d, n)-shortcode graph is a graph whose

vertex set is the set of degree-d polynomials over Fn
2 and with edges between each pair of polynomials

p, q such that p − q is a product of d linearly independent affine forms. For any α ∈ [0, 1), the α-noisy

(d, n)-shortcode graph is the graph with the random walk transition matrix (Gd,n)
1+α2d .

Remark 5.4. The noisy version of the short code is qualitatively similar to the noisy hypercube, since the

transition probabilities in the α-noisy n-dimensional cube are similar to performing an αn-step random walk

on the hypercube graph. In [BGH+15], a different notion of noise is used, where they instead consider the

graph with adjacency matrix exp(−α2d(I −Gd,n)); our results can be reformulated for this notion of noise

as well.

Theorem 5.5 (Short-Code Certificate [BBH+12]). Suppose G is the α-noisy (d, n)-shortcode graph, and

let ℓ = ⌊η · 2d⌋ for η a universal constant. Then for any t ∈ [ℓ], G is (1− (1− t2−d)1+α2d , 9t, 4)-certifiably

2 to 4 hypercontractive.

Combining Theorem 4.2 with these results, we show that Unique Games instances on the Noisy Hyper-

cube and Short Code graphs are easy.

Theorem 5.6 (UG on Noisy-Hypercube, re-statement of Corollary 1.3). For every ε ∈ [0, 1
400), α ∈ (0, 14),

and d ∈ N sufficiently large, there exists an algorithm A with the following guarantee: if I = (G,Π) is an

instance of Unique Games on the d-dimensional α-noisy hypercube G with val(I) ≥ 1 − ε, then in time

|V (G)|poly(τ,1/ε), A(I) returns an Ω(ε3/τ)-satisfying assignment for I for τ = exp(O(
√
ε/α)).

Proof. From Theorem 5.2, for any t ∈ [d], G is (1 − (1 − 2α)t, 9t, 4)-certifiably hypercontractive. For

convenience, denote λt = (1 − (1 − 2α)t). We now wish to apply Theorem 4.2, so we will verify that its

conditions hold.
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First, suppose that α > 5
√
ε. In this case, let µ be the pseudodistribution obtained by symmetrizing

the pseudodistribution given by the degree-poly(1/ε, 1/α) SoS relaxation. Choosing t = 1, Theorem 4.2

guarantees that Algorithm 3.1 when run on µ returns a solution of value Ω(ε3).

Otherwise, suppose that α < 5
√
ε. Then, we choose t =

⌈
log(1−10

√
ε)

log(1−2α)

⌉
so that ε < 1

100λ
2
t , and since

ε ≤ 1/400 and from our condition that α < 1
4 we have that t = O(

√
ε

α ). In this case, let µ be the pseu-

dodistribution obtained by symmetrizing the pseudodistribution given by the degree-poly(1/ε, exp(
√
ε/α))

SoS relaxation. Theorem 4.2 now guarantees that Algorithm 3.1 when run on an SoS relaxation of degree-

Õ( 9t

ελ4
t

) = poly(1/ε, exp(
√
ε/α)) returns a solution of expected value Ω(

ελ4
t

9t ) = Ω(ε3 · exp(−O(
√
ε/α))),

as desired. Using standard derandomization techniques we get a deterministic algorithm that runs in poly-

nomial time and obtains a solution with the same guarantees.

Theorem 5.7 (UG on Short-Code, re-statement of Corollary 1.4). There exist ε0 ∈ R+ such that for every

n ∈ N sufficiently large and d ∈ N with 2d < n, ε ∈ (0, ε0), and α ∈ (0, 1), there is an algorithm A with

the following guarantee: if (G,Π) is an instance of Unique Games on the alpha-noisy (d, n)-shortcode

graph with val(G,Π) ≥ 1− ε, then in time |V (G)|poly(1/ε,τ), A(G,Π) returns a solution of value Ω(ε3/τ)
for (G,Π) for τ = min

(
exp(O(

√
ε/α)), exp(O(

√
ε2d))

)
.

Proof. Define λt = 1 − (1 − t2−d)1+α2d . From Theorem 5.5, for any t ≤ η2d, G is (λt, 9
t, 4)-certifiably

2 to 4 hypercontractive. We now wish to apply Theorem 4.2, so we will verify that its conditions hold.

Choosing t =

⌈
20

√
ε

α+ 1

2d

⌉
, by requiring ε ≤ ε0 ≤ 1

1600 we have that

1− λt ≤
(
1− 20

√
ε

α2d + 1

)1+α2d

≤ 1− 10
√
ε,

where we have used that (1 − 2δx)1/x ≤ 1 − δ for any x ∈ (0, 1) and δ ∈ (0, 12). Therefore ε < 1
100 · λ2

t .

Further t ≤ η2d for η the universal constant in Theorem 5.5 by our upper bound ε < ε0 = min( η2

400 ,
1

1600 ).
Let µ be the pseudodistribution obtained by symmetrizing the pseudodistribution given by the degree-

poly(1/ε, 1/λt , 9
t) = poly(exp(O(

√
ε/α)), 1/ε) SoS relaxation. Now we may apply Theorem 4.2 to

conclude that Algorithm 3.1 finds a solution of expected value Ω(
ελ4

t

9t ) = Ω(ε3 exp(−O(
√
ε/α)) when run

on µ. Using standard derandomization techniques we get a deterministic algorithm that runs in polynomial

time and obtains a solution with the same guarantees.

6 Johnson graphs

In this section we’ll prove that Algorithm 6.1 succeeds in producing an assignment with good value for

unique games instances of sufficiently high value over the Johnson graph.

Algorithm 6.1 (Unique Games on the Johnson Graph). Takes as input an affine UG instance on a (n, ℓ, α)-
Johnson graph I = (J,Π) over labels Σ with val(I) = 1− ε, returns a Ωε,α,ℓ(1) satisfying assignment.

1. Fix r =
⌊
32ε
α

⌋
, δ(η) := η

exp(cr)(ℓr)
for all η ∈ [0, 1] and D = Õ( 1

δ(ε)), for c > 0 a universal constant.

Fix AI to be the set of unique games axioms/integer program over the instance I (Program 1).

2. Solve the degree-D SoS SDP relaxation for the integer program AI and symmetrize the pseudodistri-

bution over additive shifts (as described in Lemma 3.8) to get µ0. Set j = 1.
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3. While the SDP value valµj−1(I) ≥ 1− 2ε:

(a) For any r′ ≤ r, find an r′-restricted subcube Cj (induced subgraph of J , defined formally

in Definition 6.3) with high Condition&Round value12: CR-valµ(Cj) ≥ δ(ηj−1) for ηj−1 =
1− valµj−1(I).

(b) Let Sj be a subgraph of Cj induced by the set of vertices that have not been previously assigned

by any partial assignment fk, k < j. Perform derandomized Condition&Round on V (Sj) to get

a partial assignment fj
13.

(c) Rerandomize the pseudodistribution µj−1 on Sj to get µj : Make the marginal distribution over

the assigned vertices uniform and independent of other vertices, that is, for all degree ≤ D
monomials define Ẽµj

as follows,

Ẽ
µj

[Xh1,a1 · · ·Xht,atXu1,b1 · · ·Xum,bm ] :=
1

|Σ|t Ẽ
µj−1

[Xu1,b1 · · ·Xum,bm ],

where {(h1, a1), . . . , (ht, at)} ∈ (V (Sj)×Σ)t and {(u1, b1), . . . , (um, bm)} ∈ ((
([n]

ℓ

)
\V (Sj))×

Σ)m.

(d) Increment j.

4. Output any assignment f : V → Σ that agrees with all partial assignments fj considered above.

We will prove that this algorithm returns a solution with value independent of the alphabet size.

Theorem 6.2. For every ε ∈ [0, 1
2000 ), α ∈ Q with α < 1

2 , ℓ ∈ N with αℓ ∈ N, and integers k, n sufficiently

large, Algorithm 6.1 has the following guarantee: if I is an instance of affine Unique Games on the (n, ℓ, α)-

Johnson graph J with alphabet size |Σ| = k and val(I) = 1 − ε, then in time |V (J)|poly((ℓr),1/ε), A(I)
returns an Ω

(
ε3

exp(O(r))(ℓr)
2

)
-satisfying assignment for I for r = O(ε/α).

The proof of Theorem 6.2 will require some additional ideas beyond that of Theorem 4.2, as the Johnson

graph is not a small-set expander. Nevertheless, we can characterize the structure of all the non-expanding

sets, that is, we can prove that any non-expanding set must be large inside some canonical subgraphs. Using

this characterization we prove that the above algorithm succeeds in finding a good assignment. The proof of

our main theorem will proceed in the following steps:

1. We first prove a structure theorem (Theorem 6.5) for non-expanding sets of the Johnson graph, similar

to the theorem in [KMMS18]. We show an SoS proof of the fact that every non-expanding set must

be large when restricted to subcubes of the Johnson graph (Definition 6.3).

2. Using the structure theorem, in Lemma 6.7 we first lower bound the global shift-partition potential

Φβ,ν(X,X ′)|C as a function of the violations of X and X ′. Roughly the global shift-partition potential

Φβ,ν(X,X ′)|C corresponds to the shift-component squared sizes when restricted to the subcube C
(see Definition 6.6). This lemma follows the same outline as that of Lemma 4.4 for certifiable small-

set expanders.

12The quantity CR-valµ(C) corresponds to the expected value obtained when Algorithm 3.1 is performed on the subgraph C and

is formally defined in Definition 6.8.
13As noted earlier, derandomization produces an assignment that satisfies CR-valµj−1

(Sj)-fraction of edges and can be per-

formed in polynomial time using the method of conditional expectations.
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3. In the next step (Lemma 6.9), we show that given a pseudodistribution µ with objective value 1−ε for

unique games over the Johnson graph, one can find a subcube C that has high global shift-partition

potential. We then relate the global shift-partition potential to the shift-partition potential on the

subgraph induced by C , Ẽµ|C [Φ
C
β,ν(X,X ′)], to show that this is also high. By our rounding theorem,

Theorem 3.3 we then conclude that the expected value of the Condition&Round algorithm, when

performed on C must be high. This corresponds to Step 3(a) in Algorithm 6.1.

4. Lastly in Lemma 6.12 we show that given a subroutine that finds a subgraph with high Condi-

tion&Round value, there is an algorithm that uses this subroutine and finds a high value assignment

to the whole graph. This corresponds to the while loop in Algorithm 6.1. Combining this lemma with

Lemma 6.9 (discussed above), we get our main theorem.

We prove the theorem below, after establishing each of these components separately. First let us discuss the

structure theorem for Johnson graphs and define the notion of restrictions.

Definition 6.3 (r-restricted subcubes of J). Given an (n, ℓ, α)-Johnson graph J and a set A ⊆ [n] with

|A| = r such that 0 ≤ r ≤ ℓ − 1, we let J |A denote the vertex-induced subgraph of J induced by vertices

that contain the set A. We call such a subset an r-restricted subcube of J . Note that when A = ∅ and r = 0,

J |A is defined as the whole graph J .

Definition 6.4 (Restrictions of Functions). For the (n, ℓ, α)-Johnson graph J , given a function F : V (J) →
R and a set A ⊆ [n] with A = r, such that 0 ≤ r ≤ ℓ−1, we define the restricted function F |A :

([n]\A
ℓ−r

)
→ R

as,

F |A(X) = F (A ∪X).

Further, let δA(F ) denote the fractional size of the function restricted to the subcube J |A, that is,

δA(F ) := δ(F |A) = E
X∼([n]\A

ℓ−r )
[F |A(X)].

