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SAMPLING CONSTRAINT SATISFACTION SOLUTIONS IN THE LOCAL LEMMA REGIME

WEIMING FENG, KUN HE, AND YITONG YIN

ABSTRACT. We give a Markov chain based algorithm for sampling almost uniform solutions of constraint
satisfaction problems (CSPs). Assuming a canonical setting for the Lovasz local lemma, where each con-
straint is violated by a small number of forbidden local configurations, our sampling algorithm is accurate
in a local lemma regime, and the running time is a fixed polynomial whose dependency on n is close to
linear, where n is the number of variables. Our main approach is a new technique called state compression,
which generalizes the “mark/unmark” paradigm of Moitra [Moi19], and can give fast local-lemma-based
sampling algorithms. As concrete applications of our technique, we give the current best almost-uniform
samplers for hypergraph colorings and for CNF solutions.

1. INTRODUCTION

The space of constraint satisfaction solutions is one of the most well-studied subjects in Computer
Science. Given a collection of constraints defined on a set of variables, a solution to the constraint
satisfaction problem (CSP) is an assignment of variables such that all constraints are satisfied. A fun-
damental criterion for the existence of constraint satisfaction solutions is given by the Lovasz local
lemma (LLL) [EL75]. Interpreting the space of all assignment as a probability space and the violation
of each constraint as a bad event, the local lemma characterizes a regime within which a constraint
satisfaction solution always exists, by the tradeoff between: (1) the chance for the occurrence of each
bad event and (2) the degree of dependency between them.

In Computer Science, the studies of the Lovasz local lemma are more focused on the algorithmic LLL
(also called constructive LLL), which is concerned with not just existence of a constraint satisfaction
solution, but also how to find such a solution efficiently. The studies of algorithmic LLL constitute
an important line of modern algorithm researches [Bec91, Alo91, MR98, CS00, Mos09, MT10, KM11,
HSS11, HS17b, HS19]. A major breakthrough was the Moser-Tardos algorithm [MT10], which finds a
satisfaction solution efficiently up to a sharp condition known as the Shearer’s bound [She85, KM11].

In this paper, we are concerned with a problem that we call the sampling LLL, which asks for the
regimes in which a nearly uniform (instead of an arbitrary) satisfaction solution can be generated ef-
ficiently. This is a distribution-sensitive variant of the algorithmic LLL. The problem is closely related
to the problem of estimating the total number of satisfaction solutions, usually via standard reduc-
tions [JVV86, SVV09]; besides, it may also serve as a standard toolkit for solving the inference problems
that are well motivated from machine learning applications [Moi19].

This sampling variant of algorithmic LLL is computationally more challenging than the conventional
algorithmic LLL. For example, for k-CNF formulas with variable-degree d, the Moser-Tardos algorithm
for generating an arbitrary solution is known to be efficient when k > log, d, while the problem of
generating a nearly uniform solution requires k > 2log, d to be tractable [BGG*19].

Meanwhile, much less positive progress was known for the sampling LLL. A fundamental obstacle
is that the space of satisfaction solutions may not be connected via local updates of variables [Wig19],
whereas such connectivity is crucial for mainstream sampling techniques. In [GJL19], Guo, Jerrum
and Liu proposed to study the sampling LLL, and resolved the problem for the CSPs with extremal
constraints. In a major breakthrough [Moi19], Moitra introduced a novel approach for approximately
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counting k-SAT solutions. The approach utilizes the algorithmic LLL to properly mark/unmark vari-
ables, which helps construct efficient linear programmings for estimating marginal probabilities. For
k-CNF formulas with variable-degree d within a local lemma regime k > 60 log d, the algorithm ap-
proximately counts the total number of SAT solutions in time nP°Y(?4K) Further extensions of Moitra’s
approach were made to hypergraph colorings [GLLZ19] and random CNF formulas [GGGY20], where
the running times are both nP°Y(@%) for constraint-width k and variable-degree d. Recently, a much
faster algorithm for sampling k-SAT solutions inspired by Moitra’s algorithm was given in [FGYZ20]. It
implements a Markov chain on the assignments of the marked variables chosen via Moitra’s approach.
The resulting sampling algorithm enjoys a close-to-linear running time O(d2k3n1-000001y wwith an im-
proved regime k > 20logd. It also formally confirms that the originally disconnected solution space
is changed to be very well connected after restricting onto a wisely chosen set of marked variables.
However, such approach of fast sampling seems rather restricted to CNF formulas, where the variables
can be marked/unmarked non-adaptively to the assignments, whereas for CSPs with larger domains
where marking/unmarking variables adaptively to their assignments is crucial [GLLZ19], the current
approach for fast sampling has met some fundamental barriers.

For sampling general constraint satisfaction solutions, we do not know whether the problem is
tractable in a local lemma type of regime, neither do we know any general algorithmic approach that
can achieve this. New ideas beyond the paradigm of marking/unmarking variables are needed.

1.1. Our results. We consider the problem of uniform sampling constraint satisfaction solutions, for-
mulated by the variable-framework LLL with uniform random variable and atomic bad events. Let V
be a collection of n = |V| mutually independent uniform random variables and 8 be a collection of
atomic bad events such that

e uniform random variables: the value of each v € V is uniformly drawn from a domain Q,;
e atomic bad events: each B € 8 is determined by the variables in vbl (B) C V, and B occurs if
the assignment of vbl (B) is as specified by the unique forbidden pattern o € ), evbl(B) Qo-

We assume uniform random variables because our goal is to uniformly sample constraint satisfaction
solutions. Meanwhile, the atomicity of bad events is a natural and fundamental setting assumed in
various studies of LLL [AI16, HH17, HS17a, Kol18a, Har21, AIS19, HS19, HV20].

Let p = maxpeg Pr [B], where the probability is taken over independent random variables in V. Let
G = (8B, E) be the dependency graph, where each vertex is a bad event in 8, and the neighborhood of
eachBe BinGisT(B) £ {B’ € 8\ {B} | vbl (B) Nvbl (B’) # @}. Let D £ maxgcg |['(B)| denote
the maximum degree of the dependency graph. By the Lovasz local lemma, there exists a satisfying
assignment that avoids all bad events in 8 if

1
(1) In—>InD+1.
p

Such an instance of LLL naturally specifies a uniform distribution over all satisfying assignments,
called the LLL-distribution [Har20]. Formally, it is the distribution of the independent random vari-
ables in V conditioned on that none of the bad events in 8 occurs.

Theorem 1.1. The following holds for any 0 < { < 2740, There is an algorithm such that given a Lovdsz
local lemma instance with uniform random variables and atomic bad events, if

1 1
(2) In—>350lnD +31n -,
p ¢

then the algorithm outputs a random assignment X € (X),_,, Qo in time 9] ((Dzk +q)n (%)g) such that

the distribution of X is e-close to the LLL-distribution in total variation distance, where ¢ = maxyey |Q,|,
k = maxgeg |vbl (B)|, and O(-) hides a factor of polylog(n, %, q. D).

This gives a unified approach for sampling uniform LLL-distributions. It is achieved by a new tech-
nique called “state compression” (see Section 1.3 and Section 3). The time complexity of the sampling
algorithm is controlled by a constant parameter { which also controls the gap to the local lemma con-
dition (2), so the running time can be arbitrarily close to linear in n as { approaches 0.
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Though Theorem 1.1 is stated for uniform sampling, our main result can be extended to the LLL-
distributions that arise from non-uniform random variables with arbitrary constant biases, a setting
that corresponds to the statistical physics models with constant local fields, which are considered inter-
esting for sampling and counting. For such a general setting, Theorem 1.1 remains to hold by replacing
the condition (2) with In % > ClIn(D/{) where the constant factor C depends on the maximum bias.
The formal proof of this general result is postpone to the full version of the paper.

On the other hand, any general non-atomic bad event can be seen as a union of disjoint atomic bad
events. Let B be a bad event defined on vbl (B) € V and Ny = {0 € ®vevb|(B) Q. | B occurs at o}
denote the set of assignments of vbl (B) that make B occur. Event B can thus be decomposed to | Np|
atomic events, each corresponding to a forbidden assignment o € Np. Therefore, any general LLL in-
stance with p = maxgeg Pr [B] and maximum degree D of the dependency graph, can be equivalently
represented as an LLL instance with atomic bad events, by blowing up each bad event B € 8 for at
most N £ maxgeg |Np| times. The resulting LLL instance with atomic bad events can be constructed
within O(DNkn) time, such that every atomic bad event occurs with probability at most p and has the
degree of dependency at most (D + 1)N. Hence, we have the following corollary.

Corollary 1.2. The following holds for any0 < { < 27490 There is an algorithm such that given a Lovasz
local lemma instance with uniform random variables, if

1 1
lnj—) > 3501n(D+1)+3501nN+3lnz,

then the algorithm outputs a random assignment X € (X), ., Qo in time O ((D2N2k +q)n (%)g) such that

the distribution of X is e-close to the LLL-distribution in total variation distance, where ¢ = maxyey |Q,|,
k = maxpeg |vbl (B)|, and O(-) hides a factor of polylog(n, %, q,D,N).

To the best of our knowledge, this is the first result that achieves efficient uniform sampling of
general CSP solutions within such a local lemma type of regime. In the current result, both the regime
and the complexity depend on an extra parameter N, namely the maximum number of violating local
configurations for any bad event. Whether such dependency is necessary is an open problem.

Our approach also produces sharper bounds for specific subclasses of LLL instances. We consider
the problem of uniformly sampling proper colorings of hypergraphes. Let H = (V, &) be a k-uniform
hypergraph i.e. |e| = k for all e € E. A proper hypergraph g-coloring X € [q]" assigns each vertex
a color such that no hyperedge is monochromatic. Let A denote the maximum degree of hypergraph,
i.e. each vertex belongs to at most A hyperedges. By LLL, a proper g-coloring exists if ¢ > CAFT for
some suitable constant C. We have the following result for sampling hypergraph colorings.

Theorem 1.3. There is an algorithm such that given any k-uniform hypergraph on n vertices with maxi-
mum degree A and a set of colors [q], assuming k > 30 and q > 15AFT2 + 650, the algorithm returns a

~ 1
random g-coloring X € [q]" in time O(g*k3A’n (Z)4), such that the distribution of X is e-close in total
variation distance to the uniform distribution of all proper q-colorings of the input hypergraph.

In fact, our algorithm works for a regime where k > 13 and q > qo(k) = Q(Ak—_912). See Theorem 5.4
for a more technical statement. The running time of our algorithm is always polynomially bounded
for any bounded or unbounded k and A, and is getting arbitrarily close to linear in n as g grows.

Hypergraph colorings are important combinatorial objects. The classic local Markov chain on hy-
pergraph colorings rapidly mixes in O(nlog n) steps if k > 4 and ¢ > A [BDK06, BDK08]. For “simple”
hypergraphs where any two hyperedges share at most one vertex, the mixing condition was improved
to ¢ > max{Cy logn, 500k3A'/(k=D} [FM11, FA17]. The first algorithm for sampling and counting
hypergraph colorings that works in a local lemma regime was given in [GLLZ19]. The algorithm is ob-
tained by extending Moitra’s approach [Moi19] to adaptively marking/unmarking hypergraph vertices,
and runs in time nP°Y(*) if k > 28 and g > T98AFIH . Our algorithm both substantially improves
the running time and improves the regime to q > IFAFT + O(1). Our algorithm utilizes a novel
projection scheme instead of the mark/unmark strategy of Moitra, to transform the space of proper

colorings. And our algorithm implements a rapidly mixing Markov chain on the projected space.
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A canonical subclass of CSPs are the CNF (conjunctive normal form) formulas. In a k-CNF, each
clause contains k distinct variables. And the maximum (variable-)degree d is given by maximum num-
ber of clauses a variable appears in. By LLL, a satisfying assignment exists if k > logd + log k + C! for
some suitable constant C. We have the following result for uniform sampling k-CNF solutions.

Theorem 1.4. The following holds for any0 < { < 272, There is an algorithm such that given any k-CNF
formula onn variables with maximum degree d, assuming k > 13logd + 13log k + 3 log % the algorithm

returns a random assignment X € {True, False}" in time O(d?*k3n (%)g) such that the distribution of
X is e-close in total variation distance to the uniform distribution of all satisfying assignments.

A more detailed version is stated as Theorem 5.5. The regime k > 13log d in Theorem 1.4 improves
the state-of-the-art regime k > 20 log d in [FGYZ20] with the same running time.

1.2. Implications to approximate counting. All our sampling results imply efficient algorithms
for approximate counting. Given an LLL instance ® with uniform random variables, let Z3 denote the
total number of satisfying assignments that avoid all bad events. For any 0 < § < 1, the problem
Peount (@, 9) asks to output a random number Z such that Z € (1 £ 8)Zp with probability at least %.

In our results (Theorem 1.1, Corollary 1.2, Theorem 1.3, and Theorem 1.4), for several subclasses of
LLL instances, we give such sampling algorithms that given an LLL instance ¢ and an error bound
e > (0, arandom X is returned in time T (¢) = Ty (€) such that X is e-close in total variation distance to
the LLL-distribution of ®, which is the uniform distribution over all satisfying assignments for ®.

It is well known that one can solve the approximate counting problem Peount (P, §) by calling to
such oracles for nearly uniform sampling, either via the self-reducibility [JVV86] that adds one bad
event at a time, or via the simulated annealing approach [BSVVOS, SVV09, Hub15, Kol18b] that al-
ters a temperature. The simulated annealing gives more efficient reduction. Specifically, by routinely
going through the annealing process in [FGYZ20], one can obtain a non-adaptive simulated anneal-

ing strategy to solve the approximate counting problem Peount (P, §) in time O (%T(e) log %) where

ce=0 (mloé—Q)’ and m denotes the number of bad events in ®.
g(m/5)

1.3. Technique overview. As addressed in [Wig19], in general, the space of SAT solutions may not
be connected via local updates of variables, even when the existence of SAT solutions is guaranteed by
the local lemma. A major challenge for efficiently sampling constraint satisfaction solutions in a local
lemma regime is to bypass such connectivity barrier.

Several previous works that have successfully bypassed this fundamental barrier fell into the same
“mark/unmark” paradigm initiated by Moitra in [Moi19]. Let V be the set of variables, and let  denote
the uniform distribution over all satisfying assignments. The paradigm effectively constructs a random
pair (M, Xjr) where M C V is a set of marked variables and X) is a random assignment of the marked
variables in M, such that the random pair (M, X)) satisfies the so-called “pre-Gibbs” property [GLLZ19],
which means that if we complete X to an assignment X of all variables in V by sampling the comple-
ment Xy y according to the marginal distribution induced by p on V' \ M conditioning on X, then the
resulting X indeed follows the correct distribution p. The paradigm may construct the marked set M
either non-adaptively to the random X} (as in [Moi19, FGYZ20, GGGY20] for CNFs), or adaptively to it
(as in [GLLZ19] for hypergraph colorings). The random pair (M, Xjs) can thus be jointly distributed, so
that being pre-Gibbs does not necessarily mean that Xy is distributed as the marginal distribution p,.
Indeed, it can be much more complicated than that.

In this paper, we introduce a novel technique called “state compression” to bypass the connectivity
barrier for general spaces of satisfaction solutions and obtain fast sampling algorithms.

For each variable v € V with domain Q,, we construct a projection h, : Q, — X, that maps from
domain Q, to an alphabet 3, so that each assignment X € Q = (X), ., Qo is mapped to a string
h(X) = (hy(Xy))vey in T = X), Z,. Therefore, the LLL-distribution y over satisfying assignments, is
transformed to a joint distribution v over ¥ as:

VY €3, w(Y)=Prx., [h(X) =Y].

IThroughout the paper, we use log to denote the logarithm base 2.
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Our algorithm first simulates the Glauber dynamics with stationary distribution v to draw a sample
Y € ¥ approximately according to v. At each transition, the Glauber dynamics:
e picks a variable v uniformly at random;
e updates Y, by a random value sampled according to VZV\{U}, which stands for the marginal
distribution at v induced by v conditioned on the assignment on V' \ {v} being fixed as Yy (4}

After running the Glauber dynamics for a sufficiently many O(nlog n) steps, the algorithm generates
a random string Y € ¥ which hopefully is distributed approximately as v. Finally, the algorithm still
needs to “invert” the sampled string Y € ¥ to a random satisfying assignment X € Q that follows the
LLL-distribution y conditioning on h(X) =Y.

Both in the final step of the algorithm and at each transition of the Glauber dynamics, we are in fact
trying to invert a completely specified string Y € X (or an almost completely specified string Yy (o))
to a uniform random satisfying assignment X € Q within its pre-image k™' (Y) (or that of Yy ().

Therefore, the efficiency of above algorithmic framework for sampling relies on that:

(1) the Glauber dynamics for v mixes in O(nlog n) steps;
(2) there is a procedure that can efficiently invert a completely (or almost completely) specified
string Y to a uniform random satisfying assignment X € Q within the pre-image h=(Y).

As we know, the original space of satisfying assignments X € Q may not be connected via the local
updates used by the Glauber dynamics. To achieve above item 1, intuitively, the projection h should
be able to map many far-apart solutions X, X’ € Q to the same h(X) = h(X’), so the random walk
in the projected space becomes well connected. This suggests that the projection h should substantially
compress the original state space. On the other hand, the above item 2 is easier to solve when the
projection h is somehow close to a one-to-one mapping, because in such case, by assuming h(X) =Y,
the original LLL instance is very likely to be decomposed into small clusters. This suggests that the
projection h should not compress the original state space too much.

The above two seemingly contradicting requirements can in fact be captured by a set of simple and
local entropy constraints, formulated in Condition 3.4. A good projection h satisfying these require-
ments can thus be constructed by algorithmic LLL.

The original mark/unmark paradigm can be treated as a special case of our approach of state com-
pression. Recall that the paradigm generates a pre-Gibbs pair (M, Xyr), where each variable v € V
is either marked (v € M) so that its value X, is revealed, or is unmarked (v ¢ M) so that its value
Xy is unrevealed. This can be represented by a projection h where for each marked v, the projection
hy : Q, — %, is a one-to-one mapping to X, where |2,| = |Q,|; and for each unmarked v, the projection
hy : Q, — %, is a all-to-one mapping to ¥, of size |2,| = 1. General projections provide a broad middle
ground between the two extremal cases for the one-to-one and the all-to-one mappings, so that our
technique is applicable to more general settings. And for large enough Q,’s, it indeed is such middle
ground h, : Q, — 3, with |Z,]| = |Qv|3/4 that resolves the problem well.

1.4. Open problems. An open problem is to remove the assumption on the atomicity of bad events. In
general, the LLL is defined by arbitrary bad events on arbitrary probability space. The LLL distribution
can thus be generalized. And the sampling LLL corresponds to the problems of sampling from non-
uniform distributions or distributions arising from global constraints.

It is well-known that the Shearer’s bound is tight for general LLL [She85]. A central open problem
for sampling LLL is to find the “Shearer’s bound” for sampling LLL, namely, to give a tight condition
under which one can efficiently draw random samples from general LLL distributions.

Even for interesting special classes of LLL instances such as k-CNFs or hypergraph colorings, the
critical thresholds for the computational phase transition for sampling are major open problems in the
field of sampling algorithms.

1.5. Organization of the paper. Models and preliminaries are described in Section 2. The rules for
state compression are given in Section 3. The main sampling algorithm is described in Section 4. In
Section 5, we prove all main results in Section 1. In Section 6, we give the algorithms for constructing
projections. In Section 7, we analyze the inverse sampling subroutine. The rapid mixing of the Markov
chain is proved in Section 8.

5



2. MODELS AND PRELIMINARIES

2.1. CSP formulas defined by atomic bad events. Let V be a set of variables with finite domains
(Qu)vev, where each v € V takes its value from Q, with |Q,| > 2. Let Q0 = (X), . Qo denote the
space for all assignments, and for any subset A C V, denote Qp £ (X)) Qo. Let C be a collection
of local constraints, where each ¢ € C is defined on a subset of variables vbl (¢) € V that maps every
assignment xypi(c) € Qubl(c) to a True or False, which indicates whether c is satisfied or violated. A
CSP (constraint-satisfaction problem) formula ® is specified by the tuple (V, Q, C) such that:

Vx€Q,  O(x)= /\ ¢ (xvbi(e))

ceC

where xp|() denotes the restriction of x on vbl (c). In LLL’s language, each ¢ € C corresponds to a
bad event A, defined on vbl (c) that occurs if ¢ is violated, and @ is satisfied by x if and only if none of
these bad events occurs.

In this paper, we restrict ourselves to the CSP formulas defined by atomic bad events. A constraint
¢ defined on vbl (c) is called atomic if |c™! (False)| = 1, that is, if ¢ is violated by a unique “forbidden
configuration” in Qp|(¢). Such CSP formulas with atomic constraints have drawn studies in the context
of LLL [Al16, HH17, HS17a, Kol18a, Har21, AIS19, HS19, HV20]. Similar classes of CSP formulas have
also been studied under the name “multi-valued/non-Boolean CNF formulas” in the field of classic
Artificial Intelligence [LKM03, FP01]. Clearly, any general constraint ¢ on vbl (¢) can be simulated by
|c™! (False)| atomic constraints, each forbidding a configuration in ¢! (False).

The dependency graph of a CSP formula ® = (V, Q,C) is defined on the vertex set C, such that any
two constraints ¢, ¢’ € C are adjacent if vbl (¢) and vbl (¢”) intersect. We use I'(c) 2 {c¢’ € C \ {c} |
vbl (¢) Nvbl (¢’) # @} to denote the neighborhood of ¢ € C and let

D =Dg = max |T'(¢)]
ceC

denote the maximum degree of the dependency graph.
The followings are some typical special cases of CSP formulas with atomic constraints.

2.1.1. k-CNF formula. The CNF formulas ® = (V, Q, C) are formulas with atomic constraints on Boolean
domains Q, = {True, False}, forallv € V. Now each constraint ¢ € C is a clause. For k-CNF formulas,
we have |vbl (c¢)| = k for all clauses ¢ € C.

2.1.2. Hypergraph coloring. Let H = (V, &) be a k-uniform hypergraph, where every hyperedge e € &
has |e| = k. Let [q] = {1,2,...,q} be a set of ¢ colors. A proper hypergraph coloring X € [q]" assigns
each vertex v € V a color X, such that no hyperedge is monochromatic.

Define the following set C of atomic constraints. For each hyperedge e € & and color i € [¢], add an
atomic constraint ¢, ; into C, where c,; is defined as vbl (c;) = e and for any x € [¢]°, c.;(x) = False
if and only if x, = i for all v € e. It is straightforward to see that there is a one-to-one correspondence
between the proper g-colorings in H and the satisfying assignments to ® = (V, [q]", C).

2.2. Lovasz local lemma. Let R = {R;,Ry,...,R,} be a collection of mutually independent ran-
dom variables. For any event E, denote by vbl (E) C R the set of variables determining E. In other
words, changing the values of variables outside of vbl (E) does not change the truth value of E. Let
B = {By,Bo,...,B,} be a collection of “bad” events. For each event B € B, we define I['(B) =
{B’ € B | B’" # Band vbl (B’) Nvbl (B) # @}. For any event A ¢ B and its determining variables
vbl (A) € R, we define I'(A) 2 {B € 8 | vbl(A) N vbl(B) # @}. Let Pryp [-] denote the product
distribution of variables in R. The following version of the Lovasz local lemma will be used in this
paper.

Theorem 2.1 ( [HSS11]). If there is a function x : 8 — (0, 1) such that for any B € 8B,
3) Prop [B] <x(B) || (1-x(B)),

B'el(B)
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then it holds that

/\ B

BeB

> [ -xB) > 0.

