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SAMPLING CONSTRAINT SATISFACTION SOLUTIONS IN THE LOCAL LEMMA REGIME

WEIMING FENG, KUN HE, AND YITONG YIN

Abstract. We give aMarkov chain based algorithm for sampling almost uniform solutions of constraint

satisfaction problems (CSPs). Assuming a canonical se�ing for the Lovász local lemma, where each con-

straint is violated by a small number of forbidden local configurations, our sampling algorithm is accurate

in a local lemma regime, and the running time is a fixed polynomial whose dependency on = is close to

linear, where = is the number of variables. Our main approach is a new technique called state compression,

which generalizes the “mark/unmark” paradigm of Moitra [Moi19], and can give fast local-lemma-based

sampling algorithms. As concrete applications of our technique, we give the current best almost-uniform

samplers for hypergraph colorings and for CNF solutions.

1. Introduction

�e space of constraint satisfaction solutions is one of the most well-studied subjects in Computer
Science. Given a collection of constraints defined on a set of variables, a solution to the constraint
satisfaction problem (CSP) is an assignment of variables such that all constraints are satisfied. A fun-
damental criterion for the existence of constraint satisfaction solutions is given by the Lovász local
lemma (LLL) [EL75]. Interpreting the space of all assignment as a probability space and the violation
of each constraint as a bad event, the local lemma characterizes a regime within which a constraint
satisfaction solution always exists, by the tradeoff between: (1) the chance for the occurrence of each
bad event and (2) the degree of dependency between them.

In Computer Science, the studies of the Lovász local lemma are more focused on the algorithmic LLL
(also called constructive LLL), which is concerned with not just existence of a constraint satisfaction
solution, but also how to find such a solution efficiently. �e studies of algorithmic LLL constitute
an important line of modern algorithm researches [Bec91, Alo91, MR98, CS00, Mos09, MT10, KM11,
HSS11, HS17b, HS19]. A major breakthrough was the Moser-Tardos algorithm [MT10], which finds a
satisfaction solution efficiently up to a sharp condition known as the Shearer’s bound [She85, KM11].

In this paper, we are concerned with a problem that we call the sampling LLL, which asks for the
regimes in which a nearly uniform (instead of an arbitrary) satisfaction solution can be generated ef-
ficiently. �is is a distribution-sensitive variant of the algorithmic LLL. �e problem is closely related
to the problem of estimating the total number of satisfaction solutions, usually via standard reduc-
tions [JVV86, ŠVV09]; besides, it may also serve as a standard toolkit for solving the inference problems
that are well motivated from machine learning applications [Moi19].

�is sampling variant of algorithmic LLL is computationallymore challenging than the conventional
algorithmic LLL. For example, for :-CNF formulas with variable-degree3 , the Moser-Tardos algorithm
for generating an arbitrary solution is known to be efficient when : & log2 3 , while the problem of
generating a nearly uniform solution requires : & 2 log2 3 to be tractable [BGG+19].

Meanwhile, much less positive progress was known for the sampling LLL. A fundamental obstacle
is that the space of satisfaction solutions may not be connected via local updates of variables [Wig19],
whereas such connectivity is crucial for mainstream sampling techniques. In [GJL19], Guo, Jerrum
and Liu proposed to study the sampling LLL, and resolved the problem for the CSPs with extremal
constraints. In a major breakthrough [Moi19], Moitra introduced a novel approach for approximately
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counting :-SAT solutions. �e approach utilizes the algorithmic LLL to properly mark/unmark vari-
ables, which helps construct efficient linear programmings for estimating marginal probabilities. For
:-CNF formulas with variable-degree 3 within a local lemma regime : & 60 log 3 , the algorithm ap-
proximately counts the total number of SAT solutions in time =poly (3:) . Further extensions of Moitra’s
approach were made to hypergraph colorings [GLLZ19] and random CNF formulas [GGGY20], where
the running times are both =poly (3:) for constraint-width : and variable-degree 3 . Recently, a much
faster algorithm for sampling:-SAT solutions inspired byMoitra’s algorithmwas given in [FGYZ20]. It
implements a Markov chain on the assignments of the marked variables chosen via Moitra’s approach.

�e resulting sampling algorithm enjoys a close-to-linear running time $̃ (32:3=1.000001) with an im-
proved regime : & 20 log3 . It also formally confirms that the originally disconnected solution space
is changed to be very well connected a�er restricting onto a wisely chosen set of marked variables.
However, such approach of fast sampling seems rather restricted to CNF formulas, where the variables
can be marked/unmarked non-adaptively to the assignments, whereas for CSPs with larger domains
where marking/unmarking variables adaptively to their assignments is crucial [GLLZ19], the current
approach for fast sampling has met some fundamental barriers.

For sampling general constraint satisfaction solutions, we do not know whether the problem is
tractable in a local lemma type of regime, neither do we know any general algorithmic approach that
can achieve this. New ideas beyond the paradigm of marking/unmarking variables are needed.

1.1. Our results. We consider the problem of uniform sampling constraint satisfaction solutions, for-
mulated by the variable-framework LLL with uniform random variable and atomic bad events. Let +
be a collection of = = |+ | mutually independent uniform random variables and B be a collection of
atomic bad events such that

• uniform random variables: the value of each E ∈ + is uniformly drawn from a domain&E ;
• atomic bad events: each � ∈ B is determined by the variables in vbl (�) ⊆ + , and � occurs if
the assignment of vbl (�) is as specified by the unique forbidden pa�ern f� ∈

⊗
E∈vbl(�) &E .

We assume uniform randomvariables because our goal is to uniformly sample constraint satisfaction
solutions. Meanwhile, the atomicity of bad events is a natural and fundamental se�ing assumed in
various studies of LLL [AI16, HH17, HS17a, Kol18a, Har21, AIS19, HS19, HV20].

Let ? = max�∈B Pr [�], where the probability is taken over independent random variables in+ . Let
� = (B, �) be the dependency graph, where each vertex is a bad event in B, and the neighborhood of
each � ∈ B in � is Γ(�) , {� ′ ∈ B \ {�} | vbl (�) ∩ vbl (� ′) ≠ ∅}. Let � , max�∈B |Γ(�) | denote
the maximum degree of the dependency graph. By the Lovász local lemma, there exists a satisfying
assignment that avoids all bad events in B if

ln
1

?
≥ ln� + 1.(1)

Such an instance of LLL naturally specifies a uniform distribution over all satisfying assignments,
called the LLL-distribution [Har20]. Formally, it is the distribution of the independent random vari-
ables in + conditioned on that none of the bad events in B occurs.

�eorem 1.1. �e following holds for any 0 < Z ≤ 2−400. �ere is an algorithm such that given a Lovász
local lemma instance with uniform random variables and atomic bad events, if

ln
1

?
≥ 350 ln� + 3 ln

1

Z
,(2)

then the algorithm outputs a random assignment ^ ∈
⊗

E∈+ &E in time $̃
(
(�2: + @)=

(
=
Y

)Z )
, such that

the distribution of ^ is Y-close to the LLL-distribution in total variation distance, where @ = maxE∈+ |&E |,

: = max�∈B |vbl (�) |, and $̃ (·) hides a factor of polylog(=,
1
Y , @, �).

�is gives a unified approach for sampling uniform LLL-distributions. It is achieved by a new tech-
nique called “state compression” (see Section 1.3 and Section 3). �e time complexity of the sampling
algorithm is controlled by a constant parameter Z which also controls the gap to the local lemma con-
dition (2), so the running time can be arbitrarily close to linear in = as Z approaches 0.
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�ough �eorem 1.1 is stated for uniform sampling, our main result can be extended to the LLL-
distributions that arise from non-uniform random variables with arbitrary constant biases, a se�ing
that corresponds to the statistical physics models with constant local fields, which are considered inter-
esting for sampling and counting. For such a general se�ing, �eorem 1.1 remains to hold by replacing
the condition (2) with ln 1

?
≥ � ln(�/Z ) where the constant factor � depends on the maximum bias.

�e formal proof of this general result is postpone to the full version of the paper.
On the other hand, any general non-atomic bad event can be seen as a union of disjoint atomic bad

events. Let � be a bad event defined on vbl (�) ⊆ + and N� , {f ∈
⊗

E∈vbl(�) &E | � occurs at f}

denote the set of assignments of vbl (�) that make � occur. Event � can thus be decomposed to |N� |

atomic events, each corresponding to a forbidden assignment f ∈ N� . �erefore, any general LLL in-
stance with ? = max�∈B Pr [�] and maximum degree� of the dependency graph, can be equivalently
represented as an LLL instance with atomic bad events, by blowing up each bad event � ∈ B for at
most # , max�∈B |N� | times. �e resulting LLL instance with atomic bad events can be constructed

within $̃ (�#:=) time, such that every atomic bad event occurs with probability at most ? and has the
degree of dependency at most (� + 1)# . Hence, we have the following corollary.

Corollary 1.2. �e following holds for any 0 < Z ≤ 2−400. �ere is an algorithm such that given a Lovász
local lemma instance with uniform random variables, if

ln
1

?
≥ 350 ln(� + 1) + 350 ln# + 3 ln

1

Z
,

then the algorithm outputs a random assignment^ ∈
⊗

E∈+ &E in time $̃
(
(�2# 2: + @)=

(
=
Y

)Z )
such that

the distribution of ^ is Y-close to the LLL-distribution in total variation distance, where @ = maxE∈+ |&E |,

: = max�∈B |vbl (�) |, and $̃ (·) hides a factor of polylog(=,
1
Y , @, �, # ).

To the best of our knowledge, this is the first result that achieves efficient uniform sampling of
general CSP solutions within such a local lemma type of regime. In the current result, both the regime
and the complexity depend on an extra parameter # , namely the maximum number of violating local
configurations for any bad event. Whether such dependency is necessary is an open problem.

Our approach also produces sharper bounds for specific subclasses of LLL instances. We consider
the problem of uniformly sampling proper colorings of hypergraphes. Let � = (+, E) be a :-uniform
hypergraph i.e. |4 | = : for all 4 ∈ E . A proper hypergraph @-coloring ^ ∈ [@]+ assigns each vertex
a color such that no hyperedge is monochromatic. Let Δ denote the maximum degree of hypergraph,

i.e. each vertex belongs to at most Δ hyperedges. By LLL, a proper @-coloring exists if @ ≥ �Δ
1

:−1 for
some suitable constant �. We have the following result for sampling hypergraph colorings.

�eorem 1.3. �ere is an algorithm such that given any :-uniform hypergraph on = vertices with maxi-

mum degree Δ and a set of colors [@], assuming : ≥ 30 and @ ≥ 15Δ
9

:−12 + 650, the algorithm returns a

random @-coloring ^ ∈ [@]+ in time $̃ (@2:3Δ2=
(
=
Y

) 1
@ ), such that the distribution of ^ is Y-close in total

variation distance to the uniform distribution of all proper @-colorings of the input hypergraph.

In fact, our algorithm works for a regime where : ≥ 13 and @ ≥ @0(:) = Ω(Δ
9

:−12 ). See�eorem 5.4
for a more technical statement. �e running time of our algorithm is always polynomially bounded
for any bounded or unbounded : and Δ, and is ge�ing arbitrarily close to linear in = as @ grows.

Hypergraph colorings are important combinatorial objects. �e classic local Markov chain on hy-
pergraph colorings rapidly mixes in$ (= log=) steps if : ≥ 4 and @ > Δ [BDK06, BDK08]. For “simple”
hypergraphs where any two hyperedges share at most one vertex, the mixing condition was improved
to @ ≥ max{�: log=, 500:

3
Δ
1/(:−1) } [FM11, FA17]. �e first algorithm for sampling and counting

hypergraph colorings that works in a local lemma regime was given in [GLLZ19]. �e algorithm is ob-
tained by extendingMoitra’s approach [Moi19] to adaptivelymarking/unmarking hypergraph vertices,

and runs in time =poly (Δ:) if : ≥ 28 and @ > 798Δ
16

:−16/3 . Our algorithm both substantially improves

the running time and improves the regime to @ ≥ 15Δ
9

:−12 + $ (1). Our algorithm utilizes a novel
projection scheme instead of the mark/unmark strategy of Moitra, to transform the space of proper
colorings. And our algorithm implements a rapidly mixing Markov chain on the projected space.
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A canonical subclass of CSPs are the CNF (conjunctive normal form) formulas. In a :-CNF, each
clause contains : distinct variables. And the maximum (variable-)degree 3 is given by maximum num-
ber of clauses a variable appears in. By LLL, a satisfying assignment exists if : ≥ log3 + log: +�1 for
some suitable constant �. We have the following result for uniform sampling :-CNF solutions.

�eorem 1.4. �e following holds for any 0 < Z ≤ 2−20. �ere is an algorithm such that given any :-CNF
formula on= variables withmaximum degree 3 , assuming : ≥ 13 log 3 + 13 log : + 3 log 1

Z , the algorithm

returns a random assignment ^ ∈ {True, False}+ in time $̃ (32:3=
(
=
Y

)Z
) such that the distribution of

^ is Y-close in total variation distance to the uniform distribution of all satisfying assignments.

A more detailed version is stated as �eorem 5.5. �e regime : & 13 log3 in �eorem 1.4 improves
the state-of-the-art regime : & 20 log3 in [FGYZ20] with the same running time.

1.2. Implications to approximate counting. All our sampling results imply efficient algorithms
for approximate counting. Given an LLL instance Φ with uniform random variables, let /Φ denote the
total number of satisfying assignments that avoid all bad events. For any 0 < X < 1, the problem

Pcount (Φ, X) asks to output a random number /̂ such that /̂ ∈ (1 ± X)/Φ with probability at least 3
4
.

In our results (�eorem 1.1, Corollary 1.2, �eorem 1.3, and �eorem 1.4), for several subclasses of
LLL instances, we give such sampling algorithms that given an LLL instance Φ and an error bound
Y > 0, a random ^ is returned in time) (Y) = )Φ (Y) such that ^ is Y-close in total variation distance to
the LLL-distribution of Φ, which is the uniform distribution over all satisfying assignments for Φ.

It is well known that one can solve the approximate counting problem Pcount (Φ, X) by calling to
such oracles for nearly uniform sampling, either via the self-reducibility [JVV86] that adds one bad
event at a time, or via the simulated annealing approach [BŠVV08, ŠVV09, Hub15, Kol18b] that al-
ters a temperature. �e simulated annealing gives more efficient reduction. Specifically, by routinely
going through the annealing process in [FGYZ20], one can obtain a non-adaptive simulated anneal-

ing strategy to solve the approximate counting problem Pcount (Φ, X) in time$
(
<
X2
) (Y) log <

X

)
, where

Y = Θ

(
X2

< log(</X)

)
, and< denotes the number of bad events in Φ.

1.3. Technique overview. As addressed in [Wig19], in general, the space of SAT solutions may not
be connected via local updates of variables, even when the existence of SAT solutions is guaranteed by
the local lemma. A major challenge for efficiently sampling constraint satisfaction solutions in a local
lemma regime is to bypass such connectivity barrier.

Several previous works that have successfully bypassed this fundamental barrier fell into the same
“mark/unmark” paradigm initiated by Moitra in [Moi19]. Let+ be the set of variables, and let ` denote
the uniform distribution over all satisfying assignments. �e paradigm effectively constructs a random
pair (",-" ) where" ⊆ + is a set of marked variables and -" is a random assignment of the marked
variables in" , such that the randompair (",-" ) satisfies the so-called “pre-Gibbs” property [GLLZ19],
which means that if we complete -" to an assignment ^ of all variables in+ by sampling the comple-
ment-+ \" according to the marginal distribution induced by ` on+ \" conditioning on-" , then the
resulting ^ indeed follows the correct distribution `. �e paradigm may construct the marked set "
either non-adaptively to the random-" (as in [Moi19, FGYZ20, GGGY20] for CNFs), or adaptively to it
(as in [GLLZ19] for hypergraph colorings). �e random pair (",-" ) can thus be jointly distributed, so
that being pre-Gibbs does not necessarily mean that -" is distributed as the marginal distribution `" .
Indeed, it can be much more complicated than that.

In this paper, we introduce a novel technique called “state compression” to bypass the connectivity
barrier for general spaces of satisfaction solutions and obtain fast sampling algorithms.

For each variable E ∈ + with domain &E , we construct a projection ℎE : &E → ΣE that maps from
domain &E to an alphabet ΣE, so that each assignment ^ ∈ W ,

⊗
E∈+ &E is mapped to a string

h(^) , (ℎE (^E))E∈+ in � ,
⊗

E ΣE . �erefore, the LLL-distribution ` over satisfying assignments, is
transformed to a joint distribution a over � as:

∀_ ∈ Σ, a (_ ) = Pr^∼` [h(^) = _ ] .

1�roughout the paper, we use log to denote the logarithm base 2.
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Our algorithm first simulates the Glauber dynamics with stationary distribution a to draw a sample
_ ∈ Σ approximately according to a . At each transition, the Glauber dynamics:

• picks a variable E uniformly at random;

• updates .E by a random value sampled according to a
.+ \{E}
E , which stands for the marginal

distribution at E induced by a conditioned on the assignment on + \ {E} being fixed as .+ \{E }.

A�er running the Glauber dynamics for a sufficiently many $ (= log=) steps, the algorithm generates
a random string _ ∈ Σ which hopefully is distributed approximately as a . Finally, the algorithm still
needs to “invert” the sampled string _ ∈ Σ to a random satisfying assignment ^ ∈ W that follows the
LLL-distribution ` conditioning on h(^) = _ .

Both in the final step of the algorithm and at each transition of the Glauber dynamics, we are in fact
trying to invert a completely specified string _ ∈ Σ (or an almost completely specified string .+ \{E })

to a uniform random satisfying assignment ^ ∈ W within its pre-image h−1(_ ) (or that of .+ \{E }).
�erefore, the efficiency of above algorithmic framework for sampling relies on that:

(1) the Glauber dynamics for a mixes in $ (= log=) steps;
(2) there is a procedure that can efficiently invert a completely (or almost completely) specified

string _ to a uniform random satisfying assignment ^ ∈ W within the pre-image h−1(_ ).

As we know, the original space of satisfying assignments ^ ∈ W may not be connected via the local
updates used by the Glauber dynamics. To achieve above item 1, intuitively, the projection h should
be able to map many far-apart solutions ^,^ ′ ∈ W to the same h(^) = h(^ ′), so the random walk
in the projected space becomes well connected. �is suggests that the projection h should substantially
compress the original state space. On the other hand, the above item 2 is easier to solve when the
projection h is somehow close to a one-to-one mapping, because in such case, by assuming h(^) = _ ,
the original LLL instance is very likely to be decomposed into small clusters. �is suggests that the
projection h should not compress the original state space too much.

�e above two seemingly contradicting requirements can in fact be captured by a set of simple and
local entropy constraints, formulated in Condition 3.4. A good projection h satisfying these require-
ments can thus be constructed by algorithmic LLL.

�e original mark/unmark paradigm can be treated as a special case of our approach of state com-
pression. Recall that the paradigm generates a pre-Gibbs pair (",-" ), where each variable E ∈ +

is either marked (E ∈ ") so that its value -E is revealed, or is unmarked (E ∉ ") so that its value
-E is unrevealed. �is can be represented by a projection h where for each marked E , the projection
ℎE : &E → ΣE is a one-to-onemapping to ΣE where |ΣE | = |&E |; and for each unmarked E , the projection
ℎE : &E → ΣE is a all-to-one mapping to ΣE of size |ΣE | = 1. General projections provide a broad middle
ground between the two extremal cases for the one-to-one and the all-to-one mappings, so that our
technique is applicable to more general se�ings. And for large enough &E’s, it indeed is such middle

ground ℎE : &E → ΣE with |ΣE | ≈ |&E |
3/4 that resolves the problem well.

1.4. Openproblems. An open problem is to remove the assumption on the atomicity of bad events. In
general, the LLL is defined by arbitrary bad events on arbitrary probability space. �e LLL distribution
can thus be generalized. And the sampling LLL corresponds to the problems of sampling from non-
uniform distributions or distributions arising from global constraints.

It is well-known that the Shearer’s bound is tight for general LLL [She85]. A central open problem
for sampling LLL is to find the “Shearer’s bound” for sampling LLL, namely, to give a tight condition
under which one can efficiently draw random samples from general LLL distributions.

Even for interesting special classes of LLL instances such as :-CNFs or hypergraph colorings, the
critical thresholds for the computational phase transition for sampling are major open problems in the
field of sampling algorithms.

1.5. Organization of the paper. Models and preliminaries are described in Section 2. �e rules for
state compression are given in Section 3. �e main sampling algorithm is described in Section 4. In
Section 5, we prove all main results in Section 1. In Section 6, we give the algorithms for constructing
projections. In Section 7, we analyze the inverse sampling subroutine. �e rapid mixing of the Markov
chain is proved in Section 8.
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2. Models and preliminaries

2.1. CSP formulas defined by atomic bad events. Let + be a set of variables with finite domains
(&E)E∈+ , where each E ∈ + takes its value from &E with |&E | ≥ 2. Let W ,

⊗
E∈+ &E denote the

space for all assignments, and for any subset Λ ⊆ + , denote &Λ ,
⊗

E∈Λ&E . Let C be a collection
of local constraints, where each 2 ∈ C is defined on a subset of variables vbl (2) ⊆ + that maps every
assignment xvbl(2) ∈ &vbl(2) to a True or False, which indicates whether 2 is satisfied or violated. A
CSP (constraint-satisfaction problem) formula Φ is specified by the tuple (+,W, C) such that:

∀x ∈ W, Φ(x) =
∧
2∈C

2
(
xvbl(2)

)
,

where xvbl(2) denotes the restriction of x on vbl (2). In LLL’s language, each 2 ∈ C corresponds to a
bad event �2 defined on vbl (2) that occurs if 2 is violated, and Φ is satisfied by x if and only if none of
these bad events occurs.

In this paper, we restrict ourselves to the CSP formulas defined by atomic bad events. A constraint
2 defined on vbl (2) is called atomic if |2−1 (False) | = 1, that is, if 2 is violated by a unique “forbidden
configuration” in&vbl(2) . Such CSP formulas with atomic constraints have drawn studies in the context
of LLL [AI16, HH17, HS17a, Kol18a, Har21, AIS19, HS19, HV20]. Similar classes of CSP formulas have
also been studied under the name “multi-valued/non-Boolean CNF formulas” in the field of classic
Artificial Intelligence [LKM03, FP01]. Clearly, any general constraint 2 on vbl (2) can be simulated by
|2−1 (False) | atomic constraints, each forbidding a configuration in 2−1 (False).

�e dependency graph of a CSP formula Φ = (+,W,C) is defined on the vertex set C, such that any
two constraints 2, 2 ′ ∈ � are adjacent if vbl (2) and vbl (2 ′) intersect. We use Γ(2) , {2 ′ ∈ C \ {2} |

vbl (2) ∩ vbl (2 ′) ≠ ∅} to denote the neighborhood of 2 ∈ C and let

� = �Φ , max
2∈C
|Γ(2) |

denote the maximum degree of the dependency graph.
�e followings are some typical special cases of CSP formulas with atomic constraints.

2.1.1. :-CNF formula. �eCNF formulasΦ = (+,W,C) are formulaswith atomic constraints onBoolean
domains&E = {True, False}, for all E ∈ + . Now each constraint 2 ∈ C is a clause. For :-CNF formulas,
we have |vbl (2) | = : for all clauses 2 ∈ C.

2.1.2. Hypergraph coloring. Let � = (+, E) be a :-uniform hypergraph, where every hyperedge 4 ∈ E
has |4 | = : . Let [@] = {1, 2, . . . , @} be a set of @ colors. A proper hypergraph coloring ^ ∈ [@]+ assigns
each vertex E ∈ + a color -E such that no hyperedge is monochromatic.

Define the following set C of atomic constraints. For each hyperedge 4 ∈ E and color 8 ∈ [@], add an
atomic constraint 24,8 into C, where 24,8 is defined as vbl

(
24,8

)
= 4 and for any x ∈ [@]4 , 24,8 (x) = False

if and only if GE = 8 for all E ∈ 4. It is straightforward to see that there is a one-to-one correspondence
between the proper @-colorings in � and the satisfying assignments to Φ = (+, [@]+ , C).

2.2. Lovász local lemma. Let R = {'1, '2, . . . , '=} be a collection of mutually independent ran-
dom variables. For any event �, denote by vbl (�) ⊆ R the set of variables determining �. In other
words, changing the values of variables outside of vbl (�) does not change the truth value of �. Let
B = {�1, �2, . . . , �=} be a collection of “bad” events. For each event � ∈ B, we define Γ(�) ,

{� ′ ∈ B | � ′ ≠ � and vbl (� ′) ∩ vbl (�) ≠ ∅}. For any event � ∉ B and its determining variables
vbl (�) ⊆ R, we define Γ(�) , {� ∈ B | vbl (�) ∩ vbl (�) ≠ ∅}. Let PrD [·] denote the product
distribution of variables in R. �e following version of the Lovász local lemma will be used in this
paper.

�eorem 2.1 ( [HSS11]). If there is a function G : B → (0, 1) such that for any � ∈ B,

PrD [�] ≤ G (�)
∏

�′∈Γ (�)

(1 − G (� ′)),(3)
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then it holds that

PrD

[∧
�∈B

�

]
≥

∏
�∈B

(1 − G (�)) > 0.

�us, there exists an assignment of all variables that avoids all the bad events.
Moreover, for any event �, it holds that

PrD

[
�

�� ∧
�∈B

�

]
≤ PrP [�]

∏
�∈Γ (�)

(1 − G (�))−1.

2.3. Coupling, Markov chain and mixing time. Let Ω be a state space. Let ` and a be two distri-
butions over Ω. �e total variation distance between ` and a are defined by

3TV (`, a) ,
1

2

∑
G ∈Ω

|` (G) − a (G) | .

A coupling of ` and a is a joint distribution (-,. ) ∈ Ω × Ω such that the marginal distribution of - is
` and the marginal distribution of . is a . �e following coupling lemma is well-known.

Lemma 2.2 (coupling lemma [LP17, Proposition 4.7]). For any coupling (-,. ) between ` and a ,

3TV (`, a) ≤ Pr [- ≠ . ] .

Moreover, there exists an optimal coupling that achieves the equality.

A Markov chain is a random sequence (-C )C≥0 over a state space Ω such that the transition rule is
specified by the transition matrix % : Ω × Ω → R≥0. We o�en use the transition matrix to denote the
corresponding Markov chain. �e Markov chain % is irreducible if for any -,. ∈ Ω, there exists C > 0

such that %C (-,. ) > 0. �e Markov chain % is aperiodic if gcd{C | %C (-,- ) > 0} = 1 for all - ∈ Ω.
A distribution c over Ω is a stationary distribution of % if c% = c . If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distribution. �e Markov chain % is reversible with respect
to the distribution c if the following detailed balance equation holds

∀-, . ∈ Ω : c (- )% (-,. ) = c (. )% (.,- ),

which implies c is a stationary distribution of % . Given a Markov chain % with the unique stationary
distribution c , the mixing time of % is defined by

∀0 < Y < 1, )mix(Y) , max
-0∈Ω

min{C | 3TV

(
%C (-0, ·), c

)
≤ Y}.

A coupling of Markov chain % is a joint random process (-C , .C )C≥0 such that both (-C )C≥0 and
(.C )C≥0 follow the transition rule of % individually, and if -B = .B , then -: = .: for all : ≥ B. �e
coupling is a widely-used tool to bound the mixing times of Markov chains, because by the coupling
lemma, it holds thatmax-0∈Ω 3TV

(
%C (-0, ·), c

)
≤ max-0,.0∈Ω Pr [-C ≠ .C ].

�e path coupling [BD97] is a powerful tool to construct the coupling of Markov chains. Assume
Ω =

⊗
E∈+ &E , where |+ | = = and each &E is a finite domain. For any -,. ∈ Ω, define the Hamming

distance between - and . by

3ham (-,. ) , |{E ∈ + | -E ≠ .E}| .

In this paper, we will use the following simplified version of path coupling.

Lemma 2.3 (path coupling [BD97]). Let 0 < X < 1 be a parameter. Let % be an irreducible and aperiodic
Markov chain over the state space Ω =

⊗
E∈+ &E , where |+ | = = . If there is a coupling of Markov chain

(-,. ) → (- ′, . ′) defined over all -,. ∈ Ω with 3ham (-,. ) = 1 such that

E [3ham (-
′, . ′) | -,. ] ≤ 1 − X,

then the mixing time of the Markov chain satisfies

)mix(Y) ≤

⌈
1

X
log

=

Y

⌉
.

Readers can refer to the textbook [LP17] for more backgrounds of Markov chains and mixing times.
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3. state compression

A CSP formula Φ = (+,W, C) with uniformly distributed random variables defines an LLL instance.

Definition 3.1 (LLL-distribution). For each E ∈ + , let cE denote the uniform distribution over domain
&E . Let c ,

⊗
E∈+ cE be the uniform distribution over W . Let ` = `Φ denote the distribution of ^ ∼ c

conditioned on Φ(^), that is, the uniform distribution over satisfying solutions of Φ.