When A = φ and r = 0, we have that F |A(X) = F (X) for all X ∈
([n]

ℓ

)
and δA(F ) = δ(F ) = Eπ[F ].

We prove that every set in J that is not correlated with any r-restricted cube, has high expansion (as a

function of r).

Theorem 6.5 (Structure theorem for Johnson graphs). For all α ∈ Q with α < 1
2 , all integers ℓ ∈ N and

all large enough integers n ≫ ℓ, the following holds: Let J be a (n, ℓ, α)-Johnson graph and π be the

uniform distribution over V (J). For every integer r such that 0 ≤ r ≤ ℓ/2 and every function F that is not

correlated with any r-restricted subcube, F has high expansion (as a function of r):

{F (X) ∈ [0, 1]}X∈V (J) ⊢2

〈F,LF 〉π ≥ (1− (1− α)r+1)



(
1−Oℓ

(
1

n

))
E
π
[F ]− 8r

(
ℓ

r

)


r∑

j=0

E
Y ∈([n]

j )
[δY (F )2]


+B(F )


 .

where B(F ) represents the Booleanity constraints and equals Eπ[F
◦2 − F ].

Let us compare this theorem with [KMMS18] and for simplicity let ε < 1.9α. Roughly, the struc-

ture theorem in [KMMS18] implies that for every non-expanding set S with expansion ε, there exists a

26



1-restricted subcube C such that the S is large inside C: |S ∩ C|/|C| ≥ Ω(1). From this theorem, one

can derive the fact that in fact a δ(S)/ℓ-fraction of the 1-restricted subcubes have this property, where δ(S)
denotes the fractional size of S (by applying their theorem iteratively). Further this implies that given a

distribution D over non-expanding sets, say of the same size δ, there exists a 1-restricted subcube C such

that, ED[|S ∩ C|/|C|] ≥ Ω(δ/ℓ).
But the above line of reasoning is not amenable to a low degree sum-of-squares proof because although

each iterative step requires only a constant degree SoS proof, to get the final statement we need to apply

the theorem Ω(n) times and this takes degree Ω(n). Our final aim is to prove the distribution-version of the

statement. Our structure theorem gets around this barrier and directly proves the fact, using a constant

degree SoS proof, that given a non-expanding set S with expansion ≤ 1.9α, many subcubes are such

that S is large inside them. That is, rearranging Theorem 6.5, as a corollary we have an SoS proof (in

the formal indicator variables of membership in S) that EC [|S ∩ C|/|C|] ≥ Ω(1/ℓ). Given this, we can

easily derive the implication for distributions by applying an expectation over D to the latter expression and

exchanging expectations. Since we give an SoS proof, the statement holds true for pseudodistributions over

non-expanding sets S! Lemma 6.9 carries out precisely this kind of an argument, but in more generality.

The proof ideas of Theorem 6.5 are similar to those in [KMMS18], hence we defer the proof of this

theorem to Appendix C. We will now show that under this theorem we get an algorithm for UG on the

Johnson graph J . We will first formally define the global shift-partition potential on a subgraph.

Definition 6.6 (Global shift-potential restricted to Subgraphs). Let I = (G,Π) be an instance of affine

unique games over alphabet Σ. For any ν, β ∈ (0, 1) and subgraph H of G, define the approximate global

shift-partition potential restricted to the subgraph H to be the quantity:

Φβ,ν(X,X ′)|H =
∑

s∈Σ
E

u∈H
[Zu,s · p(valu(X))]2 ,

for Zu,s = 1(Xu −X ′
u = s), valu(X) = E(u,v)∈E(G)[1(X satisfies (u, v))], and p(x) the degree-Õ(1/ν)

polynomial in the family Pβ,ν , described in Theorem 7.1.

Note that the global shift-partition potential measures the size of the global partition inside H , i.e. the

valu(X) is a function of all the edges in E(G) that are incident on u, not just the edges in H . We will

now use the structure theorem for Johnson graphs to get a lower bound on the global shift-partition potential

restricted to subcubes C , Φ(X,X ′)|C , when the violations of the assignments X and X ′ are small. The

following lemma is analogous to Lemma 4.4 for certifiable small-set expanders and is proved in the same

way. The main difference is in the conclusion of the lemma: instead of getting a lower bound on the shift-

partition potential of the whole graph, we get a lower bound on the global shift-partition potential restricted

to subcubes.

Lemma 6.7. For all α ∈ Q and all ℓ, n ∈ N with αℓ ∈ N and ℓ ≪ n sufficiently large, the following holds:

If I is an affine unique games instance over the (n, ℓ, α)-Johnson graph J , then for all β, ν ∈ (0, 1) and for

every integer r ∈ [ℓ/2], there is an SoS lower bound of the following form on the average of the approximate

global shift-partition potential Φβ,ν over r-restricted subcubes of J:

AI ∪ {p ∈ Pβ,ν} ⊢Õ(1/ν)

r∑

j=0

E
Y ∈([n]

j )
[Φβ,ν(X,X ′)|(J |Y )] ≥

1

8r
(ℓ
r

)
(
1− 2viol(X)

1− β − ν
− 2ν − on(1)−Kβ,ν(X,X ′)

)
,
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where AI are the axioms defined for I by program (1), viol(X) = 1− val(X) is the fraction of constraints

X violates, and Kβ,ν(X,X ′) = 1
1−(1−α)r+1

(
viol(X) + viol(X ′) + 2viol(X)

1−β−ν + 2ν
)

.

Proof. This proof proceeds exactly as the proof of Lemma 4.4 for certifiable small-set expanders. We

define functions Fs corresponding to the components in the shift-partition and apply the structure theorem

(Theorem 6.5) to them and sum up the inequality over s ∈ Σ. For Y ⊆ [n], with 0 ≤ |Y | ≤ r, we have that,

Φβ,ν(X,X ′)|(J |Y ) =
∑

s∈Σ
E

u∈J |Y
[Fs(u)]

2 =
∑

s∈Σ
δY (Fs)

2.

We can now use the same claims from Section 4 to bound the terms in the structure theorem to get the

conclusion of the lemma. We omit the details of the proof since it is straightforward given the above equality

and the proof of Lemma 4.4.

Using the lemma above, we will now prove that given a pseudodistribution µ over a highly satisfying

instance of unique games over the Johnson graph we can find an r-restricted subcube C with high Condi-

tion&Round value. Let us define this precisely:

Definition 6.8 (Condition&Round Value). Given a unique games instance I = (G,Π) and a degree 4
shift-symmetric pseudodistribution µ over I , for every subgraph H of G, let ind-valµ(H) denote the ex-

pected fraction of satisfied edges when independent rounding is performed on V (H) using the marginals

of µ, i.e. ind-valµ(H) := E(v,w)∼E(H)[
∑

s Ẽµ[Xv,s] Ẽµ[Xw,πvw(s)]]. Let the Condition&Round value, de-

noted by CR-valµ(H) be the value obtained by performing Algorithm 3.1 on H , i.e. CR-valµ(H) :=
Eu∼V (H)[ind-valµ|Xu=0(H)].

We will show this by first finding a cube C that has high global shift potential, Ẽµ[Φ(X,X ′)|C ], using

Lemma 6.7 above. We then relate the global shift potential to the shift-partition potential on C , which we

will denote by ΦC(X,X ′). The only difference between the two potentials is that the latter is measured

using the value of a vertex inside C and is the usual definition of the shift-partition potential on the graph

C . We show that the subcube C has small expansion, hence we can relate the global value of a vertex

(when averaged over all edges in E(G) incident on it) to the local value of a vertex (when averaged over

just the edges in E(C) incident on it), thus relating the global shift-partition potential to the shift-partition

potential on C . In particular, we will show that there exists C that has high shift-potential; using the

analysis of the Condition&Round algorithm, Theorem 3.3, this immediately gives us that there exists an

r-restricted subcube that has high Condition&Round value. To find such a cube C algorithmically, one can

just enumerate over all r-restricted subcubes in time nr and check in polynomial time whether C has high

Condition&Round value or not. Let us now make this argument formal.

Lemma 6.9. For all ε ∈ [0, 0.001), for all α ∈ Q and α < 1
2 , all integers ℓ ∈ N with αℓ ∈ N and all integers

k, n ≫ ℓ sufficiently large, the following holds: Let I be an affine unique games instance over the (n, ℓ, α)-
Johnson graph J with alphabet size |Σ| = k and val(I) = 1 − ε. Then for r =

⌊
32ε
α

⌋
, given a degree-

Õ
(
1
ε2

4r
(ℓ
r

))
shift-symmetric pseudodistribution µ satisfying the axioms AI , in time nr we can find a s-

restricted subcube C with s ≤ r such that C has high Condition&Round value: CR-valµ(C) ≥ Ω

(
ε

24r(ℓr)

)
.

Proof. Fix the parameters β = 201ε, r =
⌊
32ε
α

⌋
, γ = 1

16r+1(ℓr)
and ν = εγ. Since ε < 1/1000 and αℓ ≥ 1,

we have that r ≤ ℓ/4. So we can now apply Lemma 6.7, with the parameters β, ν and r. The conditions of
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our theorem imply that we have a degree-Õ(1/γ) sum-of-squares proof that

r∑

j=0

E
Y ∈([n]

j )
[Φβ,ν(X,X ′)|(J |Y )] ≥

1

8r
(
ℓ
r

)
(
1− 2viol(X)

1− 201ε− εγ
− 2εγ − on(1)−K201ε,εγ(X,X ′)

)
, (10)

where K201ε,ν(X,X ′) = 1
1−(1−α)r+1

(
viol(X) + viol(X ′) + 2viol(X)

1−201ε−εγ + 2εγ
)

.

In order to apply our rounding Theorem 3.3, we require that the pseudoexpectation of the shift-partition

potential on C , denoted by Ẽµ[Φ
C
ε,εγ(X,X ′)] is large, for some s-restricted subcube C = J |Y with s ≤ r.

The shift-partition potential on C is just applying Φ to the graph induced by C , whereas the global shift

potential restricted to C measures the component sizes of the global shift partition within C . Formally,

ΦC
β,ν(X,X ′) =

∑

s∈Σ
E

u∈C

[
Zu,s · p(valCu (X))

]2
,

where valCu (X) is the value of u averaged over edges incident on u in C (as opposed to edges in G). We

will first argue that there is a subcube whose global restricted shift potential is large, and then relate the two.

Since val(I) = 1 − ε, it follows that Ẽ[viol(X)] = Ẽ[viol(X ′)] ≤ ε and Ẽ satisfies AI , we take the

pseudoexpectation of (10) to get

r∑

j=0

E
Y ∈([n]

j )
Ẽ[Φβ,εγ(X,X ′)|(J |Y )] ≥

1

8r
(ℓ
r

)
(
1− 2ε

1− 201ε − εγ
− 2εγ − on(1)− Ẽ[K201ε,εγ(X,X ′)]

)
.

(11)

We show now that for our chosen parameters, Ẽ[K201ε,εγ(X,X ′)] ≤ 1
2 . Expanding the expression for

K and using our bound on Ẽ[viol(X) + viol(X ′)],

Ẽ
[
K201ε,εγ(X,X ′)

]
≤ 1

1− (1− α)r+1

(
2ε+

2ε

1− 201ε − εγ
+ 2εγ

)
≤ 8ε

1− (1− α)r+1
(12)

where to obtain the final inequality we have used that εγ < ε < 1
4 and 1 − 201ε ≥ 1

2 . By our choice of

parameters, (1− α)r+1 < 1− 16ε, and rearranging gives us that Ẽ[K201ε,εγ(X,X ′)] ≤ 1
2 .

Thus, returning to (11) and simplifying with our upper bounds ε < 1
48 and on(1) < 1/4, we have that

r∑

j=0

E
Y ∈([n]

j )
Ẽ[Φ201ε,εγ(X,X ′)|(J |Y )] ≥

1

8r+1
(ℓ
r

) .