BeB

PI‘Z)

Thus, there exists an assignment of all variables that avoids all the bad events.
Moreover, for any event A, it holds that

Al \B

BeB

PI‘D

<Prp[A]l [ -xB)™.

BeT(A)

2.3. Coupling, Markov chain and mixing time. Let Q be a state space. Let y and v be two distri-
butions over Q. The total variation distance between y and v are defined by

dv () 2 5 3 ) = V()]

x€Q

A coupling of p and v is a joint distribution (X, Y) € Q X Q such that the marginal distribution of X is
u and the marginal distribution of Y is v. The following coupling lemma is well-known.

Lemma 2.2 (coupling lemma [LP17, Proposition 4.7]). For any coupling (X,Y) between y and v,
drv (n,v) < Pr[X #Y].
Moreover, there exists an optimal coupling that achieves the equality.

A Markov chain is a random sequence (X;);»o over a state space Q such that the transition rule is
specified by the transition matrix P : Q X Q — Ro. We often use the transition matrix to denote the
corresponding Markov chain. The Markov chain P is irreducible if for any X, Y € Q, there exists t > 0
such that P/(X,Y) > 0. The Markov chain P is aperiodic if gcd{t | P'(X,X) > 0} = 1 forall X € Q.
A distribution 7 over Q is a stationary distribution of P if 7P = x. If a Markov chain is irreducible and
aperiodic, then it has a unique stationary distribution. The Markov chain P is reversible with respect
to the distribution r if the following detailed balance equation holds

VX,YeQ: n(X)P(X,Y)=n(Y)P(Y,X),
which implies 7 is a stationary distribution of P. Given a Markov chain P with the unique stationary
distribution 7, the mixing time of P is defined by

VO <e<1, Thnix(e)Z max min{t | drv (P'(Xo, ), ) < e}.
0

A coupling of Markov chain P is a joint random process (X;, Y;);>0 such that both (X;);>0 and
(Yy):»0 follow the transition rule of P individually, and if X; = Y;, then X; = Vi for all k > s. The
coupling is a widely-used tool to bound the mixing times of Markov chains, because by the coupling
lemma, it holds that maxx, eq drv (P*(Xo, ), 7) < maxy, yyeq Pr [X; # V7).

The path coupling [BD97] is a powerful tool to construct the coupling of Markov chains. Assume
Q = ),y Qu, where |V| = n and each Q, is a finite domain. For any X, Y € Q, define the Hamming
distance between X and Y by

dham(X: Y) = |{U ev | Xo # Yv}| :
In this paper, we will use the following simplified version of path coupling.

Lemma 2.3 (path coupling [BD97]). Let0 < § < 1 be a parameter. Let P be an irreducible and aperiodic
Markov chain over the state space Q = (X, Qu, Where |V| = n . If there is a coupling of Markov chain
(X,Y) = (X', Y’) defined over all X, Y € Q with dyam (X, Y) = 1 such that

E [dham(X/: Y’) | X, Y] <1- 5,
then the mixing time of the Markov chain satisfies
1
Tmix(f) < ’V— IOg E“ .
é £

Readers can refer to the textbook [LP17] for more backgrounds of Markov chains and mixing times.
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3. STATE COMPRESSION
A CSP formula ® = (V, Q, C) with uniformly distributed random variables defines an LLL instance.

Definition 3.1 (LLL-distribution). For each v € V, let 7, denote the uniform distribution over domain
Qp. Letm = ® ey o be the uniform distribution over Q. Let u = g denote the distribution of X ~ 7
conditioned on ®(X), that is, the uniform distribution over satisfying solutions of ®.

This distribution u over satisfying solutions of ® is what we want to sample from. In order to do
so, this uniform probability space of satisfying solutions is transformed by a projection. A projection
scheme h = (hy)yey specifies for each v € V, a mapping from o’s domain Q, to a finite alphabet X,

hy : Qp — 2.
Let X 2 (X), .y 2o, and for any A C V, we denote Zp = (X)) =

vEN 0"
We also naturally interpret h as a function on (partial) assignments such that

4) VACV.VxeQn  h(x) = (ho(xo))oen.

Definition 3.2 (projected LLL-distribution). For each v € V, let p, be the distribution of Y, = h,(X,)
where X, ~ 7. Let p £ (X), .y, po be the product distribution over X.

For eachv € V and any y, € ¥,, let 7, denote the distribution of X, ~ 7, conditioned on h,(X,) =
y,. For any A C V and yp € 3y, let 7% be the distribution of X ~ 7 conditioned on h(X,) = ya.

Let v = vg p denote the distribution of Y = h(X) where X ~ p.

Note that the original LLL-distribution y is a Gibbs distribution [MMO09], defined by local constraints
on independent random variables. Whereas, the distribution v of projected satisfying solution, is a joint
distribution over X, which may no longer be a Gibbs distribution nor can it be represented as any LLL
instance, because x, x’ € Q with ®(x) # ®(x’) may be mapped to the same h(x) = h(x’).

In the algorithm, a projection scheme h = (h,),ev is accessed through the following oracle.

Definition 3.3 (projection oracle). A projection oracle with query cost t for a projection scheme h =
(hy)oev is a data structure that can answer each of the following two types of queries within time ¢:

e evaluation: given an input value x, € Q, of a variable v € V, output h,(x,) € 2,;

e inversion: given a projected value y, € %, of a variable v € V, return a random X, ~ 7,°.

Our algorithm for sampling a uniform random satisfying solution is then outlined below.

Algorithm for sampling from u

1. Construct a good projection scheme h (formalized by Condition 3.4);
2. sample a uniform random X ~ 7 and let Y = h(X);
3. (Glauber dynamics on v) repeat the followings for sufficiently many iterations:
pick a v € V uniformly at random;
(o),

update Y, by redrawing its value independently according to v, "”';

4. sample X ~ p conditioned on h(X) =Y.

The algorithm simulates a Markov chain (known as the Glauber dynamics) on space X for drawing
a random configuration Y € X approximately according to the joint distribution v, after which, the
algorithm “inverts” Y to a uniform random satisfying assignment X for ® within the pre-image h™! (Y).

The key to the effectiveness of this sampling algorithm is that we should be able to sample accurately
and efficiently from VZV\{U} (which is the marginal distribution at v induced by v conditioning on that
the configuration on V' \ {0} being fixed as Yy (o) as well as from pY (which is the distribution of
X ~ p conditioned on that h(X) = Y). In fact, both of these are realized by sampling generally from

the following marginal distribution ,ugA, for S € V and yp € 3, where either A=V or |A|=|V]| - 1.

(5) ,ug/‘ . distribution of X, where X € Q is drawn from p conditioning on that h(X,) = ya.
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The distribution ¥ corresponds to the special case of ,ugA with S = A = V. And also we can sample

from VZV\{U} by first sampling a X, ~ ,uZV\{”’ 2 y{YZ}\{”} and then outputting h,(X,).

Since y, is either completely or almost completely specified on V, sampling from ,ugA is essentially
trying to invert y according to distribution p. And this task becomes tractable when the projection h
is somehow close to a 1-1 mapping, i.e. when h(X)’s entropy remains significant compared to X ~ p.

On the other hand, the efficiency of the sampling algorithm relies on the mixing of the Markov chain
for sampling from v. It was known that the original state space of all satisfying solutions might not
be well connected through single-site updates [Wig19, FGYZ20]. The projection may increase the con-
nectivity of the state space by mapping many far-apart satisfying solutions to the same configuration
in %, but this means that the projection h should not be too close to a 1-1 mapping. In other words, the
projection h(X) shall reduce the entropy of X ~ u by a substantial amount.

These two seemingly contradicting requirements are formally captured by the following condition.

Condition 3.4 (entropy criterion). Let 0 < f < a < 1 be two parameters.The followings hold for the
CSP formula ® = (V,Q, C) and the projection scheme h. For eachv € V, let q, = |Q,| and s, = |Z,|. The
projection h is balanced, which means for anyv € V and y, € X,

v -1 o
e ewonfe]

And for any constraint c € C, it holds that

(6) Z logk—ﬂSa Z log qo,

vevbl(c) vevbl(c)
9o
7 1 —| > 1 .
o) Y toe|%]2p Y s
vevbl(c) vevbl(c)

Note that for uniform random variable X, € Q,, the entropy H(X,) = log q,, and for Y, = h,(Xy)

where h is balanced, we have log —2— < H(Y,) < log qu/”sv T- Therefore, the two inequalities (6) and

[q0/50]1
(7) are in fact slightly stronger versions of the entropy upper and lower bounds for X ~ s:

(I-a) > HX)< ), Hh(X)<(1=p) > H(X,).

vevbl(c) vevbl(c) vevbl(c)

So how may such a projection satisfying Condition 3.4 change the properties of a solution space and
help sampling? Next, we introduce two consequent conditions of Condition 3.4 to explain this.

Recall that after projection, the joint distribution v over projected solutions may no longer be repre-
sented by any LLL instance. Nevertheless, we can modify it to a valid LLL instance by proper rounding.

Definition 3.5 (the “round-down” CSP formula). Given a CSP formula ® = (V, Q, C) and a projection
scheme h = (hy)yey, let CSP formula %) = (V, 5, CL)) be constructed as follows:
e the variable set is still V and each variable v € V now takes values from X ;
e corresponding to each constraint ¢ € C of @, a constraint ¢’ € C*! is constructed as follows:
vbl (¢") = vbl (¢) and

True if c(x) for all x € Qp () that h(x) =y,

Yy € Zubi(en, ! =
v bi(e) ¢ (y) {False if =c(x) for some x € Qpy() that h(x) = y.

The CSP formula ®% is considered a “round-down” version of the CSP formula ® under projection h,
because it always holds that ¢’(y) = [PIXN,r [c (va|(c)) | h (va|(c)) = y” forally € Xypi(¢) = Zubi(e)-

Recall that the following “LLL condition” is assumed for the LLL instance defined by CSP formula
® = (V,Q,C) on uniform random variables X ~ 7x:

1
(8) In 1_7 > AInD + B, (for some suitable constants A and B)
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where p = maxcec Prx-n [—uc (va|(c))] denotes the maximum probability that a constraint ¢ € C is
violated and D denotes the maximum degree of the dependency graph.

For CSP formula ® defined by atomic constraints, the LLL condition (8) and the inequality (6) in
Condition 3.4 together imply the following condition.

Condition 3.6 (round-down LLL criterion). The LLL instance defined by the round-down CSP formula
oLkl = (V,2, CU’J) on variables distributed as p, satisfies that

ln‘% >(l1-a)(AlnD + B),

where p = max,.cin Pry~, [—|c (va|(c))] and D denotes the maximum degree of the dependency graph.

The projection h may map both satisfying x € Q and unsatisfying x” € Q to the same h(x) =
h(x’) € X, which causes ambiguity for classifying those “satisfying” y € X. The round-down CSP
formula resolves such ambiguity with a pessimistic mindset: it refutes any y € ¥ whenever even a
single x € h™!(y) is unsatisfying. Condition 3.6 basically says that an LLL condition holds even up to
such a pessimistic interpretation. This is crucial for sampling from ,ug" defined in (5), because within
such regime, the probability space of p¥* is decomposed into small clusters of sizes O(log n).

Meanwhile, the LLL condition (8) and the inequality (7) in Condition 3.4 together imply the following
condition.

Condition 3.7 (conditional LLL criterion). For any A C V and yp € X, the LLL instance defined by
CSP formula ® = (V, Q,C) on variables distributed as w9, satisfies that

ln% > f(AlnD + B),

where p 2 max.ec Prxua [—|c (X\,b|(c))] and D denotes the maximum degree of the dependency graph.

Condition 3.7 is basically a self-reducibility property. A major obstacle for sampling satisfying solu-
tion is that the regime (8) for the original CSP formula ® may not be self-reducible: it is not closed under
pinning of variables to arbitrary evaluations. Condition 3.7 states that the self-reducibility property is
achieved under projection: the LLL regime is closed under pinning of variables to arbitrary projected
evaluations. This is crucial for rapid mixing of the Markov chain on projected space X.

We have efficient procedures for constructing the projection scheme satisfying Condition 3.4.

Theorem 3.8 (projection construction). Let0 < f < a < 1 be two parameters. Let & = (V,Q,C) be a
CSP formula where all constraints in C are atomic. Let D denotes the maximum degree of its dependency
graph and p = maxcec [oevbi(e) @ IflogjlJ > ﬁ (log D + 3), then for any 0 < § < 1, with
probability at least 1 — § a projection oracle (Definition 3.3) with query cost O(log q) can be successfully
constructed within time O(n(Dk + q) log % log q), where ¢ = maxyey |Qy|, k = max.ec |vbl (¢)| and the
oracle is for a projection scheme h = (h,),ev that satisfies Condition 3.4 with parameters (a, f).

The above result can be strengthened for the (k, d)-CSP formulas, where |vbl (¢)| = k forallc € C
and each v € V appears in at most d constraints, on homogeneous domains Q, = [g] forallv € V.

Theorem 3.9. Let 0 < f < a < 1 be two parameters. The followings hold for any (k, d)-CSP formula
® = (V, [q]V,C) where all constraints in C are atomic:

o If7< qa%ﬁ < % andlog q > %_ﬁ, then a projection oracle with query cost O(log q) for a projection
scheme h satisfying Condition 3.4 with parameters (a, ), can be constructed in time O(nlog q).

o Ifk > (Zl_—nﬁ?Q log(2ekd), then forany 0 < & < 1, with probability at least 1 — § a projection oracle
as above can be successfully constructed within time O(ndk log %).

The proofs of Theorem 3.8 and Theorem 3.9 are given in Section 6.
10



4. THE SAMPLING ALGORITHM

Let ® = (V,Q, C) be the input CSP formula with atomic constraints, which defines a uniform distri-
bution p over satisfying assignments as in Definition 3.1. Let ¢ > 0 be an error bound. The goal is to
output a random assignment X € Q such that drv (X, p) < e.

Depending on the classes of CSP formulas, the algorithm first applies one of the procedures in
Theorem 3.8 and Theorem 3.9 to construct a projection scheme h = (hy)yey, where h, : Q, — X, for
each v € V, such that h satisfies Condition 3.4 with parameters (¢, ), where 0 < f < a < 1 are going
to be fixed later in the analysis in Section 5. For randomized construction procedure, we set its failure
probability to be £, and if it fails, the sampling algorithm simply returns an arbitrary X € Q.

Suppose that the projection scheme h is given. The sampling algorithm is described in Algorithm 1.

Algorithm 1: The sampling algorithm (given a proper projection scheme)
input :a CSP formula ® = (V, Q, C) with atomic constraints, a projection scheme h = (hy)yey
satisfying Condition 3.4 with parameters («, ), and an error bound ¢ > 0;
output:a random assignment X € Q;
sample a uniform random X ~ x and let Y « h(X);
for eacht from1toT = [211 log 47"] do // Glauber dynamics for Y € X
pick a variable v € V uniformly at random;

-

[SUR )

4 Xy < InvSample (q)’ h, m, Y\ (o}, {U})§ // sample X, € Q, approx. from s, "
5 Y, « hy(Xy);
6 X « InvSample (CD, h, ﬁ,Y, V); // sample X € Q approx. from uY

7 return X;

Algorithm 1 implements the sampling algorithm outlined in Section 3. It first implements the
Glauber dynamics on space X for sampling from v, the distribution of projected satisfying assignments
in Definition 3.2. It simulates the Glauber dynamics for T = [2n log 4T”-| steps to draw a random Y € X
distributed approximately as v. At each step, Y, for a uniformly picked v € V is redrawn approximately
from the marginal distribution VZV\{O} . At last, the algorithm inverts the sampled Y € X to a random
satisfying assignment X € Q distributed approximately as p conditioning on that h(X) =Y.

Algorithm 1 relies on an Inverse Sampling subroutine for sampling approximately from ,uZV\(“} or u¥.
4.1. The InvSample subroutine (Algorithm 2). The goal of the subroutine InvSample (®, h, 6, ya, S),
where S € V, A € V, and yp € X,, is to sample a random X5 € Qg according to the distribution
,ugA, as defined in (5). In principle, computing the distribution ,ugA involves computing some nontrivial
partition function, which is intractable in general. Here, for an error bound é > 0, we only ask for that
with probability at least 1 — §, the subroutine returns a random sample that is é-close to ,ugA in total
variation distance, where the probability is taken over the randomness of the input y,.

We define some notions to describe the subroutine. Let ¢ € C be a constraint in CSP formula &.
Recall that c is atomic. Let

F¢ £ ¢ (False)

denote the unique “forbidden configuration” in Qup(¢) that violates c. We say that an atomic constraint
c € Cis satisfled by y, € Zp for AC V,if

) h (FXQVM(C)) # Yanubl(c)s

where the function h(-) is formally defined in (4). For atomic constraint ¢ € C, the above condition (9)
implies that c is satisfied by any x € Q that h(x,) = ys. Hence, the constraint ¢ must be satisfied by
any configuration in the support of the distribution p¥* = ,u‘y,A.

The key idea of the subroutine is that we can remove all the constraints that have already been satis-

fied by y, to obtain a new CSP formula &’ = (V,Q, C’), where C’ = {c € C | c¢ is not satisfied by y,}.
11



Algorithm 2: InvSample (®, h, 6, yu, S)
Input :a CSP formula ® = (V, Q,C) with atomic constraints, a projection scheme h, an error
bound § > 0, a configuration y, € 3, specified on A C V, and a subset S C V;
Output:a random assignment X € Qs;
1 let @’ be the new formula obtained by removing all the constraints in ® already satisfied by yj;
2 factorize ® and find all the sub-formulas {<I>l’ =(V,Qv,,C) |1<i< {’} s.t.eachV; NS # @;
3 if there exists 1 <i < £ s.t. |C/| > 2D log % then // existence of giant component
4 L return a uniform random Xg ~ 7s;

5 for each i from 1to¢ do

6 | repeat forat mostR £ [10(%)"log %] times:  // rejection sampling with <R trials
7 ‘ sample X ~7ry ,where A; = Vi N A;

8 until ®;(X;) = True,

9 if ®/(X;) = False then // overflow of rejection sampling

10 L return a uniform random Xg ~ 7s;

11 return X;, where X' = le X;;

Define ,u * to be the distribution of X ~ 7Y conditioned on ®’(X), where the product distribution
Y2 is as in Definition 3.2. It is straightforward to verify that ,uyA = pyr,
Furthermore, the new CSP formula @’ can be factorized into a set of disjoint formulas:

Q=P ADLA...AD,.

Our plan is to show that it almost always holds that the size of every sub-formula @/ is logarithmically
bounded. Thus, we can apply the naive rejection sampling independently on each sub-formula @;,
which remains to be efficient altogether.

Formally,let H = (V, &’) denote the (multi-)hypergraph induced by the CSP formula ®’ = (V,Q, C’),
constructed by adding a hyperedge e, = vbl (c) into &’ for each constraint ¢ € C’. Note that H" may
contain duplicated hyperedges. Let H{,H,,..., H,, denote the connected components of H’, where
H! = (V;,&]). Let @] = (V;,Qy;, C/) denote sub-formula corresponding to H/, where C/ is the set of
constraints corresponding to hyperedges in &/. This defines the factorization @ = ®] A®, A ... A D}
For each sub-formula ®; = (V;,Qv,,C/), let A; = AN V;, and define ,ug,A" to be the distribution of

X ~ 77.'y " conditioned on ®;(X), where 7r " denotes restriction of the product distribution 7Y% on V;.
Itis then straightforward to verify:

— Y. m

P S G = gt X gy XX g
Without loss of generality, we assume SNV, # @ for l<i<fandSNV,=0forf <i < m.
It suffices to draw random samples X; ~ ,uifi independently for all 1 < i < ¢, adjoin them together

X’ = U'_, X;, and output its restriction X} on S, where each X; ~ p q),A’ can be drawn by the rejection

sampling procedure: repeatedly and independently sampling X; ~ n‘i " until ®;(X;) is true.
The subroutine InvSample (®, b, §, ya, S) does precisely as above with two exceptions:
e existence of giant connected component: |C/| > 2Dlog Z2 for some 1 < i < ¢, where D
stands for the maximum degree of the dependency graph for ®;
o overflow of rejection sampling: the rejection sampling from ,ug?" for some 1 < i < ¢, has

used more than R = [10 (%)'7 log §-| trials, where 7 is a parameter to be fixed in Section 5.

If either of the above exceptions occurs, the algorithm terminates and returns a random X ~ 7s.

In Section 7, we will show that assuming Condition 3.4 for the projection scheme h with properly
chosen parameters («, ) and by properly choosing 7, for the random y, upon which the subroutine
is called in Algorithm 1, with high probability none of these exceptions occurs. Therefore, the random
sample returned by the subroutine is accurate enough when being called in Algorithm 1.
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5. PROOFS OF THE MAIN RESULTS

In this section, we prove the main theorems of this paper. Our algorithm first constructs a projection
scheme using one of the procedures in Theorem 3.8 and Theorem 3.9, which gives us the projection
oracle that can answer queries within time cost O(log q), where ¢ = maxyey |Q,|. We then execute
Algorithm 1 for sampling X approximately according to u. We assume the following basic operations
for uniform sampling:

e draw a variable v € V uniformly at random within time cost O(log n);

e for any variable v € V, draw a uniform sample X ~ =, from Q, within time cost O(log q).
When measuring the time cost of Algorithm 1, we count the number of calls to the projection oracle
as well as the above two basic sampling operations. The time complexity of Algorithm 1 is dominated
by these oracle costs.

Next, we prove Theorem 1.1 for general CSP formulas with atomic constraints, while Theorem 1.3
and Theorem 1.4 for specific subclasses of formulas are proved in Section 5.2.

5.1. CSP formulas with atomic constraints. For CSP formulas ® = (V,Q,C) defined by atomic
constraints, we show that sampling uniform solution is efficient within the following regime:

1 1
(10) In—>350lnD+3In —
p 4
where p = maxcec [yevbi(c) @ stands for the maximum probability that a constraint ¢ € C is violated
by uniform random assignment, and D stands for the maximum degree of the dependency graph of ®.
The positive constant parameter { specifies a gap to the boundary of the regime.

Theorem 5.1. The following holds for any 0 < { < 27490 There is an algorithm such that given any
0 < & < 1 and CSP formula® = (V,Q, C) with atomic constraints satisfying (10), the algorithm outputs a
random assignment X € Q whose distribution is e-close in total variation distance to the uniform distribu-

tion pt over all solutions to ®, using time cost O ((DQk +q)n (%)g log* (%q)), wherek = max.cc |vbl (¢)].

Theorem 1.1 is implied by Theorem 5.1, by interpreting any LLL instance with uniform random
variables and atomic bad events as a CSP formula with atomic constraints.

Let h = (h,)yev be a projection scheme satisfying Condition 3.4 with parameters « and §. To prove
Theorem 5.1, we have the following lemma which shows that assuming a Lovasz local lemma condition,
the Glauber dynamics for the projected distribution v is rapidly mixing.

Lemma 5.2. Iflog % > % log (W), then the Markov chain Pqlauber 0n v has Tpix(€) < [Zn log g]

The proof of Lemma 5.2 is given in Section 8.
We also need the following lemma for analyzing the subroutine InvSample(®, h, §,X,, S). In Algo-
rithm 1 the subroutine is called for T + 1 times. For 1 <t < T + 1, define the following bad events:
° .‘Bt(l): in the t-th call of InvSample(-), a random assignment X is returned in Line 10.
° .‘Bt@): in the t-th call of InvSample(+), a random assignment X is returned in Line 4

Lemma 5.3. Let 1 <t < T+1and0 < n < 1. In Algorithm 1, for the t-th calling to the subroutine
InvSample(®, h, 8, ya, S) with parameter 1, it holds that

e given access to a projection oracle with query cost O(log q), the time cost of InvSample(®, h, 8, ya, S)

is bounded as
2 (M) 1og? (™2
O(|S|D k(&) log (5 )logq),

where k = max cc |vbl (¢)| and ¢ = maxyev |Qyl;
e conditioned on —|Bt(1) A —|.‘Bt(2), the t-th calling to InvSample(®, h, 8, yu, S) returns a Xs € Qg that

is distributed precisely according to ,ugA.
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Furthermore, iflog 1_17 > ﬁ log(20D?) and logjlJ > %log (@) it holds that
Pr [B;l)] < and Pr [B;Q)] <9.

