
ar
X

iv
:2

10
4.

04
90

8v
1

 [
cs

.D
S]

 1
1

A
pr

 2
02

1

Graph Streaming Lower Bounds for Parameter Estimation and

Property Testing via a Streaming XOR Lemma

Sepehr Assadi∗ Vishvajeet N†

Abstract

We study space-pass tradeoffs in graph streaming algorithms for parameter estimation
and property testing problems such as estimating the size of maximum matchings and maximum
cuts, weight of minimum spanning trees, or testing if a graph is connected or cycle-free versus
being far from these properties. We develop a new lower bound technique that proves that for
many problems of interest, including all the above, obtaining a (1 + ε)-approximation requires
either nΩ(1) space or Ω(1/ε) passes, even on highly restricted families of graphs such as bounded-
degree planar graphs. For multiple of these problems, this bound matches those of existing
algorithms and is thus (asymptotically) optimal.

Our results considerably strengthen prior lower bounds even for arbitrary graphs: starting
from the influential work of [Verbin, Yu; SODA 2011], there has been a plethora of lower bounds
for single-pass algorithms for these problems; however, the only multi-pass lower bounds proven
very recently in [Assadi, Kol, Saxena, Yu; FOCS 2020] rules out sublinear-space algorithms with
exponentially smaller o(log (1/ε)) passes for these problems.

One key ingredient of our proofs is a simple streaming XOR Lemma, a generic hardness
amplification result, that we prove: informally speaking, if a p-pass s-space streaming algorithm
can only solve a decision problem with advantage δ > 0 over random guessing, then it cannot
solve XOR of ℓ independent copies of the problem with advantage much better than δℓ. This
result can be of independent interest and useful for other streaming lower bounds as well.

∗(sepehr.assadi@rutgers.edu) Department of Computer Science, Rutgers University. Supported in part by the
NSF CAREER Grant CCF-2047061, and a gift from Google Research.

†(vishva.jeet@rutgers.edu) Department of Computer Science, Rutgers University. Supported in part by the NSF
grant CCF-1814409.

i

http://arxiv.org/abs/2104.04908v1

Contents

1 Introduction 1

1.1 Gap Cycle Counting With a Little Bit of “Noise” . 1

1.2 Graph Streaming Lower Bounds from Noisy Gap Cycle Counting 3

1.3 Streaming XOR Lemma . 3

2 Notation and Preliminaries 4

3 Streaming XOR Lemma 5

4 The Lower Bound for the Noisy Gap Cycle Counting Problem 10

4.1 A Hard Distribution for NGC . 11

4.2 The High Level Plan . 14

4.3 Step One: Decorrelating Distribution 1 . 15

4.4 Step Two: Applying the Streaming XOR Lemma . 18

4.5 Step Three: A Lower Bound for the Single-Copy Problem 20

4.6 Putting Everything Together: Proof of Theorem 2 21

5 Other Graph Streaming Lower Bounds via Reductions 22

5.1 Minimum Spanning Tree . 23

5.2 Maximum Matching Size and Matrix Rank . 25

5.3 Maximum Cut . 26

5.4 Maximum Acyclic Subgraph . 27

5.5 Property Testing: Connectivity, Bipartiteness, and Cycle-freeness 28

6 A Streaming Lower Bound for Pointer Chasing 29

A Basic Tools From Information Theory 44

A.1 Useful Properties of Entropy and Mutual Information 44

A.2 Measures of Distance Between Distributions . 45

A.3 XOR and Biases . 46

B Strong vs Weak XOR Lemmas and Optimality of Theorem 1 47

C An Optimal Algorithm for Noisy Gap Cycle Counting 48

D A Technical Comparison with the Lower Bound of [AKSY20] 49

ii

1 Introduction

Consider an n-vertex undirected graph G = (V,E) whose edges are arriving one by one in a stream.
Suppose we want to process G with a streaming algorithm using small space (e.g., polylog(n)
bits), and in a few passes (e.g., a small constant). How well can we estimate parameters of G
such as size of maximum cuts and maximum matchings, weight of minimum spanning trees, or
number of short cycles? How well can we perform property testing on G, say, decide whether
it is connected or cycle-free versus being far from having these properties? These questions are
highly motivated by the growing need in processing massive graphs and have witnessed a flurry
of results in recent years: see, e.g., [KK15, KKS15, KKSV17, BDV18, KK19] on maximum cut,
[AKL17,EHL+15,CCE+16,MV16,MV18,CJMM17,KKS14] on maximum matching size, [BKS02,
BOV13,CJ17,MVV16, BC17,BFKP16,KMPV19] on subgraph counting, [GVV17,GT19, CGV20]
on CSPs, and [HP16,MMPS17,PS18,CFPS20] on property testing, among others (see also [VY11,
CFPS20,AKSY20] for a more detailed discussion of this line of work).

Despite this extensive attention, the answer to these questions have remained elusive; except
for a handful of problems and almost exclusively for single-pass algorithms, we have not yet found
the “right” answers. For instance, consider property testing of connectivity: given a sparse graph
G and a constant ε > 0, find if G is connected or requires at least ε · n more edges to become
so. Huang and Peng [HP16] proved that for single-pass algorithms, n1−Θ(ε) space is sufficient and
necessary for this problem. But until very recently, it was even open if one could solve this problem
in O(log n) space and two passes. This question was partially addressed by the first author, Kol,
Saxena, and Yu [AKSY20] who proved that any algorithm for this problem requires nΩ(1) space or
Ω(log (1/ε)) passes. But this is still far from the only known upper bound of polylog(n) space and
O(1/ε) passes obtained via a streaming implementation of the algorithm of [CRT05] (see [PS18]).

Our goal in this paper is to make further progress on understanding the limits of multi-pass graph
streaming algorithms for parameter estimation and property testing. We present a host of new
multi-pass streaming lower bounds that in multiple cases such as property testing of connectivity,
achieve optimal lower bounds on the space-pass tradeoffs for the given problems. At the
core of our results, similar to [VY11,AKSY20], is a new lower bound for a “gap cycle counting”
problem, wherein the goal is to distinguish between graphs consisting of only “short” cycles or only
“long” cycles. Our other streaming lower bounds then follow by easy reductions from this problem.

Our proof techniques are potentially useful for addressing other questions along these lines. We
first use a “decorrelation” step to break the strong promise in the input graphs (that the cycles are
either all short or all long) when proving the lower bound; this however comes at a cost of having
to prove a lower bound for algorithms that succeed with a low probability of 1/2 + 1/poly(n).
The main ingredient of the proof is then a hardness amplification step which allows us to obtain
such a lower bound from any standard lower bound, i.e., a one with not-so-little probability of
success. The key to this argument is a streaming XOR Lemma, in spirit of classical Yao’s XOR
Lemma [Yao82], that we prove in this paper. We elaborate on our results and techniques in details
in the following.

1.1 Gap Cycle Counting With a Little Bit of “Noise”

Already a decade ago, Verbin and Yu [VY11] identified a gap cycle counting problem as an excellent
intermediate problem for studying the limitations of graph streaming algorithms for estimation
problems: Given a graph G and an integer k, decide if G is a disjoint union of k-cycles or 2k-cycles.
By building on [GKK+07], they proved that this problem requires n1−O(1/k) space in a single pass
and used this to establish lower bounds for several other problems. This work has since been a source

1

of insights and inspirations for numerous other streaming lower bounds, e.g. [EHL+15,BS15,KK15,
LW16, HP16, GVV17, BCK+18, KKS15, AKL17, GT19, KKSV17, KK19, KKP18, CGV20]. These
lower bounds were all for single-pass algorithms. Very recently, [AKSY20] proved that any p-pass
streaming algorithm for gap cycle counting—and even a variant wherein the goal is to distinguish
union of k-cycles from a Hamiltonian cycle—requires n1−O(k−1/2p) space; in particular, Ω(log k)
passes are needed to solve this problem with polylog(n) space. The work of [AKSY20] showed that
a large body of graph streaming lower bounds for estimation problems can now be extended to
multi-pass algorithms using simple reductions from these gap cycle counting problems.

A main question that was left explicitly open by both [VY11,AKSY20] was to determine the
tight space-pass tradeoff for these gap cycle counting problems (and by extension other streaming
problems obtained via reductions). We partially resolve this question by proving an asymptotically
tight lower bound for a more relaxed variant that allows for some “noise” in the input. In particular,
in our noisy gap cycle counting problem, the graph consists of a disjoint union of either k-cycles or
2k-cycles on Θ(n) vertices, plus vertex-disjoint paths of length k−1 (the “noise”) on the remaining
vertices; the goal as before is to distinguish between the two cases (see Definition 4.1 and Figure 1).

(a) The original 4-cycle vs 8-cycle problem. (b) The noisy 4-cycle vs 8-cycle problem.

Figure 1: An illustration of the graphs in the original gap cycle counting problem for k = 4 versus the graphs in
the new noisy gap cycle counting problem. The actual graph consists of Θ(n/k) copies of these smaller subgraphs.

We prove the following lower bound for this noisy gap cycle counting problem.

Result 1. For any constant k > 0, any p-pass streaming algorithm for the noisy gap cycle
counting problem requires n1−O(p/k) space to succeed with large constant probability.

Result 1 obtains asymptotically optimal bounds for noisy gap cycle counting: on one end of the
tradeoff, one can solve this problem in just one pass by sampling ≈ n1−1/k random vertices and
storing all their edges to find a k-cycle or a (k+1)-path. On the other end, we can simply “chase”
the neighborhood of O(1) random vertices in ≈ k passes to solve the problem. In the middle of these
two extremes, there is the algorithm that samples ≈ n1−p/k vertices and chase all of them in p passes
and “stitch” them together to form k-cycles or (k + 1)-paths (see Appendix C). Result 1 matches
all these tradeoffs asymptotically. Moreover, as a corollary, we obtain that any algorithm for this
problem requires nΩ(1) space or Ω(k) passes, exponentially improving the bounds of [AKSY20] (see
also Appendix D for a brief technical comparison of our work with that of [AKSY20]).

We remark that Verbin and Yu conjectured that any p-pass algorithm for this problem requires
n1−2/k space as long as k < p/2−11 [VY11, Conjecture 5.4]. This conjecture as stated is too strong
as the O(n1−p/k) space algorithm above refutes it already for p > 2. However, Result 1 settles a
qualitatively similar form of this conjecture which allows for an n1−O(p/k)-space p-pass tradeoff.

1The conjecture of [VY11] is stated more generally for two-party communication protocols and for the no-noise
version of the problem; the statement here is an immediate corollary of this conjecture.

2

1.2 Graph Streaming Lower Bounds from Noisy Gap Cycle Counting

We use our lower bound in Result 1 in a similar manner as prior work to prove several new graph
streaming lower bounds. The difference is that we now have to handle the extra noise in the
problem; it turns out however that, as expected, this noise does not have a serious effect on the
reductions (it also helps that we prove Result 1 in a stronger form where, informally speaking, one
endpoint of every noise path is already known to the algorithm; see Corollary 4.13). As a result,
we can recover all graph streaming lower bounds of [AKSY20] with a much stronger guarantee:

Result 2. For any ε > 0, any p-pass algorithm for any of the following problems on n-vertex
graphs requires n1−O(ε·p) space:

− (1+ ε)-approximation of maximum matching size, maximum cut value, maximum acyclic
subgraph, and minimum spanning tree weight;

− property testing of connectivity, bipartiteness, and cycle-freeness for parameter ε.

Moreover, these lower bounds continue to hold even on bounded-degree planar graphs.

Prior to our work, n1−O(ε) space lower bounds for single-pass algorithms have been obtained in
[KK15,KKS15] for maximum cut, [EHL+15,BS15] for maximum matching, [GVV17,CGV20] for
maximum acyclic subgraph, [FKM+05, HP16] for minimum spanning tree, and [HP16] for the
property testing problems. These results were recently extended by [AKSY20] to p-pass algorithms

with the space of n1−O(ε1/2p) and thus Ω(log (1/ε)) passes for no(1)-space algorithms. Our Result 2
exponentially improves the dependence on number of passes in [AKSY20], and in particular implies
that any no(1)-space streaming algorithm for these problems require Ω(1/ε) passes. For multiple of
these problems, this bound can be matched by already known upper bounds and is thus optimal.
We elaborate on these results further in Section 5.

We conclude this part by remarking that many of the problems we consider in Result 2 have
been also studied in random order streams; see, e.g. [KKS14,KMNT20,CFPS20,PS18,MMPS17].
In particular, Monemizadeh et. al. [MMPS17] showed that (1 + ε)-approximation of matching size
(in bounded-degree graphs) can be done in Oε(log n) space and a single pass if the edges are arriv-
ing in a random order; similar bounds were obtained by Peng and Sohler [PS18] for approximating
the weight of minimum spanning tree (in bounded-weight graphs) and property testing of connect-
edness (see also the work of Czumaj et.al. [CFPS20] for a recent generalization of these results).
Our Result 2 thus demonstrate just how much harder solving these problems is in adversarial-order
streams even with almost 1/ε passes.

1.3 Streaming XOR Lemma

A key part of our proof of Result 1 is a general hardness amplification step: Let f be a Boolean
function over a distribution x ∼ µ; for any integer ℓ > 1, consider the ℓ-fold-XOR-composition of f
over the distribution of inputs x1, . . . , xℓ ∼ µℓ, namely, f⊕ℓ := XORℓ ◦f = f(x1)⊕· · ·⊕f(xℓ). How
much harder is to compute f⊕ℓ compared to f? Notice that if solving f (with certain resources)
has success probability ≤ 1/2 + δ, and that all the algorithm for f⊕ℓ does is to solve each f(xi)
independently and take their XOR, then its success probability would be ≈ 1/2+δℓ. This is simply
because XOR of ℓ independent random bits with bias δ only has bias ≈ δℓ (see Appendix A.3).
Can a more clever strategy (with the same resources) beat this naive way of computing f⊕ℓ?

These questions are generally referred to as XOR Lemmas and have been studied extensively
in different settings like circuit complexity [Yao82,GNW11,IW97,Lev85,Imp95,GRZ20], communi-

3

cation complexity [VW08,She11,GRZ20], and query complexity [Sha03,She11,BKLS20]. However,
despite the extensive attention that similar hardness amplification questions such as direct sum and
direct product have received in the streaming model (see, e.g. [BJKS02, JRS03, JPY12,BRWY13,
RS16,GH09,MWY13,PVZ12] and references therein), we are not aware of any type of XOR Lemma
for streaming algorithms. Thus, an important contribution of our work is to prove exactly such a
result; considering its generality, we believe this result to be of independent interest.

Result 3. Suppose any p-pass s-space streaming algorithm for f over a distribution σ ∼ µ
succeeds with probability ≤ 1/2 + δ. Then, any p-pass s-space algorithm for f⊕ℓ over the
concatenation of streams σ1, · · · , σℓ ∼ µℓ only succeeds with probability ≤ 1/2 · (1 + (2δ)ℓ).

In Appendix B, we further discuss the notion of “weak” vs “strong” XOR Lemmas in the context
of Result 3 and and in particular show the optimality of this result.