�is distribution ` over satisfying solutions of Φ is what we want to sample from. In order to do
so, this uniform probability space of satisfying solutions is transformed by a projection. A projection
scheme h = (ℎE)E∈+ specifies for each E ∈ + , a mapping from E ’s domain&E to a finite alphabet ΣE :

ℎE : &E → ΣE .

Let � ,
⊗

E∈+ ΣE, and for any Λ ⊆ + , we denote ΣΛ ,
⊗

E∈Λ ΣE .
We also naturally interpret h as a function on (partial) assignments such that

∀Λ ⊆ +,∀x ∈ &Λ, h(x) , (ℎE (GE))E∈Λ.(4)

Definition 3.2 (projected LLL-distribution). For each E ∈ + , let dE be the distribution of .E = ℎE (-E)

where -E ∼ cE . Let d ,
⊗

E∈+ dE be the product distribution over �.

For each E ∈ + and any ~E ∈ ΣE , let c
~E
E denote the distribution of -E ∼ cE conditioned on ℎE (-E) =

~E . For any Λ ⊆ + and ~Λ ∈ ΣΛ, let c
~Λ be the distribution of ^ ∼ c conditioned on h(^Λ) = ~Λ.

Let a = aΦ,h denote the distribution of _ = h(^) where ^ ∼ `.

Note that the original LLL-distribution ` is aGibbs distribution [MM09], defined by local constraints
on independent random variables. Whereas, the distributiona of projected satisfying solution, is a joint
distribution over Σ, which may no longer be a Gibbs distribution nor can it be represented as any LLL
instance, because x, x ′ ∈ & with Φ(x) ≠ Φ(x ′) may be mapped to the same h(x) = h(x ′).

In the algorithm, a projection scheme h = (ℎE)E∈+ is accessed through the following oracle.

Definition 3.3 (projection oracle). A projection oracle with query cost C for a projection scheme h =

(ℎE)E∈+ is a data structure that can answer each of the following two types of queries within time C :

• evaluation: given an input value GE ∈ &E of a variable E ∈ + , output ℎE (GE) ∈ ΣE ;
• inversion: given a projected value ~E ∈ ΣE of a variable E ∈ + , return a random -E ∼ c

~E
E .

Our algorithm for sampling a uniform random satisfying solution is then outlined below.

Algorithm for sampling from `

1. Construct a good projection scheme h (formalized by Condition 3.4);

2. sample a uniform random ^ ∼ c and let _ = h(^);

3. (Glauber dynamics on a) repeat the followings for sufficiently many iterations:

pick a E ∈ + uniformly at random;

update .E by redrawing its value independently according to a
.+ \{E}
E ;

4. sample ^ ∼ ` conditioned on h(^) = _ .

�e algorithm simulates a Markov chain (known as the Glauber dynamics) on space � for drawing
a random configuration _ ∈ Σ approximately according to the joint distribution a , a�er which, the
algorithm “inverts” _ to a uniform random satisfying assignment^ for Φwithin the pre-image h−1 (_ ).

�e key to the effectiveness of this sampling algorithm is that we should be able to sample accurately

and efficiently from a
.+ \{E}
E (which is the marginal distribution at E induced by a conditioning on that

the configuration on + \ {E} being fixed as .+ \{E }) as well as from `_ (which is the distribution of
^ ∼ ` conditioned on that h(^) = _ ). In fact, both of these are realized by sampling generally from
the following marginal distribution `

~Λ
(
, for ( ⊆ + and ~Λ ∈ ΣΛ, where either Λ = + or |Λ| = |+ | − 1.

`
~Λ
( : distribution of -( , where ^ ∈ W is drawn from ` conditioning on that h(-Λ) = ~Λ.(5)

8



�e distribution `. corresponds to the special case of `
~Λ
(

with ( = Λ = + . And also we can sample

from a
.+ \{E}
E by first sampling a -E ∼ `

.+ \{E}
E , `

.+ \{E}

{E }
and then outpu�ing ℎE (-E).

Since ~Λ is either completely or almost completely specified on + , sampling from `
~Λ
(

is essentially
trying to invert ~Λ according to distribution `. And this task becomes tractable when the projection h

is somehow close to a 1-1 mapping, i.e. when h(^)’s entropy remains significant compared to ^ ∼ `.
On the other hand, the efficiency of the sampling algorithm relies on the mixing of theMarkov chain

for sampling from a . It was known that the original state space of all satisfying solutions might not
be well connected through single-site updates [Wig19, FGYZ20]. �e projection may increase the con-
nectivity of the state space by mapping many far-apart satisfying solutions to the same configuration
in Σ, but this means that the projection h should not be too close to a 1-1 mapping. In other words, the
projection h(^) shall reduce the entropy of ^ ∼ ` by a substantial amount.

�ese two seemingly contradicting requirements are formally captured by the following condition.

Condition 3.4 (entropy criterion). Let 0 < V < U < 1 be two parameters.�e followings hold for the
CSP formula Φ = (+,W,C) and the projection scheme h. For each E ∈ + , let @E , |&E | and BE , |ΣE |. �e
projection h is balanced, which means for any E ∈ + and ~E ∈ ΣE ,⌊

@E

BE

⌋
≤

��ℎ−1E (~E)�� ≤
⌈
@E

BE

⌉
.

And for any constraint 2 ∈ C, it holds that∑
E∈vbl(2)

log

⌈
@E

BE

⌉
≤ U

∑
E∈vbl(2)

log @E,(6)

∑
E∈vbl(2)

log

⌊
@E

BE

⌋
≥ V

∑
E∈vbl(2)

log@E .(7)

Note that for uniform random variable -E ∈ &E , the entropy � (-E) = log@E , and for .E = ℎE (-E)

where h is balanced, we have log
@E
⌈@E/BE ⌉

≤ � (.E) ≤ log
@E
⌊@E/BE ⌋

. �erefore, the two inequalities (6) and

(7) are in fact slightly stronger versions of the entropy upper and lower bounds for ^ ∼ c :

(1 − U)
∑

E∈vbl(2)

� (-E) ≤
∑

E∈vbl(2)

� (ℎE (-E)) ≤ (1 − V)
∑

E∈vbl(2)

� (-E).

So howmay such a projection satisfying Condition 3.4 change the properties of a solution space and
help sampling? Next, we introduce two consequent conditions of Condition 3.4 to explain this.

Recall that a�er projection, the joint distribution a over projected solutions may no longer be repre-
sented by any LLL instance. Nevertheless, we can modify it to a valid LLL instance by proper rounding.

Definition 3.5 (the “round-down” CSP formula). Given a CSP formula Φ = (+,W,C) and a projection
scheme h = (ℎE)E∈+ , let CSP formula Φ ⌊h⌋ = (+, �, C ⌊h⌋) be constructed as follows:

• the variable set is still + and each variable E ∈ + now takes values from ΣE ;
• corresponding to each constraint 2 ∈ C of Φ, a constraint 2 ′ ∈ C ⌊h⌋ is constructed as follows:

vbl (2 ′) = vbl (2) and

∀~ ∈ Σvbl(2′) , 2 ′ (~) =

{
True if 2 (x) for all x ∈ Ωvbl(2) that h(x) = ~,

False if ¬2 (x) for some x ∈ Ωvbl(2) that h(x) = ~.

�eCSP formulaΦ ⌊h⌋ is considered a “round-down” version of the CSP formulaΦ under projectionh,
because it always holds that 2 ′(~) =

⌊
Pr^∼c

[
2
(
^vbl(2)

)
| h

(
^vbl(2)

)
= ~

] ⌋
for all~ ∈ Σvbl(2′) = Σvbl(2) .

Recall that the following “LLL condition” is assumed for the LLL instance defined by CSP formula
Φ = (+,W, C) on uniform random variables ^ ∼ c :

ln
1

?
> � ln� + �, (for some suitable constants � and �)(8)
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where ? , max2∈C Pr^∼c
[
¬2

(
^vbl(2)

)]
denotes the maximum probability that a constraint 2 ∈ C is

violated and � denotes the maximum degree of the dependency graph.
For CSP formula Φ defined by atomic constraints, the LLL condition (8) and the inequality (6) in

Condition 3.4 together imply the following condition.

Condition 3.6 (round-down LLL criterion). �e LLL instance defined by the round-down CSP formula
Φ
⌊h⌋

= (+, �, C ⌊h⌋) on variables distributed as d , satisfies that

ln
1

?
> (1 − U) (� ln� + �),

where ? , max2∈C ⌊h⌋ Pr_∼d
[
¬2

(
_vbl(2)

) ]
and � denotes the maximum degree of the dependency graph.

�e projection h may map both satisfying x ∈ W and unsatisfying x ′ ∈ W to the same h(x) =

h(x ′) ∈ Σ, which causes ambiguity for classifying those “satisfying” ~ ∈ Σ. �e round-down CSP
formula resolves such ambiguity with a pessimistic mindset: it refutes any ~ ∈ Σ whenever even a
single x ∈ h−1(~) is unsatisfying. Condition 3.6 basically says that an LLL condition holds even up to
such a pessimistic interpretation. �is is crucial for sampling from `

~Λ
(

defined in (5), because within
such regime, the probability space of `~Λ is decomposed into small clusters of sizes $ (log=).

Meanwhile, the LLL condition (8) and the inequality (7) in Condition 3.4 together imply the following
condition.

Condition 3.7 (conditional LLL criterion). For any Λ ⊆ + and ~Λ ∈ ΣΛ, the LLL instance defined by
CSP formula Φ = (+,W,C) on variables distributed as c~Λ , satisfies that

ln
1

?
> V (� ln� + �),

where ? , max2∈C Pr^∼c~Λ

[
¬2

(
^vbl(2)

) ]
and � denotes the maximum degree of the dependency graph.

Condition 3.7 is basically a self-reducibility property. A major obstacle for sampling satisfying solu-
tion is that the regime (8) for the original CSP formulaΦmay not be self-reducible: it is not closed under
pinning of variables to arbitrary evaluations. Condition 3.7 states that the self-reducibility property is
achieved under projection: the LLL regime is closed under pinning of variables to arbitrary projected
evaluations. �is is crucial for rapid mixing of the Markov chain on projected space Σ.

We have efficient procedures for constructing the projection scheme satisfying Condition 3.4.

�eorem 3.8 (projection construction). Let 0 < V < U < 1 be two parameters. Let Φ = (+,W, C) be a
CSP formula where all constraints in C are atomic. Let � denotes the maximum degree of its dependency
graph and ? , max2∈C

∏
E∈vbl(2)

1
|&E |

. If log 1
? ≥

25
(U−V)3

(log� + 3), then for any 0 < X < 1, with

probability at least 1 − X a projection oracle (Definition 3.3) with query cost $ (log@) can be successfully
constructed within time $ (=(�: + @) log 1

X log @), where @ , maxE∈+ |&E |, : , max2∈C |vbl (2) | and the
oracle is for a projection scheme h = (ℎE)E∈+ that satisfies Condition 3.4 with parameters (U, V).

�e above result can be strengthened for the (:,3)-CSP formulas, where |vbl (2) | = : for all 2 ∈ C
and each E ∈ + appears in at most 3 constraints, on homogeneous domains&E = [@] for all E ∈ + .

�eorem 3.9. Let 0 < V < U < 1 be two parameters. �e followings hold for any (:, 3)-CSP formula
Φ = (+, [@]+ , C) where all constraints in C are atomic:

• If 7 ≤ @
U+V
2 ≤

@

6
and log @ ≥ 1

U−V , then a projection oracle with query cost$ (log@) for a projection

scheme h satisfying Condition 3.4 with parameters (U, V), can be constructed in time $ (= log @).

• If : ≥ 2 ln 2
(U−V)2

log(2e:3), then for any 0 < X < 1, with probability at least 1−X a projection oracle

as above can be successfully constructed within time $ (=3: log 1
X ).

�e proofs of �eorem 3.8 and �eorem 3.9 are given in Section 6.
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4. The sampling algorithm

Let Φ = (+,W, C) be the input CSP formula with atomic constraints, which defines a uniform distri-
bution ` over satisfying assignments as in Definition 3.1. Let Y > 0 be an error bound. �e goal is to
output a random assignment ^ ∈ W such that 3TV (^, `) ≤ Y .

Depending on the classes of CSP formulas, the algorithm first applies one of the procedures in
�eorem 3.8 and �eorem 3.9 to construct a projection scheme h = (ℎE)E∈+ , where ℎE : &E → ΣE for
each E ∈ + , such that h satisfies Condition 3.4 with parameters (U, V), where 0 < V < U < 1 are going
to be fixed later in the analysis in Section 5. For randomized construction procedure, we set its failure
probability to be Y

4
, and if it fails, the sampling algorithm simply returns an arbitrary ^ ∈ W .

Suppose that the projection scheme h is given. �e sampling algorithm is described in Algorithm 1.

Algorithm 1:�e sampling algorithm (given a proper projection scheme)

input :a CSP formula Φ = (+,W,C) with atomic constraints, a projection scheme h = (ℎE)E∈+
satisfying Condition 3.4 with parameters (U, V), and an error bound Y > 0;

output :a random assignment ^ ∈ W ;
1 sample a uniform random ^ ∼ c and let _ ← h(^);

2 for each C from 1 to ) ,
⌈
2= log 4=

Y

⌉
do // Glauber dynamics for _ ∈ �

3 pick a variable E ∈ + uniformly at random;

4 -E ← InvSample
(
Φ, h, Y

4()+1)
, .+ \{E }, {E}

)
; // sample -E ∈ &E approx. from `

.+ \{E}
E

5 .E ← ℎE (-E);

6 ^ ← InvSample
(
Φ,h, Y

4()+1)
, _ ,+

)
; // sample ^ ∈ W approx. from `_

7 return ^ ;

Algorithm 1 implements the sampling algorithm outlined in Section 3. It first implements the
Glauber dynamics on space � for sampling from a , the distribution of projected satisfying assignments
in Definition 3.2. It simulates the Glauber dynamics for ) =

⌈
2= log 4=

Y

⌉
steps to draw a random _ ∈ �

distributed approximately as a . At each step,.E for a uniformly picked E ∈ + is redrawn approximately

from the marginal distribution a
.+ \{E}
E . At last, the algorithm inverts the sampled _ ∈ � to a random

satisfying assignment ^ ∈ W distributed approximately as ` conditioning on that h(^) = _ .

Algorithm 1 relies on an Inverse Sampling subroutine for sampling approximately from `
.+ \{E}
E or `_ .

4.1. �e InvSample subroutine (Algorithm 2). �e goal of the subroutine InvSample (Φ, h, X,~Λ, (),
where ( ⊆ + , Λ ⊆ + , and ~Λ ∈ ΣΛ, is to sample a random -( ∈ &( according to the distribution
`
~Λ
(
, as defined in (5). In principle, computing the distribution `

~Λ
(

involves computing some nontrivial
partition function, which is intractable in general. Here, for an error bound X > 0, we only ask for that
with probability at least 1 − X , the subroutine returns a random sample that is X-close to `

~Λ
(

in total
variation distance, where the probability is taken over the randomness of the input ~Λ.

We define some notions to describe the subroutine. Let 2 ∈ C be a constraint in CSP formula Φ.
Recall that 2 is atomic. Let

L2
, 2−1 (False)

denote the unique “forbidden configuration” inWvbl(2) that violates 2. We say that an atomic constraint
2 ∈ C is satisfied by ~Λ ∈ ΣΛ for Λ ⊆ + , if

h
(
�2
Λ∩vbl(2)

)
≠ ~Λ∩vbl(2),(9)

where the function h(·) is formally defined in (4). For atomic constraint 2 ∈ C, the above condition (9)
implies that 2 is satisfied by any x ∈ W that h(GΛ) = ~Λ. Hence, the constraint 2 must be satisfied by
any configuration in the support of the distribution `~Λ = `

~Λ
+
.

�e key idea of the subroutine is that we can remove all the constraints that have already been satis-
fied by ~Λ to obtain a new CSP formula Φ′ = (+,W, C ′), where C ′ , {2 ∈ C | 2 is not satisfied by ~Λ}.
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Algorithm 2: InvSample (Φ,h, X, ~Λ, ()

Input :a CSP formula Φ = (+,W,C) with atomic constraints, a projection scheme h, an error
bound X > 0, a configuration ~Λ ∈ ΣΛ specified on Λ ⊆ + , and a subset ( ⊆ + ;

Output :a random assignment ^ ∈ W( ;
1 let Φ′ be the new formula obtained by removing all the constraints in Φ already satisfied by ~Λ;

2 factorize Φ′ and find all the sub-formulas
{
Φ
′
8 = (+8 ,W+8 , C

′
8 ) | 1 ≤ 8 ≤ ℓ

}
s.t. each+8 ∩ ( ≠ ∅;

3 if there exists 1 ≤ 8 ≤ ℓ s.t. |C ′8 | > 2� log =�
X then // existence of giant component

4 return a uniform random ^( ∼ c( ;

5 for each 8 from 1 to ℓ do
6 repeat for at most ' ,

⌈
10

(
=
X

)[
log =

X

⌉
times: // rejection sampling with ≤ ' trials

7 sample ^8 ∼ c
~Λ8
+8

, where Λ8 , +8 ∩ Λ;

8 until Φ′8 (^8) = True;

9 if Φ′8 (^8 ) = False then // overflow of rejection sampling

10 return a uniform random ^( ∼ c( ;

11 return ^ ′( , where ^
′
=

⋃ℓ
8=1^8 ;

Define `
~Λ
Φ′

to be the distribution of ^ ∼ c~Λ conditioned on Φ
′(^), where the product distribution

c~Λ is as in Definition 3.2. It is straightforward to verify that `
~Λ
Φ′
≡ `~Λ .

Furthermore, the new CSP formula Φ′ can be factorized into a set of disjoint formulas:

Φ
′
= Φ

′
1 ∧ Φ

′
2 ∧ . . . ∧ Φ

′
< .

Our plan is to show that it almost always holds that the size of every sub-formula Φ′8 is logarithmically
bounded. �us, we can apply the naı̈ve rejection sampling independently on each sub-formula Φ

′
8 ,

which remains to be efficient altogether.
Formally, let� ′ = (+, E ′) denote the (multi-)hypergraph induced by the CSP formulaΦ′ = (+,W, C ′),

constructed by adding a hyperedge 42 = vbl (2) into E ′ for each constraint 2 ∈ C ′. Note that � ′ may
contain duplicated hyperedges. Let � ′1, �

′
2, . . . , �

′
< denote the connected components of � ′, where

� ′8 = (+8, E
′
8 ). Let Φ

′
8 = (+8 ,W+8 , C

′
8 ) denote sub-formula corresponding to � ′8 , where C

′
8 is the set of

constraints corresponding to hyperedges in E ′8 . �is defines the factorization Φ
′
= Φ

′
1 ∧ Φ

′
2 ∧ . . . ∧ Φ

′
< .

For each sub-formula Φ
′
8 = (+8,W+8 , C

′
8 ), let Λ8 = Λ ∩ +8 , and define `

~Λ8
Φ
′
8

to be the distribution of

^ ∼ c
~Λ8
+8

conditioned on Φ
′
8 (^), where c

~Λ8
+8

denotes restriction of the product distribution c~Λ8 on +8 .

It is then straightforward to verify:

`~Λ ≡ `
~Λ
Φ′
≡ `

~Λ1
Φ
′
1

× `
~Λ2
Φ
′
2

× . . . × `
~Λ<
Φ
′
<

.

Without loss of generality, we assume ( ∩ +8 ≠ ∅ for 1 ≤ 8 ≤ ℓ and ( ∩ +8 = ∅ for ℓ < 8 ≤ <.

It suffices to draw random samples ^8 ∼ `
~Λ8
Φ
′
8

independently for all 1 ≤ 8 ≤ ℓ , adjoin them together

^ ′ = ∪ℓ8=1^8 , and output its restriction ^ ′( on ( , where each ^8 ∼ `
~Λ8
Φ
′
8

can be drawn by the rejection

sampling procedure: repeatedly and independently sampling ^8 ∼ c
~Λ8
+8

until Φ′8 (^8) is true.

�e subroutine InvSample (Φ, h, X,~Λ, () does precisely as above with two exceptions:

• existence of giant connected component: |C ′8 | ≥ 2� log =�
X for some 1 ≤ 8 ≤ ℓ , where �

stands for the maximum degree of the dependency graph for Φ;

• overflow of rejection sampling: the rejection sampling from `
~Λ8
Φ
′
8

for some 1 ≤ 8 ≤ ℓ , has

used more than ' =
⌈
10

(
=
X

)[
log =

X

⌉
trials, where [ is a parameter to be fixed in Section 5.

If either of the above exceptions occurs, the algorithm terminates and returns a random ^( ∼ c( .
In Section 7, we will show that assuming Condition 3.4 for the projection scheme h with properly

chosen parameters (U, V) and by properly choosing [, for the random ~Λ upon which the subroutine
is called in Algorithm 1, with high probability none of these exceptions occurs. �erefore, the random
sample returned by the subroutine is accurate enough when being called in Algorithm 1.
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5. Proofs of the main results

In this section, we prove the main theorems of this paper. Our algorithm first constructs a projection
scheme using one of the procedures in �eorem 3.8 and �eorem 3.9, which gives us the projection
oracle that can answer queries within time cost $ (log@), where @ = maxE∈+ |&E |. We then execute
Algorithm 1 for sampling ^ approximately according to `. We assume the following basic operations
for uniform sampling:

• draw a variable E ∈ + uniformly at random within time cost $ (log=);
• for any variable E ∈ + , draw a uniform sample - ∼ cE from &E within time cost $ (log@).

When measuring the time cost of Algorithm 1, we count the number of calls to the projection oracle
as well as the above two basic sampling operations. �e time complexity of Algorithm 1 is dominated
by these oracle costs.

Next, we prove �eorem 1.1 for general CSP formulas with atomic constraints, while �eorem 1.3
and �eorem 1.4 for specific subclasses of formulas are proved in Section 5.2.

5.1. CSP formulas with atomic constraints. For CSP formulas Φ = (+,W,C) defined by atomic
constraints, we show that sampling uniform solution is efficient within the following regime:

ln
1

?
≥ 350 ln� + 3 ln

1

Z
(10)

where ? = max2∈C
∏

E∈vbl(2)
1
|&E |

stands for themaximumprobability that a constraint 2 ∈ C is violated

by uniform random assignment, and � stands for the maximum degree of the dependency graph of Φ.
�e positive constant parameter Z specifies a gap to the boundary of the regime.

�eorem 5.1. �e following holds for any 0 < Z ≤ 2−400. �ere is an algorithm such that given any
0 < Y < 1 and CSP formula Φ = (+,W, C) with atomic constraints satisfying (10), the algorithm outputs a
random assignment ^ ∈ W whose distribution is Y-close in total variation distance to the uniform distribu-

tion ` over all solutions toΦ, using time cost$
(
(�2: + @)=

(
=
Y

)Z
log4

(
=�@

Y

))
, where : = max2∈C |vbl (2) |.

�eorem 1.1 is implied by �eorem 5.1, by interpreting any LLL instance with uniform random
variables and atomic bad events as a CSP formula with atomic constraints.

Let h = (ℎE)E∈+ be a projection scheme satisfying Condition 3.4 with parameters U and V . To prove
�eorem 5.1, we have the following lemmawhich shows that assuming a Lovász local lemma condition,
the Glauber dynamics for the projected distribution a is rapidly mixing.

Lemma 5.2. If log 1
?
≥ 50

V
log

(
2000�4

V

)
, then the Markov chain %Glauber on a has )mix(Y) ≤

⌈
2= log =

Y

⌉
.

�e proof of Lemma 5.2 is given in Section 8.
We also need the following lemma for analyzing the subroutine InvSample(Φ, h, X,-Λ, (). In Algo-

rithm 1 the subroutine is called for ) + 1 times. For 1 ≤ C ≤ ) + 1, define the following bad events:

• B
(1)
C : in the C-th call of InvSample(·), a random assignment ^ is returned in Line 10.

• B
(2)
C : in the C-th call of InvSample(·), a random assignment ^ is returned in Line 4

Lemma 5.3. Let 1 ≤ C ≤ ) + 1 and 0 < [ < 1. In Algorithm 1, for the C-th calling to the subroutine
InvSample(Φ, h, X,~Λ, () with parameter [, it holds that

• given access to a projection oracle with query cost$ (log@), the time cost of InvSample(Φ,h, X, ~Λ, ()

is bounded as

$

(
|( |�2:

(=
X

)[
log2

(
=�

X

)
log@

)
,

where : = max2∈C |vbl (2) | and @ = maxE∈+ |&E |;

• conditioned on ¬B
(1)
C ∧¬B

(2)
C , the C-th calling to InvSample(Φ,h, X, ~Λ, () returns a^( ∈ &( that

is distributed precisely according to `
~Λ
(
.

13



Furthermore, if log 1
? ≥

1
1−U log(20�2) and log 1

? ≥
1
V log

(
40e�2

[

)
it holds that

Pr
[
B
(1)
C

]
≤ X and Pr

[
B
(2)
C

]
≤ X.

�e proof of Lemma 5.3 is given in Section 7.

Proof of �eorem 5.1. Let U, V, [ be three parameters to be fixed later. Our algorithm first uses the al-
gorithm in �eorem 3.8 with X =

Y
4
to construct a projection scheme satisfying Condition 3.4 with

parameters U and V . If the algorithm in �eorem 3.8 fails to find such projection scheme, our algo-
rithm terminates and outputs an arbitrary ^out ∈ W . If the algorithm finds such projection scheme,
we run Algorithm 1 to obtain the random sample ^out = ^alg, where ^alg denotes the output of
Algorithm 1.

We first analyze the running time of the whole algorithm. By �eorem 3.8, the running time for
constructing the projection scheme is

)proj = $

(
=(�: + @) log

1

Y
log @

)
.

If the algorithm in�eorem 3.8 succeeds, then it gives a projection oracle with query cost$ (log@). In
Algorithm 1, we simulate the Glauber dynamics for ) =

⌈
2= log 4=

Y

⌉
transition steps. In each step, the

algorithm first picks a variable E ∈ + uniformly at random, the cost is $ (log=). �e algorithm then

calls the subroutine InvSample
(
Φ, h, Y

4()+1) , .+ \{E }, {E}
)
to draw a random-E ∈ &E . By Lemma 5.3, the

cost of the subroutine is $
(
�2:

(
=
X

)[
log2

(
=�
X

)
log @

)
, where

X =
Y

4() + 1)
= Θ

(
Y

= log =
Y

)
= Ω

(
Y2

=2

)
.

A�er -E is sampled in Line 4, the algorithm calls the projection oracle to map -E ∈ &E to .E = ℎE (E) ∈

ΣE , the cost of this step is $ (log@). �us, the cost for simulating each transition step is

)step = $

(
�2:

(=
Y

)3[
log2

(
=�

Y

)
log @

)
.(11)

Finally, the algorithm uses InvSample
(
Φ, h, Y

4()+1) , _ ,+
)
in Line 6 to sample the final output. By

Lemma 5.3, the cost is $
(
=�2:

(
=
X

)[
log2

(
=�
X

)
log @

)
, where X =

Y
4()+1)

= Ω

(
Y2

=2

)
. Hence, the cost

for the last step is

)final = $

(
=�2:

(=
Y

)3[
log2

(
=�

Y

)
log @

)
.(12)

Combining all of them together, the total running time is

)total = )proj +) ·)step +)final = $

(
=(�: + @) log

1

Y
log @

)
+$

(
() + =)�2:

(=
Y

)3[
log2

(
=�

Y

)
log@

)

= $

(
(�2: + @)=

(=
Y

)3[
log3

(
=�

Y

)
log@

)
.(13)

Next, we prove the correctness of the algorithm, i.e., the total variation distance between the output
^out and the uniform distribution ` is at most Y . It suffices to prove

3TV

(
^alg, `

)
≤

3Y

4
.(14)

Because if 0 < V < U < 1 and log 1
? ≥

25
(U−V)3

(log� + 3), then with probability at least 1 − Y
4
, the

algorithm in �eorem 3.8 constructs the projection scheme successfully, i.e. ^out = ^alg. Let ^ ∼ `.

By coupling lemma, we can couple ^ and ^alg such that ^ ≠ ^alg with probability 3Y
4
. �us, we can

coupling ^ and ^out such that ^ ≠ ^out with probability at most Y
4
+ 3Y

4
= Y . By coupling lemma,

3TV (^out, `) ≤ Y.

14



We then verify (14). Consider an idealized algorithm that first runs the idealized Glauber dynamics for
) =

⌈
2= log 4=

Y

⌉
steps to obtain a random sample _G, then samples ^idea from the distribution `_G . By

Lemma 5.2, if log 1
? ≥

50
V log

(
2000�4

V

)
, then 3TV (_G, a) ≤

Y
4
. Consider the following process to draw

a random sample ^ ∼ `. First sample _ ∼ a , then sample ^ ∼ `_ . �us, we can couple _ and _� such
that _ ≠ _G with probability Y

4
. Conditional on _ = _G, ^ and ^idea can be perfectly coupled. By

coupling lemma,

3TV (^idea, `) ≤
Y

4
.(15)

We now couple Algorithm 1 with this idealized algorithm. For each transition step, they pick the same
variable, then couple each transition step optimally. In the last step, they use the optimal coupling to
draw random samples from the conditional distributions. Note that in Line 4 of Algorithm 1, if the

random sample -E ∈ &E returned by the subroutine is a perfect sample from `
.+ \{E}
E , then the .E ∈ ΣE

constructed in Line 5 follows the distribution a
.+ \{E}
E . By Lemma 8.12, if none of B

(1)
C and B

(2)
C for

1 ≤ C ≤ ) + 1 occurs, then all the () + 1) executions of the subroutine InvSample(Φ,h, X, ~Λ, () return
perfect samples from `

~Λ
(
. In this case, Algorithm 1 and the idealized algorithm can be coupled perfectly.