We can now apply an averaging argument to conclude that there exists a ≤ r-restricted subcube J |Y such

that,

Ẽ[Φ201ε,εγ(X,X ′)|(J |Y )] ≥
1

r8r+1
(ℓ
r

) ≥ 1

16r+1
(ℓ
r

) = γ.

Finally, we will relate the global restricted potential to the potential on C . We have the following claims.

The first states that an r-restricted subcube has bounded expansion when r is not too large.

Claim 6.10. If r =
⌊
32ε
α

⌋
< ℓ

4 and s < r, an s-restricted subcube of Jn,ℓ,α has expansion at most 200ε.

The proof of this claim is via a direct calculation, and we give it in Section 6.1 below. From this claim,

we are able to prove that the local and global restricted potentials are related:
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Claim 6.11. Suppose that C is an r-restricted subcube of Jn,ℓ,α with r =
⌊
32ε
α

⌋
. Then if ΦC is the shift-

partition potential restricted to C , for any β ≥ 201ε and ν < ε,

ΦC
β−200ε,ν(X,X ′) ≥ Φβ,ν(X,X ′)|C − 2ν,

and furthermore this is certifiable in degree Õ(1/ν) SoS.

The proof of this claim is based on the fact that the fraction of neighbors of every vertex v ∈ C which

lie outside of C cannot be too large when r is bounded, and therefore if the value in J at a vertex is β, the

value restricted to C is still β − φ(C). We give the proof in Section 6.1 below.

From Claim 6.11 and (12) we have that there exists a subcube C = J |Y such that the local potential on

C is large,

Ẽ[ΦC
ε,εγ(X,X ′)] ≥ γ − 2ν = γ(1− 2ε).

We can now apply Theorem 3.3 to get that the condition and round algorithm when applied to the

vertices in C , would produce a good satisfying assignment for C in expectation, i.e. CR-val(C) is high.

Concretely we get that conditioning and rounding a degree-Õ(1/γε) = Õ

(
16r+1(ℓr)

ε

)
pseudodistribution

on the subcube C = J |Y according to Algorithm 3.1 results in a solution of expected value ≥ (γ(1− 2ε)−
εγ)(ε − γε) ≥ 1

4εγ = ε
4·16r+1(ℓr)

within C .

Using the above theorem, we can find a subcube C with high value, say ≥ δ = Ωℓ,α(1), and then

perform derandomized Condition&Round algorithm to get a δ-satisfying assignment to the vertices of C .

But this may be a negligible fraction of edges of the whole graph (since even a 1-restricted subcube is a

o(1)-fraction of J), and we need to satisfy Ωε,α,ℓ(1) constraints. To achieve this, after setting the vertices

of the subcube C , we alter the pseudodistribution µ and apply our algorithm iteratively: we randomize µ on

V (C), so that these vertices are completely uncorrelated with any other vertex. This ensures that the value

of any edge incident on V (C) is 1/|Σ|, which is much smaller than δ, under the modified pseudodistribution

µ′. Then, we run the algorithm again on µ′ to find a subcube C ′ with high Condition&Round value. Since

edges that are incident on previously assigned vertices have very low value, we can show that the subcube

C ′ has low intersection with C . Furthermore the subcubes we find have low expansion, so we get that, the

derandomized Condition&Round algorithm when performed on C ′ \C satisfies a constant fraction of edges

incident on C ′. We continue in this way until the modified pseudodistribution’s value drops by Ω(ε). We

show that at each iteration of the while loop, by modifying the pseudodistribution we lower the value by

an amount that is proportional to the fraction of edges we satisfy in that step. Thus, after sufficiently many

iterations we lower the value of the pseudodistribution by Ω(ε) and hence satisfy an Ωℓ,α(ǫ) fraction of the

edges in the graph. We make this argument formal below.

Lemma 6.12. Let ε0 ∈ (0, 1) be a universal constant and δ : [0, 1] → [0, 1] be a function. Let ε < ε0/2
be any constant, and let δmin = minη∈[ε,2ε](δ(η)). Let G be a regular graph and I be any unique games

instance on G with alphabet size |Σ| = k ≥ Ω( 1
δmin

) and value 1− ε.

Suppose we have a subroutine A which given as input µ, a shift-symmetric degree-D pseudodistribu-

tion satisfying AI with valµ(I) = 1 − η ≥ 1 − ε0, returns a vertex-induced subgraph H such that, 1)

CR-valµ(H) ≥ δ = δ(η) and 2) the edge-expansion of H is O(η).
Then if A runs in time T (A), there is a |V (G)|(T (A) + |V (G)|O(D))-time algorithm which finds a

solution for I that satisfies an Ω(δ2minε)-fraction of the edges of G.
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Proof. We will use the algorithm A as a subroutine. To get a full assignment, our algorithm below is a

generalized version of the Algorithm 6.1, where we’ve replaced the steps 2 to 4 in Algorithm 6.1 with an

arbitrary subroutine A that finds a subgraph with high Condition&Round value with respect to I . We include

it here for completeness.

Algorithm 6.13 (Partial to Full Assignment).

1. Solve the degree-D SoS SDP relaxation for the integer program AI and make the pseudodistribution

shift-symmetric to get a pseudodistribution µ0. Set j = 1.

2. While ηj−1 := 1− valµj−1(I) ≤ 2ε:

(a) Run subroutine A on µj−1 to find a subgraph Hj with CR-valµj−1(Hj) ≥ δ(ηj−1).
(b) Let Sj be a subgraph of Hj induced by the set of vertices that have not been previously assigned

by any partial assignment fk, k < j. Perform derandomized Condition&Round on V (Sj) to get

a partial assignment fj .
(c) Rerandomize the pseudodistribution µj−1 on Sj to get µj : Make the marginal distribution over

the assigned vertices uniform and independent of other vertices, that is, for all degree ≤ D
monomials define Ẽµj

as follows,

Ẽ
µj

[Xh1,a1 · · ·Xht,atXu1,b1 · · ·Xum,bm ] :=
1

|Σ|t Ẽ
µj−1

[Xu1,b1 · · ·Xum,bm ],

where {(h1, a1), . . . , (ht, at)} ∈ (V (Sj)×Σ)t and {(u1, b1), . . . , (um, bm)} ∈ ((
([n]

ℓ

)
\V (Sj))×

Σ)m.

(d) Increment j.

3. Output any assignment to V (G) that agrees with all partial assignments fj considered above.

Let us first check that the algorithm is well-defined. The initial pseudodistribution µ0 by definition

satisfies axioms AI and is shift-symmetric. It has value = 1 − ε > 1 − ε0. In subsequent iterations of

the while loop all these properties are satisfied by the modified pseudodistributions: 1) the rerandomizing

operation on pseudodistributions produces a valid pseudodistribution operator that satisfies the axioms AI

and is also shift-symmetric, 2) At iteration j of the while-loop, since the while condition is met, we know

that µj−1 has value ≥ 1 − 2ε ≥ 1 − ε0 and furthermore we can show that since the value only decreases

at each step, it is always ≤ 1 − ε, so that ηj ∈ [ε, 2ε]. So inside the while-loop, A will always find a

non-empty subgraph Hj with high Condition&Round value. Next, we find an assignment fj to the set of

vertices V (Sj) that by definition don’t intersect previously assigned vertices. Since fj doesn’t reassign any

vertices, in the final step of the algorithm it is possible to output an assignment that is consistent with all

previously considered partial assignments. We will now show that our final partial assignment satisfies a

large fraction of the edges, where we say that an edge (u, v) is satisfied by a partial assignment fj , if both

vertices u, v have been assigned labels under fj and the labels satisfy the edge. We claim the following two

facts:

Claim 6.14. The drop in value in every iteration satisfies that:

valµj−1(I)− valµj
(I) ≤ 2|V (Hj)|

|V (G)| ,

where valµ(I) denotes the SDP value of I with respect to the pseudodistribution µ.
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Proof. For any edge (h, v) where h ∈ Hj , we have that valµj
((h, v)) = 1

k , whereas valµj−1((h, v)) ≤ 1.

For any edge whose both endpoints lie outside Hj , the value remains unchanged under rerandomizing.

Noting that the fraction of edges incident on vertices in Hj is at most
2|V (Hj)|
|V (G)| the conclusion follows.

Claim 6.15. The value of the partial assignment found at iteration j satisfies:

val(fj) ≥ δ2(ηj−1)(1−O(ηj−1))
|V (Hj)|
2|V (G)| ,

where val(fj) denotes the fraction of edges (in E(G)) satisfied by the partial assignment fj .

Proof. We will first prove that CR-valµj−1(Sj) ≥ δ(ηj−1) := δ, where Sj is the subgraph induced by the

unassigned (by previous partial assignments fk, k < j) vertices of Hj . For notational simplicity we will

drop the subscript j from Hj, Sj and µj−1. We know by the guarantees of the subroutine A that H is such

that, CR-valµ(H) = Eu∼V (H)[ind-valµ|Xu=0(H)] ≥ δ (see Definition 6.8 for CR-val and ind-val). First

note that the marginals of every vertex are uniform, due to the shift-symmetry of µ. Moreover we have that

conditioning on previously assigned vertices, i.e. any vertex u ∈ H \ S, maintains this property, since the

distribution of u is completely uncorrelated with the other vertices. So we get that, ind-valµ|Xu=0(H) =
1
|Σ| < δ for all u ∈ H \ S. This implies that,

E
u∼S

[ind-valµ|Xu=0(H)] ≥ CR-valµ(H) ≥ δ. (13)

Again we have that, ind-valµ|Xu=0(e) =
1
|Σ| , for any edge e which has at least one endpoint in H \S, so we

get that, Eu∼S[ind-valµ|Xu=0(S)] ≥ δ. Now we can perform derandomized Condition&Round on S to get

an assignment fj that satisfies at least a δ-fraction of the edges of S.

Next we will show, by an averaging argument, that the edges of S constitute a large fraction of the

edges incident on the vertices of H , which would imply that fj satisfies a large fraction of these edges. Let

u0 ∈ S be a vertex for which ind-valµ|Xu0=0(H) ≥ δ (we know such a vertex exists by equation (13))

and let µ′ be the pseudodistribution (µ|Xu0 = 0). First note that the set of edges E(H) \ E(S), have

independent rounding value 1/|Σ| under µ′, since at least one endpoint of such edges has been assigned

previously. Since ind-valµ′(H) ≥ δ, a simple averaging argument gives us that the set E(H) \ E(S) can

be at most a 1−δ
1−(1/|Σ|) -fraction of E(H). So the set E(S) is at least a

δ−(1/|Σ|)
1−(1/|Σ|) ≥ δ/2-fraction of E(H).

Since the expansion of H is at most O(ηj−1), we have that E(H) is a (1 − O(ηj−1))-fraction of the total

edges incident on H , which in turn is at least a
|V (H)|
|V (G)| -fraction of E(G). Combining these facts we get that

fj satisfies a δ · δ
2 · (1−O(ηj−1)) · |V (H)|

|V (G)| -fraction of the edges of G.