Let us now mention how Result 3 is used in the proof of Result 1. Consider the following
problem: given a graph G in (noisy) gap cycle counting and a single vertex v ∈ G, “chase” the
depth-(k/2) neighborhood of v to see if they form a k-cycle or a (k + 1)-path. This problem is
quite similar to the pointer chasing problem studied extensively in communication complexity and
streaming, e.g., in [NW91, PRV99,Yeh16, CCM08,GM08,GM09, FKM+08, JRS03,GO13,ACK19,
BGGS19,GS20] (see Definition 4.3). The gap cycle counting problem then can be thought of as
≈ n/k instances of this problem that are highly correlated : they are all in the same graph and they
all either form a k-cycle or a (k + 1)-path. The first step of our lower bound is an argument that
“decorrelates” these instances which implies that one of them should be solved with probability
of success 1/2 + Ω(k/n). This probability of success is still way below the threshold for any of
the standard pointer chasing lower bounds to kick in. This is where we use our streaming XOR
Lemma: we give a reduction that embeds XOR of ℓ instances of depth-(k/2ℓ) pointer chasing as a
single depth-(k/2) instance; applying our Result 3 then reduces our task to proving a lower bound
for pointer chasing with probability of success 1/2 + Ω((k/n)1/ℓ) (in k/2ℓ passes), which brings us
to the “standard” territory. The last step is then to prove this lower bound over our hard instances
which are different from standard ones, e.g., in [GM09,NW91,Yeh16].

2 Notation and Preliminaries

Notation. For a Boolean function f and integer ℓ ≥ 1, we use f⊕ℓ to denote the composition
of f with the ℓ-fold XOR function, i.e., f⊕ℓ(x1, . . . , xℓ) = f(x1) ⊕ · · · ⊕ f(xℓ). Throughout the
paper, we denote input stream by σ and |σ| denote the length of the stream. For any two streams
σ1, σ2, we use σ1 ||σ2 to denote the |σ1| + |σ2| length stream obtained by concatenating σ2 at the
end of σ1. When it can lead to confusion, we use sans serif font for random variables (e.g. X) and
normal font for their realization (e.g. X). We use supp(X) to denote the support of random variable
X. For a 0/1-random variable X, we define the bias of X as bias(X) := |Pr(X = 0)− Pr(X = 1)|;
see Appendix A.3 for more details.

Information theory. For random variables X,Y, H(X) denotes the Shannon entropy of X, I(X ;Y)
denotes the mutual information, ‖X − Y‖tvd denotes the total variation distance between the dis-
tributions of X,Y, and D(X || Y) is their KL-divergence. Appendix A contains the definitions and
standard background on these notions that we need in our proofs.

Streaming algorithms. For the purpose of our lower bounds, we shall work with a more powerful
model than what is typically considered the streaming model (this is the common approach when
proving streaming lower bounds; see, e.g. [GM08,LNW14,BGW20]). In particular, we shall define

4

streaming algorithms as multi-party communication protocols2 as follows. and then point out the
subtle differences with what one typically expect of a streaming algorithm.

Definition 2.1 (Streaming algorithms). For any integers n, p, s ≥ 1, we define a p-pass s-space
streaming algorithm working on a length-n stream σ = (x1, . . . , xn) as a (n + 1)-player communi-
cation protocol between players P0, . . . , Pn wherein:

(i) Each player Pi for i ≥ 1 receives xi as the input and player P0 has no input; the players also
have access to private randomness.

(ii) The players communicate in this order: P0 sends a message to P1 who sends a message to P2

and so on up until Pn who sends a message to P0; this constitutes one pass of the algorithm.
The players then continue like this for p passes and at the end, P0 outputs the answer.

(iii) Each message of a player in a given round is an arbitrary function of its input, all the
messages received by this player so far, and its private randomness and has size s bits exactly.

(We note that this model is non-uniform and is defined for each choice of n individually.)

Let us point out a couple differences with what one may expect of streaming algorithms. Firstly,
we allow our streaming algorithms to do an unbounded amount of work using an unbounded
amount of space between the arrival of each stream element; we only bound the space in transition
between two elements. Secondly, we allow streaming algorithms to maintain a “state” for each
stream element across multiple passes (as each player of the streaming algorithm “remembers” the
messages it receives in previous passes as well). Finally, a player P0 is introduced for notational
convenience so that every pass of the algorithm involves one message per main players P1, . . . , Pn.

Clearly, any lower bound proven for streaming algorithms in Definition 2.1 will hold also for
more restrictive definitions of streaming algorithm, and that is what we use in this paper. We
shall note that however almost all streaming lower bounds we are aware of directly work with this
definition and thus we claim no strengthening in proving our lower bounds under this definition;
rather, we merely use this formalism to carry out various reductions between our problems.3

3 Streaming XOR Lemma

Let Σn be any collection of length-n input streams and f : Σn → {0, 1} be a function which can
be interpreted as a streaming decision problem: Given a length-n stream σ ∈ Σn, output f(σ).
Using f , and for any integer ℓ ≥ 1, we can define another streaming decision problem over length
(nℓ)-streams: For σ1, . . . , σℓ ∈ Σn

ℓ, compute f⊕ℓ(σ1, . . . , σℓ) over the stream σ1 ||σ2 || · · · ||σℓ. We
prove the following Streaming XOR Lemma for computing f⊕ℓ in this section.

Theorem 1 (Streaming XOR Lemma). Fix any function f : Σn → {0, 1}, any distribution µ
on Σn, and any integer ℓ > 1. Suppose any p-pass s-space streaming algorithm can only compute f
over µ with probability at most 1

2 + δ for some δ > 0. Then, any p-pass s-space algorithm for f⊕ℓ

on the stream σ1 || · · · ||σℓ for (σ1, . . . , σℓ) ∼ µℓ succeeds with probability at most 1
2 · (1 + (2δ)ℓ).

Recall the intuition at the beginning of Section 1.3 behind any form of XOR Lemma: taking
XOR of independent bits dampens their biases exponentially and thus the algorithm for f⊕ℓ that

2We refer the reader to [KN97] for the standard definitions from communication complexity used in this paper.
3We could have alternatively presented our results in the (NIH) multi-party communication model. However,

considering that our proofs work with varying number of players in different steps and that our focus is primarily on
proving streaming lower bounds, we found it more natural to work with streaming algorithms directly.

5

computes each f(σi) individually satisfies Theorem 1. In general however, we cannot expect the
algorithm to approach these subproblems independently as it may instead try to correlate its success
probabilities across different subproblems (say, with probability 1/2+ δ all subproblems are correct
and with the remaining probability, all are wrong). This is the main barrier in proving any form
of XOR Lemma and what need to overcome in proving Theorem 1.

The main ideas of the proof consist of the following steps: (a) set up a ℓ-player “communication
game”, with one player per σi, whose lower bounds also imply lower bounds for streaming algorithms
of f⊕ℓ, (b) give enough extra power to this game so that no player is responsible for compressing
the input of another player, and show that the players success in computing each f(σi) becomes
uncorrelated, (c) limit the power of the game so that streaming lower bounds for f also imply lower
bounds for computing each f(σi) in this game. We now formalize this in the following:

Proof of Theorem 1

We setup the following game for proving this theorem (see also Figure 2):

(i) There are a total of ℓ players Q1, . . . , Qℓ who receive input streams σ1, . . . , σℓ, respectively.

(ii) The players communicate with each other in rounds via a blackboard. In each round, the
players go in turn with Q1 writing a message on the board, followed by Q2, all the way to
Qℓ; these messages are visible to everyone (and are not altered or erased after written).

(iii) For any player Qi and round j, we use M j
i to denote the message written on the board by

Qi in j-th round. We additionally use Bj
i to denote the content of the board before the

message M j
i is written and Bj to denote the content of the board after round j.

(iv) Messages of each Qi is generated by a deterministic multi-pass streaming algorithm Ai

that runs on σi (with one inner player per element of the stream as in Definition 2.1). In
each round j, the player P0 of Ai is additionally given the content of the board Bj

i , then

Ai makes its j-th pass over σi, and then P0 of Ai outputs M
j
i on the board.

(v) The cost of a protocol is the maximum size of the memory of any algorithm Ai.

Let us emphasize that this game is not at all a standard communication complexity problem:
in our game, the communication between the players is unbounded and the cost of the algorithm is
instead governed by the memory of streaming algorithms run by each player as opposed to having
computationally unbounded players.

We first show that if we can lower bound the cost of protocols in this game, we immediately
get a lower bound for streaming algorithms of f⊕ℓ.

Lemma 3.1. Any p-pass s-space algorithm A (deterministic or randomized) for computing f⊕ℓ

implies a (deterministic) p-round protocol π with cost at most s and the same probability of success.

Proof. Without loss of generality, we can assume A is deterministic as by an averaging argument,
there is a fixing of the randomness of the algorithm that gives the same success probability over µℓ.

To avoid confusion, let us denote the players of A as R0, R1, . . . , Rn·ℓ. We can generate a
protocol π from A as follows:

(i) Q1 runs A as A1 on σ1: P0 (of A1) sends a message to P1 and so on until Pn by running the

6

P0 P1 P2 P3

player Q1 with stream σ1

P0 P1 P2 P3

player Q2 with stream σ2

P0 P1 P2 P3

player Q3 with stream σ3

Black Board

Figure 2: An illustration of the communication game in the proof of Theorem 1 for n = 4 and ℓ = 3. The solid (red)
lines draw the messages of players of each inner streaming algorithm, while dashed (blue) lines draw the communicated
messages between the players of the game and the blackboard (from players P0 of each inner streaming algorithm).

first pass of A over their inputs by simulating R0 to Rn (this incurs a cost of s).

(ii) At this point, Pn has the same input and message as player Rn of A. Thus, Pn can send the
message of Rn to Rn+1 instead to P0 which finishes the first pass of A1 (again by a cost of
only s as the message of Rn to Rn+1 has size s). P0 of A1 then can post this received message
on the blackboard as message M1

1 of player Q1.

(iii) Now it is Q2’s turn to run A as A2 on σ2: P0 (of A2) reads the content of the board and
pass it along to P1; this way, P1 to Pn can continue the first pass of A over their inputs by
simulating Rn+1 to R2n (again, cost of only s by the space bound of A). Then, like step (ii),
the message of R2n to R2n+1 will be posted on the board via P0 of A2.

(iv) The players continue like this until they run every p passes of A in p rounds over their inputs
and output the same answer.

As the cost of this protocol is s and it fully simulates A, we obtain the result.

Fix a p-round communication protocol π with cost at most s in this game and suppose the
inputs of players are sampled from the product distribution µℓ. For the rest of the proof, we bound
the probability of success of π which will imply Theorem 1 by Lemma 3.1.

To continue we need the following definitions:

• For any i ∈ [ℓ] and any choice of the final board content Bp = B, we define:

biasπ(i, B) := 2 · max
θ∈{0,1}

Pr
(σ1,...,σℓ)∼µℓ

(f(σi) = θ | Bp = B)− 1;

in other words, biasπ(i, B) is equal to bias (f(σi)) for σi ∼ µℓ | Bp = B.

• For any choice of the final board content Bp = B, we define:

biasπ(B) := 2 · max
θ∈{0,1}

Pr
(σ1,...,σℓ)∼µℓ

(
f⊕ℓ(σ1, . . . , σℓ) = θ | Bp = B

)
− 1;

in other words, biasπ(B) is equal to bias (f(σ1)⊕ · · · ⊕ f(σℓ)) for σ1, . . . , σℓ ∼ µℓ | Bp = B.

7

With these definitions, we have,

Pr
(σ1,...,σℓ)∼µℓ

(π is correct) = E
B

[
Pr

(σ1,...,σℓ)∼µℓ
(π is correct | Bp = B)

]

≤ E
B

[
max

θ∈{0,1}
Pr

(σ1,...,σℓ)∼µℓ

(
f⊕ℓ(σ1, . . . , σℓ) = θ | Bp = B

)]

(conditioned on B
p = B, the answer of π is fixed to some θ ∈ {0, 1})

= E
B

[
1

2
· (1 + biasπ(B))

]
=

1

2
+

1

2
· E
B
[biasπ(B)] . (1)

As such, EB[biasπ(B)] measures the advantage of π in outputting the answer over random guessing.
Our goal in the remainder of this section is to bound this expectation. In order to do so, we first
bound each EB [biasπ(i, B)] for i ∈ [ℓ], and then prove a crucial independence property between
these variables that allows us to extend these bounds appropriately to EB [biasπ(B)] as well.

In the following, we prove that the protocol π is not able to change the bias of any single f(σi)
by more than 2δ, or alternatively, it cannot “solve” f(σi) correctly with probability > 1/2 + δ.
Intuitively, this should be true as π is effectively running a p-pass s-space streaming algorithm Ai

on σi and so we can apply the assumption of Theorem 1. The catch is that π in general is stronger
than a streaming algorithm (which is necessary to establish the other parts of the lower bound)
and some additional care is needed to simulate π “projected” on σi via a streaming algorithm.

Lemma 3.2. For any i ∈ [ℓ], EB [biasπ(i, B)] ≤ 2δ.

Proof. To prove this lemma, we only need to turn π into a p-pass s-space streaming algorithm A
for computing f(σi) on the stream σi ∼ µ (and not the entire input); the rest follows directly from
the assumption of Theorem 1 on the success probability of streaming algorithms on µ.

Suppose by way of contradiction that EB [biasπ(i, B)] > 2δ. Consider the estimator

g(B) := argmax
θ∈{0,1}

Pr
µℓ

(f(σi) = θ | Bp = B) .

Then, by the definition of biasπ(i, B), we have EB Prσi∼µℓ(f(σi) = g(B) | Bp = B) > 1
2 + δ. Define

σ−i = (σ1, . . . , σi−1, σi+1, . . . , σℓ).

By an averaging argument, and since σ1, . . . , σℓ are independent, there is a fixing of σ−i to some
σ∗−i which results in

Pr
σi∼µ

(f(σi) = g(B∗)) >
1

2
+ δ, (2)

where B∗ = B∗(σ∗−i, σi) is a random variable for the final content of the board given (σ∗−i, σi) over
the randomness of σi only. We now use this to design the streaming algorithm A (with σ∗−i “hard
coded” in the algorithm); it might be helpful to consult Figure 2 when reading this part.

Given the stream σ ∼ µ, A works as follows: P0 of A will simulate running π on σ∗1 , . . . , σ
∗
i−1

to obtain B1
i . This allows P0 to start running Ai on σi = σ and P0, . . . , Pn can collectively run the

first pass of Ai on σi; at the end, P0 knows the message M1
i of π and thus B1

i+1; this allows P0 to
simulate π on σ∗i+1, . . . , σ

∗
ℓ on its own and obtain B1. This finishes one round of the protocol π over

(σ∗1 , . . . , σ
∗
−1, σ, σ

∗
i+1, . . . , σ

∗
ℓ), while the players of A only made one pass over σ and communicated

s bits each (for running Ai in space s – note that here P0 is solely responsible for simulating the
blackboard and thus require no further communication).

8

The players then continue this to simulate all p rounds of π in p passes over the input σ and space
of s bits. At the end, P0 knows the entire content of the entire board B and can output g(B) as
the answer to f(σ). Over the randomness of σ ∼ µ, the distribution of (σ∗1 , . . . , σ

∗
−1, σ, σ

∗
i+1, . . . , σ

∗
ℓ)

and B is the same as (σ∗−i, σi) and B∗ in Eq (2). This means that A, which is a p-pass s-space
streaming algorithm, outputs the correct answer to f(σ) with probability > 1/2 + δ contradicting
the assumption of Theorem 1.