Note that X =
Y

4()+1)
. By coupling lemma and Lemma 5.3, we have

3TV

(
^alg,^idea

)
≤ Pr

[
)+1∨
8=1

(
B
(1)
C ∨ B

(2)
C

)]
≤ 2() + 1)X =

Y

2
.

Hence, (14) can be proved by the following triangle inequality

3TV

(
^alg, `

)
≤ 3TV

(
^alg,^idea

)
+ 3TV (^idea, `) ≤

Y

2
+
Y

4
≤

3Y

4
.

We then set the parameters U, V and [. We put all the constraints in �eorem 3.8, Lemma 5.2 and
Lemma 5.3 together:

0 < V < U < 1, 0 < [ < 1;

log
1

?
≥

25

(U − V)3
(log� + 3) ;

log
1

?
≥

50

V
log

(
2000�4

V

)
;

log
1

?
≥

1

1 − U
log(20�2);

log
1

?
≥

1

V
log

(
40e�2

[

)
.

We can take U = 0.994 and V = 0.577. �e following condition implies all the above constraints

log
1

?
≥ 350 log� + 3 log

1

Z
and [ =

Z

3
, where 0 < Z ≤ 2−400.

Remark that log 1
? ≥ 350 log� + 3 log 1

Z is equivalent to ln 1
? ≥ 350 ln� + 3 ln 1

Z . By (13), under this

condition, the total running time is

)total = $

(
(�2: + @)=

(=
Y

)3[
log3

(
=�

Y

)
log@

)
= $

(
(�2: + @)=

(=
Y

)Z
log4

(
=�@

Y

))
. �

5.2. Sharper bounds for subclasses of CSP formulas. We prove the following theorems on specific
subclasses of CSP formulas. Our first result is for hypergraph coloring.

�eorem 5.4. �ere is an algorithm such that given any :-uniform hypergraph with maximum degree

Δ and a set of colors [@], assuming : ≥ 13 and @ ≥ max
(
(7:Δ)

9
:−12 , 650

)
, the algorithm returns a

random @-coloring ^ ∈ [@]+ in time $

(
@2:3Δ2=

(
=
Y

) 1

100(@:Δ)4 log4
(
=@:Δ

Y

))
such that the distribution of

15



^ is Y-close in total variation distance to the uniform distribution of all proper @-colorings of the input
hypergraph.

�eorem 1.3 is implied by �eorem 5.4: when : ≥ 30, we have (7:)
9

:−12 ≤ 15, which means that

@ ≥ 15Δ
9

:−12 + 650 suffices to imply the condition in �eorem 5.4.
Our next result is for CNF formulas. For a :-CNF formula, each clause contains : variables. And

the maximum degree of the formula is given by the maximum number of clauses a variable belongs to.
�e following theorem is is a formal restatement of �eorem 1.4.

�eorem 5.5. �e following holds for any 0 < Z ≤ 2−20. �ere is an algorithm such that given any :-CNF
formula with maximum degree 3 , assuming : ≥ 13 log 3 + 13 log : + 3 log 1

Z
, the algorithm returns a ran-

dom assignment ^ ∈ {True, False}+ in time$
(
32:3=

(
=
Y

)Z /(3:)4
log3

(
=3:
Y

))
such that the distribution

of ^ is Y-close in total variation distance to the uniform distribution of all satisfying assignments.

LetΦ = (+, [@]+ , C) denote the CSP formula where all variables have the same domain [@]. Suppose
that for every constraint 2 ∈ C, 2 is atomic and |vbl (2) | = : , and each variable belongs to at most 3
constraints. Let h denote a projection scheme satisfying Condition 3.4 with parameters U and V . For
such special CSP formulas, we have the following lemma with an improved mixing condition.

Lemma 5.6. If : log@ ≥ 1
V log

(
3000@236:6

)
, then the Markov chain %Glauber on a has )mix(Y) ≤⌈

2= log =
Y

⌉
.

�e proof of Lemma 5.6 is given in Section 8. We use Lemma 5.3 and Lemma 5.6 to prove our results.

Proof of �eorem 5.4. Consider the hypergraph @-coloring on a :-uniform hypergraph� = (+, E) with
maximum degree Δ. We first transform the hypergraph coloring instance into a CSP formula Φ =

(+, [@]+ , C) with atomic constraints. For each hyperedge 4 ∈ E , we add @ constraints such that the
8-th constraint 28 forbids the bad event that the hyperedge 4 is monochromatic with color 8 ∈ [@].
Namely, vbl (28 ) = 4 and 28 is False if and only if all variables in vbl (28 ) take the value 8. �e time
complexity for this reduction is $ (=@Δ log@).

In CSP formula Φ = (+, [@]+ , C), 2 is atomic and |vbl (2) | = : for all 2 ∈ C; each variable belongs
to at most @Δ constraints. �e maximum degree � of the dependency graph of Φ is at most @:Δ. We
assume � = @:Δ. If each variable E ∈ + draws a random value from [@] uniformly and independently,

then the maximum probability ? that one constraint becomes False is ? =

(
1
@

):
.

Let U, V, [ be three parameters to be fixed later. Our algorithm first uses the deterministic algorithm
in�eorem 3.9 to construct a projection scheme satisfying Condition 3.4 with parameters U and V . �e
deterministic algorithm in�eorem 3.9 always finds such a projection scheme, which gives a projection
oracle with query cost $ (log@). Remark that the cost for constructing the projection scheme is

)proj = $ (= log @) .(16)

We then run Algorithm 1 to obtain the output ^out = ^alg, where ^alg denotes the output of Algo-
rithm 1. �e correctness result can be proved by going through the proof of �eorem 1.1.

We set parameters U, V and [. Note that vbl (2) = : for all 2 ∈ C; ? = @−: ; and each variable belongs
to at most 3 = @Δ constraints; and � = @:Δ. We put all the constraints in �eorem 3.9, Lemma 5.6 and
Lemma 5.3 together:

0 < V < U < 1, 7 ≤ @
U+V
2 ≤

@

6
, log@ ≥

1

U − V
, 0 < [ < 1;

: log @ ≥
1

V
log

(
3000@8Δ6:6

)
;

: log @ ≥
1

1 − U
log(20@2:2Δ2);

: log @ ≥
1

V
log

(
40e@2:2Δ2

[

)
.
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We can take U =
7
9
and V =

2
3
. �e following condition suffices to imply all the above constraints:

assume : > 12,

log@ ≥
9

: − 12
log Δ +

9

: − 12
log: +

25

: − 12
, @ ≥ 650, [ =

1

29 (@:Δ)4
.

�e following condition suffices to imply the above one

@ ≥ max
(
(7:Δ)

9
:−12 , 650

)
and [ =

1

29 (@:Δ)4
.

Note that � = :@Δ. Under this condition, by (11), (12) and (16), the total running time is

)total = $

(
�2:=

(=
Y

)3[
log3

(
=�

Y

)
log @

)
= $

(
@2:3Δ2=

(=
Y

) 1

100(@:Δ)4

log4
(
=@:Δ

Y

))
. �

Proof of �eorem 5.5. LetΦ = (+, {True, False}+ , C) be a:-CNF formula, where each variable belongs
to at most 3 clauses. Each variable takes its value for the Boolean domain {True, False}, thus the size
of the domain is @ = 2. �e maximum degree � of the dependency graph is at most :3 . We assume
� = :3 . If each variable E ∈ + draws a random value from the Boolean domain {True, False}

uniformly and independently, the maximum probability ? that one clause is not satisfied is ? =
(
1
2

):
.

Let U, V, [ be three parameters to be fixed later. Our algorithm first uses the randomized algorithm
in �eorem 3.9 with X =

Y
4
to construct a projection scheme satisfying Condition 3.4 with parameters

U and V . If the randomized algorithm in �eorem 3.9 fails to find such projection scheme, our algo-
rithm terminates and outputs an arbitrary ^out ∈ {True, False}

+ . If the randomized algorithm in
�eorem 3.9 succeeds, it gives a projection oracle with query cost $ (log@). By �eorem 3.9, the cost
for constructing the projection scheme is

)proj = $

(
=3: log

1

Y

)
.(17)

We then run Algorithm 1 to obtain the output ^out = ^alg, where ^alg denotes the output of Algo-
rithm 1. �e correctness result can be proved by going through the proof of �eorem 1.1.

We set parameters U, V and [. We put all the constraints in �eorem 3.9, Lemma 5.6 and Lemma 5.3
together:

0 < V < U < 1, : ≥
2 ln 2

(U − V)2
log(2e:3), 0 < [ < 1;

: ≥
1

V
log

(
3000 · 4 · 36:6

)
;

: ≥
1

1 − U
log(2032:2);

: ≥
1

V
log

(
40e32:2

[

)
.

We can take U =
21
25

and V =
1
2
. �e following condition suffices to imply all the above constraints

: ≥ 13 log 3 + 13 log : + 3 log
1

Z
and [ =

Z

334:4
, where 0 < Z ≤ 2−20 .

Note that � = 3: and @ = 2. Under this condition, by (11), (12) and (17), the total running time is

)total = $

(
�2:=

(=
Y

)3[
log3

(
=�

Y

)
log @

)
= $

(
32:3=

(=
Y

) Z

34:4
log3

(
=3:

Y

))
. �
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6. Projection construction

In this section, we give the algorithms to construct the projection schemes. We first give the projec-
tion algorithm for (:,3)-CSP formulas (�eorem 3.9), then give the projection algorithm for general
CSP formulas (�eorem 3.8).

Proof of �eorem 3.9. We start from the first part of the lemma. For each E ∈ + , we set BE as

BE =
⌈
@

2−U−V
2

⌉
.

For each variable E ∈ + , we partition [@] = {1, 2, . . . , @} into BE intervals, where the sizes of the first
(@ mod BE) intervals are ⌈@/BE⌉, and the sizes of the last BE − (@ mod BE) intervals are ⌊@/BE⌋. Let
ΣE = {1, 2, . . . , BE}. For each 8 ∈ [@], ℎE (8) = 9 ∈ ΣE, where 8 belongs to the 9-th interval. �is
constructs the function ℎE : [@] → ΣE . To implement the projection oracle, we only need to calculate
BE for each E ∈ + , the total cost is$ (= log @). Consider the two queries in Definition 3.3.

• evaluation: given an input value 8 ∈ [@] of a variable E ∈ + , the algorithm should return 9 ∈ ΣE

such that 8 is in the 9-th interval, this query can be answered with the cost $ (log@);
• inversion: given a projected value 9 ∈ ΣE of a variable E ∈ + , the algorithm should return a
random element in the 9-th interval uniformly at random, this query can be answered with the
cost $ (log@).

Next, we prove that this projection scheme satisfies Condition 3.4. For any E ∈ + , it holds that⌈
@

BE

⌉
≤

⌈
@ (U+V)/2

⌉
≤ @ (U+V)/2 + 1

♦
≤

7

6
@ (U+V)/2,

where (♦) holds because @ (U+V)/2 + 1 ≤ 7
6
@ (U+V)/2 if @ (U+V)/2 ≥ 6. Note that log 7

6
≤ 0.23. �is implies

the following inequality

∑
E∈vbl(2)

⌈
@

BE

⌉
≤ :

(
U + V

2
log@ + 0.23

)
(★)
≤ : · U log@ = U

∑
E∈vbl(2)

log@,(18)

where inequality (★) holds because U > V and log@ ≥ 0.8
U−V . For any E ∈ + , it holds that⌊

@

BE

⌋
=

⌊
@⌈

@ (2−U−V)/2
⌉
⌋
≥

⌊
@

@ (2−U−V)/2 + 1

⌋
(∗)
≥

⌊
@(

1 + 1
6

)
@ (2−U−V)/2

⌋
≥

6

7
@

U+V
2 − 1

(♦)
≥

5

7
@

U+V
2 ,

where inequality (∗) holds because
(
1 + 1

6

)
@ (2−U−V)/2 ≥ @ (2−U−V)/2 +1 if @ (2−U−V)/2 ≥ 6; inequality (♦)

holds because @ (U+V)/2 ≥ 7. Note that log 5
7
≥ −0.5. �is implies

∑
E∈vbl(2)

log

⌊
@

BE

⌋
≥ :

(
U + V

2
log @ − 0.5

)
(★)
≥ : · V log@ = V

∑
E∈vbl(2)

log @,(19)

where inequality (★) holds because U > V and log @ ≥ 1
U−V . Combining (18) and (19) proves the first

part of the lemma.
We then prove the second part of the lemma. �e algorithm constructs a subset of variablesM ⊆ + .

We callM the set of marked variables. If E ∈ M, let ΣE = [@], and ℎE (8) = 8 for all 8 ∈ [@]. If E ∉M,
let ΣE = {1}, and ℎE (8) = 1 for all 8 ∈ [@]. Remark that BE = @ if E is a marked variable, and BE = 1 if E is
an unmarked variable. To implement the projection oracle, we only need to constructM. Suppose the
setM is given (the construction will be explained later). Consider the two queries in Definition 3.3.

• evaluation: given an input value 8 ∈ [@] of a variable E ∈ + , the algorithm should return the
input 8 if E ∈ M, or return 1 ∈ ΣE if E ∉M; this query can be answered with the cost $ (log@);
• inversion: given a projected value 9 ∈ ΣE of a variable E ∈ + , the algorithm should return

9 ∈ [@] if E ∈ M; or return a uniform random element - ∈ [@] if E ∉ M; this query can be
answered with the cost $ (log@).
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Now, we construct the set of marked variablesM ⊆ + . For each constraint 2 ∈ C, define C2 as the
number of marked variables in 2, i.e.

C2 , |M ∩ vbl (2) | .

Hence, Condition 3.4 becomes for each 2 ∈ C,

(1 − U): ≤ C2 ≤ (1 − V):.

In other words, each constraint contains at least (1 − U): marked variables and at least V: unmarked
variables. We use Lovász local lemma to show that such setM exists, then use Moser-Tardos algorithm
to find a setM. LetD denote the product distribution such that each variables ismarked independently

with probability
2−U−V

2
. For each constraint 2 ∈ C, let �2 denote the bad event that 2 contains less

than (1 − U): marked variables or less than V: unmarked variables. We use concentration inequality
to bound the probability of �2 . In [FGYZ20], the probability of the bad event �2 is bounded by the
Chernoff bound. Now, we use Hoeffding’s inequality to obtain a be�er result

PrD [�2] = Pr [C2 < (1 − U): ∨ C2 > (1 − V):] = Pr

[
|C2 − E [C2] | ≥

U − V

2
:

]
≤ 2 exp

(
−
(U − V)2

2
:

)
.

�e maximum degree of dependency graph is at most : (3 − 1). By Lovász local lemma (�eorem 2.1),
the setM exist if

e · 2 exp

(
−
(U − V)2

2
:

)
· :3 ≤ 1.

Note that U > V and : ≥ 2 ln 2
(U−V)2

(log : + log3 + log 2e) implies the above condition.

�e Moser-Tardos algorithm can find such setM within 2=
: resampling steps in expectation [MT10].

We can run
⌈
log 1

X

⌉
Moser-Tardos algorithms independently, then with probability at least 1 − X , one

of them finds the setM within 4=
: resampling steps. �e cost of each resampling step is $ (3:2). �e

cost for constructing data structure is $ (=3: log 1
X
). �

Proof of �eorem 3.8. �e domain of each variable E ∈ + is &E , where @E = |&E |. Assume each element
G ∈ &E can be in-coded by $ (log@E) bits. For each E ∈ + , suppose the input provides an array AE of
size @E containing all the elements in &E . For each E ∈ + , we construct a data structure SE that can
answer the following two types of the queries: (1) given any index 8 ∈ [@E], we can access the 8-th
element in this array with cost $ (log@E). (2) given any G ∈ &E , we can find the unique index 8 such
thatAE (8) = G with the cost $ (log@E). For each E ∈ + , the cost of the construction is $ (@E log @E).

�e algorithm divides all variables into two parts (large and (small such that

(large =

{
E ∈ + | log @E ≥

5

U − V

}
, (small =

{
E ∈ + | log @E <

5

U − V

}
.

For each variable E ∈ (large, the algorithm sets

∀E ∈ (large, BE =

⌈
@

2−U−V
2

E

⌉
.

We partition [@] = {1, 2, . . . , @} into BE intervals, where the sizes of the first (@ mod BE) intervals are
⌈@/BE⌉, and the sizes of the last BE − (@ mod BE) intervals are ⌊@/BE⌋. Let ΣE = {1, 2, . . . , BE}, where
each 9 ∈ ΣE represents an interval [!9 , ' 9 ]. For any G ∈ &E , let 8 denote the unique index such that
AE (8) = G , we set ℎE (G) = 9 such that 8 ∈ [!9 , ' 9 ]. �is defines the function ℎE : &E → ΣE . To
implement the projection oracle for (large, the algorithm only needs to compute the value of BE , where
the cost is$ (log@E). Consider the two queries of the projection oracle in Definition 3.3.

• evaluation: given an input value G ∈ &E of a variable E ∈ (large, with the data structure SE, the
algorithm can return ℎE (G) in time$ (log@E);
• inversion: given a projected value 9 ∈ ΣE of a variable E ∈ (large, the algorithm should return a
uniform element in set {G ∈ AE (8) | !9 ≤ 8 ≤ ' 9 }; with the data structure SE , this query can
be answered with the cost $ (log@E).
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Let @ = maxE∈+ @E . For any E ∈ (large, the cost for answering each query is $ (log@).
For variables in (small, the algorithm constructs a subset of variablesM ⊆ (small. We callM the set

of marked variables. If E ∈ M, let ΣE = &E , and ℎE (G) = G for all G ∈ &E . If E ∉M, let ΣE = {1}, and
ℎE (G) = 1 for all G ∈ &E . To implement the projection oracle, the algorithm only needs to construct the
setM. �e construction ofM will be explained later. Suppose the setM ⊆ (small is given. Consider
the two queries of the projection oracle in Definition 3.3.

• evaluation: given an input value G ∈ &E of a variable E ∈ (small, the algorithm should return
the input G if E ∈ M, or return 1 ∈ ΣE if E ∉M; this query can be answered in time$ (log@E);
• inversion: given a projected value G ∈ ΣE of a variable E ∈ (small, the algorithm should return
the input G if E ∈ M; or return a uniform random element - ∈ &E if E ∉ M; with the data
structure SE , this query can be answered in time$ (log@E).

Let @ = maxE∈+ @E . For any E ∈ (small, the cost for answering each query is $ (log@).
Again, we use Lovász local lemma to prove that there is a subsetM such that the above projection

scheme satisfies Condition 3.4, then use Moser-Tardos algorithm to find such setM. Let D denote

the product distribution such that each variable E ∈ (small is marked with probability
2−U−V

2
. For each

2 ∈ C, let �2 denote the bad event∑
E∈vbl(2)

log

⌈
@E

BE

⌉
> U

∑
E∈vbl(2)

log@E or
∑

E∈vbl(2)

log

⌊
@E

BE

⌋
< V

∑
E∈vbl(2)

log@E .(20)

Fix a constraint 2 ∈ C. Suppose E1, E2, . . . , E: are variables in vbl (2), where : = : (2) = |vbl (2) |. Let
0 ≤ ℓ ≤ : be an integer and assume E8 ∈ (large for all 1 ≤ 8 ≤ ℓ and E 9 ∈ (small for all ℓ + 1 ≤ 9 ≤ : .
For each 1 ≤ 8 ≤ : , we define random variable

-8 , log

⌈
@E8
BE8

⌉
.

For each 1 ≤ 8 ≤ ℓ , since E8 ∈ (large, -8 = log
⌈
@E8/⌈@

(2−U−V)/2
E8 ⌉

⌉
with probability 1. We have

∀1 ≤ 8 ≤ ℓ, E [-8 ] = log

⌈
@E8

⌈@
(2−U−V)/2
E8 ⌉

⌉
≤ log

⌈
@
(U+V)/2
E8

⌉
≤ log

(
5

4
@
(U+V)/2
E8

)
,

where the last inequality holds because log@E8 ≥
5

U−V
, which implies 5

4
@
(U+V)/2
E8 ≥ @

(U+V)/2
E8 + 1 ≥⌈

@
(U+V)/2
E8

⌉
. Note that log 5

4
≤ 0.33 and log @E8 ≥

5
U−V . It holds that

∀1 ≤ 8 ≤ ℓ, E [-8 ] ≤ 0.33 +
U + V

2
log @E8 ≤ U log @E8 −

U − V

3
log@E8 .(21)

For each ℓ + 1 ≤ 9 ≤ : , since E 9 ∈ (small, - 9 = log@E9 with probability
U+V

2
; and- 9 = 0 with probability

1−U−V

2
. We have

∀ℓ + 1 ≤ 9 ≤ :, E [-8 ] =
U + V

2
log @E8 ≤ U log@E8 −

U − V

3
log @E8 .(22)

Consider the sum
∑:

8=1-8 . For any E8 ∈ (large, the value of -8 is fixed. For any E 9 ∈ (small, - 9 takes a
random value and it must hold that - 9 ∈ {0, log @E8 }. By Hoeffding’s inequality,

PrD

[
:∑
8=1

-8 >

:∑
8=1

E [-8 ] + C

]
≤ exp

(
−

2C2∑:
9=ℓ+1 log

2 @E9

)
(★)
≤ exp

(
−

2(U − V)C2

5
∑:

9=ℓ+1 log@E9

)
,(23)

where (★) holds due to log @E9 ≤
5

U−V
for all ℓ + 1 ≤ 9 ≤ : . Combining (21), (22) and (23), we have

PrD

[
:∑
8=1

-8 > U

:∑
8=1

log @E8

]
≤ exp

©«
−

2(U−V)3

9

(∑:
8=1 log @E8

)2
5
∑:

9=ℓ+1 log @E9

ª®®¬
≤ exp

(
−
(U − V)3

23

:∑
8=1

log @E8

)
.(24)
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Similarly, for each 1 ≤ 8 ≤ : , we define random variable

.8 , log

⌊
@E8
BE8

⌋
.

For each 1 ≤ 8 ≤ ℓ , since E8 ∈ (large, .8 = log

⌊
@E8

⌈@
(2−U−V )/2
E8

⌉

⌋
with probability 1. We have

∀1 ≤ 8 ≤ ℓ, E [.8] = log


@E8⌈

@
(2−U−V)/2
E8

⌉

≥ log

⌊
4

5
@
(U+V)/2
E8

⌋
≥ log

(
3

5
@
(U+V)/2
E8

)
,

where the last two inequalities hold because 0 < V < U < 1 and log@E8 ≥
5

U−V , which implies

5
4
@
(2−U−V)/2
E8 ≥ @

(2−U−V)/2
E8 + 1 ≥

⌈
@
(2−U−V)/2
E8

⌉
and

⌊
4
5
@
(U+V)/2
E8

⌋
≥ 4

5
@
(U+V)/2
E8 − 1 ≥ 3

5
@
(U+V)/2
E8 . Note that

log 3
5
≥ −0.74. Again, by log @E8 ≥

5
U−V , we have

∀1 ≤ 8 ≤ ℓ, E [.8] ≥ −0.74 +
U + V

2
log@E8 ≥ V log@E8 +

U − V

3
log @E8 .

For each ℓ+1 ≤ 9 ≤ : , since E 9 ∈ (small,.9 = 0with probability
2−U−V

2
; and.9 = log @E9 with probability

U+V

2
. We have

∀ℓ + 1 ≤ 9 ≤ :, E [.8 ] =
U + V

2
log@E8 ≥ V log@E8 +

U − V

3
log@E8 .

Again, by Hoeffding’s inequality, we have

PrD

[
:∑
8=1

.8 < V

:∑
8=1

log@E8

]
≤ exp

(
−
(U − V)3

23

:∑
8=1

log@E8

)
.(25)

Combining (24) and (25) we have

PrD [�2] ≤ 2 exp

(
−
(U − V)3

23

:∑
8=1

log@E8

)
(★)
≤ 2 exp

(
−
25

23
log� − 3

)
≤ 2 exp

(
−
25

23
ln� − 3

)
≤

1

e(� + 1)
,

where (★) holds because
∑:

8=1 log @E8 ≥
25

(U−V)3
(log� + 3). By Lovász local lemma, there exists a set of

marked variablesM ⊆ (small such that the condition in (20) is satisfied.
Similar to the proof of �eorem 3.9, we can use Moser-Tardos algorithm [MT10] to construct such

projection scheme. With probability at least 1 − X , the algorithm constructs a projection scheme in
time $ (=�: log 1

X ), where : = max2∈C |vbl (2) |.
We now combine all the steps together. �e construction of the data structures SE for all E ∈ +

has the cost $ (=@ log @). Computing the BE for all E ∈ (large has the costs $ (= log @). Computing the

marked setM ⊆ (small has the cost $ (=�: log
1
X
). �e total cost is $ (=(�: + @) log 1

X
log @). �

7. Analysis of the Inverse Sampling subroutine

In this section, we prove Lemma 5.3. Let Φ = (+,W, C) be a CSP formula, where each variable E
takes value in &E . Let h = (ℎE)E∈+ be a balanced projection scheme satisfying Condition 3.4 with
parameters U and V , where for each E ∈ + , ℎE : &E → ΣE , |&E | = @E and |ΣE | = BE . Let (.C )C≥0 denote
random sequence generated by Algorithm 1, where .C ∈ Σ is the random . a�er the C-th iteration of
the for-loop. Recall that for each 1 ≤ C ≤ ) + 1, we have defined the following bad events:

• B
(1)
C : in the C-th call of InvSample(·), the random assignment ^ is returned in Line 10;

• B
(2)
C : in the C-th call of InvSample(·), the random assignment ^ is returned in Line 4.

In the C-th calling of the subroutine InvSample(Φ,h, X,~Λ, () (Algorithm 2), conditional on ¬B
(1)
C ∧

¬B
(2)
C , all the connected components that intersect with ( are small, and the rejection sampling on

each component succeeds. It is straightforward to verify the subroutine returns a perfect sample from
`
~Λ
(
.
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Next, we analyze the running time of the subroutine InvSample(Φ, h, X,~Λ, (). Let� = (C, �) denote
the dependency graph of Φ = (+,W, C). We assume the dependency graph is stored in an adjacent list.
We can construct such adjacent list at the beginning of the whole algorithm. �e cost of construction
is $ (=�:), which is dominated by the cost in �eorem 5.1.

Assume that the algorithm can access a projection oracle with query cost$ (log@). �e first step of
the subroutine is to find all the connected components that intersect with set ( . For each variable E ∈ ( ,
we find all the constraints � (E) = {2 ∈ C | E ∈ vbl (2)} (note that |� (E) | ≤ �), then perform a deep
first search (DFS) in� starting from� (E). During the DFS, suppose the current constraint is 2 ∈ C. We
can find the unique configuration f ∈ &vbl(2) forbidden by 2, i.e. 2 (f) = False. We call the projection
oracle to obtain g ∈ Σvbl(2) , where gE = ℎE (fE) for each E ∈ + . �e cost of this step is $ (: log@). If for
all E ∈ Λ ∩ vbl (2), ~Λ (E) = gE (which means 2 is not satisfied by ~Λ), we do DFS recursively starting
from 2; otherwise, we stop current DFS branch and remove 2 from the graph � . If the size of current
connected component is greater than 2� log =�

X , the connected component is too large, we stop the
whole DFS process. �e total cost of DFS is

)DFS = $

(
|( |�2: log

=�

X
log@

)
.

Another cost of the subroutine comes from the rejection sampling from Line 5 to Line 10. To perform
the rejection sampling, for each variable E , we either draw -E from c

~E
E or draw -E from the cE . �is

step can be achieved by calling oracles. �e cost is $ (log@). Since there are at most |( | connected
components and each of the size at most 2� log =�

X , the total number of variables is $ ( |( |�: log =�
X ).

For each component, the algorithm uses the rejection sampling for at most ' =
⌈
10

(
=
X

)[
log =

X

⌉
times.

�e total cost of rejection sampling is

)rej = $

(
|( |�:

(=
X

)[
log2

(
=�

X

)
log @

)
.

�e total cost of the subroutine is

)DFS +)rej = $

(
|( |�2:

(=
X

)[
log2

(
=�

X

)
log @

)
.

Finally, we use the following lemma to bound the probabilities of the bad events B
(1)
C and B

(2)
C .