The proof of Lemma 5.3 is given in Section 7.

Proof of Theorem 5.1. Let a, B, n be three parameters to be fixed later. Our algorithm first uses the al-
gorithm in Theorem 3.8 with § = £ to construct a projection scheme satisfying Condition 3.4 with
parameters @ and B. If the algorithm in Theorem 3.8 fails to find such projection scheme, our algo-
rithm terminates and outputs an arbitrary X,,; € Q. If the algorithm finds such projection scheme,
we run Algorithm 1 to obtain the random sample X, = Xais, where X, denotes the output of
Algorithm 1.

We first analyze the running time of the whole algorithm. By Theorem 3.8, the running time for
constructing the projection scheme is

1
Toroj = O (n(Dk +q) log — log q) .
€

If the algorithm in Theorem 3.8 succeeds, then it gives a projection oracle with query cost O(log q). In
Algorithm 1, we simulate the Glauber dynamics for T = [Qn log 47"] transition steps. In each step, the
algorithm first picks a variable v € V uniformly at random, the cost is O(log n). The algorithm then

calls the subroutine InvSample (CD, h, 4(T—5+1), Y\ {0} {U}) to draw a random X, € Q,. By Lemma 5.3, the
cost of the subroutine is O (DQk ()" log? (%2) log q), where

2
€ € £
d=——=0|——=|=Q|—=].
4(T+1) (nlogg) (nQ)
After X, is sampled in Line 4, the algorithm calls the projection oracle to map X, € Q, to Y, = h,(v) €
3, the cost of this step is O(log q). Thus, the cost for simulating each transition step is

— oD% (") 10g? ("2
(11) Tstep—O(D k(g) log ( . )logq).

Finally, the algorithm uses InvSample ((b, h, ﬁ,Y, V) in Line 6 to sample the final output. By
Lemma 5.3, the cost is O (nDzk (%)'7 log? (%) log q), where § = m =Q (fl—z) Hence, the cost
for the last step is

3 D
(12) Tinal = O (nDQk (f) " log? ("—) log q) .
€ €
Combining all of them together, the total running time is

1 3n D
Tiotal = Tproj + T+ Tstep + Thinal = O (n(Dk +q) log — log q) +0 ((T +n)D’k (E) log? (n—) log q)
& & &

(13) =0 ((DQk +q)n (2)3" log? (%) log q) .

Next, we prove the correctness of the algorithm, i.e., the total variation distance between the output
Xout and the uniform distribution y is at most ¢. It suffices to prove

3¢
(14) drv (Xaig p) < -
Because if 0 < f < a < 1 and log% > (a%%)g (log D + 3), then with probability at least 1 — £, the

algorithm in Theorem 3.8 constructs the projection scheme successfully, i.e. Xyt = Xajg. Let X ~ p.
By coupling lemma, we can couple X and X, such that X # X, with probability %. Thus, we can
coupling X and X,y such that X # X,y with probability at most i + % = ¢. By coupling lemma,

dTV (Xout, .u) <e
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We then verify (14). Consider an idealized algorithm that first runs the idealized Glauber dynamics for
= [2n log 47"] steps to obtain a random sample Y, then samples Xqe, from the distribution ;¥6. By

Lemma 5.2, if log 1_17 > % log (W), then dpy (Y, v) < i. Consider the following process to draw

a random sample X ~ . First sample Y ~ v, then sample X ~ Y. Thus, we can couple Y and Y such
that Y # Yg with probability 7. Conditional on Y = Y, X and Xjqea can be perfectly coupled. By
coupling lemma,

(15) drv (deea, ) < Z
We now couple Algorithm 1 with this idealized algorithm. For each transition step, they pick the same
variable, then couple each transition step optimally. In the last step, they use the optimal coupling to
draw random samples from the conditional distributions. Note that in Line 4 of Algorithm 1, if the
random sample X, € Q, returned by the subroutine is a perfect sample from ,uZV\{”’, thenthe Y, € 3,
constructed in Line 5 follows the distribution VZV\{U}. By Lemma 8.12, if none of Bt(l) and Bt(Q) for
1 <t <T+1 occurs, then all the (T + 1) executions of the subroutine InvSample(®, h, §, y,, S) return
perfect samples from ,ug‘\. In this case, Algorithm 1 and the idealized algorithm can be coupled perfectly.
Note that § = m. By coupling lemma and Lemma 5.3, we have
T+1

\V (8" vs?)

i=1

&
drv (Xalg: Xidea) < Pr <2(T+1)6= 7

Hence, (14) can be proved by the following triangle inequality
e 3¢
dTV (Xalga ) < dTV ( alg» deea) + dTV (deea, ,U) = 5 + Z < I
We then set the parameters «, f and . We put all the constraints in Theorem 3.8, Lemma 5.2 and
Lemma 5.3 together:

O<f<a<l 0O0<p<l;

25
2 G ﬂ)?’ (logD +3);
50, (20001)4) '
B o)

1
log(20D?);
-«

1 | (4OeD2)
- log .
B

IV

\%

\%

h-R N B e B e

—
Q
09

n
We can take o = 0.994 and f = 0.577. The following condition implies all the above constraints

1 1
logE > 350 logD+3logz and n= g where 0 < { < 27400,

Remark that log % > 350log D + 3log % is equivalent to In 1 > 350In D + 31n % By (13), under this
condition, the total running time is

3n D ¢ D
Tiotal = O ((DQk +q)n (E) log?® (n_) log q) =0 ((DQk +q)n (2) log? (n q)) O

€ € € €
5.2. Sharper bounds for subclasses of CSP formulas. We prove the following theorems on specific

subclasses of CSP formulas. Our first result is for hypergraph coloring.
Theorem 5.4. There is an algorithm such that given any k-uniform hgypergraph with maximum degree
A and a set of colors [q], assuming k > 13 and ¢ > max ((7kA)m ,650), the algorithm returns a
1

random q-coloring X € [q] in time O (q2k3A2n (2) 100(qka)® log* (@)) such that the distribution of

15



X is e-close in total variation distance to the uniform distribution of all proper q-colorings of the input

hypergraph.

Theorem 1.3 is implied by Theorem 5.4: when k > 30, we have (7k)k—_912 < 15, which means that
q= 15AFT + 650 suffices to imply the condition in Theorem 5.4.

Our next result is for CNF formulas. For a k-CNF formula, each clause contains k variables. And
the maximum degree of the formula is given by the maximum number of clauses a variable belongs to.
The following theorem is is a formal restatement of Theorem 1.4.

Theorem 5.5. The following holds for any0 < { < 2720, There is an algorithm such that given any k-CNF
formula with maximum degree d, assuming k > 131log d +13log k+ 3 log % the algorithm returns a ran-

4
dom assignment X € {True, False} in time O (d2k3n (%)g/(dk) log® ("dk)) such that the distribution

T
of X is e-close in total variation distance to the uniform distribution of all satisfying assignments.
Let® = (V, [q]V,C) denote the CSP formula where all variables have the same domain [g]. Suppose
that for every constraint ¢ € C, ¢ is atomic and |vbl (¢)| = k, and each variable belongs to at most d

constraints. Let h denote a projection scheme satisfying Condition 3.4 with parameters & and . For
such special CSP formulas, we have the following lemma with an improved mixing condition.

Lemma 5.6. Ifklogq > %log (3000¢%d®kS), then the Markov chain PGiauber on v has Tpi(e) <
[Qn log %-|
The proof of Lemma 5.6 is given in Section 8. We use Lemma 5.3 and Lemma 5.6 to prove our results.

Proof of Theorem 5.4. Consider the hypergraph g-coloring on a k-uniform hypergraph H = (V, &) with
maximum degree A. We first transform the hypergraph coloring instance into a CSP formula & =
(V,[q]",C) with atomic constraints. For each hyperedge e € &, we add q constraints such that the
i-th constraint ¢; forbids the bad event that the hyperedge e is monochromatic with color i € [q].
Namely, vbl (¢;) = e and ¢; is False if and only if all variables in vbl (¢;) take the value i. The time
complexity for this reduction is O(ngA log q).

In CSP formula ® = (V, [q]",C), c is atomic and |vbl (¢)| = k for all ¢ € C; each variable belongs
to at most gA constraints. The maximum degree D of the dependency graph of ® is at most gkA. We
assume D = gkA. If each variable v € V draws a random value from [g] uniformly and independently,

then the maximum probability p that one constraint becomes False is p = (é) .

Let a, B, n be three parameters to be fixed later. Our algorithm first uses the deterministic algorithm
in Theorem 3.9 to construct a projection scheme satisfying Condition 3.4 with parameters « and f. The
deterministic algorithm in Theorem 3.9 always finds such a projection scheme, which gives a projection
oracle with query cost O(log q). Remark that the cost for constructing the projection scheme is

(16) Toroj = O (nlogq) .

We then run Algorithm 1 to obtain the output X, = X1, Wwhere X,j, denotes the output of Algo-
rithm 1. The correctness result can be proved by going through the proof of Theorem 1.1.

We set parameters a, ff and 5. Note that vbl (¢c) = k for all ¢ € C; p = ¢”¥; and each variable belongs
to at most d = gA constraints; and D = gkA. We put all the constraints in Theorem 3.9, Lemma 5.6 and
Lemma 5.3 together:

1
q 0(—[3’
1 8A616) .
klongﬁlog 3000¢°A°k” | ;

0<pf<a<l 7< aTS%, loggq > 0<p<l;

log(20g%k?A?);
( 40eq*k>A? )

kl >
0gq = 1

4

klogq > —log
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We can take o = % and ff = % The following condition suffices to imply all the above constraints:

assume k > 12,

1
" D (gka)t

q> 650, 7

5
log k
RIS

9
logq > log A
08q = BT 12

k—12
The following condition suffices to imply the above one

1

_9
g =2 max ((7kA) k-12 ,650) and n= W

Note that D = kgA. Under this condition, by (11), (12) and (16), the total running time is

3 D TooraEmt kA
’Ttotal =0 (D2kn (g) 7 10g3 (HT) log q) =0 (q2k3A2n (g) 100(qk)d 10g4 (&)) . O

&

Proof of Theorem 5.5. Let ® = (V, {True, FalselV, C) be a k-CNF formula, where each variable belongs
to at most d clauses. Each variable takes its value for the Boolean domain {True, False}, thus the size
of the domain is ¢ = 2. The maximum degree D of the dependency graph is at most kd. We assume
D = kd. If each variable v € V draws a random value from the Boolean domain {True,False}

uniformly and independently, the maximum probability p that one clause is not satisfied is p = (%)k
Let a, §, j be three parameters to be fixed later. Our algorithm first uses the randomized algorithm
in Theorem 3.9 with § = § to construct a projection scheme satisfying Condition 3.4 with parameters
a and . If the randomized algorithm in Theorem 3.9 fails to find such projection scheme, our algo-
rithm terminates and outputs an arbitrary Xy, € {True, False}V. If the randomized algorithm in
Theorem 3.9 succeeds, it gives a projection oracle with query cost O(log q). By Theorem 3.9, the cost

for constructing the projection scheme is

1
(17) Toroj = O (ndk log —) .
€

We then run Algorithm 1 to obtain the output Xt = Xaig, where X, denotes the output of Algo-
rithm 1. The correctness result can be proved by going through the proof of Theorem 1.1.

We set parameters «, § and 1. We put all the constraints in Theorem 3.9, Lemma 5.6 and Lemma 5.3
together:

21n2
0<f<a<l kz—""log(2kd), 0<p<I;
(a=p)

kz%kg@mm4d%ﬂ;
1

4

log(20d°k?);
4Oed2k2)

>
k_l

1
kZ—log(
B

We can take o = %—é and f = % The following condition suffices to imply all the above constraints

1
k213logd+13logk+3logz and n= where0<{s2_20.

¢
3dkd

Note that D = dk and g = 2. Under this condition, by (11), (12) and (17), the total running time is

3 &
Tiotal = O (Dan (g) ! log3 (%) log q) =0 (d2k3n (g) atrd log3 (%)) . g
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6. PRO]ECTION CONSTRUCTION

In this section, we give the algorithms to construct the projection schemes. We first give the projec-
tion algorithm for (k, d)-CSP formulas (Theorem 3.9), then give the projection algorithm for general
CSP formulas (Theorem 3.8).

Proof of Theorem 3.9. We start from the first part of the lemma. For each v € V, we set s, as

2-a-f
e[

For each variable v € V, we partition [q] = {1,2,..., q} into s, intervals, where the sizes of the first
(g mod s,) intervals are [g/s,], and the sizes of the last s, — (¢ mod s,) intervals are | q/s,]. Let
Yo = {1,2,...,s,}. Foreachi € [q], hy(i) = j € 3,, where i belongs to the j-th interval. This
constructs the function A, : [q] — 2,. To implement the projection oracle, we only need to calculate
sy for each v € V, the total cost is O(nlog q). Consider the two queries in Definition 3.3.

e evaluation: given an input value i € [q] of a variable v € V, the algorithm should return j € %,
such that i is in the j-th interval, this query can be answered with the cost O(log q);

e inversion: given a projected value j € ¥, of a variable v € V, the algorithm should return a
random element in the j-th interval uniformly at random, this query can be answered with the
cost O(log q).

Next, we prove that this projection scheme satisfies Condition 3.4. For any v € V, it holds that

{i} < "q(a+ﬁ)/2-‘ < q((x+ﬁ)/2 +1 % gq(a+ﬁ)/2’

Sy

where (¢) holds because g(**#/2 + 1 < %q(‘“ﬁ)/Q if ¢(**A)/2 > 6. Note that log% < 0.23. This implies
the following inequality

(%)
(18) Z {ink((x;—ﬁlogq+0.23);k-alogq:a Z log q,

vevbl(c) | 5? vevbl(c)

where inequality (x) holds because @ > f and logq > 0?—_%. For any v € V, it holds that

q q q Q q 6 ap (©) 5 ap
o | T Toeapiz] | = | gapr2 = peryl L R L
sol | lq¢ 1] la +1 (1+35)q

where inequality () holds because (1 + £) g>~* P12 > ¢(2=a=P)/2 4 1 if g(2-a=A)/2 > 6; inequality (¢)
holds because q(**#/2 > 7. Note that log % > —0.5. This implies

(19) Z log{iJzk(#logq—Ob) (g)k-ﬁlongﬁ Z log g,

vevbl(c) So vevbl(c)

where inequality (%) holds because a > f and logq > (x_iﬁ Combining (18) and (19) proves the first

part of the lemma.

We then prove the second part of the lemma. The algorithm constructs a subset of variables M C V.
We call M the set of marked variables. If v € M, let 2, = [q], and h,(i) = i foralli € [q]. If v ¢ M,
let>, = {1}, and h,(i) = 1 for all i € [q]. Remark that s, = q if v is a marked variable, and s, = 1 if v is
an unmarked variable. To implement the projection oracle, we only need to construct M. Suppose the
set M is given (the construction will be explained later). Consider the two queries in Definition 3.3.

e evaluation: given an input value i € [g] of a variable v € V, the algorithm should return the
inputiifo € M, orreturn 1 € X, if v ¢ M; this query can be answered with the cost O(log q);
e inversion: given a projected value j € ¥, of a variable v € V, the algorithm should return
j € [q] if v € M; or return a uniform random element X € [q] if v ¢ M; this query can be
answered with the cost O(log g).
18



Now, we construct the set of marked variables M C V. For each constraint ¢ € C, define ¢, as the
number of marked variables in c, i.e.

t. = IMnvbl(o)].
Hence, Condition 3.4 becomes for each ¢ € C,
(1-a)k <t <(1-pk.

In other words, each constraint contains at least (1 — @)k marked variables and at least fk unmarked
variables. We use Lovasz local lemma to show that such set M exists, then use Moser-Tardos algorithm
to find a set M. Let D denote the product distribution such that each variables is marked independently

with probablhty 2228 For each constraint ¢ € C, let B. denote the bad event that ¢ contains less
than (1 - a)k marked Varlables or less than Sk unmarked variables. We use concentration inequality
to bound the probability of B.. In [FGYZ20], the probability of the bad event B, is bounded by the
Chernoff bound. Now, we use Hoeffding’s inequality to obtain a better result
_ A2
< 2exp (—@k) .

a-p
2
The maximum degree of dependency graph is at most k(d — 1). By Lovasz local lemma (Theorem 2.1),

the set M exist if
2
e-2exp (—%k) kd < 1.

Note that « > f and k > 2ln Tap)? (log k + log d + log 2e) implies the above condition.

k

Prp [B:] =Prt. < (1-a)k Vit. > (1-p)k] =Pr [ltc -E[t]|l =

The Moser-Tardos algorlthm can find such set M within 22 < resampling steps in expectation [MT10].
We can run |_log %] Moser-Tardos algorithms independently, then with probability at least 1 — §, one
of them finds the set M within 47” resampling steps. The cost of each resampling step is O(dk?). The
cost for constructing data structure is O(ndk log %) |

Proof of Theorem 3.8. The domain of each variable v € V is Q,, where g, = |Q,|. Assume each element

x € Q, can be in-coded by O(log q,) bits. For each v € V, suppose the input provides an array A, of

size q, containing all the elements in Q,. For each v € V, we construct a data structure S, that can

answer the following two types of the queries: (1) given any index i € [q,], we can access the i-th

element in this array with cost O(log q,). (2) given any x € Q,, we can find the unique index i such

that A, (i) = x with the cost O(log q,). For each v € V, the cost of the construction is O(q, log gq,).
The algorithm divides all variables into two parts Sjarge and Sgman such that

5 5
Slarge:{veVHogqu a—ﬂ}’ Ssmanz{veV|logqv< a—ﬁ}'

For each variable v € Sjarge, the algorithm sets

2-a-f
Yo € Slarge, So = |qo 2 .

We partition [gq] = {1,2,...,q} into s, intervals, where the sizes of the first (¢ mod s,) intervals are
[q/sy], and the sizes of the last s, — (¢ mod s,) intervals are |q/s,]. Let X, = {1,2,...,s,}, where
each j € ¥, represents an interval [L;, R;]. For any x € Q,, let i denote the unique index such that
Ay(i) = x, we set hy(x) = j such that i € [L;,R;]. This defines the function h, : Q, — ;. To
implement the projection oracle for Sj,,ge, the algorithm only needs to compute the value of s,, where
the cost is O(log q,). Consider the two queries of the projection oracle in Definition 3.3.

e evaluation: given an input value x € Q, of a variable v € Sja6¢, With the data structure S,, the
algorithm can return h,(x) in time O(log q,);

e inversion: given a projected value j € X, of a variable v € Sjar6¢, the algorithm should return a
uniform element in set {x € A, (i) | L; < i < R;}; with the data structure S,, this query can
be answered with the cost O(log q,).
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Let ¢ = maxXycv go. For any o € Sjarge, the cost for answering each query is O(log q).

For variables in Sgp a1, the algorithm constructs a subset of variables M C Sgpan. We call M the set
of marked variables. If v € M, let X, = Q,, and h,(x) = x for all x € Q,. If v ¢ M, let 3, = {1}, and
hy(x) = 1for all x € Q,. To implement the projection oracle, the algorithm only needs to construct the
set M. The construction of M will be explained later. Suppose the set M C Sqpan is given. Consider
the two queries of the projection oracle in Definition 3.3.

e evaluation: given an input value x € Q, of a variable v € Sgpal, the algorithm should return
the input x if v € M, or return 1 € ¥, if v ¢ M, this query can be answered in time O(log q,);

e inversion: given a projected value x € ¥, of a variable v € Sy a1, the algorithm should return
the input x if v € M, or return a uniform random element X € Q, if v ¢ M; with the data
structure S,, this query can be answered in time O(log g,).

Let ¢ = maxyey qp. For any v € Sgpal, the cost for answering each query is O(log q).

Again, we use Lovasz local lemma to prove that there is a subset M such that the above projection
scheme satisfies Condition 3.4, then use Moser-Tardos algorithm to find such set M. Let D denote
the product distribution such that each variable v € Sga11 is marked with probability 2_g_ﬁ . For each
¢ € C, let B, denote the bad event

(20) Z log{%}>a Z logg, or Z log{%J<ﬁ Z log g,

vevbl(c) v vevbl(c) vevbl(c) v vevbl(c)

Fix a constraint ¢ € C. Suppose vy, 02, ..., are variables in vbl (¢), where k = k(c) = |vbl (¢)|. Let
0 < ¢ < k be an integer and assume v; € Sjarge for all 1 < i < £and v; € Sgpan forall £+1 < j < k.
For each 1 < i < k, we define random variable

X; = log {%w
Su;

1

For each 1 < i < ¢, since v; € Sjarge, X; = log [qu,-/ [q P/ 211 with probability 1. We have

. 5
Vi<i<e E[X]= 1og[—(2_i”_’ﬁ)/2]w < log [qf,f‘*ﬁ)/ﬂ < log (qufﬁﬁ)/z),
qZ)i

where the last inequality holds because log q,, > a—ig, which implies %qz(,?Jrﬁ)/Q > qf,fﬁﬁ 241 >
[qgﬁﬁ)/ﬂ. Note that log % < 0.33 and log g, > a%ﬁ It holds that

+ _
(21) Vi<i<e E[x] <033+ L log g, < arlog gy, ~ - 3 198 o

Foreach f+1 < j < k, since vj € Sgman, X; = log o, with probability a—;ﬁ; and X; = 0 with probability
#. We have

+ —
(22) Ve+1<j<k, E[Xi]ZOCQﬁlquviSalogqvi_a3

Consider the sum Zle X;. For any v; € Sjarge, the value of X; is fixed. For any v; € Sgpan, X takes a
random value and it must hold that X; € {0, log q,,}. By Hoeffding’s inequality,

k k 2 2
2t (%) 2(ax — p)t
E X; > E E[X;] +t| <exp (—ﬁ) < exp (—]EO[—ﬁ)),
i=1 i=1 Z]’:[+1 log qu; 5 Zj:[+1 log qo;

lOg qUi .

(23) PI‘@

where (%) holds due to log g,, < a—ﬁﬁ forall£+1 < j < k. Combining (21), (22) and (23), we have

k & (@-p)°
in>azlong <exp|-— < exp —T;bng -

i=1 i=1

_p)3 2
M (Z;C:l log qvi)

(24) PI‘@
5 Z§=f+1 1Og qvj
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Similarly, for each 1 < i < k, we define random variable

Y; = log {%J

So;

i

For each 1 < i < £, since v; € Sjarge, ¥; = log {WJ with probability 1. We have

: 1 qv; 4 (at) 2 3 (atf) /2
v;

v

where the last two inequalities hold because 0 < f < a < 1 and loggqy,
(2-a-p)/2 q(2 P2 q s [qz(f—a—ﬁ)/f‘ and l4 (a+ﬁ)/2J > 4qz();x+ﬁ)/2 -1

a%ﬁ, which implies

§q(a+ﬁ)/2

=qy,; . Note that

\%

4qm 590;
log 2 £ > —0.74. Again, by log q,, > a%ﬁ we have

a —
3 ﬁ log CIU,--
L. and Y; = log gy, with probability

+
Vi<i<e E[Y]>-074+2 ﬂlogqvi > Blog g, +

Foreach f+1 < j < k, since vj € Sgpanl, Y; = 0 with probablhty
%. We have
5 log qy,.