To extend the bounds in this lemma to bias(B), we like to use the fact that XOR dampens the
bias of independent bits (see Appendix A.3). Thus, we need to establish that these f(σi) bits are
not correlated after conditioning on B, which is done in the following lemma. This can be seen as an
analogue of the rectangle property of standard communication protocols on product distributions.

Lemma 3.3. For any B,
(
σ1, . . . , σℓ ∼ µℓ | Bp = B

)
=

Śℓ
i=1

(
σi ∼ µℓ | Bp = B

)
, i.e., the input

streams σi’s are independent even conditioned on B
p = B.

Proof. The input streams are originally independent, so we need to show that the protocol π in
this game cannot correlate them after we condition on B.

Define the following random variables: Xi for the input σi of player i, and M
j
i , B

j
i , and B

j, for

M j
i , B

j
i , and B

j respectively. Our goal is to prove that X1, . . . ,Xℓ are independent conditioned on
any choice of Bp = B. To do this, we show that for any i ∈ [ℓ],

I(Xi ;X−i | Bp) = 0 (3)

where X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xℓ). By Fact A.1-(2), this implies that Xi ⊥ X−i | Bp = B for
any choice of B and i ∈ [ℓ], which in turn proves the lemma.

To this end, we are going to peel off the messages written on the board one by one from the
conditioning of Eq (3) without ever increasing the mutual information term. Then, we will end up
with a case when there is no conditioning on any part of B and we can use the fact that Xi and
X−i are originally independent to finalize the proof. Formally,

I(Xi ;X−i | B) = I(Xi ;X−i | Bp
i+1,M

p
i+1, . . . ,M

p
ℓ)

(as the content of the board after Bp
i+1 are only the last messages of players Qi+1 to Qℓ)

≤ I(Xi ;X−i | Bp
i+1),

which holds by Proposition A.4 because Xi ⊥ M
p
i+1, . . . ,M

p
ℓ | B

p
i+1,X−i so dropping the conditioning

can only increase the information. This independence itself is because the messages sent by players
after i in the last round are deterministic functions of their inputs and the content of the board
after player i speaks, namely, Bp

i+1, and thus in the above term, (Mp
i+1, . . . ,M

p
ℓ) is deterministically

fixed after conditioning on B
p
i+1,X−i. We can further write,

I(Xi ;X−i | Bp
i+1) = I(Xi ;X−i | Bp

i ,M
p
i)

(as the content of the board between B
p
i+1 and B

p
i changes only by the last message of player Qi)

≤ I(Xi ;X−i | Bp
i),

which again holds by Proposition A.4 because X−i ⊥ M
p
i | Bp

i ,Xi as M
p
i is a deterministic function

of Bp
i and Xi. Finally,

I(Xi ;X−i | Bp
i) = I(Xi ;X−i | Bp−1,Mp

1, . . . ,M
p
i−1)

(as the board between B
p−1 and B

p
i changes only by the last messages of players Q1 to i− 1)

9

≤ I(Xi ;X−i | Bp−1),

by Proposition A.4, exactly as in the first part above because Xi ⊥ M
p
1, . . . ,M

p
i−1 | Bp−1,X−i, as

conditioning on B
p−1,X−i fixes the last messages sent by players 1 to i− 1.

This way, we can shave off one entire round of communication from the conditioning in the LHS
of Eq (3). Applying this argument for all p rounds, we have that,

I(Xi ;X−i | Bp) ≤ I(Xi ;X−i | Bp−1) ≤ · · · ≤ I(Xi ;X−i | B0) = I(Xi ;X−i) = 0,

where the last equality is because Xi ⊥ X−i in the distribution µℓ and thus the mutual information
is zero between by Fact A.1-(2). This proves Eq (3) and concludes the proof.

Finally, we use Lemmas 3.2 and 3.3 with Eq (1) to bound the success probability of protocol π.

Lemma 3.4. Protocol π succeeds with probability at most 1
2 ·

(
1 + (2δ)ℓ

)
.

Proof. We will prove that EB [bias(B)] ≤ (2δ)ℓ which implies the lemma by Eq (1). Fix any B and
consider the random variables f(σ1), . . . , f(σℓ) for (σ1, . . . , σℓ) ∼ µℓ | Bp = B. By Lemma 3.3, even
in the distribution µℓ | Bp = B, σi’s are independent which implies that f(σ1), . . . , f(σℓ) are also
independent random variables conditioned on B. As such, for any B,

biasπ(B) = bias(f(σ1)⊕ . . .⊕ f(σℓ) | Bp = B) =

ℓ∏

i=1

bias(f(σi) | Bp = B) =

ℓ∏

i=1

biasπ(i, B),

where the first and last equalities are by the definitions of biasπ(B) and biasπ(i, B), and the middle
equality is by Proposition A.9 and the independence of f(σi)’s conditioned on B, namely, the fact
that XOR dampens the biases of independent random bits. Finally,

E
B
[biasπ(B)] = E

B

[
ℓ∏

i=1

biasπ(i, B)

]
=

ℓ∏

i=1

E
b
[biasπ(i, B)] ≤ (2δ)ℓ,

where the last equality is by the independence of biasπ(i, B) and the inequality by Lemma 3.2.

Theorem 1 now follows immediately from Lemmas 3.1 and 3.4.

4 The Lower Bound for the Noisy Gap Cycle Counting Problem

We prove our main streaming lower bound for the noisy gap cycle counting problem in this section,
defined formally as follows (see also Figure 1 in the Introduction for an illustration).

Definition 4.1 (Noisy Gap Cycle Counting Problem (NGC)). Let k, t ∈ N
+ and n = 6t · k.

In NGCn,k, we have an n-vertex graph G with the promise that G either contains (i) 2t vertex-
disjoint k-cycles, or (ii) t vertex-disjoint (2k)-cycles; in both cases, the remaining vertices of G are
partitioned into 4t vertex-disjoint paths of length k− 1 (the “noise” part of the graph). The goal is
to distinguish between these two cases.

We prove the following lower bound for this problem that formalizes Result 1.

Theorem 2. For every k ∈ N
+, any p-pass streaming algorithm for Noisy Gap Cycle Counting

NGCn,k with probability of success at least 2/3 requires Ω
(

1
p5 · (n/k)1−O(p/k)

)
space.

10

Note that for this lower bound to be non-trivial, both k needs to be at least some large constant,
and p should be smaller than k by a similar factor. The rest of this section is organized as follows.
We first design a hard input distribution forNGCn,k and prove its useful properties for our purpose.
We then give a high level plan of the lower bound for this distribution, followed by the details of
each step, and the proof of the theorem. We start out with some extra definitions as we need some
structure on the family of graphs we work with in order to describe our hard distribution.

Definition 4.2 (Layered Graph). For any integers w, d ≥ 1, we define a (w, d)-layered graph,
with width w and depth d, as any graph G = (V,E) with the following properties:

(i) Vertices V consist of d+ 1 layers of vertices V1, . . . , Vd+1, each of size w.

(ii) Edges E consist of d matchingsM1, . . . ,Md where Mi is a perfect matching betweenMi, Mi+1.

For any vertex v ∈ V1, we use P (v) to denote the unique vertex reachable from v in Vd+1.

Moreover, by a random layered graph, we mean a layered graph whose matchings are chosen
uniformly at random and independently but the partitioning of vertices into the layers is fixed.

In our proof, we also work the pointer chasing problem (although with several non-standard
aspects). We define this problem as follows:

Definition 4.3 (Pointer Chasing (PC)). Let m, b ∈ N
+. In PCm,b, we have a (m, b)-layered

graph on layers V1, . . . , Vb+1, an arbitrary vertex s ∈ V1, and an arbitrary equipartition X,Y of
Vb+1. The goal is to decide whether P (s) ∈ Vb+1 belongs to X (a X-instance) or Y (a Y -instance).

Figure 3 gives an illustration of this problem.

s P (s)

V1 V5

(a) X-instance of PC6,4

s

P (s)

V1 V5

(b) Y -instance of PC6,4

Figure 3: An illustration of PCm,b for m = 6 and b = 4. The edges are perfect matchings that go between
consecutive vertex layers. The start vertex s is depicted in the vertex layer V1, and the sets X,Y are marked in the
vertex layer V5. P (s), the unique vertex in V5 reachable from s is also shown.

4.1 A Hard Distribution for NGC

We can now define our hard input distribution. We sample a random (w, d)-layered graph G0 for
parameter w = 3t and d = k−2

2 for NGCn,k conditioned on the following event :

• Let S ⊆ V1 be a fixed subset of size t, and X,Y be a fixed equipartition of Vd+1 (say, both
are the lexicographically-first option); then {P (v) | v ∈ S} is either a subset of X or Y .

We construct the final graph G from four identical copies of G0 (on disjoint sets of vertices), plus
some fixed gadget so that it satisfies the following property: when all vertices v ∈ S have P (v) ∈ X,
the resulting graph G has 2t cycles of length k each; otherwise, it has t cycles of length 2k instead;
in both cases, the graph G also has 4t paths of length k−1. We now present the formal description
of the distribution (see Figure 4 for an illustration).

11

G1

G2

G3

G4

Figure 4: An illustration of Distribution 1 for t = 2 and k = 10. The thin (black) edges are formed by the random
input matchings while thick (red) edges are input-independent. The final graph is obtained via four identical copies
of a (6, 4)-layered graph and the sets S,X, Y are marked in each one. The input stream consists of the edges these
matchings ordered from the inner matchings to the outer ones. The input drawn shows a k-cycle instance.

Distribution 1. The distribution µNGC for NGCn,k for given parameters n, k and t = n/6k.

(i) Let d := (k−2)
2 and sample a random (3t, d)-layered graph G0 on vertices V1, . . . , Vd+1 and

matchings M1, . . . ,Md conditioned on the following event:

• Let S be a fixed t-subset of V1 and X,Y be a fixed equipartition of Vd+1. Then,
{P (v) | v ∈ S} is entirely a subset of X (a X-instance) or a subset of Y (a Y -instance).

(ii) Create the following graph G = (V,E) on groups of vertices V i
j for i ∈ [4] and j ∈ [d+ 1]

using four identical copies of the graph sampled G0 above:

(a) For every j ∈ [d+ 1], let V i
j be the copies of Vj in G0 and define Si,Xi, Y i as copies of

S,X, Y , respectively (the same for all i ∈ [4]) – for any vertex v ∈ G0 and i ∈ [4], we
use copy(v, i) to denote the copy of v in V i.

(b) Connect V i
j to V i

j+1 for any i, j by a matching M i
j corresponding to Mj of G0.

(c) Connect S1 to S3, and S2 to S4 using identity perfect matchings, respectively. Similarly,
connect X1 to X3 and X2 to X4, and Y 1 to Y 4 and Y 2 to Y 3 using identity perfect
matchings, respectively (note the crucial change between the treatment of Xi and Y i).

(iii) The input stream consists of edges inserted in ((ii)c) in some arbitrary order, followed
by M i

j in decreasing order of j and increasing order of i (the order inside each M i
j is

arbitrary), i.e., this part of the stream is M1
d || · · · ||M1

1 || · · · ||M4
d || · · · ||M4

1 .

A careful reader may have noticed that Distribution 1 already impose some constraints on the
choice of k, e.g., k needs to be even and more constraints will also follow (we also need t to be an
even number so Vd+1 admits an equipartition). Yet Theorem 2 is supposed to work for all choices
of k, in particular, we need odd values of k for some of our reductions. We will however fix this
later by some simple padding argument when concluding the proof of Theorem 2.

We start by proving that this distribution indeed outputs valid instances of NGCn,k.

12

Lemma 4.4. Let G be a graph sampled from Distribution 1. Then,

(i) if G0 is a X-instance, then G consists of 2t cycles of length k and 4t paths of length k − 1;

(ii) if G0 is a Y -instance, then G consists of t cycles of length 2k and 4t paths of length k − 1.

Proof. Suppose first that G0 is a X-instance. Fix a vertex v ∈ S of G0 and consider copy(v, 1) ∈ S1.
We claim that copy(v, 1) belongs to the following k-cycle in G:

copy(v, 1) ∈ S1
 copy(P (v), 1) ∈ X1 → copy(P (v), 3) ∈ X3

 copy(v, 3) ∈ S3 → copy(v, 1) ∈ S1;

the first path exists by the definition of P (v) ∈ X in G0, the next edge by the identity perfect
matching between X1 and X3, the next path by reversing the identical path P (v) ∈ X to v in G0,
and the final edge by the identity perfect matching between S1 and S3. Note that this cycle in
particular also contains copy(v, 3) ∈ S3 and its length is d+ 1 + d+ 1 = 2 · (k−2)

2 + 2 = k.

As a result, there are |S| = t disjoint k-cycles, each including a pair of vertices from S1 and
S3. By symmetry, this is also happening for another t disjoint k-cycles for vertices of S2 and S4,
which gives us 2t disjoint k-cycles as desired. Moreover, as these k-cycles cover, for every i ∈ [4],
all vertices of Si and all other remaining vertices in V i have degree one, there is no other cycle;
instead, vertices of V i \ Si belong to a path of length k − 1, giving us 4t disjoint (k − 1)-paths.

Now suppose that G0 is a Y -instance. Again, fix a vertex v ∈ S of G0 and consider copy(v, 1) ∈
S1. We now claim that copy(v, 1) belongs to the following 2k-cycle in G:

copy(v, 1) ∈ S1
 copy(P (v), 1) ∈ Y 1 → copy(P (v), 4) ∈ Y 4

 copy(v, 4) ∈ S4 → copy(v, 2) ∈ S2,

copy(v, 2) ∈ S2
 copy(P (v), 2) ∈ Y 2 → copy(P (v), 3) ∈ Y 3

 copy(v, 3) ∈ S3 → copy(v, 1) ∈ S1;

this is exactly as in case (i) except that the switch in connecting Y 1 to Y 4 and Y 2 to Y 3 instead,
results in copy(v, 1) reaching copy(v, 2) and thus it takes another “round” for copy(v, 2) to reach
copy(v, 1) also, doubling the length of the cycle. The rest of the argument is exactly as before and
we omit the details (but, notice that this doubling effect will not happen for the (k − 1)-paths as
their endpoints have degree one only). This concludes the proof.

In addition to proving the validity of distribution Distribution 1, Lemma 4.4 also has a message
for our lower bound: any algorithm that can solve NGCn,k over the distribution µNGC, can also
decided whether a given graph G0 sampled in µNGC is a X-instance or a Y -instance (since the
instance is defined deterministically given G0, and the remaining edges are input-independent, we
can just do a straightforward reduction between the two problems). This latter problem is what
we prove our lower bound for.

Before moving on, let us also make the following important remark about the source of hardness
of NGC (over µNGC) that will be used in several of our reductions in the subsequent section.

Remark 4.5. The following information is known by any streaming algorithm that solves NGC
over the distribution µNGC:

(i) One endpoint of every noise path in the graph G;

(ii) A set of t four-tuples of vertices (u1, u2, u3, u4) such that in the k-cycle case u1, u2 and u3, u4
belong to two disjoint k-cycles each, while in the 2k-cycle case, all belong to the same 2k-cycle.

Notice that these vertices cover all paths and cycles of the graph in both cases.