Once we have these facts, the conclusion is immediate. Firstly there cannot be more than V (G) iter-

ations of the while-loop, since at each iteration we set the value of at least one new vertex to 1/|Σ|. The

rerandomization operation in the while loop as well as the symmetrization operation (Lemma 3.9) can be

done in time polynomial in the description of µ0. So each iteration takes time T (A) + |V (G)|O(D), hence

the algorithm runs in time |V (G)|(T (A) + |V (G)|O(D)).
Moreover, combining the claims above, we get that the partial assignment at any iteration is proportional

to the drop in value of the pseudodistribution. That is,

val(fj) ≥ δ2(ηj−1)(1−O(ηj−1))
|V (Hj)|
2|V (G)| ≥ δ2(ηj−1)(1−O(ηj−1))

(
valµj−1(I)− valµj

(I)

4

)
.
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At the last iteration, we know that the pseudodistribution value has dropped by at least ε (compared to

valµ0(I)), hence summing the above over all iterations j, we get that the value of the partial assignment

returned by the algorithm is at least 1
4 (minj(δ(ηj)))

2(1−O(ε))ε as required.

This completes the analysis of Algorithm 6.1. Combining the lemmas above, Theorem 6.2 easily fol-

lows.

Proof of Theorem 6.2. Given a UG instance (J,Π) on the Johnson graph and a shift-symmetric pseudodis-

tribution µ of degree D = Õ( 1η2
4r
(
ℓ
r

)
) with value 1 − η, for η < 0.001, Lemma 6.9 gives us a subgraph

of J with high Condition&Round value. This subgraph has expansion ≤ 200η (by Claim 6.10) and Condi-

tion&Round value at least δ(η) = Ω( η

exp(c′r)(ℓr)
), where r = cη/α for universal constants c, c′. To bound

δmin, we take the derivative

∂

∂η
δ(η) =

(
1− (c′ + ln ℓ)η

α

)
exp

(
−(c′ + ln ℓ)c

η

α

)

and we can see that ∂
∂η δ(η) has at most one sign change from positive to negative in the interval [ε, 2ε],

which means that it is minimized at one of the endpoints δ(ε) or δ(2ε) which are both bounded below

by Ω(ε/ exp(O(r))
(ℓ
r

)
). Furthermore, the subroutine for finding a subcube runs in time |V (J)|O(r). Now

observe that the algorithm stated in the proof of Lemma 6.12, instantiated with the subroutine for finding

an r-restricted subcube of the Johnson graph, is the same as Algorithm 6.1. So we can apply the algorithm

guarantees outlined in Lemma 6.12, to complete the analysis for Algorithm 6.1.

6.1 Proofs of outstanding claims

Here we prove some of the claims that we have used in the proof of Theorem 6.2 and supporting lemmas.

Claim (Restatement of Claim 6.10). If r =
⌊
32ε
α

⌋
< ℓ

4 and s < r, an s-restricted subcube of Jn,ℓ,α has

expansion at most 200ε.

Proof. Let J |Y be an s-restricted subcube. We have that,

1− φ(J |Y ) =
(ℓ−|Y |

αℓ

)
( ℓ
αℓ

) ≥
(ℓ−r
αℓ

)
( ℓ
αℓ

) =

(
ℓ− αℓ

ℓ

)(
ℓ− αℓ− 1

ℓ− 1

)
. . .

(
ℓ− αℓ− r + 1

ℓ− r + 1

)
.

Now since r ≤ ℓ/4 by assumption, each of the parenthesized terms is at least
(
3ℓ/4−αℓ
3ℓ/4

)
= (1− 4α/3), so

1− φ(J |Y ) ≥
(
1− 4α

3

)r

≥ 1− 4rα

3
.

Since r =
⌊
32ε
α

⌋
< 75ε

α , we get that φ(J |Y ) < 200ε as desired.

Claim (Restatement of Claim 6.11). Suppose that C is an r-restricted subcube of Jn,ℓ,α with r =
⌊
32ε
α

⌋
.

Then if ΦC is the shift-partition potential restricted to C , for any β ≥ 201ε and ν < ε,

ΦC
β−200ε,ν(X,X ′) ≥ Φβ,ν(X,X ′)|C − 2ν,

and furthermore this is certifiable in degree Õ(1/ν) SoS.
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Proof. When r =
⌊
32ε
α

⌋
, the expansion of C is at most 1−(1−4α/3)r ≤ 200ε by Claim 6.10. Furthermore,

from the definition of the Johnson graph this holds vertex-by-vertex; every v ∈ C has at most a 200ε-fraction

of its neighbors outgoing. Therefore,

I[valCu (X) ≥ β − 200ε] ≥ I[valu(X) ≥ β],

and furthermore since ν < ε,

pβ−200ε,ν(val
C
u (X)) + ν ≥ pβ,ν(valu(X))− ν.

Therefore, by definition,

Φβ−200ε,ν(X|C ,X ′|C) =
∑

s∈Σ
E

u∈C

[(
Zu,s · pβ−200ε,ν(val

C
u (X))

)]2

≥
∑

s∈Σ
E

u∈C
[(Zu,s · (pβ,ν(valu(X))) − 2ν)]2

≥ Φβ,ν(X,X ′)|C − 2ν,

where each inequality is a sum-of-squares inequality of degree at most 2 deg(p).

7 Approximating indicator functions with low-degree polynomials

In this section, we note that there is a low-degree polynomial which provides an SOS-certifiably good

approximation to a step function. This will be a consequence of the existence of low-degree approximations

to step functions that appear in the literature, as well as the theory of univariate sums-of-squares.

The following theorem, due to Diakonikolas et al., provides a low-degree approximation to a step func-

tion. Though similar statements may be proven using classical results in approximation theory, we use

Diakonikolas et al. [DGJ+10] as their degree bounds are sharper (though ultimately this does not qualita-

tively change our result).

Theorem 7.1 (Corollary of Theorem 4.5 in [DGJ+10]). Define sα(x) to be the step function at α ∈ (0, 1),
so that sα(x) = 0 if x < α and 1 otherwise. Then for each 0 < δ < α and ǫ > 0 there is a univariate

polynomial of pǫ,δα of degree O(1δ log
2 1

ǫ ) such that

1. |pǫ,δα (x)− sα(x)| ≤ ǫ for all x ∈ [0, α − δ] ∪ [α+ δ, 1]

2. 0 ≤ pǫ,δα (x) ≤ 1 for all x ∈ [0, 1]

3. pǫ,δα is monotonically increasing on (α− δ, α + δ).

Further, given axioms A = {x ≥ 0} ∪ {x ≤ 1}, there is an SoS proof that

A ⊢O( 1
δ
log2 1

ǫ
) {0 ≤ pǫ,δα (x) ≤ 1}.

Remark 7.2. Though the statement is not identical to that of Theorem 4.5 of [DGJ+10], it is an easy

corollary. To switch from their sign(y) polynomial for y ∈ [−1, 1] to sα(x) for x ∈ [0, 1], we can do a

simple change of variables, taking y = x − α. Shifting by a constant and rescaling changes the bounds so

that p(x) ∈ [0, 1]. The third item is not explicitly written in the statement of Theorem 4.5 of [DGJ+10], but

it can be easily extracted from the proof. The SoS-certifiability follows from Lukács’ Theorem.
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We here recall Lukács’ theorem and a simple corollary, which easily establish the SoS-certifiability of

the step function approximation.

Theorem 7.3 (Lukács Theorem, see e.g. [Sze39]). If p is a degree-d univariate polynomial with p(x) ≥ 0
for x ∈ [−1, 1], then p can be written as

p(x) =

{
s(x)2 + (1− x2)t(x)2 if d even

(1 + x)s(x)2 + (1− x)t(x)2 if d odd

for s, t real polynomials of degree at most d.

The following easy corollary is well-known (though we include the proof for completeness).

Corollary 7.4. Let q be a degree-d polynomial which is non-negative on [a, b]. Then given the axioms

A = {x ≥ a} ∪ {x ≤ b}, there is a degree-2d SoS proof that q is non-negative, A ⊢2d q(x) ≥ 0.

Proof. We claim that Lukács theorem implies

q(x) =

{
s(x)2 + (x− a)(b− x)t(x)2 if d even

(x− a)s(x)2 + (b− x)t(x)2 if d odd

for s, t real polynomials of degree at most 2d, and this implies our corollary. To get the claim, we perform a

change of variables, taking x′ = 2
b−a(x− a) − 1. Let q(x) = h(x′). We now have that h(x′) is a degree-d

polynomial which is non-negative on [−1, 1]. From Lukács Theorem, we have that

h(x′) =

{
u(x′)2 + (1− x′2)v(x′)2 if d even

(1 + x′)u(x′)2 + (1− x′)v(x′)2 if d odd

for u, v real polynomials of degree at most d. But now,

b−a
2 · (1− x′) = b− x, b−a

2 · (1 + x′) = x− a,
(
b−a
2

)2 · (1− x′2) = (x− a)(b− x)

and so by applying a change of variables to the polynomials u(x′), v(x′) to obtain s(x), t(x), the conclusion

follows.

When we have SoS certificates that polynomials are bounded within (0, 1)± ǫ, SoS can also certify that

they behave roughly like indicator functions.

Fact 7.5 (Union bound for Approximate Indicators). Suppose that h, g are polynomials of degree at most d,

and suppose furthermore that from the axioms A, there is an SoS proof that A ⊢d {0 ≤ g ≤ 1} ∪ {0 ≤ h ≤
1}. Then,

A ⊢2d gh ≥ g + h− 1

Proof. We have as a polynomial equality that (g+(1− g))(h+(1−h)) = 1. Expanding then re-arranging,

gh = 1− g(1 − h)− h(1 − g)− (1− g)(1 − h)

� 1− g(1 − h)− h(1 − g)− (1− g)(1 − h)− (1− h)(1 − g)

= 1− (1− h)− (1− g)

where in the second line we have used the SoS bounds g, h � 1. Simplifying gives the conclusion.
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Fact 7.6 (Markov Inequality for Bounded Polynomials). Let p := pε,δα be the degree-D = O(1δ log
2 1
ε )

polynomial guaranteed by Theorem 7.1. Then p satisfies Markov’s inequality:

{0 ≤ x ≤ 1} ⊢deg(p) {p(x) ≥ 1− 1− x

1− α− δ
− ε} ∪ {p(x) ≤ x

α− δ
+ ε}

Proof. We will perform case analysis on x, throughout using Corollary 7.4 to obtain our SoS inequalities.

We prove the first inequality first. For x ∈ [0, α + δ),

p(x) � 0 � 1− 1− x

1− α− δ
,

where we have used that p(x) � 0 and 1−x
1−α−δ � 1. Now for x ∈ [α+ δ, 1],

p(x) � 1− ε � 1− ε− 1− x

1− α− δ
,

where we have used that x ∈ [0, 1] so that we are subtracting a positive quantity. Combining these claims

concludes the proof of the first claim.

To see the second claim, notice that for x ∈ [0, α−δ], p(x) ≤ ε, and for x ∈ (α−δ, 1], p(x) ≤ 1 ≤ x
α−δ .

This concludes the proof.

Observation 7.1. Let p := pε,δα be the degree-D = O(1δ log
2 1
ε ) polynomial guaranteed by Theorem 7.1.

Then p2 is a polynomial of degree 2D which enjoys the same guarantees as the polynomial p2ε,δα .

Proof. The polynomial p2 is bounded in [0, ε2] on [0, α− δ], inherits the monotonic increasing property on

(α− δ, α + δ), and is bounded by [(1− ε)2, 1] on [α+ δ, 1].
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A Sum-of-squares Background

Given a polynomial optimization program P = {maxx p(x) s.t. qi(x) = 0,∀i ∈ [m]}, the degree-D sum-

of-squares semidefinite programming relaxation of P is a semidefinite program of size nO(D) that returns

a pseudoexpectation operator Ẽ : x≤D → R. This operator can be uniquely extended to give a pseudo-

expectation operator on the set of all polynomials of degree at most D by linearity (defined precisely below).

This operator satisfies four properties:

• Scaling: Ẽ[1] = 1.

• Linearity: Ẽ[a · f(x) + b · g(x)] = a · Ẽ[f(x)] + b · Ẽ[g(x)], for all a, b ∈ R and all degree ≤ D
polynomials f, g.