Ve+l<j<k E[Y]= “3

+
5 £ 1og qo; 2 flog qo, +
Again, by Hoeftding’s inequality, we have

N y (a=p°
Y; log qo, | < ——— Y logq, |.
; <ﬁ; 08 qo; | < eXp 5 le 08 gy,

Combining (24) and (25) we have

(25) PI‘Z)

(a=p)* & 5 > <L
Pry [B:] < 2exp (—2—3;1%%,-) < 2exp (——310gD 3) < 2exp (—2—31nD 3) e(D+1)’

where (%) holds because Zle log g, > o ﬁ)g (log D + 3). By Lovasz local lemma, there exists a set of

marked variables M C Sq..11 such that the condition in (20) is satisfied.

Similar to the proof of Theorem 3.9, we can use Moser-Tardos algorithm [MT10] to construct such
projection scheme. With probability at least 1 — §, the algorithm constructs a projection scheme in
time O (nDk log %), where k = max.cc |vbl (¢)|.

We now combine all the steps together. The construction of the data structures S, for allv € V
has the cost O(nglog q). Computing the s, for all v € Sj,;ge has the costs O(nlog q) Computing the
marked set M C S has the cost O(nDk log 5) The total cost is O(n(Dk + q) log log q). |

7. ANALYSIS OF THE INVERSE SAMPLING SUBROUTINE

In this section, we prove Lemma 5.3. Let ® = (V,Q,C) be a CSP formula, where each variable v
takes value in Q,. Let h = (h,),ev be a balanced projection scheme satisfying Condition 3.4 with
parameters « and f, where for eachv € V, h, : Q, — 24, |Qy| = ¢, and |Z,| = s,. Let (Y;);50 denote
random sequence generated by Algorithm 1, where Y; € ¥ is the random Y after the ¢-th iteration of
the for-loop. Recall that for each 1 < ¢t < T + 1, we have defined the following bad events:

° .‘Bt(l): in the t-th call of InvSample(-), the random assignment X is returned in Line 10;
° .‘Bt@): in the t-th call of InvSample(-), the random assignment X is returned in Line 4.

In the t-th calling of the subroutine InvSample(®, h, §, ya, S) (Algorithm 2), conditional on —|.‘Bt( DA
—|.‘Bt(2), all the connected components that intersect with S are small, and the rejection sampling on
each component succeeds. It is straightforward to verify the subroutine returns a perfect sample from

Ya
K-
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Next, we analyze the running time of the subroutine InvSample(®, b, §, ya, S). Let G = (C, E) denote
the dependency graph of ® = (V,Q, C). We assume the dependency graph is stored in an adjacent list.
We can construct such adjacent list at the beginning of the whole algorithm. The cost of construction
is O(nDk), which is dominated by the cost in Theorem 5.1.

Assume that the algorithm can access a projection oracle with query cost O(log g). The first step of
the subroutine is to find all the connected components that intersect with set S. For each variable v € S,
we find all the constraints C(v) = {¢c € C | v € vbl(¢)} (note that |C(v)| < D), then perform a deep
first search (DFS) in G starting from C(v). During the DFS, suppose the current constraint is c € C. We
can find the unique configuration o € Qupi() forbidden by c, i.e. ¢(0) = False. We call the projection
oracle to obtain 7 € Xp(¢), where 7, = h,(0,) for each v € V. The cost of this step is O(k log ). If for
allo € ANnvbl(c), yo(v) = 1, (which means c is not satisfied by y,), we do DFS recursively starting
from c; otherwise, we stop current DFS branch and remove ¢ from the graph G. If the size of current
connected component is greater than 2D log %, the connected component is too large, we stop the
whole DFS process. The total cost of DFS is

D
Topg = O |S|D2klog%logq .

Another cost of the subroutine comes from the rejection sampling from Line 5 to Line 10. To perform
the rejection sampling, for each variable v, we either draw X, from n;° or draw X, from the 7. This
step can be achieved by calling oracles. The cost is O(log q). Since there are at most |S| connected
components and each of the size at most 2D log %, the total number of variables is O(|S| Dk log % .
For each component, the algorithm uses the rejection sampling for at most R = [10 (%)'7 log §-| times.
The total cost of rejection sampling is

n\1 nD
Lej=0 (ISl Dk (3) log? (7) log q) )

The total cost of the subroutine is

n\" nD
Tors + Trej = O (|S| D%k (3) log2 (7) log q) )

Finally, we use the following lemma to bound the probabilities of the bad events B;l) and .‘Bt@).

Lemma 7.1. Let ® = (V,Q,C) be the input CSP formula and h a projection scheme satisfying Con-
dition 3.4 with parameters o and . Let D denote the maximum degree of the dependency graph of ®.
Let p = maxcec [loevbi(e) @ Let 0 < n < 1 be a parameter. Suppose log% > ﬁ log(20D?) and

log % > % log (@). The subroutine InvSample(®, h, 5, ya, S) in Algorithm 2 with parameter n satisfies

that forany1 <t <T+1,
Pr(g| <5 and Pr|8?| <o

The rest of this section is dedicated to the proof of Lemma 7.1. Let v; € V denote the random variable
picked by Algorithm 1 in the i-th iteration of the for-loop. In the proof of Lemma 7.1, we always fix a
1 <t < T+1 and asequence 01,0y, ...,0r. Hence, we always consider the probability space generated
by Algorithm 1 conditional on v; is picked in the i-th iteration of the for-loop.

Define (possibly partial) projected configuration

. {Yt_1<V\{vt}> ifl1<t<T;
YI yA =

(26) .
Yr ift=T+1,

where A=V \{o,}ifl <t <T,and A=Vift=T+1 We analyze InvSample(®, h,§,Y,S), where

5= {v;} ifl1<t<T;
v ift=T+1.
22



7.1. Analysis of rejection sampling (bound Pr[.‘Bt( 1)]). We first prove that
(27) Pr [Bt(l)] < 6.

Let @ = (V,Q,C’) denote the CSP formula obtained from ® = (V,Q,C) by removing constraints
satisfied by Y. Let H' = Hy = (V, &’) denote the hypergraph modeling @', where & = {vbl (¢) | ¢ €
C’} is a multi-set. Suppose H&, has ¢ connected components H{, H, ..., H; that intersect with S, where
H/ = (V;,&])and VNS # @ foralll <i < £. Let ®] = (V;, Qy;, C/) denote the CSP formula represented
by H/, where C/ denotes the set of constraints represented by &/.

Fix an integer 1 < i < ¢. Lines 6 — 8 in Algorithm 2 actually run rejection sampling on ®; =

Vi, évp C/), where each O, C Oy, such that

~ , |t ifoeVina;
Qv_{

VUE‘/h - .
Q. ifoeV;\ A

Since the maximum degree of the dependency graph of @ is D, the maximum degree of the dependency
graph of ®; is at most D. Let D denote the product distribution such that each v € V; samples a
value from (i, uniformly at random. For each constraint ¢ € C/, let B, denote the bad event that c
is not satisfied. Note that h is a balanced projection scheme. By the definition of évp it holds that
10,] > Lgu/s0] for all v € V;, where q, = |Q,|. In other words, ®; is the conditional LLL instance in
Condition 3.7. By Condition 3.4, we have for each ¢ € C/,

B

1 1 1
Prp [Bc] = l—[ — < l_[ mﬁ l_[ ol

vevbl(c) éu vevbl(c) vevbl(c)

Recall that in Lemma 7.1, we assume that for each ¢ € C, 2 yeypi(c) 108 g0 > % log (@) for0 <y < 1.

Note that C/ € C, we have for each ¢ € C/,
n

Pry [B.] < ——.
to [Bel < 15052
For each B, define x(B,.) = 40%. We have
40D?
n n n \n ! n n \P
Pry [B,] < < (1 - ) < (1 - )
ro [Be] < 75757 < 1op 10D? 1002 \" ~ 40D?

<x(B) [] (1-x(B)),

Bc’ el (Bc)

where I'(-) is defined as in the Lovasz local lemma (Theorem 2.1). Since B;l) occurs, it must hold that
|Cl.’| < 2Dlog %. By Lovasz local lemma (Theorem 2.1), we have

Prop /\B_C > l_[(l—x(Bc)) > ]_[ (1— 40';)2)

ceC; ceC; ceC;

, nD n \2Dlog P n Dn
/I < — >(1- > — 1 o ==
by |Cl| < 2Dlog 5 ) > (1 4OD2) > exp( D log 5

k) 5anz S % 1(6 n
== >|l=] =z(=|-
(Dn) (Dn) 2(11)

n
Hence, each trial of the rejection sampling in Lines 6 — 8 succeeds with probability at least % (g) . Since

the algorithm uses rejection sampling independently for R = [10 (%)” log §-| times, the probability that
the rejection sampling fails in one connected component is at most

3] = )3
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Since there are at most n connected components, by a union bound,
Pr|s| <o

This proves (27).

7.2. Analysis of connected component (bound Pr[B,SQ)]). We now bound the probability of bad

event Bt@). Consider the subroutine InvSample(®, h, 6,7, S). Recall &’ = (V,Q, C’) is the CSP formula
obtained from ® = (V,Q,C) by removing all the constraints satisfied by Y. Recall hypergraph H" =
Hy = (V,&’) models @’. Let H = Hg = (V, ) denote the hypergraph modeling @, where & = {vbl (c) |
¢ € C} is amulti-set. For any edge e € &, we use B, to denote the bad event that e € &” and the number
of hyperedges in the connected component in H’ that contains e is at least L, where L = [2D log % .
By a union bound, we have

Pr [Bt@)] < > Pr(s.].
ee§
Recall D is the maximum degree of the dependency graph. Since |&| < n(D + 1), it suffices to prove

1)

28 Pr(8,] < ——.
(@) TS
To bound the probability of B,, we need the following lemma.

Lemma 7.2. Let® = (V,Q,C) be a CSP formula. Let h be the projection scheme satisfying Condition 3.4
with parameters a and f. Let q, = |Q,| and D denote the maximum degree of the dependency graph of ®.
If for any constraint ¢ € C,

1
Z log g, > Blog(4OeD2),
vevbl(c)

then for any subset H C A, any projected configuration o € Sy = Q) cpy Zos

Pr[Yg =o0] <exp (Z L 1_[ (ql {%D
veH 0 0

420D
The proof of Lemma 7.2 is deferred to Section 7.3. Next, we introduce the following definitions of
line graph and 2-tree.

where Y € 3 is defined in (26).

Definition 7.3 (line graph). Let H = (V, &) be a hypergraph. The line graph Lin(H) is a graph such
that each vertex represents a hyperedge in &, two vertices e, e’ € & are adjacent iffte Ne’ # 2.

Definition 7.4 (2-tree). Let G = (V,E) be a graph. A subset of vertices Syree C V is a 2-tree if (1)
for any u,v € Siree, their distance distg(u, v) in graph G is at least 2; (2) if one adds an edge between
U, 0 € Siree such that distg(u, v) = 2, then S becomes connected.

The following two propositions are proved in the full version [FGYZ19] of [FGYZ20].

Proposition 7.5 ([FGYZ19, Corollary 5.7]). Let G = (V,E) be a graph with maximum degree A and
(eAQ)(—l
—

v € V a vertex. The number of 2-trees in graph G of size £ containing vertex v is at most
Proposition 7.6 ([FGYZ19, Lemma 5.8]). Let H = (V, &) be hypergraph. Let Lin(H) denote the line
graph of H. Let B C & be a subset of hyperedges that induces a connected subgraph in Lin(H) and e € B

an arbitrary hyperedge. There exists a 2-tree Sree C & in Lin(H) such that e € Siree and |Siree| = [%J,

where D is the maximum degree of the line graph Lin(H).
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Suppose h satisfies Condition 3.4. Recall Y € X5, where A=V \ {o;} for1 <t <Tand A=V for
t =T+ 1. We say an edge e € & is bad if e is not satisfied by Y. Suppose e represents the constraint c
such that c¢(x) = False for a unique configuration x € Q.. Given the projected configuration Y € 34,
we have

(29) eisbad < VueAneY, # h,(x,).

In other words, if e is bad, then the constraint corresponding to ¢ in the “round-down” CSP formula
(Definition 3.5) is not satisfied by Y. If B, occurs, there must exist a connected component B C & in
line graph Lin(H) such that e € B and all hyperedges in B are bad and |B| = L, where L = [2D log %

and D is the maximum degree of the dependency graph of the input formula. By Proposition 7.6, there
must exist a 2-tree Siyee in Lin(H) with size £ = [ﬁj such that e € Si;ee and all edges in S;ee are bad.
Fix such a 2-tree Siyee. By definition, each vertex in Siyee is a hyperedge e € &, and for all e, e’ € Styee,
ene =@. LetS, . C Siree denote the subset of edges e € Siyee such that e C A. Since Y is a random

tree

projected configuration, by (29), we have
Pr [Ve € Siree, € is bad] = Pr[Ve € Sipee, Yu € eNA Y, # hy(xy)]
< Pr [Ve €S . YueeY, +# hu(xu)] )

tree>

’

Fix an edge e € S/ .. By Condition 3.4 and the condition } . log g, > ﬁ log(20D?) assumed in
Lemma 7.1, it holds that

1 VY
[T=12(<([]=] = .
Qo | So dv 20D?2

veEe veEe

Note that if s, = 1, then q—lv [ﬂ-‘ = 1. For any v € e such thats, > 1(thus q, > s, > 1), we have

So

é [Z—:-‘ < % [%] < % Let r = logys 20% + 1. We can find a subset of variables R(e) C e such that

1 1
— {q—} < oope and R <r.
veR(e) Qo | So
Note that Lemma 7.1 assumes that 3 ,c\pi(c) 10g go > % log (@) > 1]og(40eD?). We use Lemma 7.2
on subset H = UeegéreeR(e). Note that all hyperedges in S/ ., are disjoint. We have

Pr [Ve € Siree, € is bad] < Pr [Ve €S/ .YueR(e),Y, + hu(xu)] <Pr[VueHY, # h,(x,)]

tree>

111 GlEe ()< 1] (e ()

e€S; .. vE€R(e)

1 1
byr=log2/3m+1)) < l—[ (12D2)

’
eestree

Since |A| > n — 1 and all hyperedges in S, are disjoint, |S’ | > |Stree] — 1 = £ — 1. We have

tree

' 1 \!
Pr [Ve € Siree, € is bad] < (12D2) .

Note that the maximum degree of line graph is at most D. By Proposition 7.5, we have

1 AL 1\ 11yt (1
Pr[Be]Si(eD) (12D2) 35(1) = 5) '

Note that £ = |[L/(D+1)| and L = |—2D log %]. We have ¢ > log % — 1. We may assume nD > 16.
Otherwise, the sampling problem is trivial. The inequality (28) can be proved by

1 210g%—3 )
<|= <—
Pr[Be]‘( ) SuD+1)

2
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7.3. Proof of Lemma 7.2. We now prove (Lemma 7.2). We use the following lemma to prove it.

Lemma 7.7. Let ® = (V,Q,C) be a CSP formula. Let h = (h,),cv be the projection scheme satisfying
Condition 3.4 with parameters a and p. Let D denote the maximum degree of the dependency graph of ®.
Let q, = |Q,|. Suppose for any constraint ¢ € C, it holds that

1
> logq, = - log(40eD?).
vevbl(c) ﬁ
Fix a variable u € V and a partial projected configuration T € Xy (). For any y € %, it holds that

T 1 qu 1
<—|E —.
i < | 2o 575

Proof. Define a new CSP formula P = (v, Q = (Qu)uev, C) by

() ifw#u
o ifw=u.

Yw eV, QW:{

Let D denote the product distribution that each w € V takes a value from Qw uniformly and indepen-
dently. For each constraint ¢ € C, define a bad event B, as c is not satisfied. Let 8 = (B).cc be the
collection of bad events. Recall that I'(-) is defined as in the Lovasz local lemma (Theorem 2.1). It holds
that max.cc [T'(B¢)| < D. For each B, let x(B,.) = By Condition 3.4, it holds that

B

[ 2 I el 11 2

_L_
40D2"

Prg [B. is not satisfied]

vevbl(c) Qz} vevbl(c) I_qv/st vevbl(c) 9o
1 1 1 40D2-1
< < 1-
40eD? = 40D2 ( 40D2)

1 1 \°
< 1- < x(B 1-x(By)).
- 40D2( 40D2) < x( C)Brell‘(lB)( x(Be))

Fix y € ,. Let A denote the event that the value of u belongs to h,'(y), then |T(A)| < D, where
['(A) C B is the set of bad events B such that u € vbl (B). Let j denote the uniform distribution of all
satisfying assignments to ®. By Theorem 2.1, we have

-D
V() = Pry[A] = Pryz [X € I ()] < — {q_} (1 T ) < {q_ﬂexp (20%)

u | Su qu | Su

Now we are ready to prove Lemma 7.2.

Proof of Lemma 7.2. Fix a subset H C V, and an projected configuration o € 2. Recall1 <t < T +1
is a fixed integer. Recall Y = Y;_1(A), where A=V \ {o,}ifl <t <T,and A=V ift =T+ 1. Recall
that v1,09,...,0; € V is a sequence such that v; is the variable picked by Algorithm 1 in i-th iteration
of the for-loop.

For any variable u € H, let ¢t (u) denote the last step up to step t such that u is picked by Algorithm 1

of the for-loop. Formally, if u appears in the sequence vy, 09, . . ., v, then t(u) is the largest number such
that v;(,) = u; if u does not appear in the sequence 01,02, ..., then t(u) = 0. We list all variables
in H as uy, ug, ..., ujy| such that t(u1) < t(u2) < ... < t(ujg)), where for these variables u satisfying
t(u) = 0, we break tie arbitrarily. Thus, Y;(u) = Y;,) (u) for all u € H. We have
|H|
Pr[Yy =0] =Pr [Vui €HY, = O'ui] < l—[ Pr [Yt(ui)(ui) =0y, | V] < i, Yi(uy) (u)) = qu] .
i=1

We now only need to prove that, for any 1 < i < |H|,

o 1 |qu, 1
(30) Pr [Yt(ui)(ui) =0y, | Vj<i, Yt(uj)(uj) = O'uj] < q_u, {—uw exp (m) .

Su;
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h;ll (Uui)

Gu;

Suppose t(u;) = 0, then Yp(u;) € %, is sampled independently with Pr [Yo(ui) = O’ui] =

Since h is balanced, we have |h;l_1 (O’ui)| < [%1 Inequality (30) holds because

1 _
Pr [Yo(ui) =0y, | Vj <i,Yo(uj) = O'uj] < — {ﬂw

Uuj su,-

Suppose t(u;) = £ # 0. Algorithm 1 uses the subroutine InvSample(-) to sample a random X, € Q,

in Line 4, then maps X, into Y;(u;) in Line 5. If X, is returned in Line 4 or Line 10 in Algorithm 2, then
X, is uniformly distribution over Q,,,. In this case, inequality (30) holds because

. 1 1 |qy,
Pr(Yo(uw) = 0, |V) < i Yiup () =] = Y, — < — h—}
Xychi () T T

Otherwise, X, is returned in Line 11 of Algorithm 2. In this case, Y;(u;) is sampled from the distribution
vZf‘l (VMuid) We can use Lemma 7.7 with 7 = Y,_1(V\{u;}) and u = u;. Note that Lemma 7.7 holds for

any 7 and u. We have

o . ; 1 |qu 1
Pr [Ye(uw) = 0, | ¥ < i, Yoy () = 0, | = v (a3, < Qs L_} =P (ﬁ) '

1

Thus, inequality (30) holds. O

8. PROOF OF RAPID MIXING

Let® = (V, Q,C) be a CSP formula with atomic constraints and h = (h,),ev be a balanced projection
scheme satisfying Condition 3.4 with parameter a and 8, where h, : Q, — X,. Let v = vgp be the
projected distribution over ¥ = (X), ., 3o in Definition 3.2. Let (Y;);»0 denote the Glauber dynamics
Pglauber o1 v. In this section, we show that the Glauber dynamics Pglauber is rapid mixing, and prove
Lemma 5.6 and Lemma 5.2.

8.1. The stationary distribution. We first proves that v is the unique stationary distribution.

Proposition 8.1. Let® = (V,Q, C) be a CSP formula with atomic constraints. Leth = (h,),ev be the pro-
Jection scheme satisfying Condition 3.4 with parameters o and f. Let q, = |Qy|, p = maxcec [pevbi(c) qi
and D denote the maximum degree of the dependency graph of ®. Suppose log% > %log(2eD). The

Glauber dynamics Pglauper is irreducible, aperiodic and reversible with respect to v, thus it has the unique
stationary distribution v.

Proof. By the transition rule of Glauber dynamics, it is easy to verify the Glauber dynamics is aperiodic
and reversible with respect to v. We prove the Markov chain is irreducible. We show that for any ¢ € %,
v(o) > 0. This implies that the transition probability of Glauber dynamics is always well-defined and
the Markov chain is connected. Fix a ¢ € 3. Define a new instance ® = (V,@ = (év)veV; C) as
(50 = h;'(0,) for all v € V. It suffices to show that d is satisfiable, which implies v(o) > 0. The
maximum degree of dependency graph of ® is at most D. Besides, if each variable picks a value from
Q, uniformly and independently, then for each ¢ € C, the probability that c is not satisfied is at most

B

1 1 1 1
| 5= 1] s H)E = 2D

vevbl(c) |QU| vevbl(c) vevbl(c

By Lovasz local lemma, d is satisfiable. O
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8.2. Path coupling analysis. We use the path coupling [BD97] to show that the Markov chain is
rapid mixing. Fix two projected configurations X,Y € ¥ = (X) .y, =, such that X and Y disagree only
at one variable vy € V (assume s,, > 2). We construct a coupling (X,Y) — (X’,Y’) such that X — X’
and Y — Y’ each individually follows the transition rule of Pglauper such that

1
(31) E [dhan (X, Y) | X.Y] €1
n

where dpam (X',Y") = [{v € V | X # Y, }| denotes the Hamming distance between X’ and Y’. Note
that the Hamming distance is at most n. Thus, by path coupling lemma (Lemma 2.3), for any 0 < ¢ < 1,

Thix(€) < [Zn log g-‘

where n = |V| is the number of variables.
The coupling (X,Y) — (X’,Y’) is constructed as follows.

o Pick the same variable v € V uniformly at random, set X, < X, and Y, « Y, for all u # 0.

e Sample (X}, Y,) jointly from the optimal coupling between VZ(V\{O} and VZV\(U}.
By the linearity of expectation, we have
E [dham (X, Y') | X, Y] = Z Pr[X,# Y| X, Y|
veV
. , 1 X\(o) - W) 1
(by the optimal coupling) = - Z drv (VU Vo ) +({1--],
" 0eiNio) "
. Xvi(oo} - YW\(eg}) _ i
where the last equation holds because dtv | vy, s Voo = 0. To prove (31), it suffices to prove
S (1) < L
2
veV\{oo}

To prove the above inequality, we need to bound drv (VZ{V\{U}, VZV\(U}) for eachv € V \ {vg}. We

use the coupling introduced by Moitra [Moi19] to do this task. For k-uniform CSP formula such that
the domain of each variable is [¢], we construct an adaptive version [GLLZ19] of Moitra’s coupling.
Compared with the analysis in [GLLZ19, FGYZ20], this coupling is more refined and requires a more
careful analysis. This part in given in Section 8.3. For general CSP formula, we use the original non-
adaptive version of Moitra’s coupling. The analysis for general case is much more involved, because we
need to deal with arbitrary domain and arbitrary size of constraints. This part is given in Section 8.4.