13

The first point is because the set S in G0 is fixed and we can take copy(v, i) for v /∈ S and
i ∈ {1, 2} as endpoints of every path. The second point is similarly because we can take the tuples
(u1, u2, u3, u4) to be u1 = copy(v, 1), u2 = copy(v, 3), u3 = copy(v, 2), u4 = copy(v, 4) and use the
proof of Lemma 4.4 to see that these vertices belong to desired cycles.

4.2 The High Level Plan

Our plan for proving Theorem 2 involves the following three steps (the reader is encouraged to
check the algorithm for NGC in Appendix C as it helps with the intuition of this proof).

Step one: decorrelating the distribution. Recall that by our previous discussion, our task
at this point is to prove a lower bound for the following problem: Given a (3t, d)-layered graph G0

and a set S of t vertices in the first layer, decide whether following edges of G0 takes these vertices
to X or Y in the last layer. If we look at a single vertex v ∈ S, this problem is a pointer chasing
problem along the edges of the d matchings of G0. The challenge here is that we are not solving any
one pointer chasing problem though, but rather a collection of t correlated ones. This problem is
quite simpler (algorithmically) than original pointer chasing as we only need to get “lucky enough”
to chase one of them. Concretely, an algorithm that samples ≈ t1−1/d edges of the graph has a
constant probability of finding one complete path and solves the problem.

To bypass this challenge, we consider a generalized version of the distribution µNGC wherein
every vertex in S has almost the same probability of ending up in the set X or Y , independent of the
choice of other starting vertices. We prove that even though these distributions do not correspond
to valid instances of NGC, still, if we run any algorithm for NGC over these inputs, it has to do
some “non-trivial work”: informally speaking, it will be able to solve the pointer chasing instance
corresponding to one of the starting vertices with a probability of 1/2+Ω(1/t) – this time however,
this instance is independent of the choice of remaining vertices in S (owing to the introduction
of noise). This hybrid argument allows us to reduce the problem to a low probability [of success]
pointer chasing problem, which we tackle in the next step.

It is worth pointing out that this step matches the intuition that to solve NGC, we need to
“find” at least one k-cycle or a (k + 1)-path in the graph.

Step two: applying the streaming XOR Lemma. The pointer chasing problem we now
need to prove a lower bound for requires a really low probability of success, which is way below
the threshold for any of the standard lower bounds to kick in. Our next step is then to apply
our hardness amplification result in Theorem 1 to reduce this to a more standard pointer chasing
problem with higher probability of success. This requires us to cast our pointer chasing instance
as an XOR of several other independent pointer chasing instances.

To do this for p-pass algorithms, we “chop” the layered graph into ≈ k/p consecutive groups of
≈ p layers. we show how one can carefully connect these groups together to get ≈ k/p independent
instances of pointer chasing in each group, so that the XOR of their answers determine the answer
to the original problem. This step uses similar ideas as definition of Distribution 1 and some further
randomization tricks. We can now apply our streaming XOR Lemma (Theorem 1) and reduce the
problem to proving a lower bound for pointer chasing on depth ≈ p layered graphs with probability
of success 1/2 + 1/tΘ(p/k), which is the content of the next step.

This step also matches the intuition that to solve NGC in p passes, we need to be able to
“create” roughly k/p paths of length p inside the same k-cycle or (k + 1)-path.

Step three: a lower bound for the single-copy problem. We are now in the familiar
territory in which the goal is to prove a lower bound for a depth ≈ p pointer chasing problem with

14

probability of success 1/2 + 1/tΘ(p/k). The main difference is that our distribution do not match
that of standard lower bounds, say [GM09,NW91,PRV99,Yeh16], which can be made to work with
layered graphs but need random degree-one graphs instead of random matchings (so higher entropy
inputs). Nevertheless, we show that this can be managed with some further crucial modifications.

All in all, this step allows us to prove that solving pointer chasing on depth (p+1) layered graphs
in p passes and n1−o(p/k) space does not lead to success probability of 1/2+1/tΘ(p/k). Tracing back
these steps and plugging in the parameters, concludes the proof of the theorem.

Finally, this step also matches the standard intuition that “finding” a path of length > p in p
passes, with large probability of success, is not possible in much less than near-linear space.

4.3 Step One: Decorrelating Distribution 1

Our goal in this section is to reduce NGC over µNGC to solving PC (over a slightly smaller graph)
albeit with a much lower probability of success. Consider the following distribution for PC:

Distribution 2. The distribution µPC for PCm,b for given width and depth parameters m, b.

(i) Sample a random (m, b)-layered graph with an arbitrary vertex s ∈ V1 and an arbitrary
equipartition X,Y of Vd+1 (say, both are lexicographically-first options).

(ii) Let the input stream be Mb || · · · ||M1 (with arbitrary orderings in each matching).

We prove the following lemma in this section.

Lemma 4.6. Suppose there is a p-pass s-space streaming algorithm A for NGCn,k on µNGC that
succeeds with probability at least 2/3. Then, there is a p-pass s-space streaming algorithm for PCm,b

on µPC for some even m := Θ(n/k) and b := k−2
2 with probability of success at least 1

2 + 1
6m .

For the rest of this section, we fix the algorithm A in Lemma 4.6 to use it in a reduction. Our
reduction uses a hybrid argument and thus is going to be algorithm-dependent, i.e., use A in a
non-black-box way. To do so, we first need to define a family of hybrid distributions.

Recall the parameters t = (n/6k) and d = (k−2)
2 in the definition of µNGC. For any vector

f = (f1, . . . , ft) ∈ {0, 1}t, we define the distribution µ(f) as follows:

• Hybrid distribution µ(f): Sample a random (3t, d)-layered graph G0 (with fixed S ⊆ V1
and equipartition X,Y of Vd+1) conditioned on the following event: “for any vertex vi ∈ S,
P (vi) belongs to X if fi = 0 and belongs to Y if fi = 1”. Plug this graph G0 in Distribution 1
instead and return the resulting stream for the created graph G.

With this definition, we have that µNGC = 1
2 ·µ(0t)+ 1

2 ·µ(1t). The problem of working with µ(0t)
and µ(1t) directly is that their PC instances are highly correlated (all vertices in S either go to X
or to Y). Thus, it is unclear which instance is actually “solved”. On the other hand, remaining
distributions µ(f) may generate graphs that are not in the support of µNGC or even well-defined
for NGC. Nevertheless, we will show that A still needs to do something non-trivial over these
distributions: there is a pair of neighboring vectors g, h that differ in exactly one coordinate such
that A is still able to distinguish between them, namely, “solve” the pointer chasing instance on
their differing index (although with a much lower probability). We now formalize this.

Let mem(A) denote the final content of the memory of A. Let µ(g) and µ(h) be any two
distributions in the family above. With a slight abuse of notation, we say that A distinguishes

15

between µ(g) and µ(h) with probability p > 0, if given a sample from either µ(g) or µ(h), we
can run A over the sample and use maximum likelihood estimation of mem(A) to decide which
distribution it was sampled from with probability at least p. Define the following t+ 1 vectors:

f0 = (0, . . . , 0), f1 = (1, 0, . . . , 0), · · · f i = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0), · · · f t = (1, . . . , 1).

We prove that A distinguishes between two consecutive distributions in this sequence.

Claim 4.7. There is an index i∗ ∈ [t] such that A distinguishes between µ(f i
∗−1) and µ(f i

∗
) with

probability at least 1
2 +

1
6t .

Proof. Since A can solve NGC on instances drawn from µNGC = 1
2 ·µ(0t)+ 1

2 ·µ(1t) with probability
of success at least 2/3, we have that (see Fact A.7),

‖
(
mem(A) | µ(f0)

)
−

(
mem(A) | µ(f t)

)
‖tvd ≥ 1/3, (4)

as the algorithm uses only mem(A) at the end to output the answer (here (mem(A) | µ) denotes
the distribution of mem(A) conditioned on the input sampled from µ).

Suppose we run algorithm A on each of the distributions µ(f i) (even though beside f0, f t,
neither of them correspond to an NGC instance). Then, by triangle inequality,

‖
(
mem(A) | µ(f0)

)
−
(
mem(A) | µ(f t)

)
‖tvd ≤

t∑

i=1

‖
(
mem(A) | µ(f i−1)

)
−
(
mem(A) | µ(f i)

)
‖tvd,

which, together with Eq (4), implies that there is an index i∗ ∈ [t] such that

‖
(
mem(A) | µ(f i∗−1)

)
−

(
mem(A) | µ(f i∗)

)
‖tvd ≥ 1

3t
. (5)

Thus, A distinguishes between µ(f i
∗−1) and µ(f i

∗
) with probability ≥ 1

2 + 1
6t by Fact A.7.

Let us define our final distribution µ∗ := 1
2 · µ(f i∗−1) + 1

2 · µ(f i∗). Claim 4.7 suggests a way of
solving instances of PC by embedding them in the index i∗ of µ∗ and running A over the resulting
input. We now give a process for sampling from µ∗ which is crucial for this embedding.

Claim 4.8. The following process samples a (3t, d)-layered graph G0 from the distribution of µ∗:

(1) Sample (t− 1) vertex-disjoint paths from vertices in S \ vi∗ to vertices in Vd+1 conditioned on
the event that “for any vertex vi ∈ S \ {vi∗}, P (vi) is in X if f i

∗

i = 0 and in Y if f i
∗

i = 1”.

(2) Let c := |(i∗ − 1)− (t− i∗)|, the discrepancy in the number of 0’s and 1’s in both vectors
f i

∗−1, f i
∗
when we ignore index i∗. Sample c random vertex-disjoint path starting from V1 \S

to the remaining vertices of X in Vd+1 if 0’s of f i
∗
are fewer that 1’s, and to Y otherwise.

(3) Sample a random (2t+ 1− c, d)-layered graph on the remaining vertices.

Proof. For any vertex v ∈ V1, define P(v) as the path starting from v and ending in Vd+1. Con-
sidering G0 is a (3t, d)-layered graph consisting of perfect matchings between the layers, the paths
P(v) are vertex-disjoint and of length d + 1. As such, we can think of the process of sampling G0

in µ∗ as sampling these vertex-disjoint paths.

16

In step (1), we are sampling P(v) for all v ∈ S \ vi∗ . As f i
∗−1

j = f i
∗

j for all j 6= i∗, this step can
just sample these paths uniformly at random conditioned on an appropriate endpoint in X and Y
for them. Thus far, the sampling process is the same as µ∗.

Let us now examine what happens to the choice of P(vi∗) at this point. Since µ∗ is a uniform
mixture of f i

∗−1, f i
∗
, the path P(vi∗) should end up at either X or Y with the same probability.

However, considering we already conditioned on P(vj) for j 6= i∗, the number of remaining X and
Y vertices are not equal. This means that P(vi∗) is not a uniformly random path in the rest of the
graph. The goal of step (2) is to fix this4. We can first sample P(v) for c vertices in V1 \ S so that
they all end up in an X or Y vertex, depending on which of the sets has more remaining vertices.
This equalizes the size of the remaining X and Y vertices, while keeping the distribution intact,
using the randomness in choices of these c vertices.

Finally, at this point, we need to sample P(v) for remaining vertices conditioned on P(vi∗)
having the same probability of landing in X or Y . Considering sizes of remainder of X and Y
are equal, this can be done by sampling a uniform set of vertex-disjoint paths, or alternatively, a
random layered graph on the remaining vertices which are 3t − (t − 1) − c = 2t + 1 − c. This is
precisely what is done in step (3), concluding the proof.

A simple corollary of the process in Claim 4.8 is the following conditional independence: let
R1,R2,R3 denote the random variables for choices in steps (1), (2), (3) of this process; then, condi-
tioned on any choice R1, R2 of R1,R2, the variable R3 is distributed as a random (2t+1−c, d)-layered
graph on the remaining vertices, with independent choice of edges, now that we conditioned on its
vertices. Let H0 ⊆ G0, denote this subgraph. By Claim 4.7 and an averaging argument, there is a
choice of R1, R2 such that,

Pr
H0∼R3

(
A distinguishes between µ(f i

∗−1), µ(f i
∗
) | R1, R2

)
≥ 1

2
+

1

6t
. (6)

Distinguishing between µ(f i
∗−1), µ(f i

∗
) is to decide whether vi∗ ∈ V1, has P (vi∗) in X or Y – this

is equivalent to solving PC over the graph H0 for s = vi∗ . We now use this to finalize our reduction
and prove Lemma 4.6.

Proof of Lemma 4.6. Let c be the parameter in Claim 4.8 and note that since t is even (by con-
struction of µNGC), c should be odd (as c = |t− 2i∗ + 1|). Let m := 2t + 1 − c which is an even

number as desired and b := d = (k−2)
2 ; moreover note that since c ≤ t − 1, m ≥ t + 2 = Θ(n/k).

We design a streaming algorithm B from A for PCm,b for over the distribution µPC.

Given G ∼ µPC, algorithm B uses Claim 4.8 to create the graph

G0 ∼ µ∗ | R1 = R1,R2 = R2,H0 = G,

where R1, R2 are the choices in Eq (6). To be precise, by setting H0 = G, we mean that the players
of B pick a canonical mapping between vertices of G and H0 such that s = vi∗ , the X-vertices
(resp. Y -vertices) of G are mapped to X-vertices (Y -vertices), and each player in A with e ∈ H0

has a unique player in B that simulates it. The players then run A over G0 to distinguish µ(f i
∗−1)

from µ(f i
∗
) and output P (s) ∈ X if the answer of A was µ(f i

∗−1) and otherwise output P (s) ∈ Y .

The algorithm B is still a p-pass s-space algorithm (recall that in Definition 2.1, the players
are computationally unbounded and so can do their part of creating the graph G0 without any

4A simple analogy may help here: suppose we have four red balls and two green balls and we want to sample a
ball uniformly so that its color is red or green with the same probability. We can first sample two red balls uniformly
and throw them out and then sample a ball uniformly from the rest.

17

communication). By the independence property argued for Eq (6), the distribution of graphs G0

above matches that of this equation. As such, B outputs the correct answer with probability
1
2 +

1
6t ≥ 1

2 + 1
6m , finalizing the proof.

4.4 Step Two: Applying the Streaming XOR Lemma

By Lemma 4.6, our task is reduced to proving a low-probability lower bound for PCm,b over the
distribution µPC. Our goal in this step, is to use our streaming XOR Lemma in Theorem 1, to
reduce this problem to another PCm̂,b̂ problem over distribution µPC (for choices of m̂, b̂ as functions

of m, b). We prove the following lemma in this section, which realizes our goal.

Lemma 4.9. For every m, b, ℓ ∈ N
+ such that m is even and 2ℓ divides b− 1, the following holds.

Suppose there is a p-pass s-space algorithm A for PCm,b that succeeds with probability at least
1/2 + δ on µPC. Then, there is a p-pass s-space algorithm for PCm̂,b̂ over µPC, for some m̂ = m

2

and b̂ = b−1
2ℓ − 1, that succeeds with probability at least 1

2 · (1 + (2δ)1/ℓ).

The key to the proof of Lemma 4.9 is the streaming XOR Lemma that we already established;
however, to be able to apply the XOR Lemma, we first need to cast PCm,b as an XOR problem,
which we do in the following, using a simple graph product.