• Non-negativity of low-degree squares: Ẽ[s(x)2] ≥ 0 for all polynomials s(x) with deg(s) ≤ D
2 .
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• Program constraints: Ẽ[f(x) · qi(x)] = 0 for all i ∈ [m] and polynomials f(x) such that deg(fqi) ≤
D.

Additionally, we will have Ẽ[p(x)] ≥ value(P ). We refer to these as pseudomoments of a pseudodistribu-

tion.

A.1 Reweighing and conditioning

We will sometimes reweigh or condition our degree-D pseudodistribution by a sum-of-squares polynomial

s(x) of degree d < D; this simply means that we define a new pseudoexpectation operator Ẽ
′

of degree

D − d by taking, for every monomial xα of degree at most D − d, Ẽ
′
[xα] = Ẽ[xα·s(x)]

Ẽ[s(x)]
. One can show that

reweighing preserves the four properties of the pseudodistribution up to degree D − d. When s(x) is a 0/1

function, this is also called “conditioning”, and we may denote Ẽ
′

by Ẽ[· | s(x)]. See [BRS11, BKS17] for

further discussion.

A.2 Independent samples

Throughout the paper, we make use of “shift partition” variables {Zu,s}u∈V,s∈Σ which we define as

Zu,s =
∑

a∈Σ
Xu,aX

′
u,a+s

for X,X ′ “independent copies” of X. Formally, given a pseudoexpectation operator Ẽ : X≤D → R,

we define a pseudoexpectation operator ẼX,X′ on monomials of degree ≤ D in variables X,X ′: for any

monomial Xα(X ′)β in X,X ′, ẼX,X′ [Xα(X ′)β] := ẼX [Xα] · ẼX [Xβ ]. Similar constructs have been used

in the literature, see e.g. [BKS14]. We denote the resulting “product” pseudodistribution by ẼX,X′ and call

X,X ′ as independent samples. We will use the following facts about polynomials in independent samples,

several of which regard the Zu,a specifically.

Fact A.1. If ẼX is a valid pseudodistribution of degree D in variables X, then ẼX,X′ is a valid pseudodis-

tribution of degree D. Furthermore, if there are additional SOS inequalities that are true for ẼX , they also

hold for ẼX,X′ .

Proof. By definition, ẼX,X′ satisfies scaling and linearity.

We next check that ẼX,X′ satisfies the non-negativity of squares. This fact follows from the fact that the

degree-D pseudomoment matrix of ẼX,X′ is a principal minor of the Kronecker square of the pseudomoment

matrix of X, that is, of (ẼX≤D)⊗2. Since ẼX is a valid pseudoexpectation matrix, ẼX [X≤D] is a PSD

matrix, and therefore its Kronecker square and any principal minor thereof. Finally, in the standard manner

any degree-D square polynomial s in variables X,X ′ can be written as a quadratic form of s’s coefficient

vector with the submatrix of the Kronecker square. Thus ẼX,X′ satisfies the degree-S SoS inequalities.

Finally, to see that ẼX,X′ [qi(X) · f(X,X ′)] = 0 for any qi for which we have the constraint qi(x) = 0

and any f of degree at most D − deg(qi), we write f in the monomial basis, f(X,X ′) =
∑

α,β f̂α,β ·
Xα(X ′)β , and then we have by linearity

Ẽ
X,X′

[qi(X)f(X,X ′)] =
∑

α,β

f̂α,β · Ẽ[qi(X) ·Xα] · Ẽ[(X ′)β ] = 0,

since ẼX [qi(X) ·Xα] = 0. This concludes the proof.
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Now, we prove some properties specific to the Z variables.

Fact A.2. Define the shift variable Zu,s =
∑

a∈ΣXu,aX
′
u,a+s to be the indicator that Xu − X ′

u = s, for

X,X ′ degree-8 solutions to the SoS relaxation of the UG integer program (1). Define as well for each edge

(u, v) the variables Y(u,v) =
∑

aXu,aXv,πuv (a) to be the indicator that the edge (u, v) is satisfied.

Then the Z variables satisfy:

1. Booleanity: Z2
u,a = Zu,a.

2. Partition constraints: Zu,aZu,b = 0 for a 6= b,
∑

s Zu,s = 1.

3. Crossing edges violate an assignment: Zu,aZv,bY(u,v)Y
′
(u,v) = 0 for every edge (u, v) ∈ E and a 6= b.

Proof. The first two items are easily verified via direct computation, using properties of the Xu,as. We prove

that the final property holds. Since our UG instance is affine, we have that for each i, j ∈ E, πij(a) = a+hij
for some hij ∈ Σ. Therefore,

Zi,sZj,tY(i,j)Y
′
(i,j) =

∑

a,b,c,d∈Σ
Xi,aX

′
i,a+s ·Xj,bX

′
j,b+t ·Xi,cXj,c+hij

·X ′
i,dX

′
j,d+hij

(14)

= 0, (15)

where we derive the final equality from the disjointness constraints (i.e. that Xi,aXi,b = 0 whenever a 6= b),
as for the above term to be nonzero we require a = c, d = a+ s, b = d− t+hij = a+ s− t+hij , and also

b = c+hij , which implies a+s− t = c, a contradiction since t 6= s. This establishes the final property.

A.3 Symmetries

Here, we will prove the symmetry properties that shift-symmetric pseudodistributions satisfy.

Lemma (Restatement of Lemma 3.9). Let µ be a degree-D shift-symmetric pseudodistribution satisfying the

unique games axioms AI given by (1) for an affine unique games instance I . Then µ satisfies the following

symmetry properties:

1. For all vertices u, v ∈ V (G) and shifts s ∈ Σ, P̃r[Xv = s | Xu = 0] = P̃r[Xv −Xu = s].

2. For all polynomials f(X) with deg(f) ≤ D − 2, such that f(X) = f(X + s) for every global shift

s ∈ Σ,

Ẽ[f(X) | Xv −Xu = s] = Ẽ[f(X) | Xu = 0,Xv = s].

Proof. Recall that since µ is a shift-symmetric pseudodistribution, we have that,

Ẽ
µ
[Xu1,a1 · · ·Xum,am ] =

1

|Σ|
∑

t

Ẽ
µ
[Xu1,a1−t · · ·Xum,am−t] = Ẽ

µ
[Xu1,a1+s · · ·Xum,am+s] (16)

for all {(u1, a1), . . . , (um, am)} ∈ ([n]× Σ)≤D and s ∈ Σ.

The two items now follow because under µ the marginal probabilities P̃rµ[Xv = s] are uniform for all

s ∈ Σ. We have that for all s ∈ Σ and all u, v ∈ V ,

P̃r
µ
[Xv = s | Xu = 0] =

P̃rµ[Xv = s,Xu = 0]

P̃rµ[Xu = 0]
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= |Σ| · P̃r[Xv = s,Xu = 0] =
∑

t∈Σ
P̃r[Xv = s+ t,Xu = t],

where in the third equality we have used the shift-invariance of µ, equation 16.

Further for any polynomial which satisfies f(X) = f(X + t) for all t ∈ Σ,

Ẽ
µ
[f(X) | Xv −Xu = s] =

Ẽµ[
∑

t∈Σ f(X) · I[Xv = s+ t,Xu = t]]

Ẽµ[
∑

t∈Σ I[Xv = s+ t,Xu = t]]

=
Ẽµ[
∑

t∈Σ f(X + t) · I[Xv = s+ t,Xu = t]]

Ẽµ[
∑

t∈Σ I[Xv = s+ t,Xu = t]]

=
|Σ| · Ẽµ[f(X) · I[Xv = s,Xu = 0]]

|Σ| · Ẽµ[I[Xv = s,Xu = 0]]
= Ẽ

µ
[f(X) | Xv = s,Xu = 0],

where to obtain the second equality we have used the shift-symmetry of f , f(X) = f(X + (t− s)), and in

the penultimate equality we have used the shift-invariance of µ, equation 16. The conclusion follows.

A.4 Pseudoprobabilities

The following definitions will help to ease notation in our proofs.

Definition A.3 (Pseudoprobability of an event). Let µ be a pseudodistribution of degree D. If E(X,X ′) is

an event such that I[E(X,X ′)] can be expressed as a degree-D function of X and X ′, then we define the

pseudoprobability of E(X,X ′) to be

P̃r[E(X,X ′)] = Ẽ[I(E(X,X ′)].

Similarly, if F(X) is an event and deg(I[F(X)]) + deg(I[E(X,X ′)]) ≤ D, then we define the pseudoprob-

ability of E(X,X ′) conditioned on F(X) to be

P̃r[E(X,X ′) | F(X)] = Ẽ[I(E(X,X ′)) | I(F(X))] =
Ẽ[I(E(X,X ′)) · I(F(X,X ′))]

Ẽ[I(F(X))]
.

A.5 Useful lemmas

We will state two SOS-versions of Cauchy-Schwarz that we will be useful in the Fourier analysis.

Lemma A.4 (Cauchy Schwarz). For for all ǫ ∈ R+,

⊢2 Y Z ≤ ǫ

2
Y 2 +

1

2ǫ
Z2.

Lemma A.5 (Cauchy Schwarz). For a degree-D pseudoexpectation operator, where D = 2max(deg(Y ),deg(Z)),

Ẽ[Y Z]2 ≤ Ẽ[Y 2] Ẽ[Z2].

Proofs for both lemmas appear in [BKS14].

We also need the following version of Hölder’s inequality which is proven in e.g. [OZ13].
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Fact A.6 (Hölder’s Inequality). For all real ν > 0 we have that,

⊢4 Y
3Z ≤ 3ν

4
Y 4 +

1

4ν3
Z4.

Claim A.7. Let A be the transition matrix for a random walk on an undirected (weighted) graph G and π
be the stationary measure on G, where π samples every vertex proportional to its weighted degree. Then

A has real eigenvalues, and moreover if Π is the projector to the space of A’s right eigenvalues of value at

most λ, then as a degree-2 SoS inequality we have

〈f,AΠf〉π � λ〈f,Πf〉π

and

〈f,A(Id−Π)f〉π � 〈f, (Id−Π)f〉π.

Proof. We use that A is self-adjoint in the inner product space (Rn, 〈·〉π), and therefore it has real eigen-

values and its right eigenspace has orthonormal eigenvectors v1, . . . , vn. We may write f according to its

orthogonal decomposition, f =
∑n

i=1 ci · vi for ci linear functions of f , and if there are k eigenvalues of

value at most λ then Πf =
∑k

i=1 ci · vi. We thus have

〈f,AΠf〉π =

〈
n∑

i=1

civi,
k∑

j=1

cj ·Avj
〉

π

=

〈
n∑

i=1

civi,

k∑

j=1

cjλj · vj
〉

π

=

k∑

j=1

λjc
2
j ≤ λ

k∑

j=1

c2j = λ〈f,Πf〉π,

where the inequality is a degree-2 sum of squares because λj ≤ λ, and the cj are degree-1 functions of f . A

near-identical proof gives the second statement when we observe that A’s maximum eigenvalue is ≤ 1.

B Reduction from small-set expansion to hypercontractivity

Here, we prove Lemma 4.3 for completeness.