Lemma 7.1. Let Φ = (+,W,C) be the input CSP formula and h a projection scheme satisfying Con-
dition 3.4 with parameters U and V . Let � denote the maximum degree of the dependency graph of Φ.
Let ? = max2∈C

∏
E∈vbl(2)

1
|&E |

. Let 0 < [ < 1 be a parameter. Suppose log 1
? ≥

1
1−U log(20�2) and

log 1
? ≥

1
V log

(
40e�2

[

)
. �e subroutine InvSample(Φ,h, X,~Λ, () in Algorithm 2 with parameter [ satisfies

that for any 1 ≤ C ≤ ) + 1,

Pr
[
B
(1)
C

]
≤ X and Pr

[
B
(2)
C

]
≤ X.

�e rest of this section is dedicated to the proof of Lemma 7.1. Let E8 ∈ + denote the random variable
picked by Algorithm 1 in the 8-th iteration of the for-loop. In the proof of Lemma 7.1, we always fix a
1 ≤ C ≤ ) + 1 and a sequence E1, E2, . . . , E) . Hence, we always consider the probability space generated
by Algorithm 1 conditional on E8 is picked in the 8-th iteration of the for-loop.

Define (possibly partial) projected configuration

. = ~Λ ,

{
.C−1 (+ \ {EC }) if 1 ≤ C ≤ ) ;

.) if C = ) + 1,
(26)

where Λ = + \ {EC } if 1 ≤ C ≤ ) , and Λ = + if C = ) + 1. We analyze InvSample(Φ, h, X,. , (), where

( =

{
{EC } if 1 ≤ C ≤ ) ;

+ if C = ) + 1.
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7.1. Analysis of rejection sampling (bound Pr[B
(1)
C ]). We first prove that

Pr
[
B
(1)
C

]
≤ X.(27)

Let Φ′ = (+,W,C ′) denote the CSP formula obtained from Φ = (+,W,C) by removing constraints
satisfied by . . Let � ′ = �Φ′ = (+, E

′) denote the hypergraph modeling Φ
′, where E ′ = {vbl (2) | 2 ∈

C ′} is a multi-set. Suppose � ′
Φ
has ℓ connected components� ′1, �

′
2, . . . , �

′
ℓ that intersect with ( , where

� ′8 = (+8, E
′
8 ) and+8 ∩( ≠ ∅ for all 1 ≤ 8 ≤ ℓ . Let Φ′8 = (+8 ,W+8 , C

′
8 ) denote the CSP formula represented

by � ′8 , where C
′
8 denotes the set of constraints represented by E

′
8 .

Fix an integer 1 ≤ 8 ≤ ℓ . Lines 6 – 8 in Algorithm 2 actually run rejection sampling on Φ̃8 =

(+8 , W̃+8 , C
′
8 ), where each &̃E ⊆ &E , such that

∀E ∈ +8 , &̃E ,

{
ℎ−1E (.E) if E ∈ +8 ∩ Λ;

&E if E ∈ +8 \ Λ.

Since the maximum degree of the dependency graph of Φ is� , the maximum degree of the dependency

graph of Φ̃8 is at most � . Let D denote the product distribution such that each E ∈ +8 samples a

value from &̃E uniformly at random. For each constraint 2 ∈ C ′8 , let �2 denote the bad event that 2

is not satisfied. Note that h is a balanced projection scheme. By the definition of W̃+8 , it holds that

|&̃E | ≥ ⌊@E/BE⌋ for all E ∈ +8 , where @E = |&E |. In other words, Φ̃8 is the conditional LLL instance in
Condition 3.7. By Condition 3.4, we have for each 2 ∈ C ′8 ,

PrD [�2 ] =
∏

E∈vbl(2)

1���&̃E

��� ≤
∏

E∈vbl(2)

1

⌊@E/BE⌋
≤

©«
∏

E∈vbl(2)

1

@E

ª®¬
V

,

Recall that in Lemma 7.1, we assume that for each 2 ∈ C,
∑

E∈vbl(2) log @E ≥
1
V log

(
40e�2

[

)
for 0 < [ < 1.

Note that C ′8 ⊆ C, we have for each 2 ∈ C
′
8 ,

PrD [�2 ] ≤
[

40e�2
.

For each �2 , define G (�2) =
[

40�2 . We have

PrD [�2] ≤
[

40e�2
≤

[

40�2

(
1 −

[

40�2

) 40�2

[ −1

≤
[

40�2

(
1 −

[

40�2

)�
≤ G (�2)

∏
�2′ ∈Γ (�2 )

(1 − G (�2′)) ,

where Γ(·) is defined as in the Lovász local lemma (�eorem 2.1). Since �
(1)
C occurs, it must hold that��C ′8 �� ≤ 2� log =�

X . By Lovász local lemma (�eorem 2.1), we have

PrD


∧
2∈C′8

�2


≥

∏
2∈C′8

(1 − G (�2 )) ≥
∏
2∈C′8

(
1 −

[

40�2

)
(
by

��C ′8 �� ≤ 2� log
=�

X

)
≥

(
1 −

[

40�2

)2� log =�
X
≥ exp

(
−

[

5�
log

�=

X

)

=

(
X

�=

) [
5� ln2

≥

(
X

�=

) [
2�

≥
1

2

(
X

=

)[
.

Hence, each trial of the rejection sampling in Lines 6 – 8 succeedswith probability at least 1
2

(
X
=

)[
. Since

the algorithm uses rejection sampling independently for ' =
⌈
10

(
=
X

)[
log =

X

⌉
times, the probability that

the rejection sampling fails in one connected component is at most(
1 −

1

2

(
X

=

)[ )'
≤ exp

(
−
'

2

(
X

=

)[ )
≤

X

=
.
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Since there are at most = connected components, by a union bound,

Pr
[
B
(1)
C

]
≤ X

�is proves (27).

7.2. Analysis of connected component (bound Pr[B
(2)
C ]). We now bound the probability of bad

event B
(2)
C . Consider the subroutine InvSample(Φ,h, X, . , (). Recall Φ′ = (+,W, C ′) is the CSP formula

obtained from Φ = (+,W,C) by removing all the constraints satisfied by . . Recall hypergraph � ′ =

�Φ′ = (+, E
′) modelsΦ′. Let� = �Φ = (+, E) denote the hypergraphmodelingΦ, where E = {vbl (2) |

2 ∈ C} is a multi-set. For any edge 4 ∈ E , we useB4 to denote the bad event that 4 ∈ E
′ and the number

of hyperedges in the connected component in � ′ that contains 4 is at least !, where ! = ⌈2� log �=
X ⌉.

By a union bound, we have

Pr
[
B
(2)
C

]
≤

∑
4∈E

Pr [B4 ] .

Recall � is the maximum degree of the dependency graph. Since |E | ≤ =(� + 1), it suffices to prove

Pr [B4 ] ≤
X

=(� + 1)
.(28)

To bound the probability of B4 , we need the following lemma.

Lemma 7.2. Let Φ = (+,W, C) be a CSP formula. Let h be the projection scheme satisfying Condition 3.4
with parameters U and V . Let @E = |&E | and � denote the maximum degree of the dependency graph of Φ.
If for any constraint 2 ∈ C, ∑

E∈vbl(2)

log @E ≥
1

V
log(40e�2),

then for any subset � ⊆ Λ, any projected configuration f ∈ Σ� =
⊗

E∈� ΣE ,

Pr [.� = f] ≤ exp

(∑
D∈�

1

20�

) ∏
E∈�

(
1

@E

⌈
@E

BE

⌉)
,

where . ∈ ΣΛ is defined in (26).

�e proof of Lemma 7.2 is deferred to Section 7.3. Next, we introduce the following definitions of
line graph and 2-tree.

Definition 7.3 (line graph). Let � = (+, E) be a hypergraph. �e line graph Lin(� ) is a graph such
that each vertex represents a hyperedge in E , two vertices 4, 4 ′ ∈ E are adjacent iff 4 ∩ 4 ′ ≠ ∅.

Definition 7.4 (2-tree). Let � = (+, �) be a graph. A subset of vertices (tree ⊆ + is a 2-tree if (1)
for any D, E ∈ (tree, their distance dist� (D, E) in graph � is at least 2; (2) if one adds an edge between
D, E ∈ (tree such that dist� (D, E) = 2, then (tree becomes connected.

�e following two propositions are proved in the full version [FGYZ19] of [FGYZ20].

Proposition 7.5 ([FGYZ19, Corollary 5.7]). Let � = (+, �) be a graph with maximum degree Δ and

E ∈ + a vertex. �e number of 2-trees in graph � of size ℓ containing vertex E is at most (eΔ
2)ℓ−1

2
.

Proposition 7.6 ([FGYZ19, Lemma 5.8]). Let � = (+, E) be hypergraph. Let Lin(� ) denote the line
graph of � . Let � ⊆ E be a subset of hyperedges that induces a connected subgraph in Lin(� ) and 4 ∈ �

an arbitrary hyperedge. �ere exists a 2-tree (tree ⊆ E in Lin(� ) such that 4 ∈ (tree and |(tree | =
⌊
|� |
�+1

⌋
,

where � is the maximum degree of the line graph Lin(� ).
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Suppose h satisfies Condition 3.4. Recall . ∈ ΣΛ, where Λ = + \ {EC } for 1 ≤ C ≤ ) and Λ = + for
C = ) + 1. We say an edge 4 ∈ E is bad if 4 is not satisfied by . . Suppose 4 represents the constraint 2
such that 2 (x) = False for a unique configuration x ∈ W4 . Given the projected configuration . ∈ ΣΛ,
we have

4 is bad ⇐⇒ ∀D ∈ Λ ∩ 4, .D ≠ ℎD (xD).(29)

In other words, if 4 is bad, then the constraint corresponding to 2 in the “round-down” CSP formula
(Definition 3.5) is not satisfied by . . If B4 occurs, there must exist a connected component � ⊆ E in
line graph Lin(� ) such that 4 ∈ � and all hyperedges in � are bad and |� | = !, where ! = ⌈2� log �=

X ⌉

and � is the maximum degree of the dependency graph of the input formula. By Proposition 7.6, there
must exist a 2-tree (tree in Lin(� ) with size ℓ =

⌊
!

�+1

⌋
such that 4 ∈ (tree and all edges in (tree are bad.

Fix such a 2-tree (tree. By definition, each vertex in (tree is a hyperedge 4 ∈ E , and for all 4, 4 ′ ∈ (tree,
4 ∩ 4 ′ = ∅. Let ( ′tree ⊆ (tree denote the subset of edges 4 ∈ (tree such that 4 ⊆ Λ. Since . is a random
projected configuration, by (29), we have

Pr [∀4 ∈ (tree, 4 is bad] = Pr [∀4 ∈ (tree,∀D ∈ 4 ∩ Λ, .D ≠ ℎD (xD)]

≤ Pr
[
∀4 ∈ ( ′tree,∀D ∈ 4, .D ≠ ℎD (xD)

]
.

Fix an edge 4 ∈ ( ′tree. By Condition 3.4 and the condition
∑

E∈4 log @E ≥
1

1−U
log(20�2) assumed in

Lemma 7.1, it holds that

∏
E∈4

1

@E

⌈
@E

BE

⌉
≤

(∏
E∈4

1

@E

)1−U
≤

1

20�2
.

Note that if BE = 1, then 1
@E

⌈
@E
BE

⌉
= 1. For any E ∈ 4 such that BE > 1(thus @E ≥ BE > 1), we have

1
@E

⌈
@E
BE

⌉
≤ 1

@E

⌈@E
2

⌉
≤ 2

3
. Let A = log2/3

1
20�2 + 1. We can find a subset of variables '(4) ⊆ 4 such that

∏
E∈' (4)

1

@E

⌈
@E

BE

⌉
≤

1

20�2
, and |'(4) | ≤ A .

Note that Lemma 7.1 assumes that
∑

E∈vbl(2) log@E ≥
1
V log

(
40e�2

[

)
≥ 1

V log(40e�
2). We use Lemma 7.2

on subset � = ∪4∈( ′tree'(4). Note that all hyperedges in (
′
tree are disjoint. We have

Pr [∀4 ∈ (tree, 4 is bad] ≤ Pr
[
∀4 ∈ ( ′tree,∀D ∈ '(4), .D ≠ ℎD (xD )

]
≤ Pr [∀D ∈ �,.D ≠ ℎD (xD)]

≤
∏

4∈( ′tree

∏
E∈' (4)

(
1

@E

⌈
@E

BE

⌉
exp

(
1

20�

))
≤

∏
4∈( ′tree

(
1

20�2
exp

( A

20�

))
(
by A = log2/3

1

20�2
+ 1)

)
≤

∏
4∈( ′tree

(
1

12�2

)
.

Since |Λ| ≥ = − 1 and all hyperedges in (tree are disjoint,
��( ′tree�� ≥ |(tree | − 1 = ℓ − 1. We have

Pr [∀4 ∈ (tree, 4 is bad] ≤

(
1

12�2

) ℓ−1
.

Note that the maximum degree of line graph is at most � . By Proposition 7.5, we have

Pr [B4] ≤
1

2

(
e�2

) ℓ−1 (
1

12�2

)ℓ−1
≤

1

2

(
1

4

) ℓ−1
≤

(
1

2

)2ℓ−1
.

Note that ℓ = ⌊!/(� + 1)⌋ and ! =
⌈
2� log =�

X

⌉
. We have ℓ ≥ log =�

X − 1. We may assume =� ≥ 16.
Otherwise, the sampling problem is trivial. �e inequality (28) can be proved by

Pr [B4 ] ≤

(
1

2

)2 log =�
X −3

≤
X

=(� + 1)
.
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7.3. Proof of Lemma 7.2. We now prove (Lemma 7.2). We use the following lemma to prove it.

Lemma 7.7. Let Φ = (+,W, C) be a CSP formula. Let h = (ℎE)E∈+ be the projection scheme satisfying
Condition 3.4 with parameters U and V . Let � denote the maximum degree of the dependency graph of Φ.
Let @E = |&E |. Suppose for any constraint 2 ∈ C, it holds that∑

E∈vbl(2)

log@E ≥
1

V
log(40e�2).

Fix a variable D ∈ + and a partial projected configuration g ∈ Σ+ \{D }. For any ~ ∈ ΣD , it holds that

agD (~) ≤
1

@D

⌈
@D

BD

⌉
exp

(
1

20�

)
.

Proof. Define a new CSP formula Φ̂ = (+, Ŵ = (&̂E)E∈+ , C) by

∀F ∈ + , &̂F =

{
ℎ−1F (gF) ifF ≠ D

&F ifF = D.

Let D denote the product distribution that eachF ∈ + takes a value from &̂F uniformly and indepen-
dently. For each constraint 2 ∈ C, define a bad event �2 as 2 is not satisfied. Let B = (�2)2∈C be the
collection of bad events. Recall that Γ(·) is defined as in the Lovász local lemma (�eorem 2.1). It holds
thatmax2∈C |Γ(�2) | ≤ � . For each �2 , let G (�2 ) =

1
40�2 . By Condition 3.4, it holds that

PrD [�2 is not satisfied] =
∏

E∈vbl(2)

1���&̂E

��� ≤
∏

E∈vbl(2)

1

⌊@E/BE⌋
≤

©«
∏

E∈vbl(2)

1

@E

ª®¬
V

≤
1

40e�2
≤

1

40�2

(
1 −

1

40�2

)40�2−1

≤
1

40�2

(
1 −

1

40�2

)�
≤ G (�2 )

∏
�2′ ∈Γ (�2 )

(1 − G (�2′)) .

Fix ~ ∈ ΣD . Let � denote the event that the value of D belongs to ℎ−1D (~), then |Γ(�) | ≤ � , where
Γ(�) ⊆ B is the set of bad events � such that D ∈ vbl (�). Let ̂̀denote the uniform distribution of all

satisfying assignments to Φ̂. By �eorem 2.1, we have

agD (~) = Pr̂̀ [�] = Pr-∼̂̀ [
-D ∈ ℎ

−1
D (~)

]
≤

1

@D

⌈
@D

BD

⌉ (
1 −

1

40�2

)−�
≤

1

@D

⌈
@D

BD

⌉
exp

(
1

20�

)
. �

Now we are ready to prove Lemma 7.2.

Proof of Lemma 7.2. Fix a subset � ⊆ + , and an projected configuration f ∈ Σ� . Recall 1 ≤ C ≤ ) + 1

is a fixed integer. Recall . = .C−1 (Λ), where Λ = + \ {EC } if 1 ≤ C ≤ ) , and Λ = + if C = ) + 1. Recall
that E1, E2, . . . , EC ∈ + is a sequence such that E8 is the variable picked by Algorithm 1 in 8-th iteration
of the for-loop.

For any variableD ∈ � , let C (D) denote the last step up to step C such thatD is picked by Algorithm 1
of the for-loop. Formally, ifD appears in the sequence E1, E2, . . . , EC , then C (D) is the largest number such
that EC (D) = D; if D does not appear in the sequence E1, E2, . . . , EC , then C (D) = 0. We list all variables
in � as D1, D2, . . . , D |� | such that C (D1) ≤ C (D2) ≤ . . . ≤ C (D |� |), where for these variables D satisfying
C (D) = 0, we break tie arbitrarily. �us, .C (D) = .C (D) (D) for all D ∈ � . We have

Pr [.� = f] = Pr
[
∀D8 ∈ �,.D8 = fD8

]
≤

|� |∏
8=1

Pr
[
.C (D8 ) (D8) = fD8 | ∀9 < 8, .C (D 9 ) (D 9 ) = fD 9

]
.

We now only need to prove that, for any 1 ≤ 8 ≤ |� |,

Pr
[
.C (D8 ) (D8) = fD8 | ∀9 < 8, .C (D 9 ) (D 9 ) = fD 9

]
≤

1

@D8

⌈
@D8
BD8

⌉
exp

(
1

20�

)
.(30)
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Suppose C (D8 ) = 0, then .0 (D8) ∈ ΣD8 is sampled independently with Pr
[
.0(D8) = fD8

]
=

���ℎ−1D8 (fD8 )
���

@D8
.

Since h is balanced, we have
��ℎ−1D8 (fD8 )�� ≤

⌈
@D8
BD8

⌉
. Inequality (30) holds because

Pr
[
.0(D8 ) = fD8 | ∀9 < 8, .0(D 9 ) = fD 9

]
≤

1

@D8

⌈
@D8
BD8

⌉
.

Suppose C (D8 ) = ℓ ≠ 0. Algorithm 1 uses the subroutine InvSample(·) to sample a random -E ∈ &E

in Line 4, then maps -E into .ℓ (D8) in Line 5. If -E is returned in Line 4 or Line 10 in Algorithm 2, then
-E is uniformly distribution over &D8 . In this case, inequality (30) holds because

Pr
[
.ℓ (D8) = fD8 | ∀9 < 8, .C (D 9 ) (D 9 ) = fD 9

]
=

∑
-E ∈ℎ

−1
D8
(fD8 )

1

@D8
≤

1

@D8

⌈
@D8
BD8

⌉
.

Otherwise,-E is returned in Line 11 of Algorithm 2. In this case,.ℓ (D8) is sampled from the distribution

a
.ℓ−1 (+ \{D8 })
D8 . We can use Lemma 7.7 with g = .ℓ−1(+ \ {D8 }) and D = D8 . Note that Lemma 7.7 holds for
any g and D. We have

Pr
[
.ℓ (D8) = fD8 | ∀9 < 8, .C (D 9 ) (D 9 ) = fD 9

]
= a

.ℓ−1 (+ \{D8 })
D8 (fD8 ) ≤

1

@D8

⌈
@D8
BD8

⌉
exp

(
1

20�

)
.

�us, inequality (30) holds. �

8. Proof of rapid mixing

LetΦ = (+,W,C) be a CSP formula with atomic constraints andh = (ℎE)E∈+ be a balanced projection
scheme satisfying Condition 3.4 with parameter U and V , where ℎE : &E → ΣE . Let a = aΦ,h be the
projected distribution over Σ =

⊗
E∈+ ΣE in Definition 3.2. Let (.C )C≥0 denote the Glauber dynamics

%Glauber on a . In this section, we show that the Glauber dynamics %Glauber is rapid mixing, and prove
Lemma 5.6 and Lemma 5.2.

8.1. �e stationary distribution. We first proves that a is the unique stationary distribution.

Proposition 8.1. LetΦ = (+,W, C) be a CSP formula with atomic constraints. Let h = (ℎE)E∈+ be the pro-
jection scheme satisfying Condition 3.4 with parameters U and V . Let @E = |&E |, ? = max2∈C

∏
E∈vbl(2)

1
@E

and � denote the maximum degree of the dependency graph of Φ. Suppose log 1
?
≥ 1

V
log(2e�). �e

Glauber dynamics %Glauber is irreducible, aperiodic and reversible with respect to a , thus it has the unique
stationary distribution a .

Proof. By the transition rule of Glauber dynamics, it is easy to verify the Glauber dynamics is aperiodic
and reversible with respect to a . We prove theMarkov chain is irreducible. We show that for any f ∈ Σ,
a (f) > 0. �is implies that the transition probability of Glauber dynamics is always well-defined and

the Markov chain is connected. Fix a f ∈ Σ. Define a new instance Φ̂ = (+, Ŵ = (&̂E)E∈+ , C) as

&̂E = ℎ−1E (fE) for all E ∈ + . It suffices to show that Φ̂ is satisfiable, which implies a (f) > 0. �e

maximum degree of dependency graph of Φ̂ is at most � . Besides, if each variable picks a value from

&̂E uniformly and independently, then for each 2 ∈ C, the probability that 2 is not satisfied is at most

∏
E∈vbl(2)

1

|&̂E |
≤

∏
E∈vbl(2)

1

⌊@E/BE⌋
≤

©«
∏

E∈vbl(2)

1

@E

ª®¬
V

≤
1

2e�
.

By Lovász local lemma, Φ̂ is satisfiable. �
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8.2. Path coupling analysis. We use the path coupling [BD97] to show that the Markov chain is
rapid mixing. Fix two projected configurations ^, _ ∈ Σ =

⊗
E∈+ ΣE such that ^ and _ disagree only

at one variable E0 ∈ + (assume BE0 ≥ 2). We construct a coupling (^, _ ) → (^ ′, _ ′) such that^ → ^ ′

and _ → _ ′ each individually follows the transition rule of %Glauber such that

E [3ham (^
′, _ ′) | ^, _ ] ≤ 1 −

1

2=
,(31)

where 3ham (^
′, _ ′) , |{E ∈ + | - ′E ≠ . ′E }| denotes the Hamming distance between ^ ′ and _ ′. Note

that the Hamming distance is at most =. �us, by path coupling lemma (Lemma 2.3), for any 0 < Y < 1,

)mix(Y) ≤
⌈
2= log

=

Y

⌉
,

where = = |+ | is the number of variables.
�e coupling (^, _ ) → (^ ′, _ ′) is constructed as follows.

• Pick the same variable E ∈ + uniformly at random, set - ′D ← -D and . ′D ← .D for all D ≠ E .

• Sample (- ′E, .
′
E ) jointly from the optimal coupling between a

-+ \{E}

E and a
.+ \{E}
E .

By the linearity of expectation, we have

E [3ham (^
′, _ ′) | ^, _ ] =

∑
E∈+

Pr
[
- ′E ≠ . ′E | ^, _

]

(by the optimal coupling) =
1

=

∑
E∈+ \{E0 }

3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
+

(
1 −

1

=

)
,

where the last equation holds because 3TV

(
a
-+ \{E0}

E0 , a
.+ \{E0}
E0

)
= 0. To prove (31), it suffices to prove

∑
E∈+ \{E0 }

3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
≤

1

2
.

To prove the above inequality, we need to bound 3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
for each E ∈ + \ {E0}. We

use the coupling introduced by Moitra [Moi19] to do this task. For :-uniform CSP formula such that
the domain of each variable is [@], we construct an adaptive version [GLLZ19] of Moitra’s coupling.
Compared with the analysis in [GLLZ19, FGYZ20], this coupling is more refined and requires a more
careful analysis. �is part in given in Section 8.3. For general CSP formula, we use the original non-
adaptive version ofMoitra’s coupling. �e analysis for general case is muchmore involved, because we
need to deal with arbitrary domain and arbitrary size of constraints. �is part is given in Section 8.4.

8.3. Adaptive coupling analysis. We first analyze the simple case. Suppose the original input CSP
formula of Algorithm 1 is a (:,3)-CSP formula Φ = (+, [@]+ , C) with atomic constraints, where
|vbl (2) | = : for all 2 ∈ C and each variable E ∈ + appears in at most 3 constraints, on homogeneous
domains &E = [@] for all E ∈ + . Note that this case covers two applications: hypergraph coloring and
:-CNF formula. We prove the following lemma.

Lemma 8.2. Let Φ = (+, [@]+ , C) be a (:, 3)-CSP formula with atomic constraints. Let h = (ℎE)E∈+ be
the projection scheme for Φ satisfying Condition 3.4 with parameters U and V . If

: log@ ≥
1

V
log

(
3000@236:6

)
,(32)

then it holds that
∑

E∈+ \{E0 } 3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
≤ 1

2
.

Recall that for any f ∈ ΣΛ, where Λ ⊆ + , the distribution `f is the distribution of ^ ∈ [@]+ such
that^ is sampled from ` conditional on h(^Λ) = (ℎE (^E))E∈Λ = f , where ` is the uniform distribution
over all satisfying assignments to Φ. We use `fE to denote the marginal distribution on E projected from
`f . For any E ∈ + and 2 ∈ ΣE, it holds that

a
-+ \{E}
E (2) =

∑
9 ∈ℎ−1E (2)

`
-+ \{E}
E ( 9) and a

.+ \{E}
E (2) =

∑
9 ∈ℎ−1E (2)

`
.+ \{E}
E ( 9).
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Note that each ℎE is a function from [@] to ΣE. By triangle inequality, it holds that

3TV

(
a
-+ \{E}
E , a

.+ \{E}
E

)
=
1

2

∑
2∈ΣE

���a-+ \{E}
E (2) − a

.+ \{E}
E (2)

���
(
by

⊎
2∈ΣE

ℎ−1E (2) = [@]

)
≤

1

2

∑
9 ∈[@]

���`-+ \{E}

E ( 9) − `
.+ \{E}
E ( 9)

��� = 3TV

(
`
-+ \{E}

E , `
.+ \{E}
E

)
.

For any variable E ∈ + \ {E0}, define the influence on E caused by E0 as

�E , 3TV

(
`
-+ \{E}
E , `

.+ \{E}
E

)
.(33)

To prove the rapid mixing of Glauber dynamics, it suffices to prove that∑
E∈+ :E≠E0

�E ≤
1

2
.(34)

Fix a variable E★ ∈ + . We will use a coupling Capt to bound the influence �E★ . �e coupling Capt
draws two random samples ^ Capt ∼ `-+ \{E★} and _ Capt ∼ `.+ \{E★} . By coupling lemma (Lemma 2.2),
the influence �E★ can be bounded by

�E★ ≤ PrCapt

[
-
Capt
E★ ≠ .

Capt
E★

]
.(35)

To describe the coupling Capt, we first introduce some definitions. Recall Φ = (+, [@]+ , C) is the
original input CSP formula of Algorithm 1. Recall two projected configurations ^, _ ∈ Σ =

⊗
E∈+ ΣE

differ only at E0. Define two CSP formulas Φ- and Φ. as follows:

• Φ
-
= (+,W-

= (&-
D )D∈+ , C) is a CSP formula such that

&-
D =

{
ℎ−1D (-D) if D ≠ E★;

[@] if D = E★.
(36)

• Φ
.
= (+,W.

= (&.
D )D∈+ , C) is a CSP formula such that

&.
D =

{
ℎ−1D (.D) if D ≠ E★;

[@] if D = E★.

By definition, (&-
D )D∈+ and (&.

D )D∈+ differ only at variable E0. We then define two distributions

• `Φ- : the uniform distribution over all satisfying assignment to Φ- ;
• `Φ. : the uniform distribution over all satisfying assignment to Φ. .

It is straightforward to verify `Φ- = `-+ \{E★} and `Φ. = `.+ \{E★} . For any subset ( ⊆ + , we use `(,Φ-

(and `(,Φ. ) to denote the marginal distribution on ( projected from `Φ- (and `Φ. ).

Recall that Φ = (+, [@]+ , C) is the original input CSP formula of Algorithm 1. Recall that� = (+, E)

denotes the (multi-)hypergraph that models Φ, where E , {vbl (2) | 2 ∈ C}. Note that � also models
Φ
- and Φ

. , because Φ,Φ- ,Φ. have the same sets of variables and constraints. We assume that given
any hyperedge 4 ∈ E , we can find the unique constraint in 2 ∈ C represented by 4. For each hyperedge
4 ∈ E , define the volume of 4 with respect to Φ- and Φ. as

VolΦ- (4) ,
∏
D∈4

��&-
D

�� and VolΦ. (4) ,
∏
D∈4

��&.
D

�� .
By Condition 3.4 and (32), initially, we have for any hyperedge 4 ∈ E ,

VolΦ- (4) ≥ 3000@236:6 and VolΦ. (4) ≥ 3000@236:6.(37)

Let W be a threshold such that

W , 32e@233:3 ≤ 3000@236:6.(38)

Consider an atomic constraint 2 ∈ C. Let f ∈ [@]vbl(2) denote the unique configuration forbidden
by 2, i.e. 2 (f) = False. �e constraint 2 is said to be satisfied by the value GD ∈ [@] of variable D if
D ∈ vbl (2) and fD ≠ GD . In other words, given the condition that D takes the value GD , the constraint 2

29



must be satisfied. A constraint 2 is said to be satisfied by g ∈ [@]( for some subset ( ⊆ + if 2 is satisfied
by some gD , where D ∈ ( ∩ vbl (2).