Let us start by defining a simple graph product, which we call the XOR product : Given ℓ layered
graphs G1, . . . , Gℓ as instances of PC problem, this product generates a graph H := ⊕ℓ

i=1Gi such
that the answer to a PC problem on H is equal to XOR of answers to PC on G1, . . . , Gℓ. We
define this product formally as follows.

XOR product. Suppose we have a set of V := (V1, . . . , Vd+1) of vertices, each of size w, and an
equipartition X,Y of Vd+1. Consider ℓ different (w, d)-layered graphs G1, . . . , Gℓ on these sets of
vertices. The XOR product graph H := ⊕ℓ

i=1Gi is the following graph (see also Figure 5):

− Vertex-set: Create vertex-sets U r,i
j for r ∈ [ℓ], i ∈ [4], and j ∈ [d + 1], such that for every

choice of r, i, U r,i
j is a copy of Vj . For any v ∈ Vj, copy(v, r, i) denotes the copy of v in U r,i

j .

Additionally, we define Xr,i, Y r,i as copies of X and Y in U r,i
d+1.

− Edge-set: The first part creates four identical copies of each Gr on U r,i-vertices for i ∈ [4].
More formally, for any edge (u, v) in Gr, we connect copy(u, r, i) to copy(v, r, i) for all i ∈ [4].

The second part connects these separate graphs. For every r ∈ [ℓ], connect Xr,1 to Xr,3 and
Xr,2 to Xr,4 using identity perfect matchings. Conversely, connect Y r,1 to Y r,4 and Y r,2 to
Y r,3 using identity perfect matchings. Finally, for every r ∈ [ℓ − 1], connect U r,3

1 to U r+1,1
1

and U r,4
1 to U r+1,2

1 using identity perfect matchings.

The outcome of this product is another layered graph with width 2w and depth ℓ · (2 ·d+1)+ ℓ−1.
This concludes the description of the XOR product.

We now state the main property of this product. In the following, for an instance G of the PC
problem, we write PC(G) ∈ {0, 1} to denote the answer of PC on G which is 0 if G is a X-instance
and is 1 if G is a Y -instance. Suppose we have ℓ different instances of PCm̂,b̂ as graphs G1, . . . , Gℓ

on the same set of vertices (and same sr,Xr, Yr across all r ∈ [ℓ]). Consider the (m, b)-layered
graph H := ⊕ℓ

r=1Gi and define the following PCm,b instance over H. For

s = copy(v, 1, 1), X = U ℓ,3
1 , Y = U ℓ,4

1 ,

18

G1

U1,1

U1,2

U1,3

U1,4

G2

U2,1

U2,2

U2,3

U2,4

s

= X

= Y

Figure 5: An illustration of the XOR product H of two graphs G1, G2. Here, the Xr,i, Y r,i sets are specified
for each graph – these sets are entirely unrelated to equipartition X,Y of H drawn on the right. Moreover two
potential paths out of s are drawn: (i) the dotted (green) one corresponds to PC(G1) = 0,PC(G2) = 1 and so
PC(G1 ⊕ G2) = PC(G1) ⊕ PC(G2) = 1 which is true as s reaches Y in H ; (ii) the dashed (blue) one corresponds
to PC(G1) = PC(G2) = 1 and so PC(G1 ⊕G2) = PC(G1)⊕PC(G2) = 0 which is true as s reaches X in H .

decide whether P (s) (in H) belongs to X or Y (it is worth pointing out that the sets X,Y defined
for H are completely unrelated to sets Xr, Yr for r ∈ [ℓ]). We now have the following claim (a
“proof by picture” is illustrated in Figure 5).

Claim 4.10. For any integer ℓ and H := ⊕ℓ
r=1Gr, we have PCm,b(H) = ⊕ℓ

r=1PCm̂,b̂(Gr).

Proof. Recall that in any layered graph, each vertex is part of a unique path from the first layer to
the last one; for any v ∈ H, we denote this path by P(v). Consider any graph Gr for r ∈ [ℓ] and
its starting vertex sr. Notice that there are four copies of sr across subgraphs U r,i for i ∈ [4]. Let
us denote these copies by sr,i = copy(s, r, i) for i ∈ [4].

If PC(Gr) = 0, then P (sr) ∈ Xr by definition. We claim that in this case, P(sr,1) contains
P(sr,3) because of the following path in H:

sr,1 = copy(sr, r, 1) copy(P (sr), r, 1) ∈ Xr,1 → copy(P (sr), r, 3) ∈ Xr,3
 copy(sr, r, 3) = sr,3;

the first path exists because U r,1
1 to U r,1

b̂
in H are connected the same as Gr, the edge exists by

the definition of H, and again U r,3

b̂
goes to U r,3

1 the same as Gr. By the same exact reason, P(sr,2)

contains P(sr,4).

Conversely, if PC(Gr) = 1, then P (sr) ∈ Yr by definition. We claim that in this case, P(sr,1)
contains P(sr,4) instead because of the following path in H:

sr,1 = copy(sr, r, 1) copy(P (sr), r, 1) ∈ Y r,1 → copy(P (sr), r, 4) ∈ Y r,4
 copy(sr, r, 4) = sr,4;

this is exactly as before except for the fact that Y r,1 is instead connected to Y r,4 by a perfect
matching. Again, we also have that P(sr,2) contains P(sr,3) in this case.

Now, consider the path P(s) in H. Recall that s = s1,1 by definition. By the above argument,
the path P(s1,1) then either contains s1,3 in U1,3

1 or s1,4 in U1,4
1 . In the first case, P(s1,1) will then

contain P(s2,1) and in the second case, it will next contain P(s2,2) by the construction of the last
set of edges added to H in its definition. Continuing this inductively from s2,1 and s2,2 and their
corresponding paths P(s2,1) and P(s2,2), we get that P(s) goes through a collection of vertices sr,ir

for every r ∈ [ℓ] and exactly one ir ∈ [2] until it eventually ends up at either sℓ,3 ∈ X or sℓ,4 ∈ Y
(which, we can think of as sℓ+1,1 and sℓ+1,2, respectively, for the ease of notation).

19

Next, consider any pair sr,ir and sr+1,ir+1 on P(s). By the argument above, if PC(Gr) = 0, then
ir+1 = ir while if PC(Gr) = 1, then ir+1 = 3−ir, i.e., it “flips”. Thus, starting from s = s1,i1 = s1,1,
P(s) ends up at sℓ+1,1 = sℓ,3 ∈ X if the number of flips is even and at sℓ+1,2 = sℓ,4 ∈ Y if it is odd.
This means that PCm,b(H) = ⊕ℓ

r=1PCm̂,b̂(Gr), proving the claim.

Equipped with the XOR product and Claim 4.10, we can now prove Lemma 4.9.

Proof of Lemma 4.9. Consider ℓ independent instances G1, . . . , Gℓ of PCm̂,b̂ sampled from µPC
ℓ.

Define H := ⊕ℓ
r=1Gr, which is a (m, b)-layered graph for m = 2m̂ and b = ℓ · (2 · b̂ + 1) + ℓ − 1

(these parameters match those of Lemma 4.9). By Claim 4.10, we have PC(H) = ⊕ℓ
r=1PC(Gr).

We can now apply (the contrapositive of) our streaming XOR Lemma (Theorem 1) to obtain:
if we have a p-pass s-space streaming algorithm for PC over the distribution of H = ⊕ℓ

r=1Gr over
µPC

ℓ with probability of success 1/2+δ, then we will also have a p-pass s-space streaming algorithm
for PCm̂,b̂ over µPC with 1/2 · (1 + (2δ)1/ℓ) (by re-parameterizing δ to match that of Theorem 1).

We are still however not done because the algorithm A in the lemma works on the distribution
µPC while the distribution H induced by µPC

ℓ does not match µPC due to the reduction. However,
this is easy to fix. Pick random permutations π1, . . . , πb+1 and use πi to relabel vertices of layer Vi
of the layered graph H to obtain a graph G. The distribution of G is now a random (m, b)-layered
graph and thus we can run A over this graph for checking if π1(s) is in πb+1(X) or πb+1(Y) instead
and obtain the answer to H as well. An averaging argument for fixing a choice of π1, . . . , πb+1

finalizes the proof.

4.5 Step Three: A Lower Bound for the Single-Copy Problem

The previous step allows us to instead of proving a lower bound for XOR of ℓ copies of the problem,
prove a weaker lower bound for a single copy, which translates to a “standard” lower bound for
pointer chasing. Our goal in this step is to prove this weaker lower bound. We prove the following
lemma in this section.

Lemma 4.11. Let A be a p-pass s-space streaming algorithm for PCm̂,b̂ over µPC with probability

of success at least 1
2 +

1
10m̂1/ℓ . Then, either p > b̂− 1 or s = Ω(1

b̂5
· m̂1−4/ℓ).

The proof of this lemma is similar to the known communication complexity lower bounds
for pointer chasing such as [GM09, NW91, PRV99,Yeh16]; the catch however is that these lower
bounds are for the distribution wherein each vertex in a layer Vi independently samples a neighbor
in Vi+1 (vertices of Vi+1 can receive more than one edge) as opposed to a random matching. This
independence between the choice of vertices is crucial in these lower bounds but at the same time
working with such a distribution breaks multiple of our reductions (there are other minor differences
as well, for instance, we will consider the lower bound directly for streaming algorithms to obtain
(slightly) improved bounds but this is similar to [GM09]). As such, this final step of our proof
is to show a new lower bound for the pointer chasing over the desired distribution, following the
proofs of [GM09,Yeh16] with some key modifications, in particular to allow for handling random
matchings. We prove the following proposition, which implies Lemma 4.11.

Proposition 4.12. Consider a p-pass s-space streaming algorithm for PCm,b over random (m, b)-
layered graphs with matchings M1, . . . ,Mb given in the stream Mb || · · · ||M1. For γ ∈ (0, 1/2), if

the algorithm succeeds with probability at least 1/2 + γ then either p > b− 1 or s = Ω
(
γ4

b5
·m

)
.

20

This is a good place to point out concretely why we need step two of our approach in Lemma 4.9,
instead of simply applying Proposition 4.12 directly to our original PC problem in the reduction
of Lemma 4.6. This is because the best advantage over random guessing i.e., parameter γ, this
lower bound can provide is ≪ (1

m)1/4 to give any meaningful space bound. Indeed, none of the other
pointer chasing lower bounds such as [GM09,NW91, PRV99,Yeh16] can provide any meaningful
guarantees when γ ≈ 1

m while we need an almost-linear lower bound for γ < 1
m to apply our

reduction in Lemma 4.6. As such, the hardness amplification step of Lemma 4.9 is the crucial step
in our approach.

We postpone the proof of Proposition 4.12 to Section 6 to keep the flow of the current argument
and instead show how Lemma 4.11 follows immediately from this.

Proof of Lemma 4.11. Let m = m̂, b = b̂, and γ = 1
10m̂1/ℓ . The distribution µPC is the same as the

hard distribution of Proposition 4.12. As such, if A solves PCm̂,b̂ with probability of success at

least 1
2 +

1
10m̂1/ℓ = 1

2 + γ, then, by Proposition 4.12, either p > b̂− 1 or

s = Ω(
γ4

b̂5
· m̂) = Ω(

1

b̂5
· m̂1−4/ℓ),

concluding the proof.

4.6 Putting Everything Together: Proof of Theorem 2

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let A be a p-pass s-space streaming algorithm for NGCn,k with probability
of success at least 2/3 over the distribution µPC. Let us go over each of the three steps in our
approach below.

• Step one: By Lemma 4.6, existence of A implies a p-pass s-space streaming algorithm B for
PCm,b on µPC for even m := Θ(n/k) and b := k−2

2 with probability of success at least 1
2 +

1
6m .

• Step two: Pick ℓ := b−1
2p+4 . By Lemma 4.6, existence of B implies a p-pass s-space streaming

algorithm C for PCm̂,b̂ on µPC for m̂ = m
2 and b̂ = b−1

2ℓ − 1 = p + 1 with probability of success

at least 1
2 ·

(
1 + (2

6m)1/ℓ
)
≥ 1

2 + 1
10m̂1/ℓ .

Note that m is even by the guarantee of previous part and b− 1 divides 2ℓ by the choice of ℓ so
we can indeed apply Lemma 4.6 in this step.

• Step three: By Lemma 4.11, considering C is a p-pass s-space streaming algorithm for PCm̂,b̂

with probability of success at least 1
2 + 1

10m̂1/ℓ and p = b̂− 1, we have that s = Ω(1
b̂5

· m̂1−4/ℓ).

We can now retrace these parameters to the original parameters n, k of NGCn,k. Firstly,

m̂ = Θ(m) = Θ(n/k) and b̂ = p+ 1. Secondly,

ℓ =
b− 1

2p+ 4
=

(k − 2)/2 − 1

2p+ 4
=

k − 4

4p+ 8
.

As such, the lower bound on the space complexity of all algorithms A,B and C above translates to

s = Ω

(
1

p5
· (n/k)1−

4p+8

k−4

)
= Ω

(
1

p5
· (n/k)1−O(p/k)

)
.

21

This proves Theorem 2 for infinitely many values of k ∈ N
+, i.e., the ones where k−4

4p+8 is an integer.

We now extend this lower bound to all values of k. Given any integer k, find the largest integer

k̃ ≤ k so that k̃−4
4p+8 is an integer. Clearly, k̃ = Θ(k). Sample a graph G from µNGC of Distribution 1

for parameters n and k̃. Recall that in step ((ii)c) of Distribution 1, we connect the sets S1 to S3,
and S2 to S4 using identity perfect matchings. We now replace each of these edges with a path of
length k− k̃+1 (or equivalently, put k− k̃ new vertices in the middle of each path). This can only
increase the number of vertices by a constant factor.

In this new graph, the length of each original k̃-cycle becomes (k̃ − 1) + k − k̃ + 1 = k, and
each 2k̃-cycle becomes 2(k̃ − 1) + 2(k − k̃ + 1) = 2k. As such, we can apply the lower bound for
parameters n and k̃ to this graph as well and since the number of vertices and k are asymptotically
the same, we obtain the desired lower bound. This finalizes the proof of Theorem 2.

We conclude this section by stating a corollary (of the proof) of Theorem 2 and Remark 4.5
that we will use in some of our reductions (and can also be useful for future reductions from NGC).

Corollary 4.13. For every k ∈ N
+, the lower bound of Theorem 2 continues to hold even if we

additionally provide the following information to the algorithm beforehand:

(i) One endpoint of every noise path in the graph G;

(ii) A set of t four-tuples of vertices (u1, u2, u3, u4) such that in the k-cycle case u1, u2 and u3, u4
belong to two disjoint k-cycles each, while in the 2k-cycle case, all belong to the same 2k-cycle.

Moreover, this lower bound also hold when the graph is directed with directed k-cycles and (k− 1)-
paths or directed 2k-cycles and (k − 1)-paths.

Proof. The first two parts follow immediately from Remark 4.5 as when proving the lower bound
for Distribution 1, we anyway assume this information was known by the streaming algorithm.
The last part follows because we can alter Distribution 1 to direct the edges from the first layer
to the last one and back (left-to-right for “inside” edges in Figure 4 and right-to-left for “outside”
ones), which makes the cycles and paths directed. Again, the lower bound holds verbatim for this
distribution as well because the partitioning of vertices in the layers are fixed in Distribution 1 and
so the direction of the edges does not reveal any new information to the algorithm.