Lemma (Restatement of Lemma 4.3). If G = (V,E) is (λ,C,D)-certifiably 2 to 4 hypercontractive, G is

a (λ/2, λ4/(16C),D)-certifiable small-set expander: for any f : V → R,

{
‖Πλf‖4π,4 ≤ C · ‖f‖4π,2

}
∪
{
f(v)2 = f(v)

}
v∈V ∪

{
E
π
f ≤ λ4

16C

}
⊢4+D 〈f, Lf〉π ≥ λ

2
E
π
[f ],

Where Πλ is the projector to the right eigenspace of eigenvalue ≤ λ in G’s normalized Laplacian. Further,

{
‖Πλf‖4π,4 ≤ C‖f‖4π,2

}
∪{0 ≤ f(v) ≤ 1}v∈V ⊢4+D 〈f, Lf〉π ≥ λ

2
E
π
[f ]+c

(
λ4

16C
E
π
[f ]− E

π
[f ]2

)
+B(f)

For c a positive constant and B(f) = 2(Eπ[f
◦2 − f ]) + 〈f◦3 − f,Πλf〉π.
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Proof. Since L = Id−A for A the transition matrix of G, we have

〈f, Lf〉π = ‖f‖2π,2 − 〈f,Af〉π

Where every right eigenvector u of L with eigenvalue λu is also an eigenvector of A with eigenvalue 1−λu.

We can write f = f≤λ + f>λ, with f≤λ = Πλf . By linearity,

〈f,Af〉π = 〈f,Af≤λ〉π + 〈f,Af>λ〉π,

We can derive an upper bound on the second term,

〈f,Af>λ〉π ≤ (1− λ)‖f‖2π,2,

where the difference between the right- and left-hand side of the inequality is a degree-2 sum of squares

because A’s eigenvalues off the support of Πλ are bounded by (1− λ) (see Claim A.7).

For the first term, we can derive a different upper bound,

〈f,Af≤λ〉π ≤ 〈f,Πλf〉π
= 〈(f◦3),Πλf〉π + 〈(f◦3 − f),Πλf〉π,

where the first inequality follows from the fact that A’s eigenvalues are bounded by 1 (which gives the

first line as an SOS inequality, again see Claim A.7), and in the second line we have used f◦3 to denote

the function f◦3 : V (G) → R given by f◦3(v) = f(v)3. Given the Booleanity axioms we have that

{f(v)2 = f(v)}v∈V (G) ⊢3 f
◦3 − f = 0, so therefore we have from our axioms A that

A ⊢4 〈f,Af≤λ〉π ≤ 〈(f◦3),Πλf〉π.

Now, using the shorthand fv := f(v),

〈f◦3,Πλf〉π ≤ 3η

4
‖f‖4π,4 +

1

4η3
‖Πλf‖4π,4

≤ 3η

4
‖f‖4π,4 +

1

4η3
C‖f‖4π,2,

where the first inequality is an SOS inequality for any η > 0 (see Fact A.6), and the final inequality is

guaranteed to be an SOS inequality from our 2-4 hypercontractivity axiom. We can further simplify the

inequality above to get that,

〈f◦3,Πλf〉π ≤ 3η

4
E
π
[f ] +

1

4η3
C E

π
[f ]2,

since, 3η
4 (E[f ]− ‖f‖4π,4) + C

4η3 ((E[f ]
2 − ‖f‖4π,2) is a degree-4 sum-of-squares under the axioms {fv ∈

[0, 1]}v∈V (G), as fv − f4
v ≥ 0 and fvfu − f2

v f
2
u ≥ 0 are SOS inequalities for fv ∈ [0, 1].

Putting both the upper bounds together, we have that

〈f, Lf〉π = ‖f‖2π,2 − (1− λ)‖f‖2π,2 −
3η

4
E
π
[f ]− C

4η3
E
π
[f ]2 + 〈(f◦3 − f),Πλf〉π + S′(f)
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for S′(f) a degree-4 sum of squares in the span of the hypercontractivity and Booleanity axioms. We also

have that from the Booleanity axioms, ‖f‖2π,2 = Eπ[f ], so rearranging terms we get that,

〈f, Lf〉π = (λ− η) · E
π
[f ] +

1

4

(
η E

π
[f ]− C

η3
E
π
[f ]2

)
+ (λ(‖f‖2π,2 − E[f ]) + 〈f◦3 − f,Πλf〉π) + S′(f)

=
λ

2
· E
π
[f ] +

2C

λ3

(
λ4

16C
E
π
[f ]− E

π
[f ]2

)
+ (2(‖f‖2π,2 − E[f ]) + 〈f◦3 − f,Πλf〉π) + S(f)

where we have set η = λ
2 and S(f) = S′(f) + (2− λ)(E[f ]− ‖f‖2π,2), which is a sum-of-squares because

λ ≤ 2 (all eigenvalues of the Laplacian are bounded above by 2) and fv − f2
v ≥ 0 is an SOS inequality

under the axiom {fv ∈ [0, 1]}v∈V (G). Taking B(f) = 2(‖f‖2π,2 − E[f ]) + 〈f◦3 − f,Πλf〉π gives us the

conclusion.

C Structure Theorem for the Johnson graph

In this section, we prove a structure theorem for the non-expanding sets of the Johnson graph. Spectral

analysis on the Johnson graph turns out to be complicated, so we move to a closely related Cayley graph,

whose eigenstructure is simple to calculate. We will call this the Johnson-approximating graph Cn,ℓ,α. We

will prove the following structure theorem about Cn,ℓ,α:

Theorem C.1. For all α ∈ (0, 1), all integers ℓ ≥ 1/α and all integers n ≥ ℓ, the following holds: Let

Cn,ℓ,α be the Johnson-approximating graph and π be the uniform distribution over V (C). For every positive

integer r ≤ ℓ/2 and every permutation-invariant function F that is not correlated with any r-restricted

subcube, F has high expansion:

{F (X) ∈ [0, 1]}X∈V (C) ∪ Ainv ⊢2

〈F,LF 〉π ≥ (1− (1− α)r+1)


E

π
[F ]− 8r

(
ℓ

r

)


r∑

j=0

E
Y ∈[n]j

[δY (F )2]


+B(F )


 ,

where B(F ) represents the Booleanity constraints and equals Eπ[F
◦2 − F ].

The proof of the theorem above, follows pretty much on the lines of the proof given in [KMMS18]. Since

the spectral analysis is much easier on this graph and in the end, we want to prove a weak characterization

of non-expanding sets, our proof ends up being simpler. Given this structure theorem, it is straightforward

to derive a structure theorem for the Johnson graph and we do so at the end of this section.

Notation: We will now give some notation that we need for this section. We use [n] to denote the set

{0, . . . , n − 1}, and also the group (Z/nZ), the natural numbers modulo n. Generally, when we take a set

S and raise it to a positive integer power ℓ, we mean the set of all ordered multisets of elements of S of size

ℓ. We use χt for t ∈ [n] to denote the characters of the group Z/nZ (or the eigenvectors of the n-cycle),

where χt : [n] → C is the function χt(x) = e
2πitx

n . We will use λG(v) to denote the eigenvalue of v which

is an eigenvector of the adjacency matrix of graph G. For a string S ∈ Σm, for some alphabet Σ, and a set

I ⊆ [m], we denote its restriction to the set of coordinates in I , by S|I .
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C.1 Preliminaries about the Spectrum

Definition C.2. Let α be a number in (0, 1) and ℓ be a positive integer. Let n be a positive integer such that

n > ℓ. We then define the graph Cn,ℓ,α as follows:

1. The vertex set of Cn,ℓ,α is the set, [n]ℓ. We will drop the subscript (n, ℓ, α) in Cn,ℓ,α when these

parameters are clear from context.

2. The edges are described by showing how to sample a uniformly random neighbor of an arbitrary

vertex X ∈ [n]ℓ. Fix a vertex X = (x1, . . . , xℓ), xi ∈ [n]. Choose (y1, . . . , yℓ) uniformly at random

from [n]ℓ and b = (b1, . . . , bℓ) ∼ {0, 1}ℓ such that the Hamming weight of b equals αℓ. Let the

neighbor of X be Z = (x1 + b1 · y1, . . . , xl + bℓ · yℓ).

It is easy to verify that the graph defined above is a weighted Cayley graph with vertex set being the

elements of the group [n]ℓ = (Z/nZ)ℓ. The natural group operation associated with this set is component-

wise addition modulo n, which we will denote by x + y for any two elements x, y in [n]ℓ. We will now

analyze the spectral properties of the graph. We will overload the notation C to also refer to the normalized

adjacency matrix of the graph C . Note firstly that the eigenvectors of C are the characters of the group [n]ℓ

which we will denote by χT , where T = (T1, . . . , Tℓ) ∈ [n]ℓ. We have that for all x ∈ [n]ℓ, χT (x) =
χT1(x1) · . . . · χTℓ

(xℓ), where χt denotes the characters of Z/nZ or equivalently the eigenvectors of the

n-cycle. We will now define a notion of degree for an eigenvector.

Definition C.3 (Degree of χT ). For all T ∈ [n]ℓ, where T = (T1, . . . , Tℓ), define the degree of T as:

|T | := |{i | Ti 6= 0}|,

The degree of χT is defined as |T |.

We will now calculate the eigenvalues of C . We will show that the eigenvalue corresponding to χT only

depends on |T |. Moreover when |T | ≪ ℓ, the eigenvalue of χT grows exponentially small with |T |.

Lemma C.4. Let λC(χT ) denote the eigenvalue of C corresponding to the eigenvector χT for T ∈ [n]ℓ. We

have that,

λC(χT ) =





( ℓ−|T |
(1−α)ℓ−|T |)

( ℓ
(1−α)ℓ)

, |T | ≤ (1− α)ℓ

0, otherwise.

.

Proof. Let T = (T1, . . . , Tℓ). For all X ∈ [n]ℓ, we have that,

C · χT (X) = E
y,b
[χT (x1 + b1y, . . . , xl + blyl)]

= χT (X) E
y,b
[χT1,...,Tl

(b1y1, . . . , blyl)]

= χT (X) E
y,b
[χ(b1T1,...,blTl)(y)].

For y, S ∈ [n] and S 6= 0, we know that the eigenvector χS is orthogonal to the eigenvector χ0,

equivalently that Ey[χS(y)] = 0, whereas if S = 0 then Ey[χS(y)] = 1. So we get that,

λC(χT ) = E
y,b
[χ(b1T1,...,bℓTℓ)(y)]
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= Pr
b
[(b1T1, . . . , bℓTℓ) = 0ℓ]

=





( l−|T |
(1−α)l−|T |)

( l
(1−α)l)

, |T | ≤ (1− α)ℓ

0, otherwise.

.

C.2 Analyzing non-expanding sets of the Johnson-approximating graph

Since our main aim in Section 6 is to deal with sets in the Johnson graph Jn,ℓ,α we will only consider

“permutation-invariant” sets on Cn,ℓ,α. Notice that the vertices of the Johnson graph are subsets of [n] of

size ℓ, whereas the vertices of the Johnson-approximating graph are ordered ℓ-tuples of [n]. Therefore, given

a set S in the Johnson graph, it has a natural mapping to the set S′ which is a subset of the vertices of the

Johnson-approximating graph C , S′ := {(xπ(1), . . . , xπ(l)) | π : [l] → [l], {x1, . . . , xl} ∈ S}. This leads to

the following definition:

Definition C.5 (Permutation-invariance). We say that a set S ⊆ Cn,ℓ,α is permutation-invariant if for all

permutations π ∈ Sℓ, the symmetric group on ℓ elements, and all X = (x1, . . . , xl) ∈ S, we have that

Xπ = (xπ(1), . . . , xπ(l)) belongs to S. Similarly a function F : V (C) → R is permutation invariant if for all

inputs X = (x1, . . . , xℓ), we have that F (x1, . . . , xl) = F (xπ(1), . . . , xπ(l)), for all permutations π. Further

let Ainv denote the set of axioms that F is permutation-invariant, that is,

Ainv := {F (x1, . . . , xℓ) = F (xπ(1), . . . , xπ(l))}π∈Sℓ,X∈[n]ℓ.