�e coupling procedure Capt is given in Algorithm 3.

Algorithm 3:�e coupling procedure Capt

Input :CSP formulas Φ-
= (+,W-

= (&-
D )D∈+ , C) and Φ

.
= (+,W.

= (&.
D )D∈+ , C), a

hypergraph � = (+, E) modeling Φ- and Φ
. , two variables E0, E★ ∈ + , a threshold

parameter W in (38);
Output :a pair of assignments ^ Capt, _ Capt ∈ [@]+ .

1 +1 ← {E0}, +2 ← + \+1, +set ← ∅, +frozen ← ∅ and Efrozen ← ∅;

2 let ^ Capt and _ Capt be two empty assignments;

3 while ∃4 ∈ E s.t. 4 ∩+1 ≠ ∅, (4 ∩+2) \ (+set ∪+frozen) ≠ ∅ do
4 let 4 be the first such hyperedge and D be the first variable in (4 ∩+2) \ (+set ∪+frozen);

5 extend ^ Capt and _ Capt to variable D by sampling (-
Capt
D , .

Capt
D ) from the optimal coupling

between `D,Φ- and `D,Φ. ;

6 update Φ- by se�ing &-
D ← {-

Capt
D }, update Φ. by se�ing &.

D ← {.
Capt
D };

7 +set ← +set ∪ {D};

8 if -
Capt
D ≠ .

Capt
D then

9 +1 ← +1 ∪ {D}, +2 ← + \+1;

10 for 4 ∈ E s.t. the constraint 2 represented by 4 is satisfied by both -
Capt
D and .

Capt
D do

11 E ← E \ {4}, update Φ- and Φ
. by removing constraint 2 from C, i.e. C ← C \ {2} ;

12 for 4 ∈ E s.t. VolΦ- (4) ≤ W or VolΦ. (4) ≤ W do
13 +frozen ← +frozen ∪ ((4 ∩+2) \+set);

14 for 4 ∈ E s.t. (4 ∩+2) \ (+set ∪+frozen) = ∅ do
15 Efrozen ← Efrozen ∪ {4};

16 while ∃4 ∈ Efrozen s.t. 4 ∩+1 ≠ ∅ and 4 ∩+frozen ≠ ∅ do
17 +1 ← +1 ∪ (4 ∩+frozen),+2 ← + \+1,+frozen ← +frozen \ 4;

18 extend ^ Capt and _ Capt to the set+2 \+set by sampling (-
Capt

+2\+set
, .
Capt

+2\+set
) from the optimal

coupling between `+2\+set,Φ- and `+2\+set,Φ. ;

19 extend ^ Capt and _ Capt to the set+1 \+set by sampling (-
Capt

+1\+set
, .
Capt

+1\+set
) from the optimal

coupling between `+1\+set,Φ- (· | ^ Capt) and `+1\+set,Φ. (· | _ Capt);

20 return (^ Capt, _ Capt);

�e coupling procedure Capt starts from two empty assignments ^ Capt and _ Capt , then gradually
extends these assignments, finally outputs two full assignments on + . �e following three basic sets
of variables are maintained by the coupling.

• +1/+2: +1 is a superset of discrepancy variables, which contains all variables F such that the

coupling onF may be failed i.e. -
Capt
F ≠ .

Capt
F ; +2 = + \+1 is the complement of set+1;

• +set: the set of variables whose values are already assigned by the coupling procedure.

In addition, the coupling procedure Capt also maintains two CSP formulas Φ-
= (+,W- , C)),Φ.

=

(+,W. , C) and a hypergraph� = (+, E) modeling these two formulas. In each step, we pick a suitable
variable D (Line 4), extend ^ Capt and _ Capt to variable D (Line 5). We then remove all the constraints

(together with corresponding hyperedges2) satisfied by both-
Capt
D and .

Capt
D (Line 11), update Φ- and

Φ
. by se�ing&-

D ← {-
Capt
D } and&.

D ← {.
Capt
D } (Line 6). In other words, we force D in Φ

- to take the

value -
Capt
D , and force D in Φ

. to take the value .
Capt
D .

2Remark that E is a multi-set of hyperedges. Once a hyperedge 4 is removed from E in Line 11, we only remove a single

copy of 4 representing the constraint 2 .
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�e coupling procedure Capt guarantees that the volume of all hyperedges 4 ∈ E cannot be too small
in the whole procedure. �is property is controlled by the parameter W . �us, the coupling procedure
Capt is adaptive with respect to the current volumes of hyperedges. Specifically, the following two sets
are maintained during the coupling.

• +frozen: the set of frozen variables, which is a set of unassigned variables in +2, where each
F ∈ +frozen is incident to a hyperedge 4 such that the volume of 4 is below the threshold W .
• Efrozen: the multi-set of frozen hyperedges such that for each hyperedge 4 ∈ Efrozen, all unas-
signed variables in 4 ∩+2 are frozen.

Once the volume of some hyperedge 4 is below the threshold W (Line 12), we froze all unassigned
variables in 4 ∩+2 (Line 13). Once a variable becomes frozen, the coupling cannot assign values to this
variable. If in a hyperedge 4, all unassigned variables in 4 ∩ +2 are frozen, then the coupling cannot
assign values to any unassigned variables 4, the hyperedge 4 becomes frozen (Line 14 and Line 15).
Finally, once a frozen hyperedge both contains frozen variables and variables in +1, we put all frozen
variables in this hyperedge into+1 (Line 16 and Line 17).

Once the while-loop in Algorithm 3 terminates, we then sample assignments for variables in+2\+set
and +1 \+set from the conditional distributions (Line 18 and Line 19).

Lemma 8.3. �e coupling procedure Capt satisfies the following properties:

• the coupling procedure will terminate eventually;
• the output ^ Capt ∈ [@]+ follows `-+ \{E} and the output _ Capt ∈ [@]+ follows `.+ \{E} ;
• for any time of the coupling procedure and any 4 in the current set E , it holds that

VolΦ- (4) ≥
W

@
and VolΦ. (4) ≥

W

@
;

• for any variable D ∈ + , if -
Capt
D ≠ .

Capt
D in the final output, then D ∈ +1.

Proof. We prove that the coupling Capt must terminate. Consider the while-loop in Line 16 and Line 17.
A�er the Line 17, the hyperedge 4 cannot satisfy the condition in Line 16 (because 4 ∩ +frozen = ∅),
thus the while-loop in Line 16 and Line 17 will terminate eventually. Consider the main while-loop
(Line 3). A�er each loop, the size of +set will increase by 1. Note that the size of+set cannot be greater
than =. Hence, the coupling Capt will terminate eventually.

We prove that the output ^ Capt ∈ [@]+ follows the distribution `-+ \{E} . �e result for the output
_ Capt ∈ [@]+ can be proved in a similar way. Consider the input CSP formula Φ-

= (+,�, (&-
D )D∈+ )

defined in (36). It holds that the uniform distribution `Φ- of all satisfying assignments toΦ- is precisely
the distribution `-+ \{E} . Suppose +set = {D1, D2, . . . , Dℓ}, where D8 is the 8-th variable whose value is
assigned by the coupling Capt. �e following properties holds:

• the value of D1 is sampled from the marginal distribution `D1,Φ- ;

• for each 1 ≤ 8 < ℓ , once D8 gets the value -
Capt
D8 , we fix &-

D8
as {-

Capt
D8 } (Line 6) and remove

a subset of constraints satisfied by current -
Capt
D (Line 11); a�er updated Φ

- , we sample the
value of D8+1 from the marginal distribution `D8+1,Φ- ;
• given the assignment of +set, the assignments of +2 \ +set and +1 \ +set are sampled from the
conditional distributions in Line 18 and Line 19.

Note that for each D8 , the marginal distribution `D8 ,Φ- is precisely the distribution `-+ \{E} projected on

D8 conditional on the value ofD 9 is fixed as-
Capt
D 9

for all 9 < 8. By the chain rule, the output^ Capt ∈ [@]+

follows the distribution `-+ \{E} .
We now prove the third property. By (37) and (38), initially, for all 4 ∈ E , it holds thatVolΦ- (4) >

W

@

and VolΦ. (4) >
W

@ . Suppose during the coupling procedure, there is a time such that some hyperedge

4 in the current set E satisfies VolΦ- (4) <
W
@ or VolΦ. (4) <

W
@ . Without loss generality, we assume

VolΦ- (4) <
W

@ . �e case VolΦ. (4) <
W

@ follows from symmetry. Recall

VolΦ- (4) ,
∏
D∈4

��&-
D

�� .
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Note that the volume VolΦ- (4) decreases only if we update &-
D for some D ∈ 4 in Line 6. Note that

for any D ∈ + , it holds that
��&-

D

�� ≤ @. In Line 6, once the coupling sets &-
D ← {-

Capt
D }, the volume

VolΦ- (4) decreases by at most a factor @. If VolΦ- (4) <
W

@ , the following event must occur

• event B: the main while-loop pick a variable D ∈ 4 a�er VolΦ- (4) < W .

We show that the event B cannot occur. Consider the first time that VolΦ- (4) < W . A�er Line 12 and
Line 13, it must hold that

4 ⊆ +1 ∪+set ∪+frozen.(39)

Note that the coupling Capt only adds variables into +1 and +set, but never deletes variables from
+1 and +set. Also note that if a variable is removed from +frozen, it must be added into +1(Line 17).
�us, (39) holds up to the end of the coupling. Consider the variable D in event B, D must satisfy
D ∈ +2 \ (+set ∪+frozen). However, by (39), there is no such variable D in hyperedge 4. Contradiction.

Finally, we prove the last property. In this proof, we consider+1,+2,+set,+frozen, E, Efrozen when the
main while-loop in Capt terminates. We claim that the following properties holds:

• (I) for any D ∈ +2 ∩+set, -
Capt
D = .

Capt
D ;

• (II) for any 4 ∈ E such that 4 ∩+1 ≠ ∅ and 4 ∩+2 ≠ ∅, 4 ∩+2 ⊆ +set .

Consider the CSP formulasΦ- andΦ. in Line 18. Note that bothΦ- andΦ. aremodeled by hypergraph
� = (+, E). Define a set of variables

' =

⋃
4∈E

4∩+1≠∅,4∩+2≠∅

(4 ∩+2).

Recall `Φ- and `Φ. are the uniform distributions of satisfying assignments to Φ
- and Φ

. . By the
definition of', conditional on any assignmentf ∈ [@]' on set', the assignment on+2\' is independent

with the assignment on+1. By property (I) and (II), it holds that ' ⊆ +2 ∩+set and -
Capt
'

= .
Capt
'

. Since

' ⊆ +set and -
Capt
'

= .
Capt
'

, for any D ∈ ',
��&-

D

�� = ��&.
D

�� = 1 and &-
D = &.

D . Hence, in Φ
- and Φ

. ,
variables in' are fixed as a same value in [@]. �us, `+2\+set,Φ- and `+2\+set,Φ. are identical distributions.
By Line 18,

-
Capt

+2\+set
= .

Capt

+2\+set
(40)

Combining property (I) and (40) proves that -
Capt
+2

= .
Capt
+2

. �is proves the last property.

We finish the prove by proving properties (I) and (II). �e property (I) is trivial, because for any

D ∈ +set, if -
Capt
D ≠ .

Capt
D , then by Line 9, it must hold that D ∈ +1. We then prove property (II).

Suppose there is an hyperedge 4 such that 4 ∩+1 ≠ ∅, 4 ∩+2 ≠ ∅ and 4 violates property (II). We define
a set

( (4) = (4 ∩+2) \+set = (4 \+1) \+set ≠ ∅.

�ere are only two possibilities for the set ( (4), we show neither of them is possible.

• ( (4) * +frozen: in this case, 4 satisfies the condition in the main while-loop (Line 3), the main
while-loop cannot terminate; contradiction.
• ( (4) ⊆ +frozen: in this case, by Line 14 and Line 15, 4 ∈ Efrozen; hence, 4 satisfies the condition
in Line 16, then by Line 17, all variables in 4 ∩+frozen are removed from +frozen and added into
+1, thus there is no such non-empty subset ( (4) ⊆ 4 such that ( (4) ⊆ +frozen; contradiction.

Hence, such non-empty subset ( (4) does not exist, which implies property (II) holds. �

By Lemma 8.3 and the coupling lemma (Lemma 2.2), to bound the �E★ in (33), we can bound

�E★ = 3TV

(
`
-+ \{E★}

E★ , `
.+ \{E★}
E★

)
≤ PrCapt [E★ ∈ +1] ,(41)

where +1 denotes the set+1 at the end of the coupling Capt.
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In the rest of the proof, our task is to bounding the RHS of (41). From now, we use hypergraph
� = (+, E) to model the input CSP formulas Φ- and Φ. in Algorithm 3. For any E ∈ + , define

#vtx (E) , {D ≠ E | ∃4 ∈ E s.t. D, E ∈ 4}.

We say a variable D is incident to a hyperedge 4 if D ∈ 4; a sequence of variables E0, E1, . . . , Eℓ is a path
in hypergraph � if E8 ∈ #vtx (E8−1) for all 1 ≤ 8 ≤ ℓ . We define the failed variables and failed edges.

Definition 8.4. Consider the time when the main while-loop in coupling procedure Capt terminates.

• A variable D ∈ + is said to be failed if D ∈ +set and -
Capt
D ≠ .

Capt
D .

• A hyperedge 4 ∈ E is said to be failed if both of the following two properties hold:
(1) the constraint represented by 4 is not satisfied by both ^ Capt and _ Capt;
(2) VolΦ- (4) < W or VolΦ. (4) < W .

Lemma 8.5. For any D ∈ +1, there exists a path D0, D1, . . . , Dℓ ∈ + in � such that

• D0 = E0 is the initial disagreement variable, Dℓ = D and D8 ∈ +1 for all 0 ≤ 8 ≤ ℓ ;
• for any 1 ≤ 8 ≤ ℓ , either D8 is failed or D8 is incident to a failed hyperedge 48 .

Proof. Suppose +1 = {E0, E1, E2, . . . , E<}, where E0 is the initial disagreement variable and E8 is the 8-th
variable added into set +1. If a set of variables are added into +1 at the same time (Line 17), we break
tie arbitrarily. We prove the first part of the lemma by induction on the index 8.

�e base case is 8 = 0, the first part of the lemma holds for the path that only contains E0.
Assuming the lemma holds up to index 8, we prove the lemma for index 8 + 1. Consider the time

when E8+1 is added into the set+1. �ere are following two possibilities.

• E8+1 is added in Line 9. Consider the hyperedge 4 in Line 4. It holds that E8+1 ∈ 4 and 4 ∩+1 ≠ ∅,
where +1 = {E0, E1, . . . , E8}. Pick an arbitrary E 9 ∈ 4 ∩+1. By induction hypothesis, since 9 < 8,
there exists a path D0 = E0, D1, D2, . . . , Dℓ = E 9 for E 9 . Note that E8+1 ∈ 4 and E 9 ∈ 4. We can find
the path D0 = E0, D1, D2, . . . , Dℓ = E 9 , Dℓ+1 = E8+1 for E8+1.
• E8+1 is added in Line 17. Consider the hyperedge 4 satisfying the condition in Line 16. It holds
that E8+1 ∈ 4 and 4 ∩ +1 ≠ ∅, where +1 = {E0, E1, . . . , E8}. Pick an arbitrary E 9 ∈ 4 ∩ +1. By
induction hypothesis, since 9 < 8, there exists a path D0 = E0, D1, D2, . . . , Dℓ = E 9 for E 9 . Note
that E8+1 ∈ 4 and E 9 ∈ 4. We can find the path D0 = E0, D1, D2, . . . , Dℓ = E 9 , Dℓ+1 = E8+1 for E8+1.

We now prove the second part of the lemma. It suffices to show that for anyD ∈ +1 \ {E0}, eitherD is
failed or D is incident to a failed hyperedge 4. Note that a variable D is added into+1 in either Line 9 or

Line 17. If D is added in Line 9, then it holds that -
Capt
D ≠ .

Capt
D , thus D is a failed variable. Suppose D is

added in Line 17. Before the execution of Line 17, D ∈ +frozen must be a frozen variable. Consider the
moment that D becomes frozen. By Line 13, D must belong to a hyperedge 4 such that 4 is not satisfied
by both ^ Capt and _ Capt (otherwise, 4 is deleted in Line 11) and min{VolΦ- (4),VolΦ. (4)} < W . Note
that a�er Line 13, 4 ⊆ +1 ∪+set ∪+frozen. A�er that, in the main while-loop, the coupling Capt cannot

assign values to any unassigned variables in 4. �us, this hyperedge 4 is not satisfied by both ^ Capt

and _ Capt up to the main while-loop in Capt terminates. Hence, 4 is a failed hyperedge andD is incident
to 4. �

Lemma 8.5 says if a variable belongs to+1, there exists a path satisfying the condition in Lemma 8.5.
However, the failure probability of such path is not easy to bound. We next modify such path into a
sequence whose failure probability is easy to bound.

Define the length of a path by the number of variables in this path minus 1, e.g. the length of the
path E1, E2, . . . , Eℓ is ℓ−1. For any two variablesD,F ∈ + , the distance betweenD andF in� , denoted as
dist� (D,F ), is the length of the shortest path between D andF in � . We extend the notion of distance
to subsets of variables. For any variable D ∈ + and subsets (,) ⊆ + , define

dist� (D, () , min
F∈(

dist� (D,F );

dist� ((,) ) , min
F∈(,F′∈)

dist� (F,F ′).
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For such distance function dist� (·, ·), the triangle inequality may not hold for any subsets. But we will
use the following two specific triangle inequalities.

∀D1, D2, D3 ∈ + , dist� (D1, D2) ≤ dist� (D1, D3) + dist� (D3, D2)(42)

∀D ∈ +, (,) ⊆ + dist� ((,) ) ≤ dist� ((,D) + dist� (D,) ).(43)

�e inequality (42) holds trivially. Suppose dist� ((,D) = dist� (D( , D) for D( ∈ ( and dist� (D,) ) =

dist� (D,D) ) for D) ∈ ) . By (42), we have

dist� ((,) )
(★)
≤ dist� (D( , D) ) ≤ dist� (D( , D) + dist� (D,D) ) = dist� ((,D) + dist� (D,) ),

where (★) holds because D( ∈ ( and D) ∈ ) . Remark that (43) covers (42), because ( and ) may only
contain a single variable.

We have the following lemma.

Lemma 8.6. For any D ∈ +1 \ {E0}, there exists a sequence of sets (1, (2, . . . , (ℓ , where each (8 is either a
hyperedge or a set containing a single variable, such that

• (1, (2, . . . , (ℓ are mutually disjoint;
• dist� (E0, (1) ≤ 2 and dist� (D, (ℓ ) = 0;
• for any 1 ≤ 8 ≤ ℓ − 1, dist� ((8, (8+1) ≤ 2.
• for each 1 ≤ 8 ≤ ℓ , (8 either contains a failed variable or (8 is a failed hyperedge.

Proof. Fix a variable D ∈ +1 \ {E0}. Let E0, E1, . . . , E< where E< = D denote the path in Lemma 8.5. For
each 1 ≤ 8 ≤ < if E8 is not a failed variable, we use 48 to denote the failed hyperedge incident to E8 ; if
E8 is a failed variable, we let 48 = {E8 }. We first show that how to construct the sequence (1, (2, . . . , (ℓ ,
then we show that such sequence satisfies the properties in the lemma.

Let S be an empty stack. Let % denote the path (E1, E2, . . . , E<). Remark that % does not contain
variable E0. We repeat the following procedure until % becomes an empty path. We pick the last
variable in the path % , denote this variable as E8 . We search for the minimum index 9 such that 9 < 8

and 48 ∩ 4 9 ≠ ∅. Here are two cases depending on whether such index 9 exists.

• If such index 9 does not exist, then push 48 into the stack S, remove E8 from the path % .
• If such index 9 exists, then push 48 into the stack S, remove all EC for 9 ≤ C ≤ 8 from the path % .

Let (1, (2, . . . , (ℓ be the elements in stack S from top to bo�om.
We now prove that all (8 are disjoint. Suppose there are two indices 9 < 8 such that (8 ∩ ( 9 ≠ ∅.

Suppose (8 = 48∗ and ( 9 = 4 9∗ . It holds that 8
∗
> 9∗. 4 9∗ must be removed when processing 48∗ , thus 4 9∗

cannot be added into stack S. Contradiction. �is proves the first property.
We now prove the second property. Note that D ∈ 4< and (ℓ = 4< , thus dist(D, (ℓ ) = 0. To bound

dist� (E0, (1), we consider two cases.

• Case (1 = 41. Note that E0 and E1 are adjacent in � , i.e. dist� (E0, E1) = 1. It holds that
E1 ∈ (1 = 41. Hence, dist� (E0, (1) ≤ dist� (E0, E1) = 1;
• Case (1 ≠ 41. Suppose (1 = 4C . In this case, it must hold that 41 ∩ 4C ≠ ∅, thus dist� (E1, 4C ) ≤
dist� (E1, E

∗) = 1. where E∗ ∈ 41 ∩ 4C is an arbitrary variable. Note that dist� (E0, E1) = 1. By
triangle inequality in (43), we have dist� (E0, 4C ) ≤ dist� (E0, E1) + dist� (E1, 4C ) ≤ 2.

Finally, we bound the distance dist� ((8, (8+1). Suppose (8+1 = 4 9 and (8 = 4 9 ′ . Here are two cases.

• Case 9 ′ = 9 − 1: Note that dist� (E 9 , E 9 ′) = 1, E 9 ∈ 4 9 and E 9 ′ ∈ 4 9 ′ . We have dist� (4 9 , 4 9 ′) ≤
dist� (E 9 , E 9 ′) ≤ 1. Hence, dist� ((8, (8+1) = dist� (4 9 , 4 9 ′) ≤ 1.
• Case 9 ′ < 9 − 1: Consider the moment when (8+1 = 4 9 is added into S. It must hold that
4 9 ′+1 ∩ 4 9 ≠ ∅. Note that E 9 ′ ∈ 4 9 ′ and dist� (E 9 ′, E 9 ′+1) = 1 . We have dist� (4 9 ′, E 9 ′+1) ≤

dist� (E 9 ′, E 9 ′+1) = 1. Note that E 9 ′+1 ∈ 4 9 ′+1 and 4 9 ′+1 ∩ 4 9 ≠ ∅. It holds that dist� (E 9 ′+1, 4 9 ) ≤
dist� (E 9 ′+1, E

∗) = 1, where E∗ ∈ 4 9 ′+1 ∩ 4 9 is an arbitrary variable. By triangle inequality in (43),
dist� (4 9 ′, 4 9 ) ≤ dist(4 9 ′, E 9 ′+1) + dist� (E 9 ′+1, 4 9 ) ≤ 2.

Combining two cases proves the third property.
For the last property, by Lemma 8.5, it is easy to see that each (8 is either a failed hyperedge or a set

containing a single failed variable. �
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We say a sequence of sets (1, (2, . . . , (ℓ is a percolation sequence (PS) if the following three properties
are satisfied:

• (1, (2, . . . , (ℓ are mutually disjoint;
• dist� (E0, (1) ≤ 2;
• for any 1 ≤ 8 ≤ ℓ − 1, dist� ((8, (8+1) ≤ 2.

We say a percolation sequence (1, (2, . . . , (ℓ is a percolation sequence for E★ if dist� (E★, 4ℓ ) = 0, i.e.
E★ ∈ 4ℓ . For any (8 in sequence, we say (8 fails if either (8 contains a failed variable or (8 is a failed
hyperedge. By (35) and Lemma 8.6, we have

�E★ ≤ PrCapt

[
-
Capt
E★ ≠ .

Capt
E★

]
≤

∑
PS for E★:(1,(2,...,(ℓ

PrCapt [∀1 ≤ 8 ≤ ℓ, (8 fails] .(44)

�e following lemma bounds the probability that all elements in a PS fail.

Lemma 8.7. Fix a percolation sequence (PS) (1, (2, . . . , (ℓ to E★. It holds that

PrCapt [∀1 ≤ 8 ≤ ℓ, (8 fails] ≤
∏
1≤8≤ℓ

(8 contains a single variable

1

8:332

∏
1≤8≤ℓ

(8 is a hyperedge

1

8:333
.

We need the following technical lemma to prove Lemma 8.7. We introduce a parameter B to write W
defined in (38) as

W = Be@23:, where B , 32:232.(45)

Lemma 8.8. During the coupling procedure Capt, the CSP formulas Φ-
= (+, (&-

D )D∈+ , C) and Φ
.

=

(+, (&.
D )D∈+ , C) always satisfies that for any D ∈ + \ (+set ∪ {E0}), &

.
D = &-

D and for any 9 ∈ &-
D = &.

D ,

1

@D

(
1 −

4

B:

)
≤ `D,Φ- ( 9) ≤

1

@D

(
1 +

4

B:

)
1

@D

(
1 −

4

B:

)
≤ `D,Φ. ( 9) ≤

1

@D

(
1 +

4

B:

)
,

(46)

where @D =
��&-

D

�� = ��&.
D

��, thus 3TV

(
`D,Φ- , `D,Φ.

)
≤ 4

B: .

Furthermore, for any optimal coupling (G, ~) ∈ &-
D ×&

.
D between `D,Φ- and `D,Φ. , it holds that

∀9 ∈ &-
D = &.

D Pr [G = 9 ∨ ~ = 9] = max
{
`D,Φ- ( 9), `D,Φ. ( 9)

}
≤

1

@D

(
1 +

4

B:

)
.

Proof. Initially, the input Φ- and Φ. satisfy&-
D = &.

D for any D ∈ + \ {E0}. Consider each update step
in Line 6. A�er the value of D is assigned, we put the variable D into +set in Line 7. It still holds that
&.

E = &-
E for any E ∈ + \ (+set ∪ {E0}). By Lemma 8.3, at any time, for any 4 in current E , it holds that

VolΦ- (4) =
∏
D∈4

@D ≥
W

@
= Be@3:

VolΦ. (4) =
∏
D∈4

@D ≥
W

@
= Be@3:.

We now prove (46) for Φ- . �e result for Φ. can be proved in a similar way. LetD denote the product
distribution such that each variable E ∈ + takes a value from&-

E uniformly at random. Let �2 to denote
the bad event that the constraint 2 is not satisfied. Let B = (�2)2∈C denote the collection of bad events.
Let Γ(·) be defined as in the Lovász local lemma (�eorem 2.1). For each 2 ∈ C, let G (�2) =

1
B@3: . For

each constraint 2 ∈ C,

PrD [�2 ] =
∏

D∈vbl(2)

1

@D
≤

1

B4@3:
≤

1

B@3:

(
1 −

1

B@3:

)B@3:−1
≤

1

B@3:

(
1 −

1

B@3:

)3:−1

≤ G (�2 )
∏

�2′ ∈Γ (�2 )

(1 − G (�2′)),
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where the last inequality holds because the maximum degree of the dependency graph is at most
: (3 − 1) ≤ 3: − 1. Fix a 9 ∈ &-

D = &.
D . Let � denote the event that E takes the value 9 . Note that

|Γ(�) | ≤ 3 . By Lovász local lemma (�eorem 2.1), we have

`D,Φ- ( 9) = Pr`
Φ-
[�] ≤

1

@D

(
1 −

1

B@3:

)−3
≤

1

@D
exp

(
2

B@:

)
≤

1

@D

(
1 +

4

B@:

)
,

which implies the upper bound in (46). Let �′ denote the event that E does not take the value 9 . Note
that |Γ(�′) | ≤ 3 . By Lovász local lemma (�eorem 2.1), we have

Pr`
Φ-
[�′] ≤

(
1 −

1

@D

) (
1 −

1

B@3:

)−3
≤

(
1 −

1

@D

)
exp

(
2

B@:

)
≤

(
1 −

1

@D

) (
1 +

4

B@:

)
.

We have

`D,Φ- ( 9) = 1 − Pr`
Φ-
[�′] ≥ 1 −

(
1 −

1

@D

) (
1 +

4

B@:

)
=

1

@D

(
1 −

4@D

B@:
+

4

B@:

)
≥

1

@D

(
1 −

4

B:

)
,

where the last inequality holds because @D ≤ @. �is proves the lower bound in (46). �e inequalities
in (46) imply

3TV

(
`D,Φ- , `D,Φ.

)
≤

1

2

∑
9 ∈&-

D =&.
D

��`D,Φ- ( 9) − `D,Φ. ( 9)
�� = 4

B:
.

Let (G,~) ∈ &-
D ×&

.
D be the optimal coupling between `D,Φ- and `D,Φ. . It holds that

Pr [G = ~] = 1 − 3TV

(
`D,Φ- , `D,Φ.

)
Define a set ( = { 9 ∈ &-

D = &.
D | `D,Φ- ( 9) ≥ `D,Φ. ( 9)}. Note that

∑
9 ∈&-

D
`D,Φ- ( 9) =

∑
9 ∈&.

D
`D,Φ. ( 9) = 1.