8.3. Adaptive coupling analysis. We first analyze the simple case. Suppose the original input CSP
formula of Algorithm 1 is a (k,d)-CSP formula ® = (V,[q]",C) with atomic constraints, where
|vbl (¢)| = k for all ¢ € C and each variable v € V appears in at most d constraints, on homogeneous
domains Q, = [q] for all v € V. Note that this case covers two applications: hypergraph coloring and
k-CNF formula. We prove the following lemma.

Lemma 8.2. Let ® = (V,[q]",C) be a (k,d)-CSP formula with atomic constraints. Let h = (hy),cy be
the projection scheme for ® satisfying Condition 3.4 with parameters a and . If

1
(32) Klogg = 5log (3000q2d6k6),

Xv\{v Yviio
then it holds that ey (o) d1v (1", 1"') < 4.

Recall that for any o € 34, where A C V, the distribution i is the distribution of X € [¢]" such
that X is sampled from p conditional on h(Xy) = (hy(Xy))ver = 0, Where p is the uniform distribution
over all satisfying assignments to ®. We use p to denote the marginal distribution on v projected from
1°. Forany v € V and ¢ € 3, it holds that

Xv\ (o Xv\{o} / . Yv\(o Yoy /.
= Y " T0) and w @ = )L m" ().
jehzl(c) jehyt (o)
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Note that each h, is a function from [q] to %,. By triangle inequality, it holds that

X Y 1 X Y
dpy (Vu Vol VUV\{U}) =3 Z |Vv Vil (¢) — VUV\{U}(C)|
CEY,

- 1 X v . Y, ] . X v Y o
(by CEACE [CI]) <3 > ‘uu ) = }(J)’ =dry (uu JARNTHE }).
€€y jelql

For any variable v € V' \ {vg}, define the influence on v caused by vy as

A X o Y [
(33) I, = dTV’(ﬂUV“}:ﬂUVH})-
To prove the rapid mixing of Glauber dynamics, it suffices to prove that
1
(34) Z I < 3.
veV:v#uy

Fix a variable v, € V. We will use a coupling Cap¢ to bound the influence I,,. The coupling Cypt
draws two random samples XCart ~ ;XV\(ex) and YCart ~ pV\iex), By coupling lemma (Lemma 2.2),
the influence I, can be bounded by

Capt

(35) I, <Pre,, [XCaP“ £ Y|

Uk

To describe the coupling Capt, we first introduce some definitions. Recall ® = (V, [q]",C) is the
original input CSP formula of Algorithm 1. Recall two projected configurations X, Y € = = (X) .y, =,
differ only at vg. Define two CSP formulas ®X and ® as follows:

o X = (V,0% = (0X),ev, C) is a CSP formula such that

hY(X,) ifu # oy
X _ u )
(36) Qu = {[q] if u = o,

e &Y = (V,0Y = (Q)),ev, C) is a CSP formula such that

“ [q] if u = o,

By definition, (QX),cv and (Q)),ev differ only at variable vg. We then define two distributions

e Jipx: the uniform distribution over all satisfying assignment to ®%;
e Jigv: the uniform distribution over all satisfying assignment to @ .

It is straightforward to verify pgx = p*V\(x} and pgy = p*v\(ex). For any subset S C V, we use g gx
(and g gv) to denote the marginal distribution on S projected from pgx (and pgy).

Recall that ® = (V, [q]V, C) is the original input CSP formula of Algorithm 1. Recall that H = (V, &)
denotes the (multi-)hypergraph that models ®, where & = {vbl (¢) | ¢ € C}. Note that H also models
®X and @Y, because @, dX, ¥ have the same sets of variables and constraints. We assume that given
any hyperedge e € &, we can find the unique constraint in ¢ € C represented by e. For each hyperedge
e € &, define the volume of e with respect to ®* and @ as

Volgx(e) = [ [|0X] and Volgr(e) = [ | |@2].

uce uce

By Condition 3.4 and (32), initially, we have for any hyperedge e € &,

(37) Volgx (e) > 3000g%d°k® and Volgy () > 3000¢%d®k°.
Let y be a threshold such that
(38) y £ 32eq’d’k® < 3000¢2d°kS.

Consider an atomic constraint ¢ € C. Let o € [¢]"?'(®) denote the unique configuration forbidden
by ¢, i.e. ¢c(0) = False. The constraint c is said to be satisfied by the value x;,, € [q] of variable u if
u € vbl (¢) and 0, # x,. In other words, given the condition that u takes the value x,, the constraint c
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must be satisfied. A constraint c is said to be satisfied by 7 € [¢]° for some subset S C V if ¢ is satisfied
by some 7,,, where u € S N vbl (c).
The coupling procedure C,py is given in Algorithm 3.

Algorithm 3: The coupling procedure Cyp

Input :CSP formulas ®* = (V,Q0% = (0X)yev,C) and @Y = (V, QY = (Q))yev, C), a
hypergraph H = (V, &) modeling X and ®, two variables vy, v, € V, a threshold
parameter y in (38);

Output :a pair of assignments X Cart, Y Cart € [¢]V.

Vi« {UO}a Vo eV \ V1, Vet <= D, Virozen < @ and 8frozen — ©;

let XCert and Y Cart be two empty assignments;

while Je € Est.enVy # @, (e N Vo) \ (Vaet U Virozen) # @ do

let e be the first such hyperedge and u be the first variable in (e N V2) \ (Viet U Virozen);

P T N

5 | extend XC»t and Yt to variable u by sampling (X, Capt_y Capt

between p, gx and p1,, ¢v;

6 update ®X by setting QX « {Xfapt }, update @Y by setting QY « {Yucapt};
7 Veet < Vaet U {u}s

8 if X, Capt Cap“ then

9 LV1<—V1U{u},V2<—V\V1;

) from the optimal coupling

10 for e € & s.t. the constraint c represented by e is satisfied by both X,, Cart and YuCapt do

11 L & « &\ {e}, update ®* and &' by removing constraint ¢ from C, i.e. C « C \ {c} ;
12 for e € & s.t. Volgx(e) < y or Volgv(e) <y do

13 | Virozen < Virozen U ((e N V2) \ Veet);

14 fore e & st (eN Vo) \ (Vaet U Virogen) = @ do

15 | Etrozen < Strozen U {e};

16 while Fe € Efopen st eNV] # @ and e N Vipogen # @ do

17 L Vi V1 U (eN Viogen)s Vo <= V \ V1, Virozen < Virozen \ €;

Capt Capt
Vo\Vset” ~ Vo \Vset

18 extend XCapt and Y Cart to the set Vo \ Vit by sampling (X

coupling between piy,\v, . ox and py,\v, ., o¥;

19 extend Xt and YCert to the set Vi \ Viet by sampling (X‘(;a\p‘t/ v Y‘f a\‘; ) from the optimal

coupling between 'uVI\Vset,q)X(. | XCapt) and yVl\VsethY( | Ycapt)’
20 return (XCept Y Copt);

) from the optimal

The coupling procedure C,p starts from two empty assignments X“=rt and Y Cert, then gradually
extends these assignments, finally outputs two full assignments on V. The following three basic sets
of variables are maintained by the coupling.

o V1 /Vy: V is a superset of discrepancy variables, which contains all variables w such that the

coupling on w may be failed i.e. X, Capt YCapt Vo =V \ V} is the complement of set V;;
o Viet: the set of variables whose values are already assigned by the coupling procedure.

In addition, the coupling procedure Cap also maintains two CSP formulas X = (V,0%,0)), 0¥ =
(V,QY,C) and a hypergraph H = (V, &) modeling these two formulas. In each step, we pick a suitable
variable u (Line 4), extend Xt and Yt to variable u (Line 5). We then remove all the constraints

(together with corresponding hyperedges?) satisfied by both X, Cart and YuCapt (Line 11), update ®X and

®Y by setting QX — {X,, Cap“} and QF « {Ycapt} (Line 6). In other words, we force u in X to take the

Cap t Cap t

value X,,**", and force u in ®Y to take the value Y,

?Remark that & is a multi-set of hyperedges. Once a hyperedge e is removed from & in Line 11, we only remove a single
copy of e representing the constraint c.
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The coupling procedure C,p,¢ guarantees that the volume of all hyperedges e € & cannot be too small
in the whole procedure. This property is controlled by the parameter y. Thus, the coupling procedure
Capt is adaptive with respect to the current volumes of hyperedges. Specifically, the following two sets
are maintained during the coupling.

® Viozen: the set of frozen variables, which is a set of unassigned variables in V5, where each
w € Virogzen 18 incident to a hyperedge e such that the volume of e is below the threshold y.

® Efrozen: the multi-set of frozen hyperedges such that for each hyperedge e € Efrozen, all unas-
signed variables in e N V5 are frozen.

Once the volume of some hyperedge e is below the threshold y (Line 12), we froze all unassigned
variables in e N V5 (Line 13). Once a variable becomes frozen, the coupling cannot assign values to this
variable. If in a hyperedge e, all unassigned variables in e N V; are frozen, then the coupling cannot
assign values to any unassigned variables e, the hyperedge e becomes frozen (Line 14 and Line 15).
Finally, once a frozen hyperedge both contains frozen variables and variables in V;, we put all frozen
variables in this hyperedge into V; (Line 16 and Line 17).

Once the while-loop in Algorithm 3 terminates, we then sample assignments for variables in V5 \ Vet
and V; \ Vit from the conditional distributions (Line 18 and Line 19).

Lemma 8.3. The coupling procedure C,yy satisfies the following properties:

o the coupling procedure will terminate eventually;
o the output XCrt € [q]V follows pXV\t9} and the output Y C»t € [q]" follows p"vV\i#};
e for any time of the coupling procedure and any e in the current set &, it holds that

Volgx (e) > g and Volgy(e) > g;

o for any variableu € V, ifoapt # YuCapt in the final output, then u € V.

Proof. We prove that the coupling Cy¢ must terminate. Consider the while-loop in Line 16 and Line 17.
After the Line 17, the hyperedge e cannot satisfy the condition in Line 16 (because e N Viyozen = @),
thus the while-loop in Line 16 and Line 17 will terminate eventually. Consider the main while-loop
(Line 3). After each loop, the size of Vi, will increase by 1. Note that the size of V¢ cannot be greater
than n. Hence, the coupling Cy¢ will terminate eventually.

We prove that the output X%»t € [¢]V follows the distribution yXv\te}. The result for the output
YCrt € [¢]V can be proved in a similar way. Consider the input CSP formula ®* = (V,C, (QX),cv)
defined in (36). It holds that the uniform distribution pgx of all satisfying assignments to ®* is precisely
the distribution pXV\te}. Suppose Viet = {u1, s, ..., us}, where u; is the i-th variable whose value is
assigned by the coupling C,p¢. The following properties holds:

e the value of u; is sampled from the marginal distribution p,,, ¢x;

e foreach 1 < i < ¢, once u; gets the value Xgapt, we fix QuXi as {Xgap“} (Line 6) and remove
a subset of constraints satisfied by current XuC *P* (Line 11); after updated &, we sample the
value of ;1 from the marginal distribution p,, , ¢x;

e given the assignment of Ve, the assignments of V5 \ Vier and Vi \ Vet are sampled from the

conditional distributions in Line 18 and Line 19.
Note that for each u;, the marginal distribution p,,, ¢x is precisely the distribution uXV\i) projected on
u; conditional on the value of u; is fixed as X, for all j < i. By the chain rule, the output X Capt € [q]V

follows the distribution pXv\te}.
We now prove the third property. By (37) and (38), initially, for all e € &, it holds that Volgx (e) > g

Capt
J

and Volgy (e) > é. Suppose during the coupling procedure, there is a time such that some hyperedge

e in the current set & satisfies Volgx (e) < g or Volgr(e) < L. Without loss generality, we assume

q
Volgx (e) < g. The case Volgy (e) < }é follows from symmetry. Recall

Volgx(e) = | []0X].

uce
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Note that the volume Volgx (e) decreases only if we update QX for some u € e in Line 6. Note that
for any u € V, it holds that |QuX | < q. In Line 6, once the coupling sets QX « {XuC ***}, the volume

Volgx (e) decreases by at most a factor g. If Volgx (e) < g, the following event must occur

e event B: the main while-loop pick a variable u € e after Volgx (e) < y.

We show that the event 8 cannot occur. Consider the first time that Volgx (e) < y. After Line 12 and
Line 13, it must hold that

(39) e C Vl U Vset ) Vfrozen-

Note that the coupling C,pt, only adds variables into V; and Vi, but never deletes variables from
Vi and Vie. Also note that if a variable is removed from Vi.o,en, it must be added into Vi (Line 17).
Thus, (39) holds up to the end of the coupling. Consider the variable u in event B, u must satisty
u € Vo \ (Vaet U Virozen)- However, by (39), there is no such variable u in hyperedge e. Contradiction.

Finally, we prove the last property. In this proof, we consider Vi, Vo, Viet, Virozens €5 Efrozen When the
main while-loop in C,p¢ terminates. We claim that the following properties holds:

e (I) for any u € Vo N Ve, Xucapt _ Yuc‘"‘pt;

e (Il) forany e € &EsuchthateNVy # @andenN Vo # @, eN Vo C Viey .

Consider the CSP formulas ®X and ®Y in Line 18. Note that both ®X and ®¥ are modeled by hypergraph
H = (V, ). Define a set of variables

R= U (eN V).

ec&
eNV1#2,eNVa £2

Recall pigx and pgy are the uniform distributions of satisfying assignments to ®X and ®¥. By the

definition of R, conditional on any assignment o € [q]® on set R, the assignment on V5 \R s independent
with the assignment on Vj. By property (I) and (II), it holds that R € V5 N Ve and Xg apt — Y; P Since
R C Vgt and Xgap“ = YRC‘"‘pt, for any u € R, |fo| = |QZ| = 1 and QX = QY. Hence, in ¥ and @Y,
variables in R are fixed as a same value in [q]. Thus, py,\y, , ox and py,\y, , ¢v are identical distributions.
By Line 18,

Capt _ Capt
(40) Vo\Veet — ~ Va\Viet
Capt Capt

Combining property (I) and (40) proves that X;;*** = Y;**". This proves the last property.

We finish the prove by proving properties (I) and (II). The property (I) is trivial, because for any
U € Vi, if XuC R Yucap“, then by Line 9, it must hold that u € V;. We then prove property (II).
Suppose there is an hyperedge e such that eNV; # @, eNV, # @ and e violates property (II). We define

a set
S(e) = (eNV2) \ Vet = (e \ V1) \ Viet # @.

There are only two possibilities for the set S(e), we show neither of them is possible.

o S(€) € Viogen: in this case, e satisfies the condition in the main while-loop (Line 3), the main
while-loop cannot terminate; contradiction.

e S(e) C Viogen: in this case, by Line 14 and Line 15, e € Erozen; hence, e satisfies the condition
in Line 16, then by Line 17, all variables in e N Viozen are removed from Voo and added into
V1, thus there is no such non-empty subset S(e) C e such that S(e) € Viyozen; contradiction.

Hence, such non-empty subset S(e) does not exist, which implies property (II) holds. O
By Lemma 8.3 and the coupling lemma (Lemma 2.2), to bound the I, in (33), we can bound
Xv\fox} . YV\(ox
(41) o, = drv ()l ) < Prg,,, [ox € VA,

where Vi denotes the set V; at the end of the coupling C,p.
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In the rest of the proof, our task is to bounding the RHS of (41). From now, we use hypergraph
H = (V, &) to model the input CSP formulas ®* and ®¥ in Algorithm 3. For any v € V, define

Nyix(0) 2 {u#0|3Jec Es.t. uovcel

We say a variable u is incident to a hyperedge e if u € e; a sequence of variables vg, v1, . .., vy is a path
in hypergraph H if v; € Nyt (v;—1) for all 1 < i < ¢£. We define the failed variables and failed edges.

Definition 8.4. Consider the time when the main while-loop in coupling procedure C,¢ terminates.

e A variable u € V is said to be failed if u € V¢t and Xuc apt 2 Yucapt.

e A hyperedge e € & is said to be failed if both of the following two properties hold:
(1) the constraint represented by e is not satisfied by both X art and Y Cert;
(2) Volgx(e) <y or Volgr(e) <y.

Lemma 8.5. For any u € Vi, there exists a path ug, u1, ..., uy € V in H such that

® ug = v is the initial disagreement variable, u, = u and u; € Vy forall0 <i < ¢;
o foranyl <i < ¢, either u; is failed or u; is incident to a failed hyperedge e;.

Proof. Suppose V| = {vg, 01,02, ...,0m}, Where vy is the initial disagreement variable and v; is the i-th
variable added into set V7. If a set of variables are added into V; at the same time (Line 17), we break
tie arbitrarily. We prove the first part of the lemma by induction on the index i.
The base case is i = 0, the first part of the lemma holds for the path that only contains .
Assuming the lemma holds up to index i, we prove the lemma for index i + 1. Consider the time
when v;4; is added into the set V;. There are following two possibilities.

® 0;;1 isadded in Line 9. Consider the hyperedge e in Line 4. It holds thatv;;; € eandenV; # 2,

where Vi = {0, 01,...,0;}. Pick an arbitrary v; € e N V;. By induction hypothesis, since j < i,
there exists a path ug = vg, u1, ug, ..., u, = v; for v;. Note that v;,; € e and v; € e. We can find
the path ug = vo, ug, ua, ..., up = vj, upe1 = vVip1 for vig.

® v;,1 is added in Line 17. Consider the hyperedge e satisfying the condition in Line 16. It holds
that v;,1 € eand e N V; # @, where Vi = {vg,v1,...,0;}. Pick an arbitrary v; € e N V4. By
induction hypothesis, since j < i, there exists a path ug = vg, ug,ua,...,u, = v; for v;. Note
that v;,1 € e and v; € e. We can find the path ug = vg, uy, ua, ..., Uy = v}, upe1 = vis1 for vi.

We now prove the second part of the lemma. It suffices to show that for any u € V; \ {vg}, either u is
failed or u is incident to a failed hyperedge e. Note that a variable u is added into V; in either Line 9 or

Line 17. If u is added in Line 9, then it holds that XE apt Yucapt, thus u is a failed variable. Suppose u is
added in Line 17. Before the execution of Line 17, u € Viozen must be a frozen variable. Consider the
moment that u becomes frozen. By Line 13, u must belong to a hyperedge e such that e is not satisfied
by both XCart and Y art (otherwise, e is deleted in Line 11) and min{Volgx (e), Volgy (e)} < y. Note
that after Line 13, e C V1 U Viet U Virggen. After that, in the main while-loop, the coupling C,p¢ cannot
assign values to any unassigned variables in e. Thus, this hyperedge e is not satisfied by both X Cept
and Y ©=»¢ up to the main while-loop in C,pt terminates. Hence, e is a failed hyperedge and u is incident
toe. O

Lemma 8.5 says if a variable belongs to V, there exists a path satisfying the condition in Lemma 8.5.
However, the failure probability of such path is not easy to bound. We next modify such path into a
sequence whose failure probability is easy to bound.

Define the length of a path by the number of variables in this path minus 1, e.g. the length of the
pathvy,v9,...,0,is £—1. For any two variables u, w € V, the distance between u and w in H, denoted as
disty (u, w), is the length of the shortest path between u and w in H. We extend the notion of distance
to subsets of variables. For any variable u € V and subsets S, T C V, define

disty (u, S) £ min disty (u, w);
weS

distg(S,T) £ min distg(w,w’).
weS,weT
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For such distance function distg (-, -), the triangle inequality may not hold for any subsets. But we will
use the following two specific triangle inequalities.

(42) Yuy, us, uz €V, disty (uq, us) < disty(uq, ug) + disty (us, us)
(43) VueV,5,T CcV disty(S,T) < disty(S,u) +disty(u, T).
The inequality (42) holds trivially. Suppose disty (S, u) = disty(us,u) for us € S and disty (4, T) =
disty (u, ur) for ur € T. By (42), we have
)

(
disty(S,T) < disty(us, ur) < disty(us, u) + disty(u, ur) = disty (S, u) + distgy (u, T),

where (%) holds because us € S and ur € T. Remark that (43) covers (42), because S and T may only
contain a single variable.
We have the following lemma.

Lemma 8.6. Foranyu € Vi \ {vg}, there exists a sequence of sets S1,Ss, . .., Sy, where each S; is either a
hyperedge or a set containing a single variable, such that

® 51,59,...,S; are mutually disjoint;

e disty(vg, S1) < 2 and distgy(u, Sp) = 0;

e foranyl <i<{—1,disty(S; Si+1) < 2.

o foreachl <i < ¢,S; either contains a failed variable or S; is a failed hyperedge.

Proof. Fix a variable u € Vi \ {vg}. Let v, v1,...,0,, where v, = u denote the path in Lemma 8.5. For
each 1 < i < mifv; is not a failed variable, we use e; to denote the failed hyperedge incident to v;; if
v; is a failed variable, we let ¢; = {v;}. We first show that how to construct the sequence Sy, So, . .., Sy,

then we show that such sequence satisfies the properties in the lemma.

Let S be an empty stack. Let P denote the path (v1,09,...,9,,). Remark that P does not contain
variable vg. We repeat the following procedure until P becomes an empty path. We pick the last
variable in the path P, denote this variable as v;. We search for the minimum index j such that j < i
and e; N ej # @. Here are two cases depending on whether such index j exists.

e If such index j does not exist, then push e; into the stack S, remove v; from the path P.
o If such index j exists, then push e; into the stack S, remove all v, for j < t < i from the path P.

Let 51,59, ..., S, be the elements in stack S from top to bottom.

We now prove that all S; are disjoint. Suppose there are two indices j < i such that ;N S; # @.
Suppose S; = e;, and S; = ej-. It holds that i* > j*. e;» must be removed when processing e;:, thus e
cannot be added into stack S. Contradiction. This proves the first property.

We now prove the second property. Note that u € e, and S, = e, thus dist(u, S;) = 0. To bound
distg(vg, S1), we consider two cases.

e Case S; = e;. Note that vg and vy are adjacent in H, i.e. disty(vg,v1) = 1. It holds that
v1 € S1 = e1. Hence, distg (v, S1) < distg(vg,v1) = 1;

e Case S1 # e1. Suppose S1 = e;. In this case, it must hold that ey N e; # @, thus disty (v1,e;) <
disty (v1,0*) = 1. where v™ € e; N e; is an arbitrary variable. Note that disty(vg,v1) = 1. By
triangle inequality in (43), we have distg (vo, e;) < disty(vg,v1) + disty (01, €r) < 2.

Finally, we bound the distance disty(S;, Si+1). Suppose Siy1 = e; and S; = ejr. Here are two cases.

e Case j' = j — 1: Note that disty(v;,057) = 1,0; € ej and vy € ej. We have disty(ej, ej) <
distg(vj,05) < 1. Hence, distg(S;, Si+1) = distg(ej, ey) < 1.

e Case j* < j — 1: Consider the moment when S;;; = e; is added into S. It must hold that
ejv1 Nej # @. Note that vy € ey and disty(vj,v541) = 1. We have disty(ej,vj41) <
distg(vjr,vj41) = 1. Note that vj.,1 € ej41 and ej.1 Nej # @. It holds that disty(v;r41, ;) <
distg(vjr41,0%) = 1, where 0* € ej.1 Ne; is an arbitrary variable. By triangle inequality in (43),
disty(ej, ej) < dist(ej, vjr41) + disty(vjr1, €5) < 2.

Combining two cases proves the third property.
For the last property, by Lemma 8.5, it is easy to see that each §; is either a failed hyperedge or a set

containing a single failed variable. O
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We say a sequence of sets S1, So, . . ., Sy is a percolation sequence (PS) if the following three properties

are satisfied:

e 51,5, ...,S; are mutually disjoint;

o disty(vg, S1) < 2;

e forany 1 <i < ¢—1,disty(S;, Sis1) < 2.
We say a percolation sequence Sy, Ss, ..., Sy is a percolation sequence for v, if disty (v, e,) = 0, ie.
vx € e For any S; in sequence, we say S; fails if either S; contains a failed variable or S; is a failed
hyperedge. By (35) and Lemma 8.6, we have

(44) I, < Prc,, [Xf*apt 4 yzgapt] < Z Pre,,, [V1 <i < £, fails] .