Since the set of vertices in C that correspond to some set of vertices in J are permutation invariant it

will be enough to focus are attention on these special sets and from now on whenever we refer to a set in

V (C), the reader can assume that it is permutation-invariant.

To analyze non-expanding sets of C , we will consider permutation-invariant functions F : V (C) →
[0, 1]. Typically one would consider 0/1-valued functions F , where F is the indicator function of a set S,

i.e. F (X) = 1 when X ∈ S. But since we need to analyze “approximate-sets” (the indicator function is

approximated by a polynomial that takes values close to 0/1), F (X) could take any value between [0, 1].
Recall that the Fourier decomposition of F gives us that, F (X) =

∑
T F̂ (T )χT (X). We will now

define the following for a function F :

Definition C.6. 1. We will expand F as

F = F0 + . . . + Fℓ,

where Fi(X) =
∑

T :|T |=i F̂ (T )χT (X). We will call F a level i function, if its Fourier decomposition

has degree i characters only, i.e. F̂ (T ) = 0, for all T such that |T | 6= i.

2. Let fi,F : [n]i → R be a function defined as,

fi,F (x1, . . . , xi) :=
∑

T1,...,Ti∈([n]\0)i
F̂ (T1, . . . , Ti, 0, . . .)χT1,...,Ti

(x1, . . . , xi),

Let X = (x1, . . . , xj) ∈ [n]j and I be a subset of {1, . . . , j}. Let I = {k1, . . . , k|I|} where k1 < k2 <
. . . < k|I|. We will use X|I to denote the ordered tuple of elements (xk1 , . . . , xk|I|). We will now state

some simple properties of F that are implied by permutation-invariance.
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Lemma C.7. For all functions F : [n]ℓ → R that are permutation-invariant, we have that:

1. F̂ (T1, . . . , Tl) = F̂ (Tπ(1), . . . , Tπ(l)), for all (T1, . . . , Tl) ∈ [n]ℓ and all permutations π : [l] → [l].

2. The functions Fi and fi,F are also permutation-invariant.

3. Fi(X) =
∑
I⊆[l]
|I|=i

fi,F (X|I).

We skip the proof of this lemma because it follows by a straightforward manipulation of the definitions.

Definition C.8 (r-restricted subcubes of C). Given an ordered tuple, A = (a1, . . . , ar) for ai ∈ [n] and

r ≤ l − 1, we let C|A denote the subset of vertices of C whose first r coordinates are restricted to be

(a1, . . . , ar). We call such a subset an r-restricted subcube of C .

Definition C.9 (Restrictions). Given a function F : [n]ℓ → R and an ordered tuple, A = (a1, . . . , ar) for

ai ∈ [n] and 1 ≤ r ≤ l − 1, we define the restricted function F |A : [n]ℓ−r → R as,

F |A(x1, . . . , xl−r) = F (a1, . . . , ar, x1, . . . , xl−r).

Further, let δA(F ) denote the mass of the function restricted to A, that is,

δA(F ) := δ(F |A) = E
X∈[n]ℓ−r

[F |A(X)].

For convenience, when A = φ (r = 0), define F |A(X) := F (X), and δA(F ) := δ(F ) = EX∈[n]ℓ [F (X)].

The following simple facts hold for restrictions of functions:

Lemma C.10. Let F be a permutation-invariant function on V (C). Then we have the following:

1. For all a ∈ [n] and for all i such that 0 ≤ i ≤ ℓ− 1, and all X ∈ [n]i, we have that,

fi+1,F (a,X) = fi,F |{a}(X)− fi,F (X).

2. For all integers i such that 0 ≤ i ≤ ℓ and for all X ∈ [n]i, we get an inclusion-exclusion formula for

fi(X) in terms of restrictions of F :

fi,F (X) =
∑

B⊆{1,...,i}
(−1)i−|B|δX|B (F ),

where X|B is the ordered tuple of elements of X restricted to the indices in B.

Proof of (1). Using the definition, we can expand out fi+1,F to get that,

fi,F (a,X) =
∑

(T1,...,Ti+1)∈([n]\0)i+1

F̂ (T1, . . . , Ti+1, 0, . . . , 0)χT1,...,Ti+1(a,X).

We can split this sum into two parts, one where T1 can take any value (even 0) and the second where

T1 = 0. We get that,
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fi,F (a,X) =
∑

T1∈[n]
T∈([n]\0)i

F̂ (T1, T, 0, . . . , 0, . . . , 0)χT1,T (a,X) (17)

−
∑

T1=0
T∈([n]\0)i

F̂ (0, T, 0, . . . , 0)χT (X). (18)

We will show that the first term equals fi,F |{a}(X) and the second term equals fi,F (X). This implies the

conclusion needed.

For the first term we have that,

∑

T1∈[n]
T∈([n]\0)i

F̂ (T1, T, 0, . . . , 0)χT1,T (a,X)

=
∑

T1∈[n]
T∈([n]\0)i

E
Y1∈[n],

Y ∈[n]ℓ−1

[
F (Y1, Y )χT1(Y1)χ(T,0,...,0)(Y )

]
χT1(a)χT (X)

=
∑

T∈([n]\0)i
E

Y1∈[n],
Y ∈[n]ℓ−1


F (Y1, Y )χ(T,0,...,0)(Y )

∑

T1∈[n]

χT1(a+ Y1)


χT (X). (19)

We now have that
∑

T1∈[n]
χT1(a + Y1) = 0 if T1 6= a and equals n otherwise. Using this fact we get

that equation 19 equals,

∑

T∈([n]\0)i

1

n
· E
Y ∈[n]ℓ−1

[
F (a, Y )χ(T,0,...,0)(Y ) · n

]
χT (X)

=
∑

T∈([n]\0)i
E

Y ∈[n]ℓ−1
F̂ |{a}(T, 0, . . . , 0)χT (X)

=fi,F |{a}

For the second term we have that,

∑

T1=0
(T2,...,Ti+1)∈([n]\0)i

F̂ (0, T2, . . . , Ti+1, 0, . . . , 0)χT2,...,Ti+1(X)

=
∑

(T2,...,Ti+1)∈([n]\0)i
F̂ (T2, . . . , Ti+1, 0, . . . , 0)χT2,...,Ti+1(X),

since by Lemma C.7 (1) we have that F̂ (0, T2, . . . , Ti+1, 0, . . .) = F̂ (0, T2, . . . , Ti+1, 0, . . .). Since the last

equality is the definition of fi,F (X), the conclusion follows.

Proof of (2). We will prove this claim by induction on i. For the base case of i = 0, by definition, we have

that,

f0,F (φ) = F̂ (0, . . . , 0) = E
X∈[n]ℓ

[F (X)] = δ(F ) = δφ(F ) =
∑

B⊆φ

δφ|B(F ).
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Now let us assume that for all permutation-invariant functions G the claim holds for i − 1, i.e. for all

X ∈ [ni−1], we have that fi−1,G(X) =
∑

B∈{1,...,i−1}(−1)i−1−|B|δX|B (G). Now we will prove the claim

for fi,F , thus completing the induction.

Let X = (x1,X
′), where X ∈ [n]i, x1 ∈ [n] and X ′ ∈ [n]i−1. Then by property (1) of the same lemma,

we have that,

fi,F (X) = fi,F |{x1}(X
′)− fi,F (X

′).

Expanding the RHS using the induction hypothesis on the functions F |{x1} and F , we get that,

fi,F (X) =
∑

B′∈{1,...,i−1}
(−1)i−1−|B′|δX′|B′ (F |{x1})−

∑

B′∈{1,...,i−1}
(−1)i−1−|B′|δX′|B′ (F )

=
∑

B′∈{1,...,i−1}
(−1)i−(1+|B′|)δ(x1,X′|B′)(F ) +

∑

B′∈{1,...,i−1}
(−1)i−|B′|δX′|B′ (F )

=
∑

B∈{1,...,i}:1∈B
(−1)i−|B|δX|B (F ) +

∑

B∈{1,...,i}:1/∈B
(−1)i−|B|δX|B (F )

=
∑

B∈{1,...,i}
(−1)i−|B|δX|B (F ).

This completes the inductive step and the proof of the lemma.

We will first upper bound the Fourier weights on the lower levels. To do so we will use the following

relation between the Fourier weight ηi and fi’s.

Lemma C.11. Let F be a permutation-invariant function on the vertices of C . Then, we have that,

E
X∈[n]i

[fi,F (X)2] =
ηi(
l
i

) ,

where ηi = EY ∈V (C)[Fi(Y )2].

Proof. Recall that if I ⊆ [l], we will use fi(I) to denote fi(A|I). Since Fi(A) =
∑

I⊆[l] Fi(A|I), we have

that,

E
A∼[n]ℓ

[Fi(A)
2] = E

A
[(
∑

I

fi(I))
2]

=
∑

I

E
A
[fi(I)

2] +
∑

I 6=I′

E
A
[fi(I)fi(I

′)]

=
∑

I

E
A
[fi(I)

2] + 0

=
∑

I

E
(a1,...,aℓ)

[fi(aj1 , . . . , aji)
2], where j1, . . . , ji ∈ I

= E
(x1,...,xi)

[fi(X)2] ·
(
ℓ

i

)
,

rearranging which, immediately implies the lemma.

Recall that Ainv denotes the set of axioms that F is permutation-invariant. We will now bound the

ith-level Fourier weight of a permutation-invariant function F .
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Lemma C.12 (Upper Bound on Level-i Weight). Let F be a permutation-invariant function on V (C). Then

for all i such that 0 ≤ i ≤ ℓ, we can bound the Fourier weight of F on the ith level using its restrictions:

Ainv ⊢2 ηi ≤ 2i
(
ℓ

i

)
·




i∑

j=0

(
i

j

)
E

Y ∈[n]j
[
δY (F )2

]

 ,

where ηi = 〈Fi, Fi〉π , for π equal to the uniform distribution over V (C).

Proof. Firstly, using Lemma C.11 we get that,

ηi =

(
ℓ

i

)
· E
X∈[n]i

[fi,F (X)2]. (20)

Using the expansion of fi,F from Lemma C.10 (2), we get that,

fi,F (X)2 =


 ∑

B⊆{1,...,i}
(−1)i−|B|δX|B (F )




2

≤ 2i ·
∑

B⊆{1,...,i}
δX|B (F )2,

where in the last step we have used the Cauchy-Schwarz inequality. Noting that this is a degree 2 SOS

inequality and substituting this expression into (20) we get that,

Ainv ⊢2 ηi ≤ 2i
(
ℓ

i

)
· E
X∈[n]i


 ∑

B⊆{1,...,i}
δX|B (F )2


 . (21)

We can now simplify the RHS further. We have that,

E
X∈[n]i


 ∑

B⊆{1,...,i}
δX|B (F )2




=
∑

B⊆{1,...,i}
E

X∈[n]i
[
δX|B (F )2

]

=
∑

B⊆{1,...,i}
E

Y ∈[n]|B|

[
δY (F )2

]

=

i∑

j=0

(
i

j

)
E

Y ∈[n]j
[
δY (F )2

]
.

Plugging in the last equation into equation (21), we get the conclusion.

We will now prove the main structure theorem for C . This theorem can be interpreted as saying that

if F is the indicator function of a permutation-invariant set S such that S is not correlated with any of the

r-restricted subcubes of C then S has high expansion in C (〈F,LF 〉 is large). In our theorem, correlation

with a subcube C|A for A ∈ [n]r, is measured by the squared-mass of F |A, which is equal to δA(F )2 (Note

that δA(F ) is equal to
|S∩(C|A)|
|(C|A)| ).