We have 3TV

(
`D,Φ- , `D,Φ.

)
=

∑
9 ∈( (`D,Φ- ( 9) − `D,Φ. ( 9)), which implies

Pr [G = ~] = 1 −
∑
9 ∈(

(`D,Φ- ( 9) − `D,Φ. ( 9)) =

(
1 −

∑
9 ∈(

`D,Φ- ( 9)

)
+

∑
9 ∈(

`D,Φ. ( 9)

=

∑
9 ∈&-

D \(

`D,Φ- ( 9) +
∑
9 ∈(

`D,Φ. ( 9)

=

∑
9 ∈&-

D

min{`D,Φ- ( 9), `D,Φ. ( 9)}.(47)

On the other hand, since (G,~) ∈ &-
D ×&

.
D as a valid coupling, we have

∀9 ∈ &-
D , Pr [G = ~ = 9] ≤ min{`D,Φ- ( 9), `D,Φ. ( 9)}.

�is implies that

∀9 ∈ &-
D Pr [G = ~ = 9] = min{`D,Φ- ( 9), `D,Φ. ( 9)}.(48)

Fix a 9 ∈ &-
D . Without loss of generality, assume `D,Φ- ( 9) ≥ `D,Φ. ( 9) (the case `D,Φ- ( 9) < `D,Φ. ( 9)

follows from symmetry). By (48), ~ = 9 implies G = 9 . �us G = 9 ∨ ~ = 9 if and only if G = 9 . �us,

Pr [G = 9 ∨ ~ = 9] = max
{
`D,Φ- ( 9), `D,Φ. ( 9)

}
≤

1

@D

(
1 +

4

B:

)
. �

Now, we are ready to prove Lemma 8.7.

Proof of Lemma 8.7. Given S = (1, (2, . . . , (ℓ , we define a set of variables vbl (S) = ∪ℓ8=1(8 . For each
1 ≤ 8 ≤ ℓ , sample a random real number A8 ∈ [0, 1] uniformly and independently.

Consider the following implementation of coupling Capt. In Line 5, we need to sample -
Capt
D and

.
Capt
D from the optimal coupling between marginal distributions `D,Φ- and `D,Φ. . If D ∈ vbl (S), then
we use the following implementation. We can find a unique (8 such that D ∈ (8 , because all (8 are
mutually disjoint. We use random number A8 to implement the optimal coupling between `D,Φ- and
`D,Φ. . Here are two case for (8 : (1) (8 = {D}; (2) (8 is a hyperedge and D ∈ (8 . We handle two cases
separately.

36



Suppose (8 = {D}. �e optimal coupling satisfies PrCapt

[
-
Capt
D ≠ .

Capt
D

]
= 3TV

(
`D,Φ- , `D,Φ.

)
. �e

optimal coupling can be implemented as follows.

• If A8 ≤ 3TV

(
`D,Φ- , `D,Φ.

)
, then sample a pair (-

Capt
D , .

Capt
D ) from the optimal coupling condi-

tional on -
Capt
D ≠ .

Capt
D ;

• If A8 > 3TV

(
`D,Φ- , `D,Φ.

)
, then sample a pair (-

Capt
D , .

Capt
D ) from the optimal coupling condi-

tional on -
Capt
D = .

Capt
D .

By Lemma 8.8, it holds that 3TV

(
`D,Φ- , `D,Φ.

)
≤ 4

B: =
1

8:332 . Define the following event for (8 :

B8 : A8 ≤
4

B:
=

1

8:332
.(49)

According to the implementation, if variable D fails in Capt, then event B8 must occur.
Suppose (8 = 4 is a hyperedge. Suppose 4 represents the constraint 2 such that 2 forbids a unique

configuration f ∈ [@]vbl(2) , i.e. 2 (f) = False. In addition to A8 , we maintain two variables"8 and �8

for (8 , where"8 ∈ [0, 1] is a real number, �8 ∈ {0, 1} is a Boolean variable. Initially,"8 = 1 and �8 = 0.

Suppose the coupling Capt pick a variable D ∈ 4. We sample -
Capt
D and .

Capt
D via following procedure

Couple(D).

• If �8 = 1, sample -
Capt
D and .

Capt
D from the optimal coupling between `D,Φ- and `D,Φ. . We does

not need to use A8 to implement this sampling step.
• If �8 = 0, let ?D = max{`D,Φ- (fD), `D,Φ. (fD)}, then check whether A8 ≤ "8?D .

(1) if A8 > "8?D , sample -
Capt
D and .

Capt
D from the optimal coupling between `D,Φ- and `D,Φ.

conditional on -
Capt
D ≠ fD ∧ .

Capt
D ≠ fD ; then set �8 ← 1;

(2) if A8 ≤ "8?D , sample -
Capt
D and .

Capt
D from the optimal coupling between `D,Φ- and `D,Φ.

conditional on -
Capt
D = fD ∨ .

Capt
D = fD ; then set"8 ← "8?D .

We first prove that above implementation is a valid coupling between `D,Φ- and `D,Φ. . Note that if

�8 = 1, then there is a variable D ∈ 4 = (8 such that 4 is satisfied by both -
Capt
D and .

Capt
D , thus �8

indicates whether 4 is removed by the coupling. We claim

conditional on �8 = 0 and"8 =<8 , A8 is a uniform random real number in [0,<8 ] .(50)

Let R denote all the randomness of the coupling Capt except the randomness of A8 . We first fix R, then
prove (50) by induction. Initially, A8 is sampled from [0, 1], "8 = 1, �8 = 0, the property holds. Consider
one execution of Couple(D). Suppose �8 = 0 and "8 = <8 before the execution. We show that (50)

still holds a�er we sampled -
Capt
D and .

Capt
D according to Couple(D). By induction hypothesis, A8 is

a uniform random real number in [0,<8 ]. Note that conditional on R and �8 = 0, the value of ?D is
fixed.3 A�er the procedure Couple(D),�8 = 0 if and only if A8 ≤ <8?D . Since A8 is a uniform random real
number in [0,<8 ], conditional on A8 ≤ <8?D , A8 is a uniform random real number in [0,<8?D ]. Since
we set<8 ←<8?D at the end of the procedure, thus A8 is a uniform random real number in [0,<8 ] a�er
the procedure Couple(D), and (50) still holds.

To prove the validity of the implementation. First note that if �8 = 1, the validity holds trivially.
If �8 = 0, by (50), A8 is a uniform random real number in [0, "8 ]. �us A8 > "8?D with probability

1 − ?D , and A8 ≤ "8?D with probability ?D . By Lemma 8.8, in the optimal coupling, the event -
Capt
D =

2D ∨ .
Capt
D = 2D has probability ?D . �us, the validity holds due to the chain rule.

Next, for hyperedge (8 = 4, we define the following bad event

B8 : A8 ≤
1

833:3
.(51)

We show that if the hyperedge (8 = 4 fails, then B8 must occur.

3�is is becauseR fixes all the randomness except the randomness of A8 . In our implementation, we only use A8 to compare

with a threshold "8?D when we couple -
Capt
D and .

Capt
D in Line 5 for some D ∈ 4 = (8 . Conditional further on �8 = 0, the

results of all previous comparisons are fixed, namely, A8 is smaller or equal to all the thresholds<8?D . Hence, given R and

�8 = 0, the previous procedure of Capt is fully determined, which implies ?D is fixed.
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Suppose (8 = 4 is a hyperedge. Consider the input CSP formulas Φ-
= (+, (&-

D )D∈+ , C) and Φ
.
=

(+, (&.
D )D∈+ , C). For any D ≠ E0, let @D =

��&-
D

�� = ��&.
D

��. Suppose 4 represents the atomic constraint 2
such that 2 (f) = False for some unique f ∈ [@]4 . Suppose a�er the coupling procedure Capt, variables
D1, D2, . . . , D< ∈ +set ∩ 4. Since the hyperedge (8 fails, it holds that

• a�er the coupling procedure, VolΦ- (4) < W or VolΦ. (4) < W ;

• for any 1 ≤ 8 ≤<, -
Capt
D8 = fD8 or .

Capt
D8 = fD8 .

�e second property holds because otherwise 4 is satisfied by both ^ Capt and _ Capt , thus must be
removed by the coupling. According to our implementation, at the end of the coupling, we have

�8 = 0 and A8 ≤ "8 =

<∏
9=1

?D 9
.

Note that B > 32 (B is defined in (45)),< ≤ : because |4 | = : . By Lemma 8.8, we have
<∏
9=1

?D 9
≤

<∏
9=1

1

@D 9

(
1 +

4

B:

)
≤ exp

(
4<

B:

) <∏
9=1

1

@D 9

≤ e

<∏
9=1

1

@D 9

.

At the end of the coupling, we have VolΦ- (4) < W or VolΦ. (4) < W . But in the beginning of the
coupling, by (37), we have VolΦ- (4) ≥ 3000@236:6 and VolΦ. (4) ≥ 3000@236:6. �e volume of 4
decreases because we update Φ

- and Φ
. in Line 6 for D = D1, D2, . . . , D< . Note that E0 ∉ +set, thus

D 9 ≠ E0 for all 1 ≤ 9 ≤<. We have

<∏
9=1

@D 9
≥

3000@236:6

W
=
3000@236:6

32e@233:3
=
300033:3

32e
.

If the hyperedge (8 fails, then it holds that

A8 ≤

<∏
9=1

?D 9
≤ e

<∏
9=1

1

@D 9

≤
32e2

300033:3
≤

1

833:3
.

�us the event B8 must occur.
Combining two cases together, we have

PrCapt [∀1 ≤ 8 ≤ ℓ, (8 fails] ≤ Pr [∀1 ≤ 8 ≤ ℓ,B8 ]

(all A8 are mutually independent) ≤

ℓ∏
8=1

Pr [B8 ]

(by (49) and (51)) ≤
∏
1≤8≤ℓ

(8 contains a single variable

1

832:3

∏
1≤8≤ℓ

(8 is a hyperedge

1

833:3
. �

Recall a sequence of sets (1, (2, . . . , (ℓ is called a percolation sequence (PS) to D ∈ + if it satisfies first
three properties in Lemma 8.6. We call a sequence of sets (1, (2, . . . , (ℓ a percolation sequence (PS) if it
satisfies first three properties in Lemma 8.6 except dist� (D, Bℓ ) = 0. For any (8 , let

?fail ((8) =

{
1

832:3
if (8 contains a single variable;

1
833:3

if (8 is a hyperedge.
(52)

Combining (44) and Lemma 8.7, we have

�E★ ≤
∑

PS for E★:41,42,...,4ℓ

PrCapt [∀1 ≤ 8 ≤ ℓ, (8 fails] ≤
∑

PS for E★:41,42,...,4ℓ

ℓ∏
8=1

?fail ((8).

Note that the hypergraph� is same for any E★ ∈ + \ {E0}. We can use the above inequality with E★ = E

for all E ∈ + \ {E0}. �is implies∑
E∈+ :E≠E0

�E ≤
∑

E∈+ :E≠E0

∑
PS to E:(1,(2,...,(ℓ

∏
1≤8≤ℓ

?fail ((8 ) ≤ :
∑

PS:(1,(2,...,(ℓ

∏
1≤8≤ℓ

?fail ((8),
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where the last inequality holds because there are at most : variables E that satisfies dist(E, (ℓ ) = 0 (if
(ℓ contains a single variable, there are only one variable E ; if (ℓ is a hyperedge, there are : variables E ).
We can enumerate all the PSs according the length. We have∑

E∈+ :E≠E0

�E ≤ :

∞∑
ℓ=1

∑
PS of length ℓ
(1,(2,...,(ℓ

∏
1≤8≤ℓ

?fail ((8) = :

∞∑
ℓ=1

# (ℓ),

where

# (ℓ) ,
∑

PS of length ℓ
(1,(2,...,(ℓ

∏
1≤8≤ℓ

?fail ((8).

We then show that

# (ℓ) ≤

(
:232

1

832:3
+ :233

1

833:3

) (
:332

1

832:3
+ :333

1

833:3

)ℓ−1
.(53)

We need the following basic facts to prove (53). We may assume 3, : ≥ 2, otherwise the sampling
problem is trivial. Fix a variable E ∈ + . �e number of variables D satisfying dist� (E,D) ≤ 2 is at most

1 + 3 (: − 1) + 3 (3 − 1) (: − 1)2 ≤ :232.

�e number of hyperedges 4 ′ satisfying dist� (E, 4
′) ≤ 2 is at most

3 + 3 (: − 1) (3 − 1) + 3 (3 − 1)2 (: − 1)2 ≤ :233 .

Fix a hyperedge 4 ∈ E . �e number of variables D satisfying dist� (4,D) ≤ 2 is at most

: + : (3 − 1) (: − 1) + : (3 − 1)2 (: − 1)2 ≤ :332 .

�e number of hyperedges 4 ′ satisfying dist� (4, 4
′) ≤ 2 is at most

(1 + : (3 − 1)) + : (: − 1) (3 − 1)2 + : (: − 1)2(3 − 1)3 ≤ :333.

We prove (53) by induction on ℓ . Suppose ℓ = 1. It holds that dist� (E0, (1) ≤ 2. By (52), we have

# (1) ≤ :232
1

832:3
+ :233

1

833:3
.

Suppose (53) holds for all ℓ ≤ : . We prove (53) for ℓ = : + 1. For PS (1, (2, . . . , (:+1 of length : + 1,
(1, (2, . . . , (: is a PS of length : and dist� ((:, (:+1) ≤ 2. For any (: , there are at most :332 ways to
choose (:+1 as a variable, and at most :333 ways to choose (:+1 as a hyperedge. �is implies

# (: + 1) ≤ # (:)

(
:332

1

832:3
+ :333

1

833:3

)
by I.H.
≤

(
:232

1

832:3
+ :233

1

833:3

) (
:332

1

832:3
+ :333

1

833:3

):
.

�is proves (53). Now, we have∑
E∈+ :E≠E0

�E ≤ :

∞∑
ℓ=1

# (ℓ) ≤

∞∑
ℓ=1

(
:332

1

832:3
+ :333

1

833:3

)ℓ
=

∞∑
ℓ=1

(
1

4

)ℓ
≤

1

2
.

8.4. Non-adaptive coupling analysis. We now analyze the general CSP formula Φ = (+,W,C) with
atomic constraints, where each variable E ∈ + has an arbitrary domain&E and each constraint contains
arbitrary number of variables. We will prove the following lemma is this section.

Lemma 8.9. Let Φ = (+,W,C) be the input CSP formula with atomic constraints in Algorithm 1. Let
h = (ℎE)E∈+ be the projection scheme forΦ satisfying Condition 3.4 with parameters U and V . Let@E = |&E |,
? = max2∈C

∏
E∈vbl(2)

1
@E

and � denote the maximum degree of the dependency graph of Φ. If

log
1

?
≥

50

V
log

(
2000�4

V

)
,
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then it holds that
∑

E∈+ \{E0 } 3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
≤ 1

2
.

Fix a variable E★ ∈ + \ {E0}. �e goal of this section is to construct a non-adaptive coupling Cnon to

bound the total variation distance 3TV

(
a
-+ \{E★}
E★ , a

.+ \{E★}
E★

)
.

Recall that Φ = (+,W, C) is the original input CSP formula. Recall that two CSP formulas Φ-
=

(+,W-
= (&-

D )D∈+ , C) and Φ
.
= (+,W.

= (&.
E )E∈+ , C) are defined by

&-
D =

{
ℎ−1D (-D) if D ≠ E★;

&D if D = E★,
&.
D =

{
ℎ−1D (.D) if D ≠ E★;

&D if D = E★.
(54)

By definition, (&-
D )D∈+ and (&.

D )D∈+ differ only at variable E0. Let `Φ- denote the uniform distribu-
tion over all satisfying assignments to Φ- , and `Φ. denote the uniform distribution over all satisfying
assignments to Φ

. . �e first step for non-adaptive coupling analysis is to construct another projec-
tion schemes on instances Φ- and Φ

. . Let h- = (ℎ-E )E∈+ denote the projection scheme for Φ- and
h. = (ℎ.E )E∈+ denote the projection scheme for Φ. , where ℎ-E : &-

E → Σ
-
E and ℎ.E : &.

E → Σ
.
E . For

each E ∈ + , define

B-E ,
��Σ-E �� , B.E ,

��Σ.E �� , @-E =
��&-

E

�� , @.E =
��&.

E

�� .
In our analysis, we construct a pair of projection schemes h- ,h. satisfying the following condition.

Condition 8.10. Let Φ = (+,W,C) be the original input CSP formula of Algorithm 1 and h = (ℎE)E∈+
be the original projection scheme for Φ satisfying Condition 3.4 with parameters U and V . �e projection
scheme h- for Φ- and the projection scheme h. for Φ. satisfy the following conditions:

• both h- and h. are balanced, i.e. for each E ∈ + and 2-E ∈ Σ
-
E ,

⌊
@-E /B

-
E

⌋
≤

��(ℎ-E )−1(2-E )�� ≤⌈
@-E /B

-
E

⌉
; for each E ∈ + and 2.E ∈ Σ

.
E ,

⌊
@.E /B

.
E

⌋
≤

��(ℎ.E )−1(2.E )�� ≤ ⌈
@.E /B

.
E

⌉
;

• Σ
-
E0

= Σ
.
E0
; and ℎ-D = ℎ.D for all D ∈ + \ {E0};

• ℎ-E★ = ℎ.E★ = ℎE★ , where ℎE★ is the original projection scheme h restricted on variable E★;
• for any constraint 2 ∈ C,

min
©«

∑
E∈vbl(2)

log

⌊
@-E

B-E

⌋
,

∑
E∈vbl(2)

log

⌊
@.E

B.E

⌋ª®¬
≥

V

10

©«
∑

E∈vbl(2)

log@E
ª®¬
;(55)

for any constraint 2 ∈ C satisfying E★ ∉ vbl (2),

min
©«

∑
E∈vbl(2)

log
@-E⌈

@-E /B
-
E

⌉ , ∑
E∈vbl(2)

log
@.E⌈

@.E /B
.
E

⌉ª®¬
≥

V

10

©«
∑

E∈vbl(2)

log @E
ª®¬
;(56)

for any constraint 2 ∈ C satisfying E★ ∈ vbl (2),

min
©«
log

⌊
@-E★

B-E★

⌋
+

∑
E∈vbl(2)\{E★}

log
@-E⌈

@-E /B
-
E

⌉ , log
⌊
@.E★

B.E★

⌋
+

∑
E∈vbl(2)\{E★}

log
@.E⌈

@.E /B
.
E

⌉ª®¬
≥

V

10

©«
∑

E∈vbl(2)

log @E
ª®¬
,(57)

where @-E =
��&-

E

��,@.E =
��&.

E

�� and @E = |&E | for all E ∈ + .

Condition 8.10 is a variation of Condition 3.4. �e lower bound in (56) can be transformed to the
upper bounds on

∑
E∈vbl(2)

⌈
@-E /B

-
E

⌉
and

∑
E∈vbl(2)

⌈
@.E /B

.
E

⌉
. �us, (56) and (55) are similar to (6) and (7)

in Condition 3.4. Moreover, for constraint 2 ∈ C satisfying E★ ∈ vbl (2), we need an extra condition
in (57). �e purpose of this extra condition is to handle the case that |vbl (2) | can be very large.

�e following lemma shows that the projection schemes satisfying Condition 8.10 exist under a
Lovász local lemma condition. Since we only use h- and h. for analysis, we only need to show such
projection schemes exist, we do not need an algorithm to construct specific projection schemes.
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Lemma 8.11. Let Φ = (+,W, C) be the original input CSP formula of Algorithm 1 and h = (ℎE)E∈+ be
the original projection scheme for Φ satisfying Condition 3.4 with parameters U and V . Let @E = |&E | and
� denote the maximum degree of the dependency graph of Φ. Let ? , max2∈C

∏
E∈vbl(2)

1
@E
. Suppose

log
1

?
≥

55

V
(log� + 3).

�ere exist projection schemes h- , h. for Φ- ,Φ. satisfying Condition 8.10.

�e proof of Lemma 8.11 is deferred to Section 8.4.2.
Let h- = (ℎ-E )E∈+ and h. = (ℎ.E )E∈+ denote the projection schemes for Φ- and Φ

. , where ℎ-E :

&-
E → Σ

-
E and ℎ.E : &.

E → Σ
.
E . Suppose h

- and h. satisfy Condition 8.10. By Condition 8.10, for any
variable E ∈ + , Σ-E = Σ

.
E and B-E = B.E =

��Σ-E �� = ��Σ.E ��. Denote
∀E ∈ +, B ′E , B-E = B.E and Σ

′
E , Σ

-
E = Σ

.
E ;

Σ
′ ,

⊗
E∈+

Σ
′
E .

Recall `Φ- and `Φ. are the uniform distributions over all satisfying assignments to Φ
- and Φ

. . We
define the following two projected distributions:

• a- : the projected distribution (defined in Definition 3.2) over Σ′ =
⊗

E∈+ Σ
′
E induced from the

instance Φ- and the projection scheme h- ;
• a. : the projected distribution (defined in Definition 3.2) over Σ′ =

⊗
E∈+ Σ

′
E induced from the

instance Φ. and the projection scheme h. .

For any variable E ∈ + , let aE,- and aE,. denote the marginal distributions on E projected from a- and

a. . Recall the goal of this section is to bound3TV

(
a
-+ \{E★}

E★ , a
.+ \{E★}
E★

)
. By Condition 8.10,ℎ-E★ = ℎ.E★ = ℎE★ .

By the definitions Φ- , Φ. and the projected distribution in Definition 3.2,

a
-+ \{E★}
E★ = aE★,- and a

.+ \{E★}
E★ = aE★,. .

Recall that Φ = (+,W, C) is the original input CSP formula of Algorithm 1. Recall that � = (+, E)

denotes the (multi-)hypergraph that models Φ, where E , {vbl (2) | 2 ∈ C}. Note that � also models
Φ
- andΦ. , becauseΦ,Φ- ,Φ. have the same sets of variables and constraints. Let 4 ∈ E be a hyperedge

and D ∈ 4 a variable in 4. Let - CnonD , . CnonD ∈ Σ′D be two values. Let 24 ∈ C denote the atomic constraint
represented by 4. Let f ∈ W4 denote the unique configuration forbidden by 24 , i.e. 24 (f) = False. We

say 4 is satisfied by - CnonD if fD ∉ (ℎ-D )
−1 (- CnonD ), because in the projected distribution a- , conditional

on the value of D is - CnonD , the constraint 24 must be satisfied. Similarly, We say 4 is satisfied by . CnonD

if fD ∉ (ℎ.D )
−1 (. CnonD ). �e coupling procedure Cnon is given in Algorithm 4.

�e input of the coupling Cnon contains CSP formulas Φ- and Φ. , together with projection schemes
h- and h. satisfying Condition 8.10. We also give an index function ID : + → [=] such that each
variable has a distinct index and the variable E★ has the largest index. �e coupling will use this index
to pick the variable in Line 5. Compared with the adaptive coupling in Algorithm 3, the coupling Cnon
is non-adaptive, i.e. it does not need to maintain the current volume of each hyperedge. Instead, the
coupling Cnon is given projection schemes h- and h. in advance. Once the coupling Cnon picks a
variable D, it assigns the values in Σ

′
D to variable D, where the domain Σ

′
D is determined by h- and h. .

�e coupling Cnon will put D into +1 if the coupling on D fails. A�er that, the coupling will remove

all the hyperedges satisfied by both - CnonD and . CnonD in Line 11. If all variables in a hyperedge 4 are
assigned values and 4 is still not satisfied, the coupling Cnon puts 4 into+1 in Line 13. Remark that a�er
the while-loop, Cnon only samples the value for+2 \+set because+1 ⊆ +set.

Lemma 8.12. �e coupling procedure Cnon satisfies the following properties:

• the coupling procedure will terminate eventually;
• the output ^ Cnon ∈ Σ′ follows a- and the output _ Cnon ∈ Σ′ follows a. ;

• for any variable D ∈ + , if - CnonD ≠ . CnonD in the final output, then D ∈ +1.
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Algorithm 4:�e coupling procedure Cnon

Input :CSP formulas Φ-
= (+,W-

= (&-
D )D∈+ , C) and Φ

.
= (+,W.

= (&.
E )E∈+ , C), the

hypergraph � = (+, E) modeling Φ- and Φ
. , projection schemes h- and h.

satisfying Condition 8.10, variables E0, E★ ∈ + , an index function ID : + → [=] such
that ID(D) ≠ ID(E) for all D ≠ E and ID(E★) = =.

Output :a pair of assignments ^ Cnon, _ Cnon ∈ Σ′.

1 sample - CnonE0 ∼ aE0,- and . CnonE0 ∼ aE0,. independently;

2 +1 ← {E0}, +2 ← + \+1, +set ← {E0};

3 remove all 4 from E s.t. the constraint 2 represented by 4 is satisfied by both - CnonE0 and . CnonE0 ;

4 while ∃4 ∈ E s.t. 4 ∩+1 ≠ ∅, (4 ∩+2) \+set ≠ ∅ do
5 let 4 be the first such hyperedge and D the variable in (4 ∩+2) \+set with lowest ID;

6 sample (2- , 2. ) ∈ Σ
′
D × Σ

′
D from the optimal coupling between aD,- (· | ^

Cnon) and

aD,. (· | _
Cnon) and extend ^ Cnon and _ Cnon to D by se�ing (- CnonD , . CnonD ) ← (2- , 2. );

7 +set ← +set ∪ {D};

8 if - CnonD ≠ . CnonD then
9 +1 ← +1 ∪ {D}, +2 ← + \+1;

10 for 4 ∈ E s.t. the constraint 2 represented by 4 is satisfied by both - CnonD and . CnonD do
11 E ← E \ {4}

12 for 4 ∈ E s.t. 4 ⊆ +set do
13 +1 ← +1 ∪ {4}, +2 ← + \+1;

14 extend ^ Cnon and _ Cnon to the set+2 \+set by sampling (- Cnon
+2\+set

, . Cnon
+2\+set

) from the optimal

coupling between a+2\+set,- (· | ^
Cnon) and a+2\+set,. (· | _

Cnon);

15 return (^ Cnon, _ Cnon);

Proof. A�er each execution of the while-loop, the size of +set will increase by 1. �e size of +set is at
most =. �us, the coupling procedure will terminate eventually.

We prove the second property for ^ Cnon . �e result for _ Cnon can be proved in a similar way. In

Line 1, the coupling samples the - CnonE0 independently from the distribution aE0,- . Given the current

configuration^ Cnon , the coupling picks an unassigned variableD, then draw- CnonD from the conditional

marginal distributionaD,- (· | ^
Cnon) in Line 6. Finally, the coupling samples- Cnon

+ \+2
from the conditional

distribution. Note that +1 ⊆ +set. When the coupling terminates, all variables E ∈ + gets a value

- CnonE ∈ Σ′E . By the chain rule, the output ^ Cnon ∈ Σ′ follows the law a- .
To prove the last property, we show that a�er the while loop, it holds that

• - Cnon
+2∩+set

= . Cnon
+2∩+set

;

• a+2\+set,- (· | ^
Cnon) and a+2\+set,. (· | _

Cnon) are identical distributions, thus all variables in
+2 \+set can be coupled perfectly.

Combining these two properties proves the last property in the lemma. �e first property is easy to

verify, because if - CnonD ≠ . CnonD , then D must be added into+1 in Line 9. To prove the second property,
we claim that, a�er the while-loop, there is no hyperedge 4 ∈ E such that 4 ∩+1 ≠ ∅ and 4 ∩+2 ≠ ∅.
Suppose such hyperedge 4 exists. �ere are two possibilities for such hyperedge.

• (4 ∩+2) \+set ≠ ∅: In this case, the while-loop cannot terminate. Contradiction.
• (4 ∩+2) \+set = ∅: Note that it always holds that+1 ⊆ +set. In this case, it holds that 4 ⊆ +set.
Note that 4 ∩+1 ≠ ∅ and 4 ∩+2 ≠ ∅. Hence, a�er the Line 1, there is no such hyperedge 4. If
such hyperedge 4 exists, it must be produced by the while-loop. Since 4 ⊆ +set, such hyperedge
4 will either be removed in Line 11, or added into +1 in Line 13 (a�er which 4 ∩+2 = ∅). �is
implies that such hyperedge does not exist when the while-loop terminates. Contradiction.
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Hence, a�er the while-loop, all variables are divided into two parts +1 and +2. Besides, all the con-
straints 2 ∈ C such that vbl (2) ∩ +1 ≠ ∅ and vbl (2) ∩ +2 ≠ ∅ are satisfied by both ^ Cnon and
_ Cnon . �is implies, conditional on ^ Cnon , the variables in +2 is independent with the variables in
+1, and the same result holds for _ Cnon . Note that two instances Φ- and Φ

. differ only at variable

E0, two projection schemes h- and h. also differ only at E0, and E0 ∈ +1. Since -
Cnon
+2∩+set

= . Cnon
+2∩+set

,

a+2\+set,- (· | ^
Cnon) = a+2\+set,- (· | -

Cnon
+2∩+set

) and a+2\+set,. (· | _
Cnon) = a+2\+set,. (· | .