PS for v4:51,59,...,S,

The following lemma bounds the probability that all elements in a PS fail.

Lemma 8.7. Fix a percolation sequence (PS) S1,Sa, . .., S¢ to vy. It holds that

1 1
Pre. [V1 <i<¢S; fails] < [ [ .
e & . 8k3d? . 8k3d3
1<i<t 1<i<
S; contains a single variable Si is a hyperedge

We need the following technical lemma to prove Lemma 8.7. We introduce a parameter s to write y
defined in (38) as

(45) y = seq’dk, wheres £ 32k?d>.

Lemma 8.8. During the coupling procedure C,pt, the CSP formulas ®% = (V, (QX)yev,C) and ¥ =
(V, (QY)uev, C) always satisfies that for anyu € V' \ (Vaer U {00}), QF = QX and for any j € QX = QY
i@~QSuwwsi@+i)

qu sk . qu sk

—(1- ) o< - (14 2
qu ) T qu sk |’

where q,, = |QuX| = |Qz|, thus drv ('Uu’q)X,,Uu,Q)Y) < &.
Furthermore, for any optimal coupling (x,y) € Qi X QY between p, ox and p, v, it holds that

(46)

1 4
Vje Ql)f :QZ Pr [x:j\/y:j] :maX{,uu,q)x(j),'uu’ch(j)} < q— (1+§)

Proof. Initially, the input ®X and ®Y satisfy QX = QY for any u € V' \ {vo}. Consider each update step
in Line 6. After the value of u is assigned, we put the variable u into Vg in Line 7. It still holds that
QY = X forany v € V'\ (Vget U {v0}). By Lemma 8.3, at any time, for any e in current &, it holds that

Volgx (e) = n qQu > g = seqdk

uce

Volgr(e) = [ | qu > g = seqdk.

uce

We now prove (46) for ®X. The result for ®¥ can be proved in a similar way. Let D denote the product
distribution such that each variable v € V takes a value from QX uniformly at random. Let B, to denote
the bad event that the constraint c is not satisfied. Let 8 = (B;).c¢ denote the collection of bad events.
Let I'(+) be defined as in the Lovasz local lemma (Theorem 2.1). For each ¢ € C, let x(B.) = Sqﬁ. For

each constraint ¢ € C,

1 1 1 1 \s9dk-1 1 1 \dk-1
Pro [Bc] = — < < 1- < 1—
1B uel;[@ qu  seqdk Sqdk( sqdk) sqdk( sqdk)

<x(B) || (-xB),

B €T(B)
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where the last inequality holds because the maximum degree of the dependency graph is at most
k(d—1) < dk-1. Fixaj € QX = QY. Let A denote the event that v takes the value j. Note that
IT(A)| < d. By Lovasz local lemma (Theorem 2.1), we have

() =P [A]<11 1 “”<1 2\ _1(,, 4

= r e —_ — exX D — —_— —_—

Huax ] Hax T qu sqdk | T qu P sgk| = qu sqk |’

which implies the upper bound in (46). Let A’ denote the event that v does not take the value j. Note
that [T(A’)| < d. By Lovasz local lemma (Theorem 2.1), we have

Pr [A/]< 1—i 1- ! _d< 1—i ex l < 1_i 1+i
o N Qu sqdk |~ gu) P \sqk) = qu sqk )

We have
1 4 1 4q, 4 1 4
(j)=1-Pr [A']21—(1——)(1+—):—(1——+—)2—(1——),
fu fox Gu sgk) ~ qu\"  sqk  sqk] T qu
where the last inequality holds because g, < g. This proves the lower bound in (46). The inequalities
in (46) imply

4
dTV (.uu,dl‘x’ .uu,<I>Y) < Z |.uu,<I>X (]) — HyoY (])| = E
JEQX=0)

Let (x,y) € QX X Q) be the optimal coupling between p,, ox and p, ov. It holds that

N |

Prlx =yl =1-drv (fuex fuor)

DefineasetS = {j € QX = QF | p,0x(J) = py0r (j)}. Note that 3, cox pr, 0% () = X jcor Huor () = 1.
We have drv (g0, fyov) = Xjes (Huax () = por (), which implies

Prx =yl =1- ) (uuex () = puav () = (1 = Huax <j)) + ) gy ()
jeSs jeSs jes

= Z Hu,dX (]) + Z Hu,0Y (])

JeQX\S Jjes

(47) = > min{p,ex () tuor ()}
jeQX
On the other hand, since (x,y) € fo X QZ as a valid coupling, we have

VjeQu. Prix=y=j] <min{p,ex () puer (D).
This implies that

(48) Vi€ QX Prlx=y=j]=min{u,qex()), per ()}

Fix a j € QXX. Without loss of generality, assume 1, ox () > p,ov (j) (the case p, ox () < puov (j)
follows from symmetry). By (48), y = j implies x = j. Thus x = j V y = j if and only if x = j. Thus,

1 4
Pr[x = jVy=j] = max {g,ex(j) puor ()} < o (1 + E) : i

Now, we are ready to prove Lemma 8.7.

Proof of Lemma 8.7. Given § = 51,5y, ...,S,, we define a set of variables vbl (S) = ulesi. For each
1 <i < ¢, sample a random real number r; € [0, 1] uniformly and independently.

Consider the following implementation of coupling C,pt. In Line 5, we need to sample XuC *** and

YucalDt from the optimal coupling between marginal distributions y, ox and p1, ¢v. If u € vbl (S), then

we use the following implementation. We can find a unique S; such that u € S;, because all S; are
mutually disjoint. We use random number r; to implement the optimal coupling between 1, x and
My ov- Here are two case for S;: (1) S; = {u}; (2) S; is a hyperedge and u € S;. We handle two cases
separately.
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Suppose S; = {u}. The optimal coupling satisfies Prc, [XE P Yucam] = dv (fyeX, o). The
optimal coupling can be implemented as follows.
o If r; < drv (p,x, Hyov), then sample a pair (XSt yCort

Cap t Cap '

tional on X" # Y,,*"";

) from the optimal coupling condi-

o If r; > drv (pyx, Hyov), then sample a pair (XuC P Yucapt) from the optimal coupling condi-
tional on XuC WP = Yucap“.
By Lemma 8.8, it holds that drv (1, ¢x, Huev) < = = W. Define the following event for S;:
4 1
(49) Bi: < v = ERCh

According to the implementation, if variable u fails in C,p, then event 8; must occur.

Suppose S; = e is a hyperedge. Suppose e represents the constraint ¢ such that ¢ forbids a unique
configuration ¢ € [¢]"?'(¥), i.e. ¢(0) = False. In addition to r;, we maintain two variables M; and D;
for S;, where M; € [0, 1] is a real number, D; € {0, 1} is a Boolean variable. Initially, M; = 1 and D; = 0.
Suppose the coupling C,pt pick a variable u € e. We sample Xf *** and YuCapt via following procedure
Couple(u).

o If D; = 1, sample Xf *** and Yucam from the optimal coupling between 1, x and 1, gv. We does
not need to use r; to implement this sampling step.
o If D; = 0, let p, = max{y, ¢x (0u), i, ¢v (0u)}, then check whether r; < M;p,,.

(1) if r; > M;p,, sample Xf *P* and Yucam from the optimal coupling between p, gx and p,, ov

conditional on Xf P2 oy A YuCapt # oy; then set D; « 1;

(2) if r; < M;p,,, sample X5 and YS! from the optimal coupling between 1, ox and 1, ov
conditional on Xf =g, V YuCapt = 0,; then set M; « M;p,,.
We first prove that above implementation is a valid coupling between p, gx and 1, ov. Note that if

D; = 1, then there is a variable u € e = §; such that e is satisfied by both Xf *P* and Yucam, thus D;
indicates whether e is removed by the coupling. We claim

(50) conditional on D; = 0 and M; = m;, r; is a uniform random real number in [0, m;] .

Let R denote all the randomness of the coupling Cap¢ except the randomness of r;. We first fix R, then
prove (50) by induction. Initially, r; is sampled from [0, 1], M; = 1, D; = 0, the property holds. Consider
one execution of Couple(u). Suppose D; = 0 and M; = m; before the execution. We show that (50)
still holds after we sampled Xuc *** and YuCapt according to Couple(u). By induction hypothesis, r; is
a uniform random real number in [0, m;]. Note that conditional on R and D; = 0, the value of p, is
fixed.> After the procedure Couple(u), D; = 0 ifand only if r; < m;p,,. Since r; is a uniform random real
number in [0, m;], conditional on r; < m;p,, r; is a uniform random real number in [0, m;p,]. Since
we set m; « m;p, at the end of the procedure, thus r; is a uniform random real number in [0, m;] after
the procedure Couple(u), and (50) still holds.

To prove the validity of the implementation. First note that if D; = 1, the validity holds trivially.
If D; = 0, by (50), r; is a uniform random real number in [0, M;]. Thus r; > M;p, with probability

apt

1 - py, and r; < M;p, with probability p,,. By Lemma 8.8, in the optimal coupling, the event XuC =

cy VY, ™" = ¢, has probability p,. Thus, the validity holds due to the chain rule.
Next, for hyperedge S; = e, we define the following bad event

1
(51) Bi : ri < W

We show that if the hyperedge S; = e fails, then B; must occur.

3This is because R fixes all the randomness except the randomness of r;. In our implementation, we only use r; to compare

with a threshold M;p, when we couple Xf P and Yuc *P* in Line 5 for some u € e = S;. Conditional further on D; = 0, the

results of all previous comparisons are fixed, namely, r; is smaller or equal to all the thresholds m;p,. Hence, given R and
D; = 0, the previous procedure of Capt is fully determined, which implies p;, is fixed.
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Suppose S; = e is a hyperedge. Consider the input CSP formulas ®* = (V, (QX) ey, C) and & =
(V, (QY)uev, C). For any u # vg, let ¢, = |fo| = |QZ| Suppose e represents the atomic constraint c
such that c¢(o) = False for some unique o € [g]°. Suppose after the coupling procedure C,p, variables
UL, Ug, . .., Uy € Vgey N e. Since the hyperedge S; fails, it holds that

e after the coupling procedure, Volgx (e) <y or Volgy(e) < y;

apt

. C
e forany 1 <i <m, X, apt

=oy or Y, = oy
The second property holds because otherwise e is satisfied by both XCept and Y Cart, thus must be
removed by the coupling. According to our implementation, at the end of the coupling, we have

m
D;=0 and r; <M; = Pu;-
j=1

Note that s > 32 (s is defined in (45)), m < k because |e| = k. By Lemma 8.8, we have
m m m m
1 4 4 1 1
l—[pujsl—[—(1+—)Sexp(—m)n—Se —.
i1 i1 9w sk sk ie1 Qus ie1 Qus

At the end of the coupling, we have Volgx(e) < y or Volgr(e) < y. But in the beginning of the
coupling, by (37), we have Volgx (e) > 3000¢?d®k® and Volgy(e) > 3000¢g>d%k®. The volume of e
decreases because we update ®X and ®" in Line 6 for u = uy, us, ..., u,. Note that vy ¢ Vi, thus
u; # vg forall 1 < j < m. We have

ﬁl _ 3000g*d°k° _ 3000¢°d°k® _ 3000d°k°
Qu; = 4 © 32eq?d3k3 32

j=1
If the hyperedge S; fails, then it holds that

m m

1 32¢? 1
s oo <o | o< s0me < s

J

Thus the event B; must occur.
Combining two cases together, we have

Pre,, [V1 <i< ¢S fails] < Pr[V1 <i<¢ 8]

li[ Pr [B,]
i=1

IA

(all r; are mutually independent)

1 1
8d%k3 8d3k3’

1<i<t 1<i<t
S; contains a single variable S; is a hyperedge

(by (49) and (51))

IA

Recall a sequence of sets S1, S, . .., Sy is called a percolation sequence (PS) to u € V if it satisfies first
three properties in Lemma 8.6. We call a sequence of sets Si, So, .. ., S; a percolation sequence (PS) if it
satisfies first three properties in Lemma 8.6 except disty (u, s;) = 0. For any S;, let

1 . . . .
—5— if §; contains a single variable;
(52) Prail (Si) = { 841F° £ Sl . &
5% if Siis a hyperedge.
Combining (44) and Lemma 8.7, we have
¢
I, < > Pre,,, [V1 < i < £,5; fails] < > [ oran(s.

PS for vy:eq,e9,....ep PS for vy:eq,eo,...,ep i=1

Note that the hypergraph H is same for any v, € V '\ {tp}. We can use the above inequality with v, = v
for allv € V '\ {vg}. This implies

Z Iv < Z Z 1_[ pfail(si) < k Z l—[ Pfail(si)’

veV:v#yy veV:v#vg PS to 0:51,59,...,5, 1<i<ft PS:51,52,...,S, 1<i<t
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where the last inequality holds because there are at most k variables o that satisfies dist(v, S;) = 0 (if
S, contains a single variable, there are only one variable v; if S, is a hyperedge, there are k variables v).
We can enumerate all the PSs according the length. We have

Z I <kZ Z l—[pfaﬂ(s)_kZN({)

veV:v#ug ¢=1 PS of length ¢ 1<i<¢
5$1,52,...,5¢

Ny 3 [ pra(sy.

PS of length £ 1<i<¢
51,52,...,5¢

where

We then show that
-1

8d3k3

We need the following basic facts to prove (53). We may assume d,k > 2, otherwise the sampling
problem is trivial. Fix a variable v € V. The number of variables u satisfying disty (v, u) < 2 is at most

1+d(k=1)+d(d-1)(k-1)% < k*d%
The number of hyperedges e’ satisfying disty (v, e’) < 2 is at most
d+dk-=1)(d-1) +d(d -1k -1)? < K*d°.
Fix a hyperedge e € &. The number of variables u satisfying disty (e, u) < 2 is at most
k+k(d=1) (k=1 +k(d-1>%*k-12 < k3d>
The number of hyperedges e’ satisfying disty (e, e’) < 2 is at most
(1+k(d=1)+k(k-1)(d-1)?+k(k-1)%d-1)% <k3a>
We prove (53) by induction on ¢. Suppose ¢ = 1. It holds that distg (vg, S1) < 2. By (52), we have

1
53 N(¢) < |K?d>—— +K3d® K3d? K3d3
(53) © 8d2k3 8d3k3 82k

2343 1
8d2k3 +kd Sd3k3
Suppose (53) holds for all £ < k. We prove (53) for ¢ = k + 1. For PS Sy, Sa,...,Sk+1 of length k + 1,
S1,82,...,Sk is a PS of length k and disty (Sk, Sk+1) < 2. For any Sy, there are at most k3d? ways to
choose Sk, as a variable, and at most k3d3 ways to choose Si41 as a hyperedge. This implies

N(1) < k%d?

1
N(k+1) < Nk) |Kd>—— + k34>
(k+1) ()( 8d2k3 Sd3K3

by LH. 1 1 \F

< KPP + K —— | | —— + kd® :
B ( 8d2k3 d3k3 d2k3 8d3k3
This proves (53). Now, we have

1) (1) 1
3 72 333 _
E I, <k E N({’)< E (kd 8d2k3+de) —[_El (Z) SE.

veV:v#ug

8.4. Non-adaptive coupling analysis. We now analyze the general CSP formula ® = (V, Q, C) with
atomic constraints, where each variable v € V has an arbitrary domain Q, and each constraint contains
arbitrary number of variables. We will prove the following lemma is this section.

Lemma 8.9. Let ® = (V,0Q,C) be the input CSP formula with atomic constraints in Algorithm 1. Let
h = (hy),ev be the projection scheme for ® satisfying Condition 3.4 with parameters a and f. Let q, = |Q,|,
P =maxcec [loevbie) % and D denote the maximum degree of the dependency graph of ®. If

2000D* )
ﬂ b

logl >@log(
p B
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X\ (v Yviio
then it holds that ey (o) d1v (1", 1") < 4.

Fix a variable v, € V' \ {vg}. The goal of this section is to construct a non-adaptive coupling Co, to

- : XV\(ow} IV \ (0w}
bound the total variation distance dtv (VU* Ve, ).

Recall that ® = (V,Q,C) is the original input CSP formula. Recall that two CSP formulas ®X =
(V, 0% = (OX)uev,C) and @Y = (V, QY = (Q))yev, C) are defined by

(54) QX — hl_ll(Xu) ifu# Ox; QY _ h;l(Yu) ifu# Oxs
“ Qu ifu = U, “ Qu ifu = Ux.

By definition, (QX),cy and (Q)),cy differ only at variable vy. Let pgx denote the uniform distribu-
tion over all satisfying assignments to ®X, and gy denote the uniform distribution over all satisfying
assignments to ®. The first step for non-adaptive coupling analysis is to construct another projec-
tion schemes on instances ®* and ®Y. Let X = (hX),cy denote the projection scheme for ®* and
hY = (hY),cy denote the projection scheme for ®Y, where hX : QX — =X and hY : Q¥ — Y. For
each v € V, define

X a
Sy

s, o2

Y X Y Y
2v|’ Cfv(:|Qv|’ qv:|Qv|'
In our analysis, we construct a pair of projection schemes hX, hY satisfying the following condition.

Condition 8.10. Let ® = (V,Q,C) be the original input CSP formula of Algorithm 1 and h = (hy)yev
be the original projection scheme for ® satisfying Condition 3.4 with parameters o and . The projection
scheme WX for ®* and the projection scheme hY for ®¥ satisfy the following conditions:

e both hX and hY are balanced, i.e. for eachv € V and cX € =X, |gX/sX] < |(RX)71(c))| <

[¢X/sX; foreachv € V and ¢l € 2Y, |qY/sY | < |(hY)~H(e])| < [qY /s)];

o 3X =3):and b = hY forallu eV \ {vo};

o hY =h! = h,,, whereh,, is the original projection scheme h restricted on variable v,;

e for any constraint ¢ € C,

X Y
(55) min Z log{q—;’(J, Z 10g{q—;J Z% Z log gy |;

vevbl(c) So 1 yevbl(e) v vevbl(c)
for any constraint ¢ € C satisfying v, ¢ vbl (c),
X Y
: % % p
(56) min Z log ——7 Z log—"—=712 15 Z log gy |;
vevbl(c) [q3 /s3] vevbl(c) (g /s3] 10 vevbl(c)

for any constraint c € C satisfying v, € vbl (c),

qX qX qY

. Ux Ux

min | log [—X ‘ + Z log I_qX;’sX], log [—Y
0 [

Ok vevbl(c)\ {vx } So,

q

PINR Fory

vevbl(0)\ {04}

CANEEE Ayt

vevbl(c)
where qX = |fo|qg = |QZ| and q, = |Qy| forallv e V.

Condition 8.10 is a variation of Condition 3.4. The lower bound in (56) can be transformed to the
upper bounds on ¥ ,cypi(c) [qff/sff] and ¥, evbi(c) [qZ/sﬂ. Thus, (56) and (55) are similar to (6) and (7)
in Condition 3.4. Moreover, for constraint ¢ € C satisfying v, € vbl (c), we need an extra condition
in (57). The purpose of this extra condition is to handle the case that |vbl (¢)| can be very large.

The following lemma shows that the projection schemes satisfying Condition 8.10 exist under a
Lovasz local lemma condition. Since we only use #X and hY for analysis, we only need to show such
projection schemes exist, we do not need an algorithm to construct specific projection schemes.
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Lemma 8.11. Let ® = (V,Q, C) be the original input CSP formula of Algorithm 1 and h = (hy),cv be
the original projection scheme for ® satisfying Condition 3.4 with parameters o and . Let q, = |Q,| and
D denote the maximum degree of the dependency graph of ®. Let p = max;ec [lyevbi(c) %. Suppose

1 _ 55
log — > —(log D + 3).
p B

There exist projection schemes h*, hY for &%, ®Y satisfying Condition 8.10.

The proof of Lemma 8.11 is deferred to Section 8.4.2.

Let KX = (hX),ev and Y = (h)),ey denote the projection schemes for ®* and @Y, where A :
QX — »X and h! : QY — Y. Suppose hX and hY satisfy Condition 8.10. By Condition 8.10, for any
variablev € V, X =3Y and sX =) = |Z§| = |ZZ| Denote

ra X _ Y 1A yX _vyY,
YoeV, s, =s; =s,and X £ 37 =3

> 2 (X)) %
veV

Recall pgx and pgy are the uniform distributions over all satisfying assignments to ®X and ®¥. We
define the following two projected distributions:

e vx: the projected distribution (defined in Definition 3.2) over =’ = (X), .y 2/, induced from the
instance ®X and the projection scheme h*;

e vy: the projected distribution (defined in Definition 3.2) over 3’ = X), ., =/, induced from the
instance ®¥ and the projection scheme h'.

For any variable v € V, let v, x and v, y denote the marginal distributions on v projected from vx and
. .. Xvvioar Y\ (o .
vy. Recall the goal of this section is to bound dtv (V Viloxd Vv,‘:\{ *}). By Condition 8.10, hff* = hUY* = h,,.

Ui
By the definitions %, ®¥ and the projected distribution in Definition 3.2,

XV\(ox) W\(ox}
Vo, =, x and v, T = vy .

Recall that ® = (V,Q, C) is the original input CSP formula of Algorithm 1. Recall that H = (V, &)
denotes the (multi-)hypergraph that models ®, where & = {vbl (¢) | ¢ € C}. Note that H also models
®X and @Y, because @, X, &Y have the same sets of variables and constraints. Lete € & bea hyperedge
and u € e a variable in e. Let XE non Yucnon € X/ be two values. Let ¢, € C denote the atomic constraint
represented by e. Let 0 € Q. denote the unique configuration forbidden by c,, i.e. c¢.(0) = False. We
say e is satisfied by XuC non if g, ¢ (hX)7! (Xuc "on) because in the projected distribution vx, conditional
on the value of u is X", the constraint ¢, must be satisfied. Similarly, We say e is satisfied by Y,Cron
if o, ¢ (hY)™! (Y,Sm). The coupling procedure C,oy, is given in Algorithm 4.

The input of the coupling Cpon contains CSP formulas ®X and &Y, together with projection schemes
hX and hY satisfying Condition 8.10. We also give an index function ID : V — [n] such that each
variable has a distinct index and the variable v, has the largest index. The coupling will use this index
to pick the variable in Line 5. Compared with the adaptive coupling in Algorithm 3, the coupling Cyon
is non-adaptive, i.e. it does not need to maintain the current volume of each hyperedge. Instead, the
coupling Cyon is given projection schemes h* and hY in advance. Once the coupling Cyon picks a
variable u, it assigns the values in 3/, to variable u, where the domain ¥/, is determined by A% and k.
The coupling Cpon Will put u into V; if the coupling on u fails. After that, the coupling will remove
all the hyperedges satisfied by both XEmon and Y.Cron in Line 11. If all variables in a hyperedge e are
assigned values and e is still not satisfied, the coupling Cyon puts e into V; in Line 13. Remark that after
the while-loop, Cyon only samples the value for V5 \ Vie because Vi C Ve

Lemma 8.12. The coupling procedure Cyoy satisfies the following properties:

o the coupling procedure will terminate eventually;
o the output XCron € 3/ follows vx and the output Y “ron € 3/ follows vy;

o for any variableu € V, ifo“O“ # Y.Con in the final output, then u € V.
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Algorithm 4: The coupling procedure Cyon

Input :CSP formulas ®* = (V, Q% = (0X)yev, C) and @Y = (V, QY = (Q))yev, C), the
hypergraph H = (V, &) modeling X and ®Y, projection schemes hX and hY
satisfying Condition 8.10, variables vg, vx € V, an index function ID : V — [n] such
that ID(u) # ID(v) for all u # v and ID(vy) = n.