5 Other Graph Streaming Lower Bounds via Reductions

We now present several reductions fromNGC for establishing graph streaming lower bounds. These
results collectively formalize Result 2. Our reductions are similar in spirit to the ones in prior work
and particularly [AKSY20] (based on their One-or-Many-Cycles problem which is another variant
of gap cycle counting problems); the main novelty here is how we can handle the “noise” part
of NGC in the reductions but this is not particularly challenging (and become mostly relevant
to problems such as minimum weight spanning tree or property testing of connectivity). In the
following, we will define each problem and present the most relevant prior work, our new result,
and a short discussion on whether our result is/seems to be optimal or not. We refer the interested
reader to [AKSY20, Section 7 and Appendix B] for a comprehensive summary of the prior results
on the problems studied in this section.

Before moving on, let us note that the work of [AKSY20] also considers some lower bounds
beyond graph streams for problems such as Schatten norms of matrices or Sorting-by-Block-
Interchange; our new lower bounds also apply to these problems with some additional work but we

22

opted to focus primarily on graph streaming lower bounds in this paper (with the exception of the
Matrix Rank problem which follows immediately from our results).

5.1 Minimum Spanning Tree

Given an undirected graph G = (V,E), with edge-weights w : E → {1, 2, . . . ,W}, the mini-
mum spanning tree problem asks for an estimate to the weight of a spanning tree in G with the
least weight, denoted by MST of G. This is one the earliest problems studied in the stream-
ing setting [FKM+08,AGM12,HP16] and it is known that O(n log (nW)) space and a single-pass
suffices for finding an exact MST [FKM+08] and n1−Θ(ε/W) and a single-pass for finding a (1 + ε)-
approximation [HP16]. On the lower bound front, Ω(n) and n1−O(ε/W) lower bounds for exact
answer and approximate answer via single-pass algorithms where proved in [FKM+08] and [HP16],
respectively. The only known multi-pass lower bound for (1+ε)-approximation is that of [AKSY20]
that proves that no(1)-space needs Ω(log (1/ε)) passes.

We present the following lower bound for this problem:

Theorem 3. For ε ∈ (0, 1) and W ∈ N
+, any p-pass streaming algorithm for (1+ε)-approximation

of weight of MST on n-vertex graphs of maximum weight W with probability at least 2/3 requires

Ω
(

1
p5 · (ε · n/W)1−O(ε·p/W)

)
space. This lower bound continues to hold even on bounded-degree

planar graphs and also implies that Ω(1/ε) passes are needed for no(1)-space even for W = O(1).

Proof. Consider a NGC instance G on n = 6t · k vertices from µNGC for largest integer k ≤ W−1
12ε .

We crucially use Corollary 4.13 to perform this reduction.

Using Corollary 4.13 allows us to assume that the algorithm for G has the extra knowledge of
the following: a collection of t tuples (ui1, u

i
2, u

i
3, u

i
4) for i ∈ [t] (covering the cycles) and 4t vertices

v1, . . . , vt (covering the paths), with the properties specified by Corollary 4.13.

Pick any arbitrary bijection φ : [t] → [t] such that φ(i) 6= i for i ∈ [t], and any arbitrary injective
one-to-three mapping ψ : [t] → [4t]. Create the following graph from G (see Figure 6):

(i) For any i ∈ [t], connect ui1 to u
φ(i)
3 with a new edge of weight 1.

(ii) For any i ∈ [t], connect ui2 to ui4 with a new edge of weight W .

(iii) For any i ∈ [t], let ψ(i) = (ai1, a
i
2, a

i
3, a

i
4) and connect ui1 to vai

1
, vai

2
, vai

3
, vai

4
.

This addition to the graph can be created by any streaming algorithm of Definition 2.1 without
spending any extra space. In the following, we use H to refer to this new graph obtained from G
and H1 to be the subgraph of H consists of only the edges of weight 1 in H.

Firstly, suppose that G belongs to the k-cycle case. We claim that in this case, H1 consists of
t connected components. These components are, for all i ∈ [t], ui1 and its cycle in G (including

ui2), plus u
φ(i)
3 and its cycle in G (including u

φ(i)
3), plus vai

1
, vai

2
, vai

3
, vai

4
and their paths in G for

(ai1, a
i
2, a

i
3, a

i
4) = ψ(i); all these vertices belong to the same connected and all edges going out of

this component only has weight W and thus does not belong to H1.

On the other hand, we claim that when G belongs to the 2k-cycle case, H1 becomes connected.
For all i ∈ [t], the cycle of ui1 also contains ui3; for the sake of argument suppose we add a new
edge of weight 1 between ui1 and ui3 (this cannot change the connectivity of the graph H1). Now
we have two edge-disjoint perfect matchings between

{
ui1 | i ∈ [t]

}
on one side and

{
ui3 | i ∈ [t]

}

on the other side, one from the new (artificial) edges we just added and another from the edges

23

(a) 4-cycle case: “heavy” MST. (b) 8-cycle case: “light” MST.

Figure 6: An illustration of the MST reduction. The vertices inside each block (gray) are one of the four tuples
(ui

1, u
i
2, u

i
3, u

i
4). The middle thick (red) edges have weight W while middle thin (blue) edges have weight 1; both these

groups of edges are added as part of the reduction. The outer thin (black) edges are the original edges of the 4-cycle
vs 8-cycle problem. To avoid clutter, we have not drawn the noise paths, however, they can be thought of as being
partitioned into t groups of size four and connecting group i to vertex ui

1 of each tuple using an edge of weight 1;
clearly, this does not break planarity. The graph on the left has 4 connected component without the heavy edges
while the right one is connected even without those edges.

in H1 between ui1 and u
φ(i)
3 . These two matchings form a Hamiltonian cycle over these sets thus

connecting them all together. As all other vertices of the graph are connected to some ui1, the
entire graph becomes connected.

Now in the first case, any MST of H needs to pick at least t− 1 edges from H \H1 which are
all of weight W , making its weight at least n− t+ (t− 1) ·W (the fact that H itself is connected
is exactly the same H1 being connected in the second case). In the second case, every MST of H
has weight n− 1 as H1 is already connected. The choice of k ensures that the weight of MST of H
in the first case is (1 + ε) times larger that the second case.

As such a p-pass streaming algorithm for (1 + ε)-approximation MST can be used as a distin-
guisher for the two cases of the graph G. By Corollary 4.13, we have that that space complexity
of the algorithm should be

Ω

(
1

p5
· (n/k)1−O(p/k)

)
= Ω

(
1

p5
· (ε · n/W)1−O(ε·p/W)

)
.

The fact that the lower bound holds on bounded-degree planar graphs is simply because the
distribution µNGC in Distribution 1 we use here is supported on graphs which are disjoint-union of
cycles and paths and the set of edges we added increase the degree by at most a constant factor
and does not break the planarity (see Figure 6 for an illustration).

Optimality of Theorem 3? The bounds obtained by our algorithm are actually asymptotically
optimal for any constant W ∈ N

+. To obtain the upper bound, we can run a streaming imple-
mentation of the query algorithm of [CRT05] in O(1/ε) passes and Oε(polylog n) space (see [HP16]
and [MMPS17] for details on simulating these query algorithms in the streaming model – note that
in general, by allowing p passes over the input, we can simulate p rounds of adaptive querying in
a straightforward way).

24

5.2 Maximum Matching Size and Matrix Rank

In the maximum matching size problem, our goal is to output an estimate to the size of the
maximum matching of the input undirected graph G(V,E), i.e. the largest set of vertex-disjoint
edges in G. Maximum matching is among the most studied problems in the streaming setting
and listing the prior results on this problem is beyond the scope of our work. We only note
that there are various algorithms for approximating matching size in polylog(n) space in arbi-
trary graphs in random-order streams [MMPS17,KKS14,KMNT20] or planar graphs in adversarial
streams [EHL+15,CCE+16,CJMM17,MV18]. The best single-pass lower bounds for this problem
rule out < (3/2)-approximation in o(

√
n) space [EHL+15] and (1 + ε)-approximation in n1−O(ε)

space [BS15] (and n2−O(ε) space on dense graphs [AKL17]); the only known multi-pass lower bound
is that (1 + ε)-approximation in no(1)-space needs Ω(log (1/ε)) passes [AKSY20].

We present the following lower bound for this problem:

Theorem 4. For any ε ∈ (0, 1), any p-pass streaming algorithm for (1+ε)-approximation of size of

maximum matching on n-vertex graphs with probability at least 2/3 requires Ω
(

1
p5

· (ε · n)1−O(ε·p)
)

space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also
implies that Ω(1/ε) passes are needed for any no(1)-space algorithm.

Proof. Consider a NGC instance G on n = 6t ·k vertices from µNGC, for largest odd integer k ≤ 1
3ε .

In one case, G contains 2t vertex-disjoint odd cycles of length k each, and 4t vertex disjoint
paths of length k − 1. Any maximum matching of G can match k−1

2 edges from each odd cycle

and k−1
2 from each path of length k − 1. Thus the value of maximum matching in this case is

t · (k − 1) + 2t · (k − 1), which equals (n/2)− (n/2k).

In the other case, G contains t vertex-disjoint even cycles of length 2k each, and 4t vertex-
disjoint paths of length k − 1. Any maximum matching of G can match k edges from each odd
cycle and k−1

2 from each path of length k − 1. Thus the value of maximum matching in this case
is t · k + 2t · (k − 1), which equals (n/2)− (n/2k) + (n/6k) > (n/2) − (n/2k) + ε(n/2).

As such a p-pass streaming algorithm for (1 + ε)-approximation of maximum matching can be
used as a distinguisher for the two cases of the graph G. By Theorem 2, we have that that space
complexity of the algorithm should be

Ω

(
1

p5
· (n/k)1−O(p/k)

)
= Ω

(
1

p5
· (ε · n)1−O(ε·p)

)
.

The fact that the lower bound holds on bounded-degree planar is simply because the distribution
µNGC in Distribution 1 we use here is supported on graphs which are disjoint-union of cycles and
paths, and thus clearly are both bounded-degree and planar.

As a consequence of the standard equivalence between estimating matching size and computing
the rank of the Tutte matrix [Tut47] with entries chosen randomly established in [Lov79] ([BS15]
performs this reduction in the streaming model), we get the following result as well.

Corollary 5.1. For any ε ∈ (0, 1), any p-pass streaming algorithm for (1 + ε)-approximation of

rank n-by-n matrices with probability at least 2/3 requires Ω
(

1
p5 · (ε · n)1−O(ε·p)

)
space. Moreover,

this lower bound continues to hold even on matrices with O(1) entries per row and column and also
implies that Ω(1/ε) passes are needed for any no(1)-space algorithm.

This result considerably strengthen prior bounds in [BS15,LW16,AKSY20] for this fundamental
problem.

25

Optimality of Theorem 4? Theorem 4 provides the currently best multi-pass lower bound for
(1 + ε)-approximation of maximum matching in any family of graphs. We do not know whether
there is a matching upper bound as well, namely, an algorithm with no(1)-space and O(1/ε) passes
on general graphs or the lower bound can be improved further.

There are however already known algorithms for this problem on bounded degree graphs. In
particular, [MMPS17] give a streaming implementation of the query algorithm of [NO08] that
achieves a ±εn additive approximation to maximum matching in Oε(log n) bits of space in a single-
pass in random-streams; the same exact algorithm can also be implemented in this much space and
Oε(1) passes in arbitrary streams although the dependence is much worse than Ω(1/ε) in our lower
bound. Closing this gap remains a fascinating open question.

5.3 Maximum Cut

In the maximum cut problem, our goal is to estimate the largest value of a cut in an input graph
G(V,E) i.e. output an estimate of the size of a bi-partition of vertices maximizing the num-
ber of crossing edges. This problem has been studied extensively in the graph streaming model
in [KKS15,KK15,BDV18,KK19,KKSV17,AKSY20], with best lower bound of < 2-approximation
in Ω(n) space in single-pass graphs [KK19] and (1+ ε)-approximation in no(1)-space in Ω(log (1/ε))
passes [AKSY20].

We present the following lower bound for this problem.

Theorem 5. For any ε ∈ (0, 1), any p-pass streaming algorithm for (1+ ε)-approximation of value

of maximum cut on n-vertex graphs with probability at least 2/3 requires Ω
(

1
p5

· (ε · n)1−O(ε·p)
)

space. Moreover, this lower bound continues to hold even on bounded-degree planar graphs and also
implies that Ω(1/ε) passes are needed for any no(1)-space algorithm.

Proof. Consider a NGC instance G on n = 6t ·k vertices from µNGC for largest odd integer k ≤ 1
3ε .

In one case, G contains 2t vertex-disjoint odd cycles of length k each, and 4t vertex disjoint
paths of length k − 1. Any cut of G must leave out one edge from each cycle, and thus, the value
of maximum cut in this case is 2t · (k − 1) + 4t · (k − 1), which equals n− n/k.

In the other case, G contains t vertex-disjoint even cycles of length 2k each, and 4t vertex-
disjoint paths of length k− 1. Thus, G is bipartite and there exists a cut such that all edges in the
graph cross that cut. The value of maximum cut in this case is t · 2k + 4t · (k − 1), which equals
n− 2n/3k = (n− n/k) + n/3k ≥ (n− n/k) + εn.

As such a p-pass streaming algorithm for (1+ε)-approximation of maximum cut can be used as
a distinguisher for the two cases of the graph G. By Theorem 2, we have that that space complexity
of the algorithm should be

Ω

(
1

p5
· (n/k)1−O(p/k)

)
= Ω

(
1

p5
· (ε · n)1−O(ε·p)

)
.

The fact that the lower bound holds on bounded-degree planar is simply because the distribution
µNGC in Distribution 1 we use here is supported on graphs which are disjoint-union of cycles and
paths, and thus clearly are both bounded-degree and planar.

Optimality of Theorem 5? Theorem 5 provides the currently best multi-pass lower bound for
(1 + ε)-approximation of maximum cut in any family of graphs. We are not sure if it is possible
to obtain a no(1)-space algorithm with O(1/ε)-passes (or for that matter, even independent of n)

26

for this problem on general graphs and thus the lower bound can perhaps be improved further.
We shall remark however that a (1 + ε)-approximation of maximum cut is possible in a single pass
and Õ(n/ε2) space or even o(n) space for sufficiently dense graphs [BDV18] (by computing a cut
sparsifier in streaming; see [AG09]), when we allow exponential time to the algorithms.

On the other hand, we suspect that such an algorithm should be possible for planar graphs (or
at least for the bounded-degree ones – note that finding maximum cut in planar graphs is closely
tied to the maximum weight matching problem and is also solvable in polynomial time [Had75]);
we leave this question as an interesting open problem for future work.

5.4 Maximum Acyclic Subgraph

Given a directed graph G(V,E), the maximum acyclic subgraph problem asks for an estimate
to the size of the largest acyclic subgraph in G measured in the number of edges. This is a
canonical CSP problem (alongside maximum cut) and has been studied in the streaming model
in [GT19,GVV17,CGMV20,AKSY20,CGV20], with the best lower bound of Ω(

√
n) for single-pass

algorithm with < (7/8)-approximation, and Ω(log (1/ε)) pass lower bound for (1+ε)-approximation
algorithms with no(1)-space [AKSY20].