Cnon
+2∩+set

) are

identical distributions. �

For each hyperedge 4 ∈ E , we say 4 is failed in coupling Cnon if the following condition holds.

Definition 8.13. A hyperedge 4 ∈ E fails in the coupling Cnon if one of the following two events
occur.

• Type-I failure: there is a variable D ∈ 4 \ {E0} such that the coupling picks 4 and D in Line 5,

and - CnonD ≠ . CnonD a�er the coupling.
• Type-II failure: consider the time when the while-loop terminates. It holds that 4 ⊆ +set and
the constraint represented by 4 is not satisfied by both ^ Cnon and _ Cnon .

Let Lin(� ) denote the line graph of � , where each vertex in Lin(� ) is a hyperedge in � , two

hyperedges 4, 4 ′ ∈ E are connected if 4 ∩ 4 ′ ≠ ∅. Let Lin: (� ) denote the :-th power graph of Lin(� ),

two hyperedges 4 and 4 ′ are adjacent in Lin: (� ) if their distance in Lin(� ) is no more than : . For
each variable, we use # (E) to denote the set of hyperedges incident to E :

# (E) , {4 ∈ E | E ∈ 4}.

For any : ≥ 1, define

# : (E) ,
{
4 ∈ E | ∃4 ′ ∈ # (E) s.t. distLin(� ) (4, 4

′) ≤ : − 1
}
,(58)

where distLin(� ) (4, 4
′) denotes the length of the shortest path between 4 and 4 ′ in graph Lin(� ). Re-

mark that # (E) = # 1(E) by definition.
When the coupling Cnon terminates, each variable E ∈ +1 satisfies the following property.

Lemma 8.14. For any E ∈ +1 \ {E0}, there exists a path 41, 42, . . . , 4ℓ in Lin2(� ) such that

• 41 ∈ #
2(E0) and E ∈ 4ℓ ;

• for all 1 ≤ 8 ≤ ℓ , the hyperedge 48 fails in the coupling.

Proof. Let +1 = {E0, E1, E2, . . . , E<} denote the variables in +1, where E8 is the 8-th variables added into
+1. Remark that if a set of variables are added into+1 at the same time (Line 13), we break tie arbitrarily.
We prove the lemma by induction on index 8.

�e base case is E0, the lemma holds for E0 trivially. Suppose the lemma holds for E0, E1, . . . , E:−1.
We prove the lemma for variable E: . �e variable E: is added into+1 either in Line 9 or Line 13.

• Suppose E: is added into +1 in Line 9. Variable E: must be picked in Line 5. Consider the

hyperedge 4 picked in Line 5. �e hyperedge 4 fails in type-I because E: ∈ 4 and-
Cnon
E: ≠ . CnonE: .

Besides, it holds that E: ∈ 4 and E 9 ∈ 4 for some 9 < : . If 9 = 0, the lemma holds trivially. If
0 < 9 < : , by induction hypothesis, there is a path 41, 42, . . . , 4C for E 9 . Since E 9 ∈ 4C and E 9 ∈ 4,
the lemma holds for E: with the path 41, 42, . . . , 4C , 4.
• Suppose E: is added into +1 in Line 13. Let 4 denote the hyperedge in Line 13. It holds that
that E: ∈ 4. By Line 12, 4 ⊆ +set. Since 4 is not deleted in Line 3 or Line 11, the constraint
represented by 4 is not satisfied by both ^ Cnon and _ Cnon . �is property holds up to the end
of the coupling. �us 4 fails in type-II. Since 4 ⊆ +set and E: ≠ E0, the while-loop must have
picked a hyperedge 4 ′ and E: ∈ 4

′ in Line 5. �us, 4 ′ contains a variable E 9 for 9 < : (4 ′ may not

fail). If 9 = 0, then 4 ∈ # 2(E0), and the lemma holds for E: with single hyperedge 4. If 0 < 9 < : ,
by induction hypothesis, there is a path 41, 42, . . . , 4C for E 9 . Since 4C ∩ 4

′
≠ ∅ and 4 ′ ∩ 4 ≠ ∅, 4

and 4C are adjacent in Lin2(� ). the lemma holds for E: with the path 41, 42, . . . , 4C , 4.

Combining two cases proves the lemma. �

If the - CnonE★ ≠ . CnonE★ , we have the following result.
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Lemma 8.15. If - CnonE★ ≠ . CnonE★ , then there exists a path 41, 42, . . . , 4ℓ in Lin2 (� ) such that

• 41 ∈ #
2(E0) and E★ ∈ 4ℓ ;

• for all 1 ≤ 8 ≤ ℓ − 1, the hyperedge 48 fails in the coupling;

• the hyperedge 4ℓ is not satisfied by both -
Cnon
( and . Cnon( , where ( = 4ℓ \ {E★}.

Proof. If - CnonE★ ≠ . CnonE★ , by Lemma 8.12, it must hold that E★ ∈ +1 and E★ is added into +1 in Line 9,

because E★ ≠ E0, and if E★ is added into+1 in Line 13, then - CnonE★ = . CnonE★ . Consider the moment when
E★ is added into+1. Suppose the while-loop picks the hyperedge 4★. It must hold that E★ ∈ 4★ and the
while loop picks E★ to sample its values in ^ Cnon and _ Cnon . In Line 5, the algorithm always picks the
variable in 4★ with lowest ID and the ID of E★ is the =. �is implies all (4★∩+2) \+set = {E★}. Note that

+1 ⊆ +set. �us, all variables in 4★ \ {E★} get the value and 4★ is not satisfied in both - Cnon
(

and . Cnon
(

,
where ( = 4★ \ {E★}. Otherwise, 4★ is removed in Line 3 or Line 11, the while-loop cannot pick 4★.

Let +1 = {E0, E1, E2, . . . , E<} denote the variables in +1, where E8 is the 8-th variables added into +1.
Remark that if a set of variables are added into +1 at the same time (Line 13), we break tie arbitrarily.
Suppose E★ = E: . Since 4★ is picked in Line 5, it must hold that E 9 ∈ 4★ for some 9 < : . If 9 = 0, the

lemma holds with single hyperedge 4★. If 0 < 9 < : , there exists a path 41, 42, . . . , 4ℓ−1 in Lin2(� )

satisfying the condition in Lemma 8.14 for E 9 . Since E 9 ∈ 4ℓ−1 and E 9 ∈ 4★, the lemma holds with the
path 41, 42, . . . , 4ℓ−1, 4★. �

We modify the path in Lemma 8.15 to the following sequence of hyperedges, which will be used in
the analysis.

Corollary 8.16. If - CnonE★ ≠ . CnonE★ , then there exists a path 41, 42, . . . , 4ℓ in Lin3 (� ) such that

• 41 ∈ #
3(E0), E★ ∈ 4ℓ , and 41, 42, . . . , 4ℓ are mutually disjoint.

• for all 1 ≤ 8 ≤ ℓ − 1, the hyperedge 48 fails in the coupling;

• the hyperedge 4ℓ is not satisfied by both -
Cnon
(

and . Cnon
(

, where ( = 4ℓ \ {E★}.

Proof. Let 4 ′1, 4
′
2, . . . , 4

′
< denote the path in Lemma 8.15. We first show that how to construct the path

41, 42, . . . , 4ℓ in Lin3 (� ), then we show that such path satisfies the properties in the corollary.
Let S be an empty stack. Let % denote the sequence (4 ′1, 4

′
2, . . . , 4

′
<). We pick the last hyperedge in

the path % , denote this hyperedge as 4 ′8 . We push 4 ′8 into the stack S. We search for the minimum index
9 such that 9 < 8 and 4 ′8 ∩ 4

′
9 ≠ ∅. Here are two cases depending on whether such index 9 exists.

• If such index 9 does not exist, remove 4 ′8 from the path % .
• If such index 9 exists, remove all 4 ′

:
for 9 ≤ : ≤ 8 from the path % .

Repeat the above procedure until % becomes an empty sequence. Let 41, 42, . . . , 4ℓ be the elements in
stack S from top to bo�om.

It is easy to verify 4ℓ = 4 ′< . By Lemma 8.15, E★ ∈ 4ℓ and 4ℓ satisfies the last property in the corollary.
It is also easy to see all 41, 42, . . . , 4ℓ are mutually disjoint. By Lemma 8.15, the hyperedge 48 fails in the
coupling for all 1 ≤ 8 ≤ ℓ − 1. We only need to prove the following two properties

• 41 ∈ #
3(E0);

• 41, 42, . . . , 4ℓ forms a path in Lin3 (� ).

We first prove 41 ∈ # 3(E0). If 41 = 4 ′1, then the property holds trivially. Suppose 41 = 4 ′
:
for some

: > 1. When the procedure adds 4 ′
:
into the stack, the hyperedge 4 ′1 must be removed. �is implies

4 ′
:
∩ 4 ′1 ≠ ∅. By Lemma 8.15, 4 ′1 ∈ #

2 (E0). It holds that 41 = 4 ′
:
∈ # 3(E0).

Next, we prove that 41, 42, . . . , 4ℓ forms a path in Lin3(� ). Consider two adjacent hyperedges 48−1
and 48 . Suppose 48 = 4 ′9 and 48−1 = 4 ′

:
. If 9 = : + 1, since 4 ′9 and 4

′
:
are adjacent in Lin2(� ), 48 and 48−1

are adjacent in Lin3(� ). Suppose 9 > : + 1. In this case, 4 ′
:+1

is removed and 4 ′
:
is not removed, thus

4 ′9 ∩ 4
′
:+1

≠ ∅. Since 4 ′
:
and 4 ′

:+1
are adjacent in Lin2(� ), 4 ′9 and 4

′
:
are adjacent in Lin3(� ). �

Fix a path 41, 42, . . . , 4ℓ in Lin3(� ) such that it satisfies the first property except E★ ∈ 4ℓ in Corol-
lary 8.16, i.e. 41 ∈ # 3(E0), and 41, 42, . . . , 4ℓ are mutually disjoint. We call such path a percolation
path (PP). We say a percolation path 41, 42, . . . , 4ℓ is a percolation path for E★ if E★ ∈ 4ℓ .
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Definition 8.17. Fix a percolation path 41, 42, . . . , 4ℓ . For each 1 ≤ 8 ≤ ℓ , a hyperedge 48 is bad if

• for 1 ≤ 8 ≤ ℓ − 1: the hyperedge 48 fails in the coupling Cnon (Definition 8.13);

• for 8 = ℓ : the hyperedge 4ℓ is not satisfied by both-
Cnon
(

and . Cnon
(

, where ( = 4ℓ \ {E★}; and E★

is assigned different values in ^ Cnon and _ Cnon , i.e. - CnonE★ ≠ . CnonE★ .

By Corollary 8.16, if - CnonE★ ≠ . CnonE★ in coupling Cnon, then there is a percolation path for E★:
41, 42, . . . , 4ℓ such that 48 is bad for all 1 ≤ 8 ≤ ℓ . We give the following key lemma in this proof.

Lemma 8.18. Suppose the original input CSP formula Φ = (+,W,C) of Algorithm 1 satisfies

log
1

?
≥

50

V
log

(
2000�4

V

)
.(59)

Fix a percolation path (PP) 41, 42, . . . , 4ℓ for E★ in Lin3 (� ) . It holds that

PrCnon [∀1 ≤ 8 ≤ ℓ, 48 is bad] ≤

(
1

4�3

) ℓ
V

50

(
1

2

) V |4ℓ |
50

,

which implies

PrCnon
[
- CnonE★

≠ . CnonE★

]
≤

∑
41,42,...4ℓ is a PP for E★

(
1

4�3

) ℓ
V

50

(
1

2

) V |4ℓ |
50

.

�e proof of Lemma 8.18 is deferred to Section 8.4.1. We now use Lemma 8.18 to prove Lemma 8.9.

Proof of Lemma 8.9. We will use Lemma 8.18 to show that∑
E∈+ \{E0 }

3TV

(
a
-+ \{E}
E , a

.+ \{E}
E

)
≤

1

2
.

By the assumption in Lemma 8.9, it holds that log 1
? ≥

50
V log

(
2000�4

V

)
. Note that the condition in

Lemma 8.18 holds. Note that log 1
? ≥

50
V log

(
2000�4

V

)
≥ 55

V (log� + 3) . By Lemma 8.11, the projection

schemes satisfying Condition 8.10 exists. By Lemma 8.12, the ^ Cnon in Cnon follows the distribution
a- and the _ Cnon in Cnon follows the distribution a. . By the definition of a- and a. , it holds that

aE★,- = a
-+ \{E★}
E★ and aE★,. = a

.+ \{E★}
E★ . By the coupling lemma and Lemma 8.18, it holds that

3TV

(
a
-+ \{E★}

E★ , a
.+ \{E★}
E★

)
≤ PrCnon

[
- CnonE★

≠ . CnonE★

]
≤

∑
41,42,...4ℓ is a PP for E★

(
1

4�3

) ℓ
V

50

(
1

2

) V |4ℓ |
50

.

Note that the hypergraph� is same for any E★ ∈ + \ {E0}. We can use the above inequality with E★ = E

for all E ∈ + \ {E0}. �us,

∑
E∈+ \{E0 }

3TV

(
a
-+ \{E}
E , a

.+ \{E}
E

)
≤

∑
E∈+ \{E0 }

∑
41,42,...4ℓ is a PP for E

(
1

4�3

) ℓ
V

50

(
1

2

) V |4ℓ |
50

(by double counting) ≤
∑

41,42,...4ℓ is a PP

(
1

4�3

) ℓ
V |4ℓ |

50

(
1

2

) V |4ℓ |
50

.

Note that G
(
1
2

)G
≤ 1 for all G ≥ 0. We have

∑
E∈+ \{E0 }

3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
≤

∑
41,42,...4ℓ is a PP

(
1

4�3

) ℓ
.
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If 41, 42, . . . 4ℓ is a percolation path, then 41, 42, . . . 4ℓ is a path in Lin3(� ) and 41 ∈ # 3(E0). Note that��# 3(E0)
�� ≤ � + � (� − 1) + � (� − 1)2 ≤ �3 (due to (58)) and the maximum degree of Lin3 (� ) is at

most �3. �e number of such paths is at most �3ℓ . We have

∑
E∈+ \{E0 }

3TV

(
a
-+ \{E}

E , a
.+ \{E}
E

)
≤

∑
41,42,...4ℓ is a PP

(
1

4�3

)ℓ
≤

∞∑
ℓ=1

�3ℓ

(
1

4�3

) ℓ
≤

1

2
. �

8.4.1. Proof of Lemma 8.18. We first introduce some notations for proving Lemma 8.18. Let Φ =

(+,W, C) to denote the original input CSP formula of Algorithm 1. Let � denote the maximum de-
gree of the dependency graph of Φ. For each E ∈ + , let @E = |&E |. Let

? , max
2∈C

∏
E∈vbl(2)

1

@E
.

Let h denote the original projection scheme for Φ satisfying Condition 3.4 with parameters U and V .
Recall that Φ-

= (+,W-
= (&-

D )D∈+ , C) and Φ
.
= (+,W.

= (&.
E )E∈+ , C) are defined in (54). Recall that

h- = (ℎ-E )E∈+ and h. = (ℎ.E )E∈+ denote the projection schemes for Φ- and Φ
. , where ℎ-E : &-

E → Σ
′
E

and ℎ.E : &.
E → Σ

′
E . Recall that h

- and h. satisfy Condition 8.10. For each E ∈ + , B-E = B.E = B ′E . �e
following lemma gives the key property for aE,- and aE,. in Line 6.

Lemma 8.19. Suppose the original input CSP formula Φ of Algorithm 1 satisfies

log
1

?
≥

50

V
log

(
2000�4

V

)
.

Let Λ ⊆ + and E ∈ + \ Λ. Let f- , f. ∈ Σ
′
Λ
=

⊗
D∈Λ Σ

′
D be two partial assignments on Λ. For any

2- , 2. ∈ Σ
′
E, ��(ℎ-E )−1(2- )��

@-E

(
1 −

V

500�3

)
≤ aE,- (2- | f- ) ≤

��(ℎ-E )−1 (2- )��
@-E

(
1 +

V

500�3

)
,��(ℎ.E )−1 (2. )��

@.E

(
1 −

V

500�3

)
≤ aE,. (2. | f. ) ≤

��(ℎ.E )−1 (2. )��
@.E

(
1 +

V

500�3

)
.

Furthermore, if the variable E satisfies log
⌊
@-E
B′E

⌋
≥ C + 5

4
log

(
2000�4

V

)
and log

⌊
@.E
B′E

⌋
≥ C + 5

4
log

(
2000�4

V

)
for some C ≥ 0,then for any 2- , 2. ∈ Σ

′
E ,��(ℎ-E )−1(2- )��

@-E

(
1 −

V2−C

500�3

)
≤ aE,- (2- | f- ) ≤

��(ℎ-E )−1 (2- )��
@-E

(
1 +

V2−C

500�3

)
,��(ℎ.E )−1 (2. )��

@.E

(
1 −

V2−C

500�3

)
≤ aE,. (2. | f. ) ≤

��(ℎ.E )−1 (2. )��
@.E

(
1 +

V2−C

500�3

)
.

Proof. Weprove the lemma for aE,- (2- | f- ). �e result for aE,. (2. | f. ) can be proved in a similar way.

To simplify the notation, denote f = f- , 2
★
= 2- . We define a new instance Φ̃ = (+, W̃ = (&̃D)D∈+ , C):

∀D ∈ + , &̃D =

{
(ℎ-D )

−1(fD) if D ∈ Λ;

&-
D if D ∉ Λ.

Let ˜̀denote the uniform distribution of all satisfying assignments to Φ̃. By the definition of the pro-
jected distribution, if - ∼ ˜̀, then Pr

[
-E ∈ (ℎ

-
E )
−1 (2★)

]
equals to aE,- (2

★ | f). By Condition 8.10, for
any constraint 2 ∈ C, it holds that∑

E∈vbl(2)

log

⌊
@-E
B ′E

⌋
≥

V

10
log

1

?
≥ 5 log

(
2000�4

V

)
.(60)

Let D denote the product distribution such that each variable D ∈ + takes a value from &̃D uniformly
at random. For each constraint 2 ∈ C, let �2 denote the bad event that 2 is not satisfied. Let B denote
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the collection of bad events (�2)2∈C . Let Γ(·) be defined as in the Lovász local lemma (�eorem 2.1).
We define a function G : B → (0, 1) such that

∀2 ∈ C s.t. E ∉ vbl (2) , G (�2 ) =
V

2000�4
;

∀2 ∈ C s.t. E ∈ vbl (2) , G (�2 ) =
V

⌊
@-E /B

′
E

⌋
2000�4@-E

.

Since h- is a balanced projection scheme,
���&̃D

��� ≥ ⌊
@-D
B′D

⌋
for all D ∈ + . For any constraint 2 ∈ C such

that E ∉ vbl (2), it holds that

PrD [�2 ] =
∏

D∈vbl(2)

1

|&̃D |
≤

∏
D∈vbl(2)

1⌊
@-D /B

′
D

⌋ ≤ V

20005�20
≤

V

2000�4

(
1 −

V

2000�4

)2000�4/V−1

≤
V

2000�4

(
1 −

V

2000�4

)�
≤ G (�2 )

∏
�2′ ∈Γ (�2 )

(1 − G (�2′)) ,(61)

where the last inequality holds because G (�2 ) ≤
V

2000�4 for all 2 ∈ C. Note that E ∉ Λ. For any 2 ∈ C
such that E ∈ vbl (2), by (60), it holds that

PrD [�2] =
1

@-E

∏
D∈vbl(2):D≠E

1

|&̃D |
≤

⌊
@-E /B

′
E

⌋
@-E

∏
D∈vbl(2)

1⌊
@-D /B

′
D

⌋ ≤
⌊
@-E /B

′
E

⌋
@-E

·
V

20005�20

≤
V

⌊
@-E /B

′
E

⌋
2000�4@-E

(
1 −

V

2000�4

)2000�4/V−1

≤
V

⌊
@-E /B

′
E

⌋
2000�4@-E

(
1 −

V

2000�4

)�
≤ G (�2 )

∏
�2′ ∈Γ (�2 )

(1 − G (�2′)) .

Fix a value 2★ ∈ Σ′E . Let� denote the event that E takes a value in (ℎ-E )
−1(2★). It holds that |Γ(�) | ≤ � .

For any �2 ∈ Γ(�), it holds that E ∈ vbl (2) and G (�2) =
V⌊@-E /B′E⌋
2000�4@-E

. Recall that ˜̀denotes the uniform

distribution of all satisfying assignments to Φ̃. By Lovász local lemma (�eorem 2.1),

Pr˜̀ [�] = aE,- (2
★ | f) ≤

��(ℎ-E )−1(2★)��
@-E

(
1 −

V
⌊
@-E /B

′
E

⌋
2000�4@-E

)−�
≤

��(ℎ-E )−1 (2★)��
@-E

exp

(
V

⌊
@-E /B

′
E

⌋
1000�3@-E

)

≤

��(ℎ-E )−1(2★)��
@-E

(
1 +

V
⌊
@-E /B

′
E

⌋
500�3@-E

)
≤

��(ℎ-E )−1(2★)��
@-E

(
1 +

V

500�3

)
.

�is proves the upper bound. Let �′ denote the event that E does not take any value in (ℎ-E )
−1(2★),

then |Γ(�′) | ≤ � . For any �2 ∈ Γ(�
′), it holds that E ∈ vbl (2) and G (�2 ) =

V⌊@-E /B′E⌋
2000�4@-E

. By �eorem 2.1,

Pr˜̀ [�′] = 1 − aE,- (2
★ | f) ≤

(
1 −

��(ℎ-E )−1(2★)��
@-E

) (
1 −

V
⌊
@-E /B

′
E

⌋
2000�4@-E

)−�

≤

(
1 −

��(ℎ-E )−1(2★)��
@-E

)
exp

(
V

⌊
@-E /B

′
E

⌋
1000�3@-E

)
≤

(
1 −

��(ℎ-E )−1(2★)��
@-E

) (
1 +

V
⌊
@-E /B

′
E

⌋
500�3@-E

)
.

Let 0 =
��(ℎ-E )−1 (2★)�� /@-E and 1 =

⌊
@-E /B

′
E

⌋
/@-E . Since h- is a balanced projection scheme (Condi-

tion 8.10), it holds that
��(ℎ-E )−1(2★)�� ≥ ⌊

@-E /B
′
E

⌋
and 0 ≥ 1. �us

aE,- (2
★ | f) ≥ 1 − (1 − 0)

(
1 +

V1

500�3

)
= 0

(
1 +

V1

500�3
−

V1

5000�3

)
≥ 0

(
1 −

V1

5000�3

)

(by 0 ≥ 1) ≥ 0

(
1 −

V

500�3

)
=

��(ℎ-E )−1(2★)��
@-E

(
1 −

V

500�3

)
.(62)
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�is proves the lower bound.
Next, we assume

log

⌊
@-E
B ′E

⌋
≥ C +

5

4
log

(
2000�4

V

)
.(63)

For each bad event �2 , we define a function G : B → (0, 1) such that

∀2 ∈ C s.t. E ∉ vbl (2) , G (�2) =
V

2000�4
;

∀2 ∈ C s.t. E ∈ vbl (2) , G (�2) =
V2−C

⌊
@-E /B

′
E

⌋
2000�4@-E

.

Note that for any 2 ∈ C, it holds that G (�2) ≤
V

2000�4 . By the same proof, for any constraint 2 ∈ C such
that E ∉ vbl (2), (61) still holds. For any constraint 2 ∈ C such that E ∈ vbl (2), we have

PrD [�2] =
1

@-E

∏
D∈vbl(2):D≠E

1

|&̃D |
≤

⌊
@-E /B

′
E

⌋
@-E

∏
D∈vbl(2)

1⌊
@-D /B

′
D

⌋ ≤
⌊
@-E /B

′
E

⌋
@-E

1⌊
@-E /B

′
E

⌋

(by (63) and V ≤ 1) ≤

⌊
@-E /B

′
E

⌋
@-E

·
V2−C

20005/4�5
≤

V2−C
⌊
@-E /B

′
E

⌋
2000�4@-E

(
1 −

V

2000�4

)2000�4/V−1

≤
V2−C

⌊
@-E /B

′
E

⌋
2000�4@-E

(
1 −

V

2000�4

)�
≤ G (�2 )

∏
�2′ ∈Γ (�2 )

(1 − G (�2′)) .

�us, the function G : B → (0, 1) satisfies the Lovász local lemma condition. By �eorem 2.1,

Pr˜̀ [�] = aE,- (2
★ | f) ≤

��(ℎ-E )−1(2★)��
@-E

(
1 −

V2−C
⌊
@-E /B

′
E

⌋
2000�4@-E

)−�
≤

��(ℎ-E )−1 (2★)��
@-E

exp

(
V2−C

⌊
@-E /B

′
E

⌋
1000�3@-E

)

≤

��(ℎ-E )−1(2★)��
@-E

(
1 +

V2−C
⌊
@-E /B

′
E

⌋
500�3@-E

)
≤

��(ℎ-E )−1 (2★)��
@-E

(
1 +

V2−C

500�3

)
.

Furthermore,

Pr˜̀ [�′] = 1 − aE,- (2
★ | f) ≤

(
1 −

��(ℎ-E )−1 (2★)��
@-E

) (
1 −

V2−C
⌊
@-E /B

′
E

⌋
2000�4@-E

)−�

≤

(
1 −

��(ℎ-E )−1 (2★)��
@-E

)
exp

(
V2−C

⌊
@-E /B

′
E

⌋
1000�3@-E

)
≤

(
1 −

��(ℎ-E )−1(2★)��
@-E

) (
1 +

V2−C
⌊
@-E /B

′
E

⌋
500�3@-E

)
.

By the same proof in (62), we have

aE,- (2
★ | f) ≥

��(ℎ-E )−1(2★)��
@-E

(
1 −

V2−C

500�3

)
. �

Now, we are ready to prove Lemma 8.18. Fix a percolation path (PP) 41, 42, . . . , 4ℓ in Lin3(� ) . We
bound the probability that all 48 are bad for 1 ≤ 8 ≤ ℓ . Recall B ′E = B-E = B.E for all E ∈ + . For each
hyperedge 48 , define

+ (48) , {E ∈ 48 | B
′
E ≠ 1 and E ≠ E0}.

Note that for variables E ∈ 48 \ (+ (48) ∪ {E0}), it must hold that B ′E =
��Σ′E �� = 1. It must hold that

- CnonE = . CnonE , which implies the coupling on E cannot be failed. Hence, if there is a variableD ∈ 48\{E0}

such that - CnonD ≠ . CnonD , it must hold that D ∈ + (48 ). In the while-loop, the coupling Cnon assigns
values to variables one-by-one, using the optimal coupling between marginal distributions. Let

: (48 ) , |+ (48 ) | .

Fix an index 1 ≤ 8 ≤ ℓ − 1. Let 2 (48 ) denote the constraint represented by 48 . We can define : (48 ) + 1

bad events �
( 9 )
8 for 1 ≤ 9 ≤ : (48 ) + 1:
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• if 1 ≤ 9 ≤ : (48 ): the constraint 2 (48 ) is not satisfied by both^
Cnon and _ Cnon a�er 9−1 variables

in+ (48) are assigned values by Cnon, and the coupling on 9-th variable fails, i.e. - CnonE9 ≠ . CnonE9 ,
where E 9 ∈ + (48 ) is the 9-th variable in + (48 ) whose value is assigned by the coupling Cnon;

• if 9 = : (48 ) + 1: the constraint 2 (48 ) is not satisfied by both ^ Cnon and _ Cnon a�er all variables
in 48 are assigned values by the coupling Cnon.

Let �8 denote the event
∨: (48 )+1

9=1 �
( 9 )
8 . By Definition 8.17, we have the following relation

48 is bad ⇐⇒ 48 fails =⇒ �8 =

: (48 )+1∨
9=1

�
( 9 )
8 .

By Definition 8.13, if 48 fails in type-I, then there must exist 1 ≤ 9 ≤ : (48 ) such that the coupling of
9-th variable in+ (48) fails and 48 is not satisfied by both ^ Cnon and _ Cnon a�er 9 − 1 variables in+ (48 )
are assigned values (otherwise, 48 will be removed in Line 3 or Line 11). Hence, if 48 fails in type-I,∨: (48 )

9=1 �
( 9 )
8 must occur. If 48 fails in type-II, then �

(: (48 )+1)
8 must occur. �is proves the above relation.

For hyperedge 4ℓ , let 2 (4ℓ ) denote the constraint represented by 4ℓ , we define the bad event �ℓ as

• �ℓ : the constraint 2 (4ℓ ) is not satisfied by both ^ Cnon and _ Cnon a�er all variables in 4ℓ \ {E★}

are assigned values by the coupling Cnon, and the coupling on E★ fails, i.e. - CnonE★ ≠ . CnonE★ .

By Definition 8.17, we have the following relation

4ℓ is bad =⇒ �ℓ .