Output :a pair of assignments X Cron, Y Coon ¢ 3,

sample Xsz‘o“ ~ Vyo,x and YU(;“O“ ~ Vy,,y independently;

Vi Ao}, Vo = V\ V1, Vier {00}

remove all e from & s.t. the constraint c represented by e is satisfied by both XZ%‘O“ and YU(;“O“;

while e € Est.enNVy # @, (eNVs) \ Vit # @ do

let e be the first such hyperedge and u the variable in (e N V3) \ Vger with lowest ID;

sample (cx, cy) € 2/, X 3/, from the optimal coupling between v, x (- | X©on) and

vy (- | YEon) and extend XCnon and Y ©von to u by setting (XE"O", Yuc"o“) — (ex, cy);

7 Vaet < Veet U {u};

8 if XE non o Yuc“o“ then

9 LV1<—V1U{U},V2<—V\V1;

10 for e € & s.t. the constraint c represented by e is satisfied by both XSron and Y do
11 L E—E\{e}

12 fore e & s.t. e C Vgt do
13 LV1<—V1U{€},V2<—V\V1;

N =

A G e W

14 extend XCron and Y Cron to the set Va \ Vit by sampling (X‘ZD\OVD g Y‘Z fi‘%jl t) from the optimal

coupling between vy, v, x (- | Xr) and vy, x (- | Y Oon);
15 return (X Cron Y Coon).

Proof. After each execution of the while-loop, the size of Vi, will increase by 1. The size of V¢ is at
most n. Thus, the coupling procedure will terminate eventually.

We prove the second property for X e, The result for Y »on can be proved in a similar way. In
Line 1, the coupling samples the Xzf)“‘m independently from the distribution v,, x. Given the current
configuration X ©mon | the coupling picks an unassigned variable u, then draw X & from the conditional
marginal distribution v, x (- | X%mon) in Line 6. Finally, the coupling samples Xgi“‘;; from the conditional
distribution. Note that Vi C Vi;. When the coupling terminates, all variables v € V gets a value
X&en € 37 By the chain rule, the output XSor € 3/ follows the law vy.

To prove the last property, we show that after the while loop, it holds that

CI)OI) Cl’]Ol’l
[ ] = :
XV2 NVset VonVget’

o v\, x (- | XCon) and vy\v,, y(- | YOnon) are identical distributions, thus all variables in
Vo \ Viet can be coupled perfectly.

Combining these two properties proves the last property in the lemma. The first property is easy to
verify, because if XSron 2 Y then u must be added into V; in Line 9. To prove the second property,
we claim that, after the while-loop, there is no hyperedge e € & suchthatenNV; # @ andenV, # @.
Suppose such hyperedge e exists. There are two possibilities for such hyperedge.

o (enNVy) \ Vit # @: In this case, the while-loop cannot terminate. Contradiction.

o (eNVy) \ Vet = @: Note that it always holds that V; C V. In this case, it holds that e C Vygy.
Note that e N V] # @ and e N Vo # @. Hence, after the Line 1, there is no such hyperedge e. If
such hyperedge e exists, it must be produced by the while-loop. Since e C Vg, such hyperedge
e will either be removed in Line 11, or added into V; in Line 13 (after which e N V5 = @). This

implies that such hyperedge does not exist when the while-loop terminates. Contradiction.
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Hence, after the while-loop, all variables are divided into two parts V; and V. Besides, all the con-
straints ¢ € C such that vbl(¢) NV} # @ and vbl(c) N Vo # @ are satisfied by both X%wn and
YCron. This implies, conditional on XC»on the variables in V3 is independent with the variables in
Vi, and the same result holds for Y%en. Note that two instances ®* and ®Y differ only at variable

vg, two projection schemes h*X and hY also differ only at v, and vy € V;. Since X‘Z“g{‘/ .= Y‘Z Ve
se se
C — G G _ C
Vo\VeerX (| XEmom) = vy ox (1 XSy ) and vy v (| Yomom) = vy v (0 | Y0y ) are
identical distributions. O

For each hyperedge e € &, we say e is failed in coupling C,0y, if the following condition holds.

Definition 8.13. A hyperedge e € & fails in the coupling C,y, if one of the following two events
occur.
e Type-I failure: there is a variable u € e \ {vg} such that the coupling picks e and u in Line 5,
and Xf non Yucnon after the coupling.
o Type-II failure: consider the time when the while-loop terminates. It holds that e C V. and
the constraint represented by e is not satisfied by both XCnon and Y Cron,

Let Lin(H) denote the line graph of H, where each vertex in Lin(H) is a hyperedge in H, two
hyperedges e, e’ € & are connected if e N e’ # @. Let Lin® (H) denote the k-th power graph of Lin(H),
two hyperedges e and e’ are adjacent in Lin* (H) if their distance in Lin(H) is no more than k. For
each variable, we use N (v) to denote the set of hyperedges incident to v:

N@) 2 {e€&E|veEe}
For any k > 1, define
(58) N*(v) 2 {e € & | 3¢’ € N(0) s.t. distrinm (e, ¢”) <k -1},

where disty,i,(m) (e, ¢”) denotes the length of the shortest path between e and e’ in graph Lin(H). Re-
mark that N(v) = N'(v) by definition.
When the coupling C,,,, terminates, each variable v € V; satisfies the following property.

Lemma 8.14. For anyv € Vi \ {vg}, there exists a path ey, es, . . ., e, in Lin? (H) such that

e e; € N?(vg) and v € e;;
e foralll <i <, the hyperedge e; fails in the coupling.

Proof. Let Vi = {vg,v1,09,...,0,} denote the variables in V;, where v; is the i-th variables added into
V1. Remark that if a set of variables are added into V; at the same time (Line 13), we break tie arbitrarily.
We prove the lemma by induction on index i.

The base case is vg, the lemma holds for vy trivially. Suppose the lemma holds for vg, v1, ..., vk_1.
We prove the lemma for variable v;. The variable vy is added into V; either in Line 9 or Line 13.

e Suppose vy is added into V; in Line 9. Variable v; must be picked in Line 5. Consider the
hyperedge e picked in Line 5. The hyperedge e fails in type-I because vy € e and XU(;;“O“ + YU(,Z“"“.
Besides, it holds that v, € e and v; € e for some j < k. If j = 0, the lemma holds trivially. If
0 < j <k, by induction hypothesis, there is a path eq, e, ..., e; for v;. Since v; € e; and v; € e,
the lemma holds for vy with the path ey, es, ..., e, €.

e Suppose v is added into V;j in Line 13. Let e denote the hyperedge in Line 13. It holds that
that v; € e. By Line 12, e C V,. Since e is not deleted in Line 3 or Line 11, the constraint
represented by e is not satisfied by both XCwen and Y Cnen, This property holds up to the end
of the coupling. Thus e fails in type-II. Since e C Vgt and vx # vg, the while-loop must have
picked a hyperedge e’ and v € e’ in Line 5. Thus, e’ contains a variable v for j < k (¢’ may not
fail). If j = 0, then e € N?(v), and the lemma holds for v; with single hyperedge e. If0 < j < k,
by induction hypothesis, there is a path e1, ea, ..., e; for v;. Since e; Ne’ # @and e’ Ne # @, e

and e; are adjacent in Lin? (H). the lemma holds for v with the path e, eq,. .., e €.

Combining two cases proves the lemma. O

If the Xzinon * YZE“O“, we have the following result.
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Lemma 8.15. IfXUC;non * YZE“O“, then there exists a path ey, e, . .., e, in Lin2 (H) such that

e e; € N?(vg) and vy € ep;
e foralll <i < {—1, the hyperedge e; fails in the coupling;
o the hyperedge e; is not satisfied by both XSCnon and YSC“"“, where S = e; \ {0k}

Proof. 1If XUC; non o ngn‘m, by Lemma 8.12, it must hold that v, € V; and v, is added into V; in Line 9,

because v, # v, and if v, is added into V; in Line 13, then Xzinon = YZE“O“. Consider the moment when
04 is added into V;. Suppose the while-loop picks the hyperedge e,. It must hold that v, € e, and the
while loop picks v, to sample its values in X©wen and Y Cnen, In Line 5, the algorithm always picks the
variable in e, with lowest ID and the ID of v, is the n. This implies all (e, N V2) \ Vit = {0« }. Note that
V1 C Viet. Thus, all variables in e, \ {v.} get the value and e, is not satisfied in both Xgnon and YSC“"“,
where S = e, \ {v4}. Otherwise, e, is removed in Line 3 or Line 11, the while-loop cannot pick e,.

Let V1 = {vg, 01,09, ...,0,} denote the variables in V;, where v; is the i-th variables added into V;.
Remark that if a set of variables are added into V; at the same time (Line 13), we break tie arbitrarily.
Suppose v, = vg. Since ey is picked in Line 5, it must hold that v; € e, for some j < k. If j = 0, the
lemma holds with single hyperedge e,. If 0 < j < k, there exists a path ey, ey, ..., e,_1 in Lin%(H)
satisfying the condition in Lemma 8.14 for v;. Since v; € e,_1 and v; € ey, the lemma holds with the
pathe, e, ..., e,1, €x. O

We modify the path in Lemma 8.15 to the following sequence of hyperedges, which will be used in
the analysis.

Corollary 8.16. IfXU(i"O“ * ng“o“, then there exists a path ey, e, . .., €, in Lin? (H) such that

o ¢ € N3(vg), vs € e, and ey, es,. .., e are mutually disjoint.
o foralll <i < ¢—1,the hyperedge e; fails in the coupling;
o the hyperedge e; is not satisfied by both XSCnon and YSC“O“, where S = e, \ {v4}.

Proof. Let e],e), ..., ey, denote the path in Lemma 8.15. We first show that how to construct the path
e1, e, ..., e in Lin® (H), then we show that such path satisfies the properties in the corollary.

Let S be an empty stack. Let P denote the sequence (e], e, ..., e;,). We pick the last hyperedge in
the path P, denote this hyperedge as e;. We push e/ into the stack S. We search for the minimum index

jsuchthat j <iande/ N e} # @. Here are two cases depending on whether such index j exists.

e If such index j does not exist, remove e; from the path P.
e If such index j exists, remove all ¢, for j < k < i from the path P.

Repeat the above procedure until P becomes an empty sequence. Let ey, o, . . ., e, be the elements in
stack S from top to bottom.

It is easy to verify e; = e,,. By Lemma 8.15, v, € e, and e, satisfies the last property in the corollary.
It is also easy to see all eq, ea, . . ., €, are mutually disjoint. By Lemma 8.15, the hyperedge e; fails in the
coupling forall 1 < i < ¢— 1. We only need to prove the following two properties

e e € N3(vp);
® ey, e,...,e forms a path in Lin3(H).

We first prove e; € N3(vg). If e; = e}, then the property holds trivially. Suppose e; = e; for some
k > 1. When the procedure adds e, into the stack, the hyperedge e] must be removed. This implies

e, Nel #@. By Lemma 8.15, ¢ € N2(vp). It holds that e; = e, € N3(vg).
Next, we prove that e, ey, ..., e, forms a path in Lin(H). Consider two adjacent hyperedges e;_;

and e;. Suppose ¢; = e]’. and e;_1 = el’c. If j = k+1, since e]’. and el’< are adjacent in Lin? (H), e; and €;_1

are adjacent in Lin®(H). Suppose j > k + 1. In this case, e

,’( L 18 removed and el’c is not removed, thus

(.1 #* @. Since ¢, and ¢, are adjacent in Lin?(H), ej’. and e, are adjacent in Lin®(H). O

/7
e;Ne,

Fix a path ej, es, . .., e in Lin®(H) such that it satisfies the first property except v, € e; in Corol-
lary 8.16, ie. e € N 3(00), and ej, es, ..., e, are mutually disjoint. We call such path a percolation
path (PP). We say a percolation path ey, es, . . ., ey is a percolation path for v, if v, € e,.
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Definition 8.17. Fix a percolation path eq, e, ..., e,. For each 1 < i < ¢, a hyperedge e; is bad if

e for 1 <i < ¢— 1: the hyperedge e; fails in the coupling C,y, (Definition 8.13);
e for i = £: the hyperedge e, is not satisfied by both Xgnon and YSC“"“, where S = e, \ {v4}; and v,
is assigned different values in XCron and Y Cron  ie. ch; non £ YZEHOH.

By Corollary 8.16, if Xzi nen £ YZE“O“ in coupling Cyon, then there is a percolation path for v,:
e1, e, ..., e such that e; is bad for all 1 < i < ¢. We give the following key lemma in this proof.

Lemma 8.18. Suppose the original input CSP formula ® = (V,Q, C) of Algorithm 1 satisfies
(59) log 1 > 20 log (2000D4)
p P g

Fix a percolation path (PP) e1, ey, . . ., e, for vy in Lin®(H) . It holds that

Bles|
1\° 1)\ 50
Pre,., [V1 <i < ¢ e isbad] < (H) % (5) ,
which implies
1 i ﬁ 1 ﬁl;ot’l
P XCnon YCnon < P L .
L L) (41)3) 50 (2)

e1,e2,...ep is a PP for vy

The proof of Lemma 8.18 is deferred to Section 8.4.1. We now use Lemma 8.18 to prove Lemma 8.9.

Proof of Lemma 8.9. We will use Lemma 8.18 to show that

Xi\(o) _ Y\(o 1
Z dry (VUV\{ by }) < -
veV\{uo}

By the assumption in Lemma 8.9, it holds that log % > % log (%). Note that the condition in

Lemma 8.18 holds. Note that log % > % log (W) > % (log D + 3) . By Lemma 8.11, the projection
schemes satisfying Condition 8.10 exists. By Lemma 8.12, the X Coon in Cpopn follows the distribution

vx and the Y%on in G,y follows the distribution vy. By the definition of vy and vy, it holds that

Vo, X = v‘:,i"\(”*} and v,, y = VZ:\{O*}' By the coupling lemma and Lemma 8.18, it holds that
Ple
XV\{ox} | YV \{ox} c C 1\ (1 |50z|
drv (Vv* s Vo, ) < Pre,., [Xu*““’“ + Yv*non] < Z A .

e1,e9,...ep is a PP for v,

Note that the hypergraph H is same for any v, € V' \ {tp}. We can use the above inequality with v, = v
for allv € V \ {vg}. Thus,

? Blee|
X Yy 1 [3 1)\ 30
Y alrr)z 33 (] Sl
veV\{vp} veV\{ug} e1,ea,...ep is a PP for v 4D 5012
1\ erl (1 ﬁ|5%i|
(by double counting) < Z (E) ,55(€)f (5) .

e1,e2,...ep is a PP

Note that x (%)x < 1for all x > 0. We have

¢
Xt Yo 1
y anfret)e 3 ()

veV\{uo} e1,e2,...ep is a PP
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If 1, e9, ... e, is a percolation path, then ey, es,. .. e, is a path in Lin® (H) and e; € N3(vg). Note that
|N3(00)| < D+D(D-1)+D(D - 1)? < D? (due to (58)) and the maximum degree of Lin®(H) is at
most D3. The number of such paths is at most D3‘. We have

{ 0 t
Xv\(o) _ W\(0) 1 3 1
E drv (VU s Vo ) < g (E) < E D (H) < 3 O
=1

veV\{vo} e1,e2,...ep is a PP

8.4.1. Proof of Lemma 8.18. We first introduce some notations for proving Lemma 8.18. Let & =
(V,0Q,C) to denote the original input CSP formula of Algorithm 1. Let D denote the maximum de-
gree of the dependency graph of ®. For each v € V, let g, = |Q,]|. Let

1
p = max —

¢ vevbl(c) 9o
Let h denote the original projection scheme for ® satisfying Condition 3.4 with parameters « and f.
Recall that X = (V, QX = (QX)yev, C) and @ = (V, QY = (QY),ev, C) are defined in (54). Recall that
hX = (hX)pev and hY = (hY),cv denote the projection schemes for ®X and ®Y, where hX : QX — >
and h} : QY — ¥!. Recall that kX and hY satisfy Condition 8.10. For each v € V, sX = s} = s/. The
following lemma gives the key property for v, x and v,y in Line 6.

Lemma 8.19. Suppose the original input CSP formula ® of Algorithm 1 satisfies

log 1> 0, g(2000D4)
og—>—1lo .
p B p
Let A C Vandv € V\A. Let ox,0y € 3} = X, 2, be two partial assignments on A. For any
Cx,Cy € 2;,
()" (ex)] i () (ex)] B
. < < 1+ )
& ( 500D3) < vax(ex [ ox) < X ( 500D3)
|(h) ™ (ey)] B ()~ (ey)] B
1- < < 1+ .
Iy ( 500D3) < vay(ey [ oy) < Y ( 500D3)

Y
Furthermore, if the variable v satisfies log [;ﬁ‘,’J >t+ %log (%) and log lz—i’J >t+ % log (W)

for some t > O,then for any cx,cy € 2,

(h) ™ (ex)] ( L

X\-1 —t
) < vox(ex | ox) < G )qz((cx)| (1+ p2 )

X ~ 500D3 500D3
|(hY) ™! (ev)| p2! |(hY) ™! (ev)| p27

1= < < 1+ .

e ( 500D3) < vay(ey [ oy) < Y ( 500D3)

Proof. We prove the lemma for v, x (cx | ox). The result for v, y (cy | oy) can be proved in a similar way.
To simplify the notation, denote o = o, ¢* = cx. We define a new instance ® = (V,Q = (Qy)yev, C):
~ R if u € A
weev, g, 0@ ituen
Qs ifué¢A.
Let [ denote the uniform distribution of all satisfying assignments to ®. By the definition of the pro-
jected distribution, if X ~ p, then Pr [XZ, e (K51 (c*)] equals to v, x(¢* | o). By Condition 8.10, for
any constraint ¢ € C, it holds that

X 4
1 2000D
(60) E log {q—z,’J > %log— Z5log( )
vevbl(c) So p ’B

Let D denote the product distribution such that each variable u € V takes a value from Ou uniformly
at random. For each constraint ¢ € C, let B, denote the bad event that ¢ is not satisfied. Let 8 denote
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the collection of bad events (B.).cc. Let I'(+) be defined as in the Lovasz local lemma (Theorem 2.1).
We define a function x : 8 — (0, 1) such that

B
.t I c) = ;
YeeCst.ogvbl(c), x(B.) 500002
VeeCst.oevbl(c), x(B.) = M
2000D4g¥

Qu

Since h* is a balanced projection scheme, > {;ﬁi‘J for all u € V. For any constraint ¢ € C such

that v ¢ vbl (¢), it holds that

)2000134 /p-1

1 1 B B B
Pryp [B.] = — < < < (1 -
¢ uelv_bI[(c) |0 uelv_bI[(c) [q{l{/sl’lJ 2000°D2° ~ 2000D*4 2000D*

B _&
~ 2000D4 2000D%

D
(61) ) <x(B) [] (-xBe)),

B €T(B.)

where the last inequality holds because x(B,) < ﬁ for all c € C. Note thatv ¢ A. Foranyc € C
such that v € vbl (c), by (60), it holds that

IS NN U R S WO/ .

Prp [Be] = = <= T ' 520
q%( uevbl(c):u#v |Qul qg’{ uevbl(c) I.qi(/qu q%( 2000°D
’ 418 ,
Bl /si] g\ Blad/s) g\’
S ——=|1- < 1-
2000D4 g 2000D4 2000D4 g 2000D4

<x(B) || (1-x(B)).

Bc’ EF(BC)

Fix a value c* € X/. Let A denote the event that o takes a value in (hX)~!(c*). It holds that [T'(A)| < D.

For any B, € T'(A), it holds that v € vbl (¢) and x(B,) = folb(f)i;/‘fii' Recall that p denotes the uniform
distribution of all satisfying assignments to ®. By Lovasz local lemma (Theorem 2.1),
-D

o 1Al = et | oy < LN BlaIs ]\ (et (Blas]

g o S K 2000D*¢X X 1000D3¢X
()" ()] Blay/s,l\ _ ()" (eM) B

< % 1+ < | < T+ —=——].
q» 500D3q; qx 500D

This proves the upper bound. Let A’ denote the event that v does not take any value in (hX)~(c*),
then |T'(A”)| < D. For any B, € T'(A’), it holds that v € vbl (¢) and x(B.) = Plasisi] By Theorem 2.1,

2000D4¢X
|<h$f>-1<c*>|) (1 _ Blay/si)
X

-D
2000D4g¥

e

Pr; [Al=1-vyx(c* | o) < (1 -

hX —1¢.% WX -1 % X ot
[y et (N el (| plaks)

@ @ 500D3qy
Let a = |(hff)_1 (c*)| /qX and b = I_qff/s;J /qX. Since h¥X is a balanced projection scheme (Condi-
tion 8.10), it holds that |(hff)_1 (c*)| > I_qff/sz’,J and a > b. Thus

b Bb Bb pb
2 * >1-(1- 1 b = 1 - = 1-
vax(c® o) 21~ ( a)( ¥ 500D3) a( " 50003 500aD3) B a( 5000—’33)

B\ O B
(62) (bya=b) =a (1 - 500D3) = = (1 - 500D3) )
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This proves the lower bound.
Next, we assume

X 4
5 2000D
(63) log {CI_Z,;J > t+—10g( )
Sy 4 B
For each bad event B,, we define a function x : 8 — (0, 1) such that
VeeCst.o¢vbl(c), x(B.) = %;
2—t X s/
VeeCst.oevbl(c), x(B.) = w
2000D4g¥

Note that for any ¢ € C, it holds that x(B,) < ﬁ. By the same proof, for any constraint ¢ € C such

that v ¢ vbl (c), (61) still holds. For any constraint ¢ € C such that v € vbl (c¢), we have
1 1 qx /s, 1 /s, 1
Pro [Be] = — n TS[UXUJ n X /s SLUXUJ X /s
Do yeubi(c):uro |Qul 9o yeubl(c) gz /st] ax  |qX/sy]
4 - - ’ 4 _
< lgX /s, ] B2 t 3 g2t |g¥/s)] - g \2000D%/p-1
T gX  20005/4D% T 2000D4¢X 2000D*

p2 " ay /s, g \°
<2 ol fy < x(B 1-x(By)).
2000D1¢X 200001) = C)B,QB)( *(Ber))

(by (63) and f < 1)

Thus, the function x : 8 — (0, 1) satisfies the Lovasz local lemma condition. By Theorem 2.1,

|<h;’f>-1<c*>|(1 gt g /s, ]\ 7 [ (e) (ﬂz-f 14X /s,
X - = X exp

Pry [A] = vox(c* | 0) <

2 2000D4g¥ qs 1000D3gX
(R (e")] p2t [ af /sy ()71 (eM) ( p2! )
< 1+ < 1+ .
qx 500D3qX qx 500D3
Furthermore,
-D
[EDT N (B2 e /s
Prz[Al =1 - vyx(c* o) <|1- 1-
a ¢ X 2000D4g¥X
) (B2 g s DN [, A2 La 5]
<{l-————]exp|—77| <[l -————| |1+ —————|.
qx 1000D3 g% qx 500D3qX
By the same proof in (62), we have
X\—17 % —t
N (R (") B2
Vox(c* | o) = % 1- 200D° |- O
Now, we are ready to prove Lemma 8.18. Fix a percolation path (PP) ey, ez, ..., e, in Lin®(H) . We

bound the probability that all ¢; are bad for 1 < i < ¢. Recall s, = sX = s forall v € V. For each
hyperedge e;, define

V(e)) 2{vee|s,+1ando # vy}
Note that for variables v € ¢; \ (V(e;) U {vg}), it must hold that s, = |Z;| = 1. It must hold that
XUC non — YUC“OH, which implies the coupling on v cannot be failed. Hence, if there is a variable u € e;\{vg}
such that X" # Y0 it must hold that u € V(e;). In the while-loop, the coupling Cpo, assigns
values to variables one-by-one, using the optimal coupling between marginal distributions. Let
k(e:) = V(e
Fix anindex 1 < i < ¢ — 1. Let c(e;) denote the constraint represented by e;. We can define k(e;) + 1

bad events ng) forl <j < k(e)+1:
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e if 1 < j < k(e;): the constraint c(e;) is not satisfied by both XCron and Y Cron after j—1 variables
in V (e;) are assigned values by Cyon, and the coupling on j-th variable fails, i.e. ng‘“’“ * ngnon,
where v; € V(e;) is the j-th variable in V (e;) whose value is assigned by the coupling Cyon;

e if j = k(e;) + 1: the constraint c(e;) is not satisfied by both XCron and Y ©ron after all variables
in e; are assigned values by the coupling Cpon.