Restatement of Theorem C.1: For all α ∈ (0, 1), all integers ℓ ≥ 1/α and all integers n ≥ ℓ, the

following holds: Let Cn,ℓ,α be the Johnson-approximating graph and π be the uniform distribution over
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V (C). For every positive integer r ≤ ℓ/2 and every permutation-invariant function F that is not correlated

with any r-restricted subcube, F has high expansion:

{F (X) ∈ [0, 1]}X∈V (C) ∪ Ainv ⊢2

〈F,LF 〉π ≥ (1− (1− α)r+1)


E

π
[F ]− 8r

(
ℓ

r

)


r∑

j=0

E
Y ∈[n]j

[δY (F )2]


+B(F )


 ,

where B(F ) represents the Booleanity constraints and equals Eπ[F
◦2 − F ].

Proof. We know that 〈F,LF 〉π = Eπ[F
◦2] − 〈F,AF 〉π , where π is the uniform distribution over V (C).

We will now upper bound 〈F,AF 〉. Let λi denote the eigenvalue of the level i eigenvectors of C . From

Lemma C.4, we have that λi =
( ℓ−|T |
(1−α)ℓ−|T |)

( ℓ
(1−α)ℓ)

for i ≤ (1 − α)ℓ and 0 otherwise. One can check that

λi ≤ (1− α)λi−1 for all i between 1 and ℓ. Since λ0 = 1, we get that λi ≤ (1 − α)i. We will use

this upper bound because it is easier to work with in calculations.

Let ηi = 〈Fi, Fi〉π be the Fourier weight on level i. Expanding out 〈F,AF 〉π we get that,

〈F,AF 〉π =
r∑

i=0

λiηi +
ℓ∑

i=r+1

λiηi

≤
r∑

i=0

(1− α)iηi + (1− α)r+1
ℓ∑

i=r+1

ηi

≤
r∑

i=0

ηi + (1− α)r+1

(
E
π
[F ◦2]−

r∑

i=0

ηi

)
,

where in the last step we have used the fact that, λi ≤ 1, for all i ≤ r, for the first summand and
∑ℓ

i=0 ηi =
Eπ[F

◦2] for the second. Further note that each of these inequalities is a degree 2 SoS inequality, since ηi is

a sum-of-squares for all i ∈ [ℓ]. Plugging in the above inequality into the expression for the Laplacian and

rearranging it we get that,

〈F,LF 〉π ≥ (1− (1− α)r+1)

[
E
π
[F ◦2]−

r∑

i=0

ηi

]

= (1− (1− α)r+1)

[
E
π
[F ] + E

π
[F ◦2 − F ]−

r∑

i=0

ηi

]

≥ (1− (1− α)r+1)


E

π
[F ] +B(F )−

r∑

i=0

2i
(
ℓ

i

)
·

i∑

j=0

(
i

j

)
E

Y ∈[n]j
[
δY (F )2

]

 ,

where in the last step we have applied the upper bound on ηi proved in Lemma C.12 and substituted B(F ) =
Eπ[F

◦2 − F ]. All the inequalities are therefore degree 2 SoS inequalities.
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We can now apply a simplification to the expression inside the summand to get that,

〈F,LF 〉π ≥ (1− (1− α)r+1)


E

π
[F ] +B(F )−

r∑

j=0

E
Y ∈[n]j

[
δY (F )2

]
·




r∑

i=j

2i
(
i

j

)(
ℓ

i

)




≥ (1− (1− α)r+1)


E

π
[F ] +B(F )− 8r

(
ℓ

r

) r∑

j=0

E
Y ∈[n]j

[
δY (F )2

]

 ,

where in the last inequality we have used the fact that
∑r

i=j 2
i
(i
j

)(ℓ
i

)
≤ r2r

(r
j

)(ℓ
r

)
≤ 8r

(ℓ
r

)
.

We will use the structure theorem for the Johnson-approximating graph given above, to derive a structure

theorem for the Johnson graph.

Theorem (Restatement of Theorem 6.5). For all α ∈ Q with α < 1
2 , all integers ℓ ∈ N and all large enough

integers n ≫ ℓ, the following holds: Let J be a (n, ℓ, α)-Johnson graph and π be the uniform distribution

over V (J). For every integer r such that 0 ≤ r ≤ ℓ/2 and every function F that is not correlated with any

r-restricted subcube, F has high expansion (as a function of r):

{F (X) ∈ [0, 1]}X∈V (J) ⊢2

〈F,LF 〉π ≥ (1− (1− α)r+1)



(
1−Oℓ

(
1

n

))
E
π
[F ]− 8r

(
ℓ

r

)


r∑

j=0

E
Y ∈([n]

j )
[δY (F )2]


+B(F )


 .

where B(F ) represents the Booleanity constraints and equals Eπ[F
◦2 − F ].

Proof. We will use the structure theorem for the Johnson-approximating graph Cn,ℓ,α, to obtain a structure

theorem for the Johnson graph Jn,ℓ,α. We will drop the subscript and use C, J henceforth.

Let F be a function on the vertices of J (given by ℓ-sized subsets of [n]) such that F (X) ∈ [0, 1] for all

X. Define a function G : V (C) = [n]ℓ → [0, 1] in the following way:

G(x1, . . . , xℓ) =

{
F ({x1, . . . , xℓ}), if the elements x′js are all distinct.

0, otherwise.

One can check that G satisfies the permutation-invariance axioms from Definition C.5. We also have

that G(X) ∈ [0, 1] for all X ∈ [n]ℓ, when F satisfies the same. So we can apply the structure theorem for

the Johnson-approximating graph to G to get that,

{F (X) ∈ [0, 1]}X∈V (J) ⊢2 (22)

〈G,LCG〉πC
≥ (1− (1− α)r+1)


 E
πC

[G]− 8r
(
ℓ

r

)


r∑

j=0

E
Y ∈[n]j

[
δY (G)2

]

+BπC

(G)


 , (23)

where LC is the Laplacian of C , πC is the uniform distribution over V (C) and BπC
(G) = EπC

[G◦2 − G].
We will now use the close relation between F and G to bound every term in the above expression to get a

similar expression for F . We will show the following:
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1. 〈G,LCG〉πC
≤ 〈F,LF 〉π +

(
2ℓ2+ℓ
2n

)
Eπ[F ].

2. EπC
[G] ≥

(
1−Oℓ(

1
n)
)
Eπ[F ].

3. EY ∈[n]j
[
δY (G)2

]
≤ E

Y ∈([n]
j )

[
δY (F )2

]
.

4. BπC
(G) ≥ B(F ), for B(F ) = Eπ[F

◦2 − F ].

Plugging these bounds into equation (22) we get that,

{F (X) ∈ [0, 1]}X∈V (J) ⊢2

〈F,LF 〉π ≥ (1− (1− α)r+1)



(
1−Oℓ

(
1

n

))
E
π
[F ]− 8r

(
ℓ

r

)


r∑

j=0

E
Y ∈([n]

j )
[δY (F )2]


+B(F )




−Oℓ

(
1

n

)
E
π
[F ].

Absorbing the last term, Oℓ

(
1
n

)
Eπ[F ], into the first term inside the brackets, we get the conclusion.

Now let us go into the proofs of points 1 to 4. One can check that all the inequalities below are degree 2

SoS inequalities given the axioms F (X) ∈ [0, 1] for all X.

Proof of (1): Let EC be the probability distribution over the edges of C . By the expansion of the Laplacian

we know that,

〈G,LCG〉πC
=

1

2
E

(X,Z)∼EC

[(G(X) −G(Z))2].

For edges (X,Z) for which both X and Z have repeated coordinates, we have that (G(X)−G(Z))2 = 0.

Let A(X,Z) be the event that none of the endpoints of the edge (X,Z) has repeating coordinates. We have

that Pr(X,Z)∼EC
[¬A(X,Z)] ≤ PrY∼πC

[¬A(Y )] ≤ ℓ2/n, where A(Y ) is the event that Y has no repeating

coordinates. Furthermore, let B(X,Z) be the event that X and Z differ in exactly αℓ elements. Again one

can check that, Pr[¬B(X,Z)] ≤ PrY∼πC
[Yi 6= 0,∀i ∈ [ℓ]] ≤ ℓ

n .

When both the events A(X,Z) and B(X,Z) occur, the distribution EC is the same as sampling an

edge (C,D) ∼ E (the uniform distribution over E(J)) and randomly permuting the sets C and D to get an

ordered tuple (X,Z).
For brevity of notation, we will drop the term (X,Z) in A(X,Z) and B(X,Z). Using the above

inequalities we get that,

2〈G,LCG〉πC
≤Pr

EC

[A ∩B] E
(EC |A∩B)

[(G(X) −G(Z))2]

+ Pr
EC

[¬A] E
(EC |¬A)

[(G(X) −G(Z))2]

+ Pr
EC

[¬B] E
(EC |B)

[(G(X) −G(Z))2]

≤E
E
[(F (X) − F (Z))2] +

(
2ℓ2

n

)
E

X∼π
[F (X)2] +

(
ℓ

n

)
E

X∼π
[F (X)2]

=2〈F,LF 〉π +

(
2ℓ2 + ℓ

n

)
E

X∼π
[F (X)].
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Proof of (2): Let A(X) be the event that X ∼ πC has no repeating coordinates. We have that,

Pr
X∼πC

[A(X)] =

(
n
ℓ

)
ℓ!

nℓ
≥
(
1− ℓ2

n

)
.

When X has repeating coordinates G(X) = 0 and otherwise G(X) = F (X) (when we apply F on X
we think of X as a ℓ-sized subset of [n] and therefore a vertex of J). Also note that, the distribution πC
conditioned on the event that X has no repeating coordinates is uniform over all such X’s and is therefore

the same as drawing a random set Y ∼ π and choosing a random ordering of the elements. So we have that,

E
X∈[n]ℓ

[G(X)] = Pr
X∼πC

[A(X)] · E
X∼(πC |A)

[G(X)] + Pr
X∼πC

[¬A(X)] · E
X∼(πC |¬A(X))

[G(X)]

≥
(
1− ℓ2

n

)
E

X∼π
[F (X)].

Proof of (3): We have that δY (G) = 0 if Y has repeating coordinates, so let us first assume that Y does

not have repeating coordinates. Let X ∼ [n]ℓ−j and let A(X) be the event that (Y,X) has no repeating

coordinates. Then by definition of restrictions, we get that,

δY (G) = Pr
X
[A(X)] E

X∼([n]ℓ−j |A(X))
[G(Y,X)] + Pr

X
[¬A(X)] E

X∼([n]ℓ−j |¬A(X))
[G(Y,X)]

≤ 1 · E
X∼([n]\Y

ℓ−j )
[F (Y,X)]

= δY (F ).

So we also get that, δY (G)2 ≤ δY (F )2.

Now we will calculate an upper bound on EY ∈[n]j [δY (G)2]. Let Y ∼ [n]j and let A(Y ) be the event

that Y ∼ [n]j has no repeating coordinates. We then have that,

E
Y ∈[n]j

[δY (G)2] = Pr
Y∼[n]j

[A(Y )] · E
Y∼([n]j |A(Y ))

[δY (G)2] + Pr
Y∼[n]j

[¬A(Y )] · E
Y∼([n]j |¬A(Y ))

[δY (G)2]

≤ E
Y∼([n]

j )
[δY (F )2].

Proof of (4): As in the proof of (3), let A(X) be the event that X ∼ πC has no repeating coordinates. We

have that,

E
X∈[n]ℓ

[G−G◦2] = Pr
X∼πC

[A(X)] · E
X∼(πC |A(X))

[G−G◦2] + Pr
X∼πC

[¬A(X)] · E
X∼(πC |¬A(X))

[G−G◦2]

≤ E
X∼π

[F − F ◦2].
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