We present the following lower bound for this problem:

Theorem 6. For any ε ∈ (0, 1), any p-pass streaming algorithm for (1 + ε)-approximation of
size of a largest acyclic subgraph on n-vertex directed graphs with probability at least 2/3 requires

Ω
(

1
p5

· (ε · n)1−O(ε·p)
)
space. Moreover, this lower bound continues to hold even on bounded-degree

planar graphs and also implies that Ω(1/ε) passes are needed for any no(1)-space algorithm.

Proof. The proof is along the previous lines, except that we are going to apply it to the directed
version of the problem in Corollary 4.13. Consider a NGC instance G on n = 6t · k vertices drawn
from µNGC, for largest integer k ≤ 1

6ε . In line with Corollary 4.13, we assume that G is directed.

Since cycles of G are disjoint, the size of the largest acyclic subgraph of G is exactly equal
to the number of edges of G minus its number of cycles. The number of edges in our graphs is
2t · k + 4t · (k − 1) in both cases. The number of cycles is 2t in one case and t in another. Thus,
the size of largest acyclic subgraph in one case is 6t · k − 6t = n− (n/k) and in the other case it is
6t · k − 5t = n− (n/k) + (n/6k) = n− (n/k) + ε · n.

As such a p-pass streaming algorithm for size of a largest acyclic subgraph can be used as a
distinguisher for the two cases of the directed graph G. By Corollary 4.13, we have that that space
complexity of the algorithm should be

Ω

(
1

p5
· (n/k)1−O(p/k)

)
= Ω

(
1

p5
· (ε · n)1−O(ε·p)

)
.

The fact that the lower bound holds on bounded-degree planar is simply because the distribution
µNGC in Distribution 1 we use here is supported on graphs which are disjoint-union of cycles and
paths, and thus clearly are both bounded-degree and planar.

Optimality of Theorem 6? Theorem 6 provides the currently best multi-pass lower bound for
(1 + ε)-approximation of maximum acyclic graph in any family of graphs. However, we are not
aware of any algorithmic work on this problem in the streaming setting except for [CGMV20] who
considered the closely related problem of feedback arc set: minimum number of edges that needs
to be deleted from the graph before making it acyclic (this number is equal to the number of edges

27

minus the answer to our original problem). As such, at this point, we do not know much about
the complexity of this problem and consequently optimality of Theorem 6 (note however that a
2-approximation in O(log n) space is trivial by returning half the number of edges).

5.5 Property Testing: Connectivity, Bipartiteness, and Cycle-freeness

Given a graph property P and an ε ∈ (0, 1), an ε-property tester for P is an algorithm that decides
whether an input G has the property P or is ε-far from having P . We define a graph G as being
ε-far from the properties we consider as follows:

• Connectivity: If at least ε · n edges need to be inserted to G to make it connected, then G
is said to be ε-far from being connected;

• Bipartiteness: If at least ε · n edges need to be deleted from G to make it bipartite, then G
is said to be ε-far from being bipartite;

• Cycle-freeness: If at least ε · n edges need to be deleted from G to remove all its cycles,
then G is said to be ε-far from being cycle-free.

Traditionally, these problems have been studied in the query complexity model, but more recently,
they also received an extensive attention in the streaming model [HP16,CFPS20,PS18,MMPS17]. In
particular, [HP16] gave an upper bound of n1−Θ(ε)-space and single-pass for the first two-problems
and n1−Θ(ε2) and single-pass for the latter problem on planar graphs. From the lower bound
perspective, [HP16] proved n1−O(ε) space lower bounds for these problems in single-pass streams
and [AKSY20] proved that no(1)-space algorithms require Ω(log (1/ε)) passes.

We prove the following lower bound for these problems:

Theorem 7. For any ε ∈ (0, 1), any p-pass streaming algorithm which is a ε-property tester for con-
nectivity, bipartiteness, and cycle-freeness on n-vertex graphs with probability at least 2/3 requires

Ω
(

1
p5 · (ε · n)1−O(ε·p)

)
space. Moreover, this lower bound continues to hold even on bounded-degree

planar graphs and also implies that Ω(1/ε) passes are needed for any no(1)-space algorithm.

Proof. The proofs of each of these parts are very similar to the previous results of this section and
thus we only briefly mention each one.

Connectivity: The proof of this part is identical to that of Theorem 3 with the difference that
we no longer add edges of weight W . Thus, in one case the graph has εn connected components
and in the other case it is connected. The rest follows verbatim as Theorem 3.

Bipartiteness: The proof of this part is identical to that of Theorem 5. The graphs in Theorem 5
in one case miss εn edge from any cut, thus need εn of their edges removed to become bipartite,
while in the other case they are bipartite. The rest follows verbatim as Theorem 5.

Cycle-freeness: Consider a NGC instance G on n = 6t · k vertices drawn from µNGC for largest
integer k ≤ 1

6ε . We crucially use Corollary 4.13 to perform this reduction.

Using Corollary 4.13 allows us to assume that the algorithm for G has the extra knowledge
of the following: a collection of t tuples (ui1, u

i
2, u

i
3, u

i
4) for i ∈ [t] (covering the cycles) with the

properties specified by Corollary 4.13 (we do not need the extra knowledge of the paths here).

Given a graph G sampled from µNGC, simply remove one arbitrary edge incident on ui1 for all
i ∈ [t]. This way, ui1 cannot be part of any cycle in G. Now, in one case, G still has t edge-disjoint

28

k-cycles and thus we need to remove t = (n/6k) = εn edges from G to make it cycle-free. In the
other case, every cycle of G has lost an edge and thus it is cycle-free. The lower bound now follows
from Corollary 4.13 as all our other lower bounds in this section.

Optimality of Theorem 7? The bounds obtained by our algorithm for connectivity and cycle-
freeness are asymptotically optimal for any graph by the reductions in [HP16] and our discussion
for Theorem 3. In particular, both problems can be solved in O(1/ε) passes and Oε(polylog(n))
space by simulating the algorithm of [CRT05] in the streaming model. For bipartiteness, we are
not aware of a non-trivial algorithm in arbitrary graphs. However, for planar graphs, the approach
of [HP16] based on the query algorithm of [CMOS11] also immediately implies a tester in O(1/ε2)
passes and Oε(polylog(n)) space for this problem. Bridging this gap remains an open question.

This concludes the list of all lower bounds in Result 2. We remark that for all these problems,
no lower bound better than Ω(log (1/ε)) passes for no(1)-space algorithms were known even for
arbitrary graphs. Our results thus exponentially improves over prior work and in multiple cases
lead to asymptotically optimal bounds as discussed above.

6 A Streaming Lower Bound for Pointer Chasing

We present the proof of Proposition 4.12 in this section.

Proposition (Restatement of Proposition 4.12). Consider a p-pass s-space streaming algorithm
for PCm,b over random (m, b)-layered graphs with matchings M1, . . . ,Mb given in the stream
Mb || · · · ||M1. For γ ∈ (0, 1/2), if the algorithm succeeds with probability at least 1/2 + γ then

either p > b− 1 or s = Ω
(
γ4

b5
·m

)
.

Recall that a (m, b)-layered graph consists of b + 1 layers V1, . . . , Vb+1 of size m each and b
matchings M1, . . . ,Mb where Mi is between Vi and Vi+1. We shall consider each matching as a
bijection Mi : Vi → Vi+1, where for any vertex v ∈ Vi, Mi(v) denotes the matched pair of v in Vi+1.

An instance of PCm,b consists a (m, b)-layered graph, a fixed starting vertex s ∈ V1, and a fixed
equipartition X,Y of Vb+1. We define the pointers P1(s), . . . , Pd+1(s), where Pi(s) is the unique
vertex reachable in Vi from s. This way, we have Pi+1(s) = Mi(Pi(s)). Initially, the pointer P1(s)
is known and the goal is to decide whether Pb+1(s) belongs to X or Y .

We prove the lower bound more generally for b-party communication protocols in the following:

(i) There are b players Qb, . . . , Q1 who receive input matchings Mb, . . . ,M1, respectively.

(ii) The players communicate with each other in rounds via a blackboard. In each round, the
players go in turn with Qb writing a message on the board, followed by Qb−1, all the way
to Q1; these messages are visible to everyone (and are not altered or erased after written).

(iii) For any player Qi and round j, we use Πj
i to denote the message written on the board by

Qi in the j-th round.

(iv) At the end of p rounds, player Q1 outputs the answer on the board, i.e. the last message
Πp

1 is the answer to the problem.

(v) The communication cost of a protocol is the maximum number of bits communicated by
any player in any round.

29

P5(s) s

V5 V1

Black Board

player Q4

with input M4

player Q3

with input M3

player Q2

with input M2

player Q1

with input M1

Figure 7: An illustration of the communication game in the proof of Proposition 4.12 for b = 4. The m+1 internal
players corresponding to the stream M4 (resp. M3, M2, M1) are merged into a single player Q4 (resp. Q3, Q2, Q1),
who gets the matching M4 (resp. M3, M2, M1) as input. The dashed (blue) lines draw the communicated messages
between the players of the game and the blackboard.

Figure 7 gives an illustration of this b player game. Recall that our Definition 2.1 corresponds
to a (m · b)-party communication protocol. Considering the input stream in Proposition 4.12 is
Mb || · · · ||M1, a p-pass s-space streaming algorithm for this stream induces a p-round communica-
tion protocol with cost s in the above game via a simulation argument, if we “merge” the m players
of each matching Mi in the streaming algorithm into a single player Qi. In other words, we impose
the space limitation only on consecutive players between two different matchings. We prove a lower
bound for any p-round communication protocol with cost s that solves the above game over the
input distribution5.

For the rest of the proof, let Π denote a (b − 1)-round protocol with probability of success at
least 1/2 + γ over the distribution of inputs. We are going to lower bound the communication cost
of this protocol. By the easy direction of Yao’s minimax principle (an averaging argument), we can
assume Π is deterministic. We use Πr to denote all the messages communicated in round r, and
Πr

<i, Π
r
>i, and Πr

−i to denote, respectively, the messages communicated by players Q1, . . . , Qi−1,
players Qi+1, . . . , Qb, and players Q1, . . . , Qi−1, Qi+1, . . . , Qb in round r. Finally, for any round
r ∈ [p], define:

Zr = (P1(s), . . . , Pr+1(s),Π
1, . . . ,Πr),

namely, the information “revealed” to all players after round r

Throughout the proof, we use sans serif fonts to denote the random variables for the definitions
above, e.g., Πr

i is a random variable for Πr
i . Also, with a slight abuse of notation, we may use

random variables and their distributions interchangeably. We can now start the proof.

5Note that proving a lower bound in the message passing model is enough to prove a lower bound for a streaming
algorithm, yet here we are proving it in the blackboard model for simplicity; this can only strengthen our result.

30

The main part of the proof is the following inductive lemma. Roughly speaking, it states
that the distribution of (r + 2)-th pointer after r rounds of communication is close to its original
distribution (the protocol is “lagging behind” the pointer it needs to chase – note that the first
pointer to chase is P2(s) as P1(s) is known globally), even conditioned on the information available
to all the players.

Lemma 6.1. Suppose communication cost of π is s <
(

1
100r · (

γ
b)

4 ·m
)
, then, for any r ∈ [p],

E
Zr

‖Pr+2(s)− (Pr+2(s) | Zr)‖tvd < γ · r
b
. (7)

The proof of this lemma is by induction. The base case for r = 0 holds because Z0 = P1(s)
which is fixed deterministically and thus conditioning on it is irrelevant, and Π0 is defined to be
empty (as there is no communication yet); so both LHS and RHS are zero. Suppose Eq (7) is true
up to round r and we prove it for round r itself.

We first show that in round r, the only player that we need to focus on is Qr+1
6. In other

words, we can remove the contribution of all other players in the conditioning of Eq (7).

Claim 6.2. For any choice of Zr = (Zr−1,Π
r
−(r+1),Π

r
r+1, Pr+1(s)),

Pr+2(s) ⊥ Π
r
−(r+1) | Zr−1,Π

r
r+1, Pr+1(s).

Proof. Define M−
r+1 := (M1, . . . ,Mr,Mr+2, . . . ,Mb). We have,

I(Pr+2(s) ;Π
r
−(r+1) | Zr−1,Π

r
r+1,Pr+1(s)) ≤ I(Mr+1 ;M

−
r+1 | Zr−1,Π

r
r+1,Pr+1(s))

(by applying (Fact A.1-(7)) twice as new variables determine old ones (conditionally))

≤ I(Mr+1 ;M
−
r+1),

where the second inequality is a repeated application of Proposition A.4 as each conditioned variable
is a function of exactly one side of the mutual information term (conditioned on the remaining ones);
this is exactly the same argument as in Lemma 3.3 and we omit the tedious calculations.

We now have I(Mr+1 ;M
−
r+1) = 0 as in the input, the matchings are chosen independently. This

means the first term is also zero, proving the desired independence (by Fact A.1-(2)).

By Claim 6.2, we can simplify the LHS of Eq (7) to the following, i.e., get rid of the messages
of all players other than Qr+1.

E
Zr

‖Pr+2(s)− (Pr+2(s) | Zr)‖tvd = E
Zr−1,Πr

r+1
,

Pr+1(s)

‖Pr+2(s)− (Pr+2(s) | Zr−1,Π
r
r+1, Pr+1(s))‖tvd. (8)

We further simplify the RHS of Eq (8) as follows,

E
Zr−1,Πr

r+1
,

Pr+1(s)

‖Pr+2(s)− (Pr+2(s) | Zr−1,Π
r
r+1, Pr+1(s))‖tvd

= E
Zr−1,Πr

r+1

E
v∼Pr+1(s)|Zr−1,Πr

r+1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1,Pr+1(s) = v)‖tvd

(as Pr+2(s) =Mr+1(Pr+1(s)))

6Of course, player Qr would reveal the next pointer; the interesting question we need to understand is that whether
player Qr+1 can also reveal the subsequent pointer in this round.

31

= E
Zr−1,Πr

r+1

E
v∼Pr+1(s)|Zr−1,Πr

r+1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd (9)

= E
Zr−1,Πr

r+1

E
v∼Pr+1(s)|Zr−1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd, (10)

where Eq (9) and Eq (10) hold by the following two claims, respectively.

Claim 6.3. For any choice of Zr−1,Π
r
r+1 and v ∈ Vr+1,

Mr+1(v) ⊥ (Pr+1(s) = v) | Zr−1,Π
r
r+1.

Proof. We have,

I(Mr+1(v) ;Pr+1(s) | Zr−1,Π
r
r+1) ≤ I(Mr+1 ;Mr | Zr−1,Π

r
r+1)

(by data processing inequality (Fact A.1-(7)) as Mr and Zr−1 determine Pr+1(s) (conditionally))

≤ I(Mr+1 ;Mr),

where the inequality, and the rest of the proof is exactly as in Claim 6.2.

Claim 6.4. For any choice of Zr−1,

Pr+1(s) ⊥ Π
r
r+1 | Zr−1.

Proof. We have,

I(Pr+1(s) ;Π
r
r+1 | Zr−1) ≤ I(Mr ;Mr+1 | Zr−1)

(by applying (Fact A.1-(7)) as Mr+1 determines Πr
r+1(s) conditioned on Zr−1)

≤ I(Mr+1 ;Mr),

where the inequality and the rest of the proof is exactly as in Claim 6.2.