Let B; denote the event \/];iff)Jrl Bl.(j ), By Definition 8.17, we have the following relation
k(e,-)+1 )
ejisbad <= ¢ fails — B;= \/ BEJ).
j=1

By Definition 8.13, if e; fails in type-I, then there must exist 1 < j < k(e;) such that the coupling of
j-th variable in V (e;) fails and e; is not satisfied by both XCnen and Y Cron after j — 1 variables in V (e;)
are assigned values (otherwise, e; will be removed in Line 3 or Line 11). Hence, if ¢; fails in type-I,

\/];S") Bl.(j ) must occur. If e; fails in type-IL, then B*e*) must occur. This proves the above relation.

i
For hyperedge e, let c(e;) denote the constraint represented by e;, we define the bad event B, as

e B,: the constraint c(e;) is not satisfied by both XCnen and Y Cron after all variables in e; \ {vy}
are assigned values by the coupling C,on, and the coupling on v, fails, i.e. XUC;“O“ # YZE“O“.

By Definition 8.17, we have the following relation

episbad — B,.
Let Qp = ®f:_11 [k(e;) + 1], where [k(e;)) + 1] = {1,2,...,k(e;) + 1}. We have the following relation

Pre,,, [V1 <i<f:eisbad] < Pre,, [VI<i<f:B]< Y Prg,, [Bf AVI<i<e—1:B"],

z€Qp
where z € Qg is a (£ — 1)-dimensional vector and z; € [k(e;) + 1]. Fix a vector z € Qp. Let
Ei={e|1<i<t-1Az <k(e)}
Eo={e|1<i<t-1Az;=k(e)+1}.
We will prove that

PI‘Cnon [B( AVI<i<e¢—1: Bl'(Zi)]

3\* 7t 1 1 B (1) ™
[ ((Z) 20003 | l_JS (2001)3)>< 200D° (5)

ei€81 e; €02

(64)

IA

By (64), we have

Prg,,. [VI <i<f:eisbad] < Z Pre,.. [Bf AVI<i<t-1: B;z")]
z€Qp
(by (64)) < L1 B | L (L E
Y = 20007 " 2000% £ \1 20003 |2

1\ g (1 1\ p (1)
< = Y N
(4OD3) 200D° (2) (4D3) 50 (2)

This proves Lemma 8.18. The rest of this section is dedicated to the proof of (64).

Note that the RHS of (64) is a product. Although all hyperedges in a percolation path are mutually
disjoint, we cannot show that all bad events Bl.(zi) and B, are mutually independent. Because all the
bad events are defined by C,opn, they may have some correlations with each other. To prove (64), we

will use an independent random process to dominate the event that all Bl.(zi) and B, occur.
To prove (64), we first divide the bad event B, into two parts Bf,l) and BE,Q), where Bf,l) denotes the

event that the constraint c(e;) is not satisfied by both Xgnon and YSC“O“, where S = ¢, \ {vx}, and BE,Q)
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denotes the event that the coupling on v, fails, i.e. Xzinon # YZE“O“. It is easy to see B, = Bf,l) A BE,Q).
Note that v, € e, and qff* = qg*. By (57) in Condition 8.10, one of the following two conditions must
be satisfied:

(65) min| Y log % > 1o @ |, P > logg|.

) g an
X /o Y /o
vevbl(0)\ {04} [q3 /50 vevbl(o)\ {4 } (43 /s5] 20 vevbl(c)
X Y
(66) log [qﬂ‘ =log [qﬁ‘ > 2% > logqol.
So, S0, vevbl(c)

If (65) holds, we can prove (64) by bounding the RHS of the following inequality
(67) Pre,,, |[BeAvVI<i<e—1:B(%| < Pr,, [BV avi<i<e—1:B(].
If (66) holds, we can prove (64) by bounding the RHS of the following inequality
(68) Pre,,, |[BeAvVI<i<e—1:B| < Prg,, [B? avi <i<e-1:8(].

In the rest of the proof, we mainly focus on the case when (65) holds. If (66) holds, we can modify our
proof to bound the RHS of (68), this part will be discussed later.

Assume (65) holds. We start to bound the RHS of (67). To do this, we will give a particular imple-
mentation of the coupling Cop, such that if Bf,l) and all BEZ") occur, then some independent events must
occur in our implementation and their probabilities are easy to bound. We first sample a set R of real
numbers from [0, 1] uniformly and independently.

e For eache; € &1, sample k(e;) random real numbers r,, (j) € [0, 1] for 1 < j < k(e;) uniformly
and independently.

e For each ¢; € &3 U {e;}, for each variable v € ¢;, sample a random real number r, € [0, 1]
uniformly and independently.

We then run the coupling Cyon in Algorithm 4, but in some particular steps, we will use the random
numbers in R to implement the sampling step in Cpop.

We start from the special variable vy. Note that if vy appears in the percolation path, then vy € e;.
The coupling Cyon Will sample the values of vy in Line 1. We use the real number r,, to implement
this sampling step if and only if vy € e; and e; € Es. Let c(e;) denote the constraint represented by
e1. Suppose c(ejy) forbids the configuration o € Q,,, i.e. (c(e1))(c) = False. By definition, in &%,

fjg = h;ol (Xy,) and in @Y, QZO = h;ol(YUO). Note that Qf,g * QZO. Thus, e; must be satisfied in ®X or
@Y, because it must hold that Ouy ¢ Q‘Z,f) or oy, ¢ QZO. If e; is satisfied in both ®X and @Y, then the
hyperedge e; cannot be bad. We may assume e; is not satisfied in @ (i.e. oy, € Qf,f)) and ey is satisfied
in ® (ie. oy ¢ QZO). Otherwise, we can swap the roles of X and Y in the whole analysis. We use
ry, to sample XZ%‘O“ in Line 1 of Cpon. Note that there is only one j € 3 such that o, € (hf)f) Y7L()).

We can set Xzf)“‘m = jif ry, < vy, x(j). By Lemma 8.19, vy, x(j) < (1 + m) [q‘:,f)/sz’,o-| /q‘:,f) Note

%)0.95‘ If s, > 2, then

0

that if s; = 1, then vy, x(j) = 1, which implies vy x(j) = 1 = (
[qf,f)/sz’,o] /qf,f) < [qf,f)/2-|/ w < % (because qf,f) > s, > 2), which implies

v —

0.95
L fabss] 0[] _ ([a/s
500D3 quf) — 500 qf)f) B qf)f) '

Voo.x (J) < (1+

After Line 1, if e; is not satisfied by both XZ%‘O“ and ng“o“, then the following event must occur

, 1,095
Tog < ([qii)/svo]) .

(69) —
T
During the while-loop of Cpon, We maintain an index j; for each hyperedge e; € &;. Initially, all
Jji = 0. Suppose the coupling C,o, picks a variable u in Line 5. Suppose u € e; for some 1 < i < ¢. Note
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that such hyperedge e; is unique because all hyperedges in a percolation path are mutually disjoint.
Let c(e;) denote the constraint represented by e;. Suppose c(e;) forbids the configuration 7 € Q,,, i.e.
(c(e;))(r) = False. Since u # vg, by Condition 8.10, it holds that hX = hY. Let ¢* € 3/, denote the
value such that 7, € (hY)™'(c*) = (hY)7'(c*). We need to sample ¢, € 3, and ¢, € 3/, from the
optimal coupling between v, x (- | X¢mon) and v, y(- | YCon) in Line 6. By (47) and (48), the optimal
coupling satisfies the following properties,

Prfex=ey] = )7 Prlec=cy =] = 7 min (vux (G | X), v (7 Y6
J€Zy JEZ),

=1-dyy (Vu,X(' | chon), Vu,y(' | YC"O“)) ,
Pr [cx =c* Ve, = C*] = max (Vu,X(c* | X Cnen), vy (c* | YCHOH)) )

Let fyax 2 max (v x (¢* | XCon), vy (¢* | YOuu)) anddry 2 dry (vx (- | XCom), vy (- | ¥ Gron)).
Note that either e; € &1 or e; € E3 U {e,}. We will use the following procedure to implement the sam-
pling step in Line 6.

o Casee; € &1 and u € V(e;). Set j; « ji+1andletr = r. (ji). If j; < z;, we sample ¢, and ¢,
such that ¢, = ¢* v cy = c* if and only if r < tpax. If j; = z;, we sample ¢, and ¢y such that
cx # cyifand only if r < dyvy. If j; > z;, we arbitrarily sample c, and ¢, from their optimal
coupling.

e Casee; € & U {e/}. Let r = r,. Sample c, and ¢, such that ¢, = c* Vv cy = ¢* if and only if
r < tmax-

e Otherwise, we do not use random numbers in R to implement the coupling.

We will use the following properties to analysis our implementation. Note that after we assigned
the values to variable u, if c¢(e;) is not satisfied by both X, Cnon and YC“O“ then it must hold that ¢, = ¢*
or ¢y = ¢*. Since u # vy, by Condition 8.10, QX = QY and kX = hY. By Lemma 8.19, we can prove the
following properties. For any u with s/, > 1, we have ¢ = q¥ > s/ > 1, thus

s 1 o /2 1) 2 1
(70) tmaxs[quiu] (1+ )s[qu/1(1+—)§—(1+—)s§.
7. 500D3 qx 500 3 500 4
Forany u € V \ {ovg}, since OX = O and kX = hY, by Lemma 8.19, it holds that
y \ {vo} Qu =Qu u = hy, by
0.95
X /s 1 501 [gX /s’ S
(71) tmax < min |1, [q”;“] (1 + 3) n|l, [q”)/{ .| < |4 /5] :
qx 500D 500y, T
I(hX) YD 2 1 1
72 v ,; (500D3) 500D3 ~ 200D3
. . [aX /5,719 . .
Inequality (71) can be proved by considering two cases. If s;, = 1, then (%) = 1, the inequality
holds trivially. If s/, > 1, then l—qxqis”-| 2 , this implies (71). To prove (72), note that QXX = Q' (thus,

gX = q¥); and kX and hY use the same way to map QX = QY to ¥/ (i.e. kX = hY). Hence, we can use
the upper and lower bound in Lemma 8.19 to bound the total variation distance dty.

Consider a hyperedge e; € &;. If the event Bl.(zi) occurs, then by definition, c(e;) is not satisfied after
z; — 1 variables in V(e;) get the values and the coupling on z;-th variable in V (e;) fails. Note that for

allv € V(e;), s, > 1. By (70) and (72), the bad event BEZ") implies the following event:
o Ap:foralll <j<zi—1,r,(j) < % and r, (z;) < m.
This bad event A; occurs with probability

zi—1
(73) Pr [ 4] = (5) L



Consider a hyperedge e; € &,. If the event BEZ") = Blfk(e")ﬂ) occurs, then by definition, c(e;) is not
satisfied after all variables in e; get the value. In our implementation, for any v € e;, we use r, to sample

values for XZ,C non and YZ,C“O“. By (69) and (71), the bad event Bl.(zi) implies
rqi(/szw )0.95
e .

e A;:forallv e, r, < (

Since e; € &g, it holds that v, ¢ e;. By Condition 8.10 and (59), it holds that

X 2000D*
Zlog To Z%ZlogqUZMog( ),

vee; |’q§/s{,‘| vee; ﬁ
This bad event A; occurs with probability
X 1\ 09 0.95
[qa /su] 1 1
74 Pr[A;] = S\ < —.
79 [ 7A] U ( s ) (20001)20) 200D3

Consider the hyperedge e;. If the event Bt(,l) occurs, then by definition, c(e,) is not satisfied after all
variables in e; \ {v,} get the value. In our implementation, for any v € e,, we use r, to sample values

for XUC mon and YUC“O“. By (69) and (71), the bad event B;l) implies

sy 0.95
o Apforallv € e\ {vy}, ry < (l—qi(q}/:v-l) )
By (65), we have
X
Z log _;]U — > % Z log g,
veep\{vx} |—qv /SU-| vee,

Note that in the original input CSP formula ® = (V,Q, C) of Algorithm 1, the domain size of each
variable is at least 2 (otherwise,the value of such variable is fixed and we can remove such variable), it
holds that g, > 2 for all v € V. This implies }’,., log g, > |e|. By (59), it holds that }. ., log g, >

log % > % log (%). We have

X . 4
E 9 B B 50 (20001) ) B 5 (2000D )

lo > e+ = - —1o _ A |
veer\{vx} i [q5 /si] — 40 e 40 p & B ~ |ee| g

Hence, this bad event A, occurs with probability

51,7\ 0.95 0.956 |, 1 54 (095 L e, |
(75) Pr[A] = 1_[ 90 /50 < AT i < ne L’
veer\{ox} q%( 2 2000°74D? ’ 20007

where the last inequality holds because § < 1.

Finally, if Bf,l) and all BEZ") for1 <i < ¢ -1 occur, then A; occurs for all 1 < i < ¢. By definition,
the event A; is determined by a subset of random variables S; C R. For any i # j, the subset S; and §;
are disjoint, thus all events A; are mutually independent. Combining (67), (73), (74) and (75),

Pro. |BeaVI<i<e—1: szf)] <Pre. [Bgl) AVI<i<t—1: Bl.(Z”]

t
<Privl<i<edA]=][|PriA]

i=1
3\ 1
< - [
= n ((4) 200D3

eieal

Bleel

1 B 1\ 0
x HS (2001)3)>< 200D° (2)

ej €02

This proves (64) in case of (65).

Suppose the condition in (66) holds. In this case, we need to bound the RHS of (68). Compared
with the above proof, the only difference is that we need to bound the probability of B'? | where BE,Q)
To, s
Sty J = logl.q’_J 2

Sox

denotes the coupling on v, fails, i.e. XU(’;"O" # ng"o“. In this case, we have log|
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all v € V. This implies }.,c,, 10g g, > |eg|. By (59), it holds that }’ ., log g, > log% > % log (%).

Thus, we have
X 4
Qo | 'ER 5 2000D
log l—s;*‘ =1lo [ ‘ 20 ( E logqv) > — |eg|+4log( 5 )

veEey

2% (Xoce, 108 o). Note that in the original input CSP formula of Algorithm 1, it holds that g, > 2 for

Note that Q*Zi = QZ* and hff* = h}f*. In Lemma 8.19, we can set the parameter t = % le|. This implies
that when C,o, couples XUC "on and YUC“O“, the probability that the coupling fails is at most

Z | ) (])| ( )(l)%k’” - (1)%Ie(| B
500D3 | \ 2 2 200D3"

] €y,

The proof of this case is almost the same as the above proof. The only difference is that when coupling
U, we sample a random real number r,, € [0, 1] uniformly and independently. We use r,, to implement

L
the coupling such that XZ,(’;“O“ # YZE“O“ only if r,, < (%) s ler] 205D3. We define the bad event A, as
B

Le
ro, < (%) 50 lec] 55053+ BY the same proof, we have

Pre, [Bf AVI<i<t—1: Bl.(z")] <Prc. [B,@ AVI<i<t—1: szf)]

3\ 1
< - [
= 1—[ ((4) 200D3

ei681

Blee|

1 ﬂ 1 50
X X =
n (200D3) 200D3 (2)
ej 682

This proves (64) in case of (66).

8.4.2. Proof of Lemma 8.11. Without loss of generality, we assume |Qf,f) < |QZO| Otherwise, we can
swap the roles of X and Y in this proof. Since the original projection scheme h is uniform,

(76) 0<|ox|-loX|<1.

We first construct the projection scheme h* for ®X. To do this, we introduce a CSP formula X =
(V, @X = ((;)fo )ovev, C). We first construct a projection scheme hX for ®, then transform hX to the
projection scheme hX. Recall the original projection scheme is h = (hy)yey, where b, : Q, — 2.
Recall q, = |Q,|. The CSP formula ¥ is define as follows:

ot G)  ifu=o,,

where j € £, isan arbltrary value satisfying |h ( ])| = | qo, /S0, ]. For each v € V, let ¢ =

p denote max cc Hvevbl(c) = By Condition 3.4, we have for any constraint ¢ € C,

> log@ 2 p ) logq

vevbl(c) vevbl(c)

By the condition assumed in Lemma 8.11, it holds that
1 1
(77) log ; > flog 1; > 55(log D + 3).

Recall that the maximum degree of the dependency graph of & is also D. We can use Theorem 3.8 on
instance @ such that the parameter @ and f in Theorem 3.8 are setasa = 8/9 and f§ = 1/9. Remark that
in the proof of Theorem 3.8, we use Lovasz loca lemma to prove that the projection scheme described
in theorem must exist. When a = 8/9 and § = 1/9, the condition in Theorem 3.8 becomes

1 25.93
log:Z
P

(log D +3).
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This implies that under the condition in (77), there exists a balanced projection scheme hX = (Eff )oevs
where hX : QX — ¥X and5X = |Z§ | such that for any ¢ € C,

~x
9y 8 —~ _ B ,
Z log —I_,Cﬁ{/?i{.' > (1 - 5) Z log q‘:f > 9 Z log qy;

vevbl(c) vevbl(c) vevbl(c)
79 &)1 p
v —
Z log {?—XJ > 9 Z logq‘ff > 9 Z log q,.
vevbl(c) v vevbl(c) vevbl(c)

Note that ®* and ®X differ only at variable v,. Given the projection scheme B and the original
projection scheme h, the projection scheme h*X can be constructed as follows

Ef if u # oy;
h, ifu=o,.

X =

u

By definition, A¥ is a balanced projection scheme and h‘:f* = h,, . Since R and hX differ only at variable
Ux, for any constraint ¢ € C such that v, ¢ vbl (c), by (78),

Z log [qf,?x;sﬂ: Z log rgjjix Zlﬁ Z log go;

s3] 0 vevbl(c)

vevbl(c) vevbl(c) o
X =X
% | _ @ |, P
Z log {gJ = Z log {EZ{J > 10 Z log q,.
vevbl(c) vevbl(c) vevbl(c)

For variable v,, it holds that | gX /sX | = |qu. /so. | = GF, because hX uses the same way to partition
9o, /S0, Go, [ So, 9o, y top
Q,, as in the original projection scheme h. Hence, for any constraint ¢ € C such that v, € vbl (c),

3 0 3 R 3
[ [ .
log \‘STJ > log \‘S—YJ > 10 log qy;
vevbl(c) v vevbl(c) v vevbl(c)
=X

9
+ log —
vevbl(zc):\{v*} [qz(/g?ﬂ

log x

Ux

X
+ log = log l
vevbl(zc):\{v*} [‘IX/ So 1 St

(by la /i) =ax) = 3 los

vevbl(c) |—qX/ -|
(79) 'B Z logqv_— Z log qo.

vevbl(c) vabI(c)

This implies that k¥ satisfies all the conditions in Condition 8.10.
Given the projection scheme h*, the projection scheme hY for ®' can be defined as follows. For

each variable v € V '\ {vo}, hY = hX. For variable vy, we construct ZY = ZXO and s |Z | then
arbitrarily map QY to ZY such that for any j € ZZO, [qvo /500 < |(h ) (])| qv0 /svo] It is easy to
see hY is also a balanced projection scheme and hz* = h,, . It is also easy to see Z z{o, and hX = hY

for allu € V' \ {vg}. We now only need to verify that for any ¢ € C,

(80) > log{quzl'% > log gy

sv

vevbl(c) vevbl(c)
for any ¢ € C satisfying v, ¢ vbl (c),
Y
‘8 p
(81) Z log =7 2 — Z log g, |;
vevbl(c) |-qv /sv-| 10 vevbl(c)



and for any ¢ € C satisfying v, € vbl (¢),

9o, & P
(82) log[ ‘+ Z log I_qv 5 _| —0 Z log g, |-

U* vevbl(c)\{ox} vevbl(c)

Note that for all u € V \ {vg}, it holds that sX = s! and g = ¢Y. Also note that s‘;g = SZO. ny

qf,f) = qZO, (80), (81) and (82) hold trivially. By (76), we assume qZO = qf)f) +1. Since g} > ¢ and sX = s
forallu € V, for any c € C,

Z logK—E{JZ Z log{z—;’fJZ b Z log g,.

vevbl(c) vevbl(c) vevbl(c)

S|
o

This proves (80). Note that for all u # vg, g = q) and s =s!. Also note that v, # . It holds that

Y X Y X

9y, qv, 9y 4y
83 —=| === and VYo eV \ {v}, = )
) l‘ lX‘ Ve T T T

Y
To prove (81) and (82), we only need to compare oy ~= with YqUOY . We claim
rqi% /S 0 |—q210 /Sz;()

Y X X
(84) Yq”"y = q”°+1x > 1 Xq"OX .
[oo/s00]  [am +D/soy | 2 [auo /s

By (78), (83) and (84), for any ¢ € C such that v, ¢ vbl (c), we have

I D YN (R (D YR SR A [ Y
[q /5] [/ 9 0

vevbl(c) vevbl(c) vevbl(c) vevbl(c)

where the last inequality holds because . cypi(c) log gn = ﬁlog% > 55(logD + 3) > 165. This
proves (81). Similarly, for any ¢ € C such that v, € vbl (c), we have

log | L= log — 90 5 100 | %o
og s + Z og|_ ik > log Sv*

O | pevbl(o)\ {vy)

+ Z log % -

vevbl(c)\ {4} [q3 /53]

Z log q, —121'% Z log q, |-

vevbl(c) vevbl(c)

(by (79)) =

Nel heN

To prove (84), we consider two case. Recall s S0 If qvo cannot be divided by sX Spo» then |—(qv0 +1)/s; ] =
[qug / svo-| and (84) holds trivially. If qv can be d1v1ded by s , then we need to show
Wl Ly

L+qn /so

X
Sup-

which is equivalent to qvo > U() — 2, then (84) holds because qvo >

8.5. Proofs of Lemma 5.2 and Lemma 5.6. Lemma 5.2 is proved by combining Lemma 2.3, Propo-
sition 8.1 and Lemma 8.9. Note that the condition in Lemma 5.2 is logjlJ > % log (%), which

suffices to imply the conditions in Proposition 8.1 and Lemma 8.9. This implies the Glauber dynamics
has the unique stationary distribution v and the mixing rate is Tix(¢) < [211 log %-|

Lemma 5.6 is proved by combining Lemma 2.3, Proposition 8.1 and Lemma 8.2. Given a (k, d)-CSP
formula, the maximum degree D of the dependency graph is at most dk, thus the condition in Propo-
sition 8.1 becomes k log g > % log(2edk). The condition in Lemma 5.6 is k log g > % log (3000q2d6k6),
which suffices to imply the conditions in Proposition 8.1 and Lemma 8.2. This implies the Glauber

dynamics has the unique stationary distribution v and the mixing rate is Tp,ix(€) < [2n log §-|
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