Let Ω� =
⊗ℓ−1

8=1 [: (48 ) + 1], where [: (48 ) + 1] = {1, 2, . . . , : (48) + 1}. We have the following relation

PrCnon [∀1 ≤ 8 ≤ ℓ : 48 is bad] ≤ PrCnon [∀1 ≤ 8 ≤ ℓ : �8] ≤
∑
I∈Ω�

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
,

where I ∈ Ω� is a (ℓ − 1)-dimensional vector and I8 ∈ [: (48 ) + 1]. Fix a vector I ∈ Ω� . Let

E1 = {48 | 1 ≤ 8 ≤ ℓ − 1 ∧ I8 ≤ : (48)}

E2 = {48 | 1 ≤ 8 ≤ ℓ − 1 ∧ I8 = : (48 ) + 1}.

We will prove that

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]

≤
∏
48 ∈E1

((
3

4

)I8−1 1

200�3

)
×

∏
4 9 ∈E2

(
1

200�3

)
×

©«
V

200�3

(
1

2

) V |4ℓ |
50 ª®¬

.(64)

By (64), we have

PrCnon [∀1 ≤ 8 ≤ ℓ : 48 is bad] ≤
∑
I∈Ω�

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]

(by (64)) ≤

(
1

200�3
+

1

200�3

: (48 )∑
9=1

(
3

4

) 9−1)ℓ−1
×

©«
V

200�3

(
1

2

) V |4ℓ |
50 ª®¬

≤

(
1

40�3

)ℓ−1
V

200�3

(
1

2

) V |4ℓ |
50

≤

(
1

4�3

) ℓ
V

50

(
1

2

) V |4ℓ |
50

.

�is proves Lemma 8.18. �e rest of this section is dedicated to the proof of (64).
Note that the RHS of (64) is a product. Although all hyperedges in a percolation path are mutually

disjoint, we cannot show that all bad events �
(I8 )
8 and �ℓ are mutually independent. Because all the

bad events are defined by Cnon, they may have some correlations with each other. To prove (64), we

will use an independent random process to dominate the event that all �
(I8 )
8 and �ℓ occur.

To prove (64), we first divide the bad event �ℓ into two parts �
(1)
ℓ and �

(2)
ℓ , where �

(1)
ℓ denotes the

event that the constraint 2 (4ℓ ) is not satisfied by both - Cnon
(

and . Cnon
(

, where ( = 4ℓ \ {E★}, and �
(2)
ℓ
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denotes the event that the coupling on E★ fails, i.e. - CnonE★ ≠ . CnonE★ . It is easy to see �ℓ = �
(1)
ℓ ∧ �

(2)
ℓ .

Note that E★ ∈ 4ℓ and @
-
E★

= @.E★ . By (57) in Condition 8.10, one of the following two conditions must
be satisfied:

min
©«

∑
E∈vbl(2)\{E★}

log
@-E⌈

@-E /B
′
E

⌉ , ∑
E∈vbl(2)\{E★}

log
@.E⌈

@.E /B
′
E

⌉ª®¬
≥

V

20

©«
∑

E∈vbl(2)

log@E
ª®¬
,(65)

log

⌊
@-E★
B ′E★

⌋
= log

⌊
@.E★
B ′E★

⌋
≥

V

20

©«
∑

E∈vbl(2)

log @E
ª®¬
.(66)

If (65) holds, we can prove (64) by bounding the RHS of the following inequality

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
≤ PrCnon

[
�
(1)
ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
.(67)

If (66) holds, we can prove (64) by bounding the RHS of the following inequality

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
≤ PrCnon

[
�
(2)
ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
.(68)

In the rest of the proof, we mainly focus on the case when (65) holds. If (66) holds, we can modify our
proof to bound the RHS of (68), this part will be discussed later.

Assume (65) holds. We start to bound the RHS of (67). To do this, we will give a particular imple-

mentation of the coupling Cnon such that if �
(1)
ℓ and all �

(I8 )
8 occur, then some independent events must

occur in our implementation and their probabilities are easy to bound. We first sample a set R of real
numbers from [0, 1] uniformly and independently.

• For each 48 ∈ E1, sample : (48 ) random real numbers A48 ( 9) ∈ [0, 1] for 1 ≤ 9 ≤ : (48 ) uniformly
and independently.
• For each 48 ∈ E2 ∪ {4ℓ }, for each variable E ∈ 48 , sample a random real number AE ∈ [0, 1]
uniformly and independently.

We then run the coupling Cnon in Algorithm 4, but in some particular steps, we will use the random
numbers in R to implement the sampling step in Cnon.

We start from the special variable E0. Note that if E0 appears in the percolation path, then E0 ∈ 41.
�e coupling Cnon will sample the values of E0 in Line 1. We use the real number AE0 to implement
this sampling step if and only if E0 ∈ 41 and 41 ∈ E2. Let 2 (41) denote the constraint represented by
41. Suppose 2 (41) forbids the configuration f ∈ &41 , i.e. (2 (41)) (f) = False. By definition, in Φ

- ,
&-

E0
= ℎ−1E0 (-E0) and in Φ

. , &.
E0

= ℎ−1E0 (.E0). Note that &
-
E0

≠ &.
E0
. �us, 41 must be satisfied in Φ

- or

Φ
. , because it must hold that fE0 ∉ &-

E0
or fE0 ∉ &.

E0
. If 41 is satisfied in both Φ

- and Φ
. , then the

hyperedge 41 cannot be bad. We may assume 41 is not satisfied in Φ
- (i.e. fE0 ∈ &

-
E0
) and 41 is satisfied

in Φ
. (i.e. fE0 ∉ &.

E0
). Otherwise, we can swap the roles of - and . in the whole analysis. We use

AE0 to sample - CnonE0 in Line 1 of Cnon. Note that there is only one 9 ∈ Σ
′
E0

such that fE0 ∈ (ℎ
-
E0
)−1( 9).

We can set - CnonE0 = 9 if AE0 ≤ aE0,- ( 9). By Lemma 8.19, aE0,- ( 9) ≤ (1 +
1

500�3 )
⌈
@-E0/B

′
E0

⌉
/@-E0 . Note

that if B ′E0 = 1, then aE0,- ( 9) = 1, which implies aE0,- ( 9) = 1 = (
⌈@-E0/B

′
E0
⌉

@-E0
)0.95. If B ′E0 ≥ 2, then⌈

@-E0/B
′
E0

⌉
/@-E0 ≤

⌈
@-E0/2

⌉
/@-E0 ≤

2
3
(because @-E0 ≥ B ′E0 ≥ 2), which implies

aE0,- ( 9) ≤ (1 +
1

500�3
)

⌈
@-E0/B

′
E0

⌉
@-E0

≤
501

500

⌈
@-E0/B

′
E0

⌉
@-E0

≤

( ⌈
@-E0/B

′
E0

⌉
@-E0

)0.95
.

A�er Line 1, if 41 is not satisfied by both - CnonE0 and . CnonE0 , then the following event must occur

AE0 ≤

( ⌈
@-E0/B

′
E0

⌉
@-E0

)0.95
.(69)

During the while-loop of Cnon, we maintain an index 98 for each hyperedge 48 ∈ E1. Initially, all
98 = 0. Suppose the coupling Cnon picks a variable D in Line 5. Suppose D ∈ 48 for some 1 ≤ 8 ≤ ℓ . Note
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that such hyperedge 48 is unique because all hyperedges in a percolation path are mutually disjoint.
Let 2 (48 ) denote the constraint represented by 48 . Suppose 2 (48 ) forbids the configuration g ∈ W48 , i.e.
(2 (48 )) (g) = False. Since D ≠ E0, by Condition 8.10, it holds that ℎ-D = ℎ.D . Let 2

★ ∈ Σ
′
D denote the

value such that gD ∈ (ℎ
-
D )
−1 (2★) = (ℎ.D )

−1(2★). We need to sample 2G ∈ Σ
′
D and 2~ ∈ Σ

′
D from the

optimal coupling between aD,- (· | ^
Cnon) and aD,. (· | _

Cnon) in Line 6. By (47) and (48), the optimal
coupling satisfies the following properties,

Pr
[
2G = 2~

]
=

∑
9 ∈Σ′D

Pr
[
2G = 2~ = 9

]
=

∑
9 ∈Σ′D

min
(
aD,- ( 9 | ^

Cnon), aD,. ( 9 | _
Cnon)

)

= 1 − 3TV

(
aD,- (· | ^

Cnon), aD,. (· | _
Cnon)

)
,

Pr
[
2G = 2★ ∨ 2~ = 2★

]
= max

(
aD,- (2

★ | ^ Cnon), aD,. (2
★ | _ Cnon)

)
.

Let Cmax , max
(
aD,- (2

★ | ^ Cnon), aD,. (2
★ | _ Cnon)

)
and3TV , 3TV

(
aD,- (· | ^

Cnon), aD,. (· | _
Cnon)

)
.

Note that either 48 ∈ E1 or 48 ∈ E2 ∪ {4ℓ }. We will use the following procedure to implement the sam-
pling step in Line 6.

• Case 48 ∈ E1 and D ∈ + (48). Set 98 ← 98 + 1 and let A = A48 ( 98). If 98 < I8 , we sample 2G and 2~
such that 2G = 2★ ∨ 2~ = 2★ if and only if A ≤ Cmax. If 98 = I8 , we sample 2G and 2~ such that
2G ≠ 2~ if and only if A ≤ 3TV. If 98 > I8 , we arbitrarily sample 2G and 2~ from their optimal
coupling.
• Case 48 ∈ E2 ∪ {4ℓ }. Let A = AD . Sample 2G and 2~ such that 2G = 2★ ∨ 2~ = 2★ if and only if
A ≤ Cmax.
• Otherwise, we do not use random numbers in R to implement the coupling.

We will use the following properties to analysis our implementation. Note that a�er we assigned

the values to variable D, if 2 (48 ) is not satisfied by both-
Cnon
D and . CnonD , then it must hold that 2G = 2★

or 2~ = 2★. Since D ≠ E0, by Condition 8.10, &-
D = &.

D and ℎ-D = ℎ.D . By Lemma 8.19, we can prove the

following properties. For any D with B ′D > 1, we have @-D = @.D ≥ B ′D > 1, thus

Cmax ≤

⌈
@-D /B

′
D

⌉
@-D

(
1 +

1

500�3

)
≤

⌈
@-D /2

⌉
@-D

(
1 +

1

500

)
≤

2

3

(
1 +

1

500

)
≤

3

4
.(70)

For any D ∈ + \ {E0}, since &
-
D = &.

D and ℎ-D = ℎ.D , by Lemma 8.19, it holds that

Cmax ≤ min

(
1,

⌈
@-D /B

′
D

⌉
@-D

(
1 +

1

500�3

))
≤ min

(
1,
501

⌈
@-D /B

′
D

⌉
500@-D

)
≤

( ⌈
@-D /B

′
D

⌉
@-D

)0.95
;(71)

3TV ≤
1

2

∑
9 ∈Σ′D

��(ℎ-D )−1 ( 9)��
@-D

(
2

500�3

)
=

1

500�3
≤

1

200�3
.(72)

Inequality (71) can be proved by considering two cases. If B ′D = 1, then
(
⌈@-D /B′D⌉

@-D

)0.95
= 1, the inequality

holds trivially. If B ′D > 1, then
⌈@-D /B′D⌉

@-D
≤ 2

3
, this implies (71). To prove (72), note that &-

D = &.
D (thus,

@-D = @.D ); and h- and h. use the same way to map &-
D = &.

D to Σ
′
D (i.e. ℎ-D = ℎ.D ). Hence, we can use

the upper and lower bound in Lemma 8.19 to bound the total variation distance 3TV.

Consider a hyperedge 48 ∈ E1. If the event �
(I8 )
8 occurs, then by definition, 2 (48 ) is not satisfied a�er

I8 − 1 variables in + (48 ) get the values and the coupling on I8-th variable in + (48) fails. Note that for

all E ∈ + (48 ), B
′
E > 1. By (70) and (72), the bad event �

(I8 )
8 implies the following event:

• A8 : for all 1 ≤ 9 ≤ I8 − 1, A48 ( 9) ≤
3
4
and A48 (I8) ≤

1
200�3 .

�is bad event A8 occurs with probability

Pr [A8 ] =

(
3

4

)I8−1 1

200�3
.(73)
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Consider a hyperedge 48 ∈ E2. If the event �
(I8 )
8 = �

(: (48 )+1)
8 occurs, then by definition, 2 (48 ) is not

satisfied a�er all variables in 48 get the value. In our implementation, for any E ∈ 48 , we use AE to sample

values for - CnonE and . CnonE . By (69) and (71), the bad event �
(I8 )
8 implies

• A8 : for all E ∈ 48 , AE ≤
(
⌈@-E /B′E⌉

@-E

)0.95
.

Since 48 ∈ E2, it holds that E★ ∉ 48 . By Condition 8.10 and (59), it holds that∑
E∈48

log
@-E⌈

@-E /B
′
E

⌉ ≥ V

10

∑
E∈48

log@E ≥ 5 log

(
2000�4

V

)
,

�is bad event A8 occurs with probability

Pr [A8 ] =
∏
E∈48

( ⌈
@-D /B

′
D

⌉
@-D

)0.95
≤

(
1

2000�20

)0.95
≤

1

200�3
.(74)

Consider the hyperedge 4ℓ . If the event �
(1)
ℓ occurs, then by definition, 2 (4ℓ ) is not satisfied a�er all

variables in 48 \ {E★} get the value. In our implementation, for any E ∈ 4ℓ , we use AE to sample values

for - CnonE and . CnonE . By (69) and (71), the bad event �
(1)
ℓ implies

• Aℓ : for all E ∈ 4ℓ \ {E★}, AE ≤
(
⌈@-E /B′E⌉

@-E

)0.95
.

By (65), we have ∑
E∈4ℓ \{E★}

log
@-E⌈

@-E /B
′
E

⌉ ≥ V

20

∑
E∈4ℓ

log@E,

Note that in the original input CSP formula Φ = (+,W, C) of Algorithm 1, the domain size of each
variable is at least 2 (otherwise,the value of such variable is fixed and we can remove such variable), it
holds that @E ≥ 2 for all E ∈ + . �is implies

∑
E∈4ℓ log@E ≥ |4ℓ |. By (59), it holds that

∑
E∈4ℓ log @E ≥

log 1
?
≥ 50

V
log

(
2000�4

V

)
. We have

∑
E∈4ℓ \{E★}

log
@-E⌈

@-E /B
′
E

⌉ ≥ V

40
|4ℓ | +

V

40
·
50

V
log

(
2000�4

V

)
=

V

40
|4ℓ | +

5

4
log

(
2000�4

V

)
.

Hence, this bad event Aℓ occurs with probability

Pr [Aℓ ] =
∏

E∈4ℓ \{E★}

( ⌈
@-E /B

′
E

⌉
@-E

)0.95
≤

(
1

2

) 0.95V
40
|4ℓ |

·

(
V5/4

20005/4�5

)0.95
≤

(
1

2

) V
50
|4ℓ | V

200�3
,(75)

where the last inequality holds because V ≤ 1.

Finally, if �
(1)
ℓ and all �

(I8 )
8 for 1 ≤ 8 ≤ ℓ − 1 occur, then A8 occurs for all 1 ≤ 8 ≤ ℓ . By definition,

the event A8 is determined by a subset of random variables (8 ⊆ R. For any 8 ≠ 9 , the subset (8 and ( 9
are disjoint, thus all events A8 are mutually independent. Combining (67), (73), (74) and (75),

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
≤ PrCnon

[
�
(1)
ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]

≤ Pr [∀1 ≤ 8 ≤ ℓ,A8 ] =

ℓ∏
8=1

Pr [A8 ]

≤
∏
48 ∈E1

((
3

4

)I8−1 1

200�3

)
×

∏
4 9 ∈E2

(
1

200�3

)
×

©«
V

200�3

(
1

2

) V |4ℓ |
50 ª®¬

.

�is proves (64) in case of (65).
Suppose the condition in (66) holds. In this case, we need to bound the RHS of (68). Compared

with the above proof, the only difference is that we need to bound the probability of �
(2)
ℓ , where �

(2)
ℓ

denotes the coupling on E★ fails, i.e. - CnonE★ ≠ .
Cnon
E★ . In this case, we have log⌊

@-E★
B′E★
⌋ = log⌊

@.E★
B′E★
⌋ ≥

52



V

20

(∑
E∈4ℓ log @E

)
. Note that in the original input CSP formula of Algorithm 1, it holds that @E ≥ 2 for

all E ∈ + . �is implies
∑

E∈4ℓ log@E ≥ |4ℓ |. By (59), it holds that
∑

E∈4ℓ log@E ≥ log 1
? ≥

50
V log

(
2000�4

V

)
.

�us, we have

log

⌊
@-E★
B ′E★

⌋
= log

⌊
@.E★
B ′E★

⌋
≥

V

20

(∑
E∈4ℓ

log@E

)
≥

V

40
|4ℓ | +

5

4
log

(
2000�4

V

)
.

Note that &-
E★

= &.
E★

and ℎ-E★ = ℎ.E★ . In Lemma 8.19, we can set the parameter C =
V

40
|4ℓ |. �is implies

that when Cnon couples - CnonE★ and . CnonE★ , the probability that the coupling fails is at most

1

2

∑
9 ∈Σ′D

��(ℎ-E★)−1 ( 9)��
@-E★

(
2V

500�3

) (
1

2

) V
40
|4ℓ |

≤

(
1

2

) V
50
|4ℓ | V

200�3
.

�e proof of this case is almost the same as the above proof. �e only difference is that when coupling
E★, we sample a random real number AE★ ∈ [0, 1] uniformly and independently. We use AE★ to implement

the coupling such that - CnonE★ ≠ . CnonE★ only if AE★ ≤
(
1
2

) V
50
|4ℓ | V

200�3 . We define the bad event Aℓ as

AE★ ≤
(
1
2

) V
50
|4ℓ | V

200�3 . By the same proof, we have

PrCnon

[
�ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]
≤ PrCnon

[
�
(2)
ℓ ∧ ∀1 ≤ 8 ≤ ℓ − 1 : �

(I8 )
8

]

≤
∏
48 ∈E1

((
3

4

)I8−1 1

200�3

)
×

∏
4 9 ∈E2

(
1

200�3

)
×

©«
V

200�3

(
1

2

) V |4ℓ |
50 ª®¬

.

�is proves (64) in case of (66).

8.4.2. Proof of Lemma 8.11. Without loss of generality, we assume
��&-

E0

�� ≤ ��&.
E0

��. Otherwise, we can
swap the roles of - and . in this proof. Since the original projection scheme h is uniform,

0 ≤
��&.

E0

�� − ��&-
E0

�� ≤ 1.(76)

We first construct the projection scheme h- for Φ- . To do this, we introduce a CSP formula Φ̃
-

=

(+, W̃-
= (&̃-

E )E∈+ , C). We first construct a projection scheme h̃- for Φ̃- , then transform h̃- to the
projection scheme h- . Recall the original projection scheme is h = (ℎE)E∈+ , where ℎE : &E → ΣE .

Recall @E = |&E |. �e CSP formula Φ̃- is define as follows:

&̃-
D =

{
ℎ−1D (-D) if D ≠ E★;

ℎ−1D ( 9) if D = E★,

where 9 ∈ ΣE★ is an arbitrary value satisfying
��ℎ−1E★ ( 9)�� = ⌊@E★/BE★⌋. For each E ∈ + , let @̃-E =

���&̃-
E

���. Let
?̃ denotemax2∈C

∏
E∈vbl(2)

1

@̃-E
. By Condition 3.4, we have for any constraint 2 ∈ C,∑

E∈vbl(2)

log @̃-E ≥ V
∑

E∈vbl(2)

log @E .

By the condition assumed in Lemma 8.11, it holds that

log
1

?̃
≥ V log

1

?
≥ 55(log� + 3).(77)

Recall that the maximum degree of the dependency graph of Φ̃- is also � . We can use �eorem 3.8 on

instance Φ̃- such that the parameterU and V in�eorem3.8 are set asU = 8/9 and V = 1/9. Remark that
in the proof of �eorem 3.8, we use Lovász loca lemma to prove that the projection scheme described
in theorem must exist. When U = 8/9 and V = 1/9, the condition in �eorem 3.8 becomes

log
1

?̃
≥

25 · 93

73
(log� + 3).
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�is implies that under the condition in (77), there exists a balanced projection scheme h̃- = (ℎ̃-E )E∈+ ,

where ℎ̃-E : &̃-
E → Σ̃

-
E and B̃-E =

��Σ̃-E �� such that for any 2 ∈ C,

∑
E∈vbl(2)

log
@̃-E⌈

@̃-E /̃B
-
E

⌉ ≥ (
1 −

8

9

) ∑
E∈vbl(2)

log @̃-E ≥
V

9

∑
E∈vbl(2)

log @E;

∑
E∈vbl(2)

log

⌊
@̃-E

B̃-E

⌋
≥

1

9

∑
E∈vbl(2)

log @̃-E ≥
V

9

∑
E∈vbl(2)

log @E .

(78)

Note that Φ̃- and Φ
- differ only at variable E★. Given the projection scheme h̃- and the original

projection scheme h, the projection scheme h- can be constructed as follows

ℎ-D =

{
ℎ̃-D if D ≠ E★;

ℎD if D = E★.

By definition, h- is a balanced projection scheme andℎ-E★ = ℎE★ . Since h̃
- and h- differ only at variable

E★, for any constraint 2 ∈ C such that E★ ∉ vbl (2), by (78),

∑
E∈vbl(2)

log
@-E⌈

@-E /B
-
E

⌉ =

∑
E∈vbl(2)

log
@̃-E⌈

@̃-E /̃B
-
E

⌉ ≥ V

10

∑
E∈vbl(2)

log @E;

∑
E∈vbl(2)

log

⌊
@-E

B-E

⌋
=

∑
E∈vbl(2)

log

⌊
@̃-E

B̃-E

⌋
≥

V

10

∑
E∈vbl(2)

log @E .

For variable E★, it holds that
⌊
@-E★/B

-
E★

⌋
=

⌊
@E★/BE★

⌋
= @̃-E★ , because h

- uses the same way to partition
&E★ as in the original projection scheme h. Hence, for any constraint 2 ∈ C such that E★ ∈ vbl (2),

∑
E∈vbl(2)

log

⌊
@-E

B-E

⌋
≥

∑
E∈vbl(2)

log

⌊
@̃-E

B̃-E

⌋
≥

V

10

∑
E∈vbl(2)

log @E;

log

⌊
@-E★

B-E★

⌋
+

∑
E∈vbl(2)\{E★}

log
@-E⌈

@-E /B
-
E

⌉ = log

⌊
@-E★

B-E★

⌋
+

∑
E∈vbl(2)\{E★}

log
@̃-E⌈

@̃-E /̃B
-
E

⌉
(
by

⌊
@-E★/B

-
E★

⌋
= @̃-E★

)
≥

∑
E∈vbl(2)

log
@̃-E⌈

@̃-E /̃B
-
E

⌉
≥

V

9

∑
E∈vbl(2)

log @E ≥
V

10

∑
E∈vbl(2)

log@E .(79)

�is implies that h- satisfies all the conditions in Condition 8.10.
Given the projection scheme h- , the projection scheme h. for Φ. can be defined as follows. For

each variable E ∈ + \ {E0}, ℎ
.
E = ℎ-E . For variable E0, we construct Σ.E0 = Σ

-
E0

and B.E0 =
��Σ.E0 ��, then

arbitrarily map &.
E0

to Σ
.
E0

such that for any 9 ∈ Σ.E0 ,
⌊
@.E0/B

.
E0

⌋
≤

��(ℎ.E0)−1( 9)�� ≤ ⌈
@.E0/B

.
E0

⌉
. It is easy to

see h. is also a balanced projection scheme and ℎ.E★ = ℎE★ . It is also easy to see Σ
-
E0

= Σ
.
E0
, and ℎ-D = ℎ.D

for all D ∈ + \ {E0}. We now only need to verify that for any 2 ∈ C,

∑
E∈vbl(2)

log

⌊
@.E

B.E

⌋
≥

V

10

∑
E∈vbl(2)

log @E;(80)

for any 2 ∈ C satisfying E★ ∉ vbl (2),

∑
E∈vbl(2)

log
@.E⌈

@.E /B
.
E

⌉ ≥ V

10

©«
∑

E∈vbl(2)

log @E
ª®¬
;(81)
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and for any 2 ∈ C satisfying E★ ∈ vbl (2),

log

⌊
@.E★

B.E★

⌋
+

∑
E∈vbl(2)\{E★}

log
@.E⌈

@.E /B
.
E

⌉ ≥ V

10

©«
∑

E∈vbl(2)

log @E
ª®¬
.(82)

Note that for all D ∈ + \ {E0}, it holds that B-D = B.D and @-D = @.D . Also note that B-E0 = B.E0 . If

@-E0 = @.E0 , (80), (81) and (82) hold trivially. By (76), we assume @.E0 = @-E0 + 1. Since @
.
D ≥ @-D and B-D = B.D

for all D ∈ + , for any 2 ∈ C,

∑
E∈vbl(2)

log

⌊
@.E

B.E

⌋
≥

∑
E∈vbl(2)

log

⌊
@-E

B-E

⌋
≥

V

10

∑
E∈vbl(2)

log @E .

�is proves (80). Note that for all D ≠ E0, @
-
D = @.D and B-D = B.D . Also note that E★ ≠ E0. It holds that⌊

@.E★

B.E★

⌋
=

⌊
@-E★

B-E★

⌋
and ∀E ∈ + \ {E0},

@.E⌈
@.E /B

.
E

⌉ =
@-E⌈

@-E /B
-
E

⌉ .(83)

To prove (81) and (82), we only need to compare
@-E0

⌈@-E0/B
-
E0⌉

with
@.E0

⌈@.E0/B
.
E0⌉

. We claim

@.E0⌈
@.E0/B

.
E0

⌉ =
@-E0 + 1⌈

(@-E0 + 1)/B
-
E0

⌉ ≥ 1

2

@-E0⌈
@-E0/B

-
E0

⌉ .(84)

By (78), (83) and (84), for any 2 ∈ C such that E★ ∉ vbl (2), we have

∑
E∈vbl(2)

log
@.E⌈

@.E /B
.
E

⌉ ≥ ©«
∑

E∈vbl(2)

log
@-E⌈

@-E /B
-
E

⌉ª®¬
− 1 ≥

V

9

©«
∑

E∈vbl(2)

log@E
ª®¬
− 1 ≥

V

10

©«
∑

E∈vbl(2)

log @E
ª®¬
,

where the last inequality holds because V
∑

E∈vbl(2) log@E ≥ V log 1
?
≥ 55(log� + 3) ≥ 165. �is

proves (81). Similarly, for any 2 ∈ C such that E★ ∈ vbl (2), we have

log

⌊
@.E★

B.E★

⌋
+

∑
E∈vbl(2)\{E★}

log
@.E⌈

@.E /B
.
E

⌉ ≥ log

⌊
@-E★

B-E★

⌋
+

©«
∑

E∈vbl(2)\{E★}

log
@-E⌈

@-E /B
-
E

⌉ª®¬
− 1

(by (79)) ≥
V

9

©«
∑

E∈vbl(2)

log @E
ª®¬
− 1 ≥

V

10

©«
∑

E∈vbl(2)

log @E
ª®¬
.

To prove (84), we consider two case. Recall B-E0 = B.E0 . If@
-
E0
cannot be divided by B-E0 , then

⌈
(@-E0 + 1)/B

-
E

⌉
=⌈

@-E0/B
-
E0

⌉
and (84) holds trivially. If @-E0 can be divided by B-E0 , then we need to show

@-E0 + 1

1 + @-E0/B
-
E0

≥
1

2
B-E0,

which is equivalent to @-E0 ≥ B-E0 − 2, then (84) holds because @-E0 ≥ B-E0 .

8.5. Proofs of Lemma 5.2 and Lemma 5.6. Lemma 5.2 is proved by combining Lemma 2.3, Propo-

sition 8.1 and Lemma 8.9. Note that the condition in Lemma 5.2 is log 1
? ≥

50
V log

(
2000�4

V

)
, which

suffices to imply the conditions in Proposition 8.1 and Lemma 8.9. �is implies the Glauber dynamics
has the unique stationary distribution a and the mixing rate is )mix(Y) ≤

⌈
2= log =

Y

⌉
.

Lemma 5.6 is proved by combining Lemma 2.3, Proposition 8.1 and Lemma 8.2. Given a (:,3)-CSP
formula, the maximum degree � of the dependency graph is at most 3: , thus the condition in Propo-
sition 8.1 becomes : log @ ≥ 1

V
log(2e3:). �e condition in Lemma 5.6 is : log @ ≥ 1

V
log

(
3000@236:6

)
,

which suffices to imply the conditions in Proposition 8.1 and Lemma 8.2. �is implies the Glauber
dynamics has the unique stationary distribution a and the mixing rate is )mix(Y) ≤

⌈
2= log =

Y

⌉
.
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[BŠVV08] Ivona Bezáková, Daniel Štefankovič, Vijay V. Vazirani, and Eric Vigoda. Accelerating simu-
lated annealing for the permanent and combinatorial counting problems. SIAM J. Comput.,
37(5):1429–1454, 2008.

[CS00] Artur Czumaj and Christian Scheideler. Coloring nonuniform hypergraphs: a new algorith-
mic approach to the general Lovász local lemma. Random Struct. Algorithms, 17(3-4):213–
237, 2000.
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