So far, we have proved that,

E
Zr

‖Pr+2(s)− (Pr+2(s) | Zr)‖tvd ≤ E
Zr−1,Πr

r+1

E
v∼Pr+1(s)|Zr−1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd.

(11)

We now apply the induction hypothesis to the expected term of v ∼ Pr+1(s) | Zr−1. In particular,
let Ur+1 denote the uniform distribution over Vr+1 which is also Pr+1(s) without any conditioning.
By Fact A.6, we have that,

E
Zr−1,Πr

r+1

E
v∼Pr+1(s)|Zr−1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd

≤ E
Zr−1,Πr

r+1

[
E

v∼Ur+1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd + ‖Ur+1 − (Pr+1(s) | Zr−1)‖tvd

]

= E
Zr−1,Πr

r+1

E
v∼Ur+1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd + γ · r − 1

b
, (12)

by the induction hypothesis for round r − 1 as Ur+1 = Pr+1(s).

This conclude the first half of the proof of Lemma 6.1. In the remaining half, we bound the
first term in the RHS of Eq (12). It is worth mentioning that in the first part, we did not deal with
the fact that input of each player is a random matching as opposed to a random function. So, this

32

part is more or less an extension of two-party approaches for pointer chasing, say [NW91,Yeh16],
to the multi-party setting. From here however, we depart from the prior approaches to take into
account the distribution of each Mi being a random matching as opposed to a random function.

The following claim shows that we can further narrow down the task to player Qr+1 by removing
everything on the RHS that is not function of this player even from prior rounds. Formally,

Claim 6.5. For any choice of (Π1
r+1, . . . ,Π

r
r+1) (messages of Qr+1 so far), and any v ∈ Vr+1,

Mr+1(v) ⊥ Zr−1 | (Π1
r+1, . . . ,Π

r
r+1).

Proof. We have,

I(Mr+1(v) ;Zr−1 | Π1
r+1, . . . ,Π

r
r+1) = I(Mr+1(v) ;Π

1
−(r+1), . . . ,Π

r
−(r+1),P1(s), . . . ,Pr(s) | Π1

r+1, . . . ,Π
r
r+1)

(these are the remaining variables in Zr−1 after conditioning)

≤ I(Mr+1 ;M−(r+1) | Π1
r+1, . . . ,Π

r
r+1)

(by data processing inequality (Fact A.1-(7)) as new variables determine old ones)

≤ I(Mr+1 ;M−(r+1) | Π1
>r+1,Π

1
r+1, . . . ,Π

r
r+1)

(by Proposition A.3 as Mr+1 ⊥ Π
1
>r+1 by the independence of players’ inputs)

≤ I(Mr+1 ;M−(r+1) | Π1
<r+1,Π

1
>r+1,Π

1
r+1, . . . ,Π

r
r+1)

(by Proposition A.3 as Mr+1 ⊥ Π
1
<r+1 | Π1

>r+1,Π
1
r+1 by the independence of players’ inputs)

= I(Mr+1 ;M−(r+1) | Π1,Π2
r+1, . . . ,Π

r
r+1)

(as Π1
<r+1,Π

1
>r+1,Π

1
r+1 = Π

1)

≤ I(Mr+1 ;M−(r+1) | Π1, . . . ,Πr)

(using exactly the same argument as above)

≤ I(Mr+1 ;M−(r+1)),

where the inequality and the rest of the proof is exactly as in Claim 6.2.

By Claim 6.5, we can simplify the first term of RHS of Eq (12) as follows:

E
Zr−1,Πr

r+1

E
v∼Ur+1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd

= E
Zr−1,Πr

r+1

E
v∼Ur+1

‖Pr+2(s)− (Mr+1(v) | Π1
r+1, . . . ,Π

r
r+1)‖tvd

= E
Π1

r+1
,...,Πr

r+1

E
v∼Ur+1

‖Pr+2(s)− (Mr+1(v) | Π1
r+1, . . . ,Π

r
r+1)‖tvd.

Notice that now the RHS of the above term is purely a function of player Qr+1. Abstractly, the
question is to understand how much Qr+1 can change the distribution of a random edge in their
input by their messages in the first r rounds. Intuitively, this should not be much if the size of
messages are small. We now formalize this in the following lemma.

Lemma 6.6. Assuming communication cost of π is s <
(

1
100r · (

γ
b)

4 ·m
)
,

E
Π1

r+1
,...,Πr

r+1

E
v∼Ur+1

‖Pr+2(s)− (Mr+1(v) | Π1
r+1, . . . ,Π

r
r+1)‖tvd < γ · 1

b
.

33

Proof. To avoid the clutter, throughout this proof (only), we are going to drop all the subscripts
and superscripts on r and in particular denote:

Q := Qr+1 (the player Qr+1 we are focusing on)

Π := Π1
r+1, . . . ,Π

r
r+1 (the messages of player Qr+1)

M :=Mr+1 (the input of player Qr+1 which is a random matching)

D := Vr+1 (domain of Mr+1 interpreted as a function)

R := Vr+2 (range of Mr+1 interpreted as a function)

UD = Ur+1 (uniform distribution on the domain D)

UR = Pr+2(s) (uniform distribution on the range R).

Thus, with this notation, our goal is to prove that

E
Π

E
v∼UD

‖UR − (M(v) | Π)‖tvd ≤ γ · 1
b
.

Firstly, by Pinsker’s inequality (Fact A.8),

E
Π

E
v∼UD

‖UR − (M(v) | Π)‖tvd = E
Π

E
v∼UD

‖(M(v) | Π)−M(v)‖tvd

(symmetry of ‖ − ‖tvd and since unconditional distribution of M(v) = UR for all v)

≤ E
Π

E
v∼UD

√
1

2
· D(M(v) | Π || M(v)) (by Fact A.8)

≤
√

1

2
E
Π

E
v∼UD

D(M(v) | Π || M(v)) (by concavity of
√· and Jensen’s inequality)

=

√
1

2
· 1

|D| ·
∑

v∈D

E
Π
D(M(v) | Π || M(v)) (as UD is uniform distribution over D)

=

√
1

2
· 1

|D| ·
∑

v∈D

I(M(v) ;Π), (13)

where the last inequality is by Fact A.5. We thus need to bound the mutual information in the
RHS above. For any v ∈ D,

I(M(v) ;Π) = H(M(v))−H(M(v) | Π) = log |D| −H(M(v) | Π), (14)

as M(v) is uniform over D and thus we can apply Fact A.1-(1). Let us take a quick detour that
would help put the rest of the argument in some context.

Remark. It is tempting now to apply the sub-additivity of entropy (Fact A.1-(4)) to have,

∑

v

H(M(v) | Π) ≥ H(M | Π) ≥ H(M)−H(Π);

the problem with this approach is that M is a random matching and not a random function and thus
H(M) = log (|D|!) = |D| log |D| − Θ(|D|) by Stirling’s approximation. This means that ignoring
even subtraction of H(Π), which means even if Q does not communicate(!), the bound we get on
the average entropy is log |D| − Θ(1); plugging this in Eq (14) will bound the information term by
Θ(1) which is too much (and quite loose as without Π, this term should be zero).

34

We will use Entropy Subset Inequality7 of Fact A.2 to bound Eq (14). Let β ≤ |D| /2 be an
integer to be determined later. For any S ⊆ D, define MS := {M(v) | v ∈ S}. By Entropy Subset
Inequality (Fact A.2),

1

|D|
∑

v∈D

H(M(v) | Πr) ≥
1

(|D|
β

)
∑

S⊆D:|S|=β

H(MS | Π)
β

≥ 1
(|D|

β

)
∑

S⊆D:|S|=β

H(MS)−H(Π)

β

(by the chain rule of entropy (Fact A.1-(5)))

=
log

(
|D|!

(|D|−β)!

)
−H(Π)

β
(because MS is a uniform partial matching with one endpoint in S)

≥ log (|D| − β)− H(Π)

β
(as a!

(a−b)! ≥ (a− b)b)

≥ log (|D| − β)− r · s
β
.

(as Π consists of r messages of size s bits each and by using Fact A.1-(1))

The rest of the proof is simply calculations. By plugging this bound in Eq (14), we have,

1

|D| ·
∑

v∈D

I(Mr(v) ;Π) ≤ log |D| − log (|D| − β) +
r · s
β

= log

(
1 +

β

|D| − β

)
+
r · s
β

≤ β

|D| − β
· log (e) + r · s

β
(as 1 + x ≤ ex)

≤ 4β

|D| +
r · s
β
. (as β ≤ |D| /2 and log(e) ≤ 2)

We can now set β =
√
r · s · |D| < |D| /2 and obtain that

1

|D| ·
∑

v∈D

I(Mr(v) ;Π) ≤ 5

√
r · s
|D| .

Plugging in further in Eq (13) proves that,

E
Π

E
v∼UD

‖UR − (M(v) | Π)‖tvd ≤
√

1

2
· 5

√
r · s
|D| < γ · 1

b
,

as s <
(

1
100r · (

γ
b)

4 ·m
)
and |D| = m. This concludes the proof. Lemma 6.6

By using Lemma 6.6 and Claim 6.5 in Eq (12), we obtain that,

E
Zr−1,Πr

r+1

E
v∼Pr+1(s)|Zr−1

‖Pr+2(s)− (Mr+1(v) | Zr−1,Π
r
r+1)‖tvd < γ · 1

b
+ γ · r − 1

b
= γ · r

b
.

7We note that this part of the proof can also be done using a similar argument in [AKSY20] on high-entropy
random permutations, although we found the current approach simpler and more direct.

35

Plugging this bound into Eq (11), we get that,

E
Zr

‖Pr+2(s)− (Pr+2(s) | Zr)‖tvd < γ · r
b
,

finalizing the proof of the induction step and thus Lemma 6.1.

We now conclude the proof of Proposition 4.12 as follows.

Proof of Proposition 4.12. If p > b− 1 we are already done so let us assume that the total number
of rounds of the protocol (or passes of the streaming algorithm) is p = b − 1. By Lemma 6.1 for
the last round r = p = b− 1,

E
Zp

‖Pb+1(s)− (Pb+1(s) | Zp)‖tvd < γ.

On the other hand, the last message of the protocol π, included in Zp, specifies the answer, which
depends on Pb+1. Let O(Zp) ∈ {X,Y } denote the answer of the protocol. As such,

Pr (π is correct) = E
Zp

Pr
Pb+1|Zp

(Pd+1(s) ∈ O(Zp))

= E
Zp

Pr
Pb+1|Zp

(Pb+1(s) ∈ a fixed choice of X or Y)

(because O(Zp) is deterministically fixed)

≤ E
Zp

[
Pr
Pb+1

(Pb+1(s) ∈ a fixed choice of X or Y) + ‖Pb+1(s)− (Pb+1(s) | Zp)‖tvd
]

(by Fact A.6)

=
1

2
+ E

Zp

‖Pb+1(s)− (Pb+1(s) | Zp)‖tvd
(as X,Y is an equipartition of Vb+1 and Pb+1(s) is uniform over Vb+1)

<
1

2
+ γ,

by the first equation above. This concludes the proof.

Acknowledgement

The first author is grateful to Gillat Kol, Raghuvansh Saxena, and Huacheng Yu, for their previous
collaboration in [AKSY20] that was the starting point of this project, and to David Wajc and
Huacheng Yu for illuminating discussions regarding the Streaming XOR Lemma that also prompted
us to include Appendix B.

References

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages
265–276, 2019. 4

[AG09] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In
Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, pages 328–338, 2009. 27

36

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the Twenty-third Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’12, pages 459–467. SIAM, 2012. 23

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size
in graph streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1723–1742, 2017. 1, 2, 25

[AKSY20] Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. Multi-pass graph
streaming lower bounds for cycle counting, max-cut, matching size, and other problems.
CoRR, abs/2009.03038. To appear in FOCS 2020, 2020. ii, 1, 2, 3, 22, 23, 25, 26, 27,
28, 35, 36, 49, 50

[BC17] Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for counting
triangles and other substructures in graph streams. In 34th Symposium on Theoretical
Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany,
pages 11:1–11:14, 2017. 1

[BCK+18] Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, Yi Li, David P.
Woodruff, and Lin F. Yang. Matrix norms in data streams: Faster, multi-pass and
row-order. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 648–657,
2018. 2

[BDV18] Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear algo-
rithms for MAXCUT and correlation clustering. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pages 16:1–16:14, 2018. 1, 26, 27

[BFKP16] Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Triangle
counting in dynamic graph streams. Algorithmica, 76(1):259–278, 2016. 1

[BGGS19] Mitali Bafna, Badih Ghazi, Noah Golowich, and Madhu Sudan. Communication-rounds
tradeoffs for common randomness and secret key generation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1861–1871, 2019. 4

[BGW20] Mark Braverman, Sumegha Garg, and David P. Woodruff. The coin problem with
applications to data streams. Electron. Colloquium Comput. Complex., 27. To appear
in FOCS 2020, 2020. 4

[BJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. In 43rd Symposium on
Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Proceedings,
pages 209–218, 2002. 4

[BKLS20] Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasulu. A
strong XOR lemma for randomized query complexity. CoRR, abs/2007.05580, 2020. 4,
47

37

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Fran-
cisco, CA, USA., pages 623–632, 2002. 1

[BOV13] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting
triangles in the streaming model? In Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part I, pages 244–254, 2013. 1

[BRWY13] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products
in communication complexity. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, pages 746–755, 2013. 4

[BS15] Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium,
September 14-16, 2015, Proceedings, pages 263–274, 2015. 2, 3, 25

[CCE+16] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via
sampling with applications to finding matchings and related problems in dynamic graph
streams. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, January 10-12, 2016, pages 1326–1344, 2016. 1, 25

[CCM08] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds
for communication and stream computation. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, May 17-20, 2008, pages 641–650, 2008. 4

[CFPS20] Artur Czumaj, Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Testable
properties in general graphs and random order streaming. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, pages 16:1–16:20,
2020. 1, 3, 28

[CGMV20] Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex
ordering problems in directed graph streams. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 1786–1802, 2020. 27

[CGV20] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal streaming
approximations for all boolean max-2csps. CoRR, abs/2004.11796. To appear in FOCS
2020, 2020. 1, 2, 3, 27

[CJ17] Graham Cormode and Hossein Jowhari. A second look at counting triangles in graph
streams (corrected). Theor. Comput. Sci., 683:22–30, 2017. 1

[CJMM17] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan.
The sparse awakens: Streaming algorithms for matching size estimation in sparse
graphs. In 25th Annual European Symposium on Algorithms, ESA 2017, September
4-6, 2017, pages 29:1–29:15, 2017. 1, 25

38

[CMOS11] Artur Czumaj, Morteza Monemizadeh, Krzysztof Onak, and Christian Sohler. Planar
graphs: Random walks and bipartiteness testing. In IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 423–432, 2011. 29

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005. 1,
24, 29

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley,
2006. 44

[EHL+15] Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monem-
izadeh, and Krzysztof Onak. Streaming algorithms for estimating the matching size
in planar graphs and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, January 4-6, 2015, pages 1217–1233,
2015. 1, 2, 3, 25

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-
3):207–216, 2005. 3

[FKM+08] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. Graph distances in the data-stream model. SIAM J. Comput., 38(5):1709–
1727, 2008. 4, 23

[GH09] Sudipto Guha and Zhiyi Huang. Revisiting the direct sum theorem and space lower
bounds in random order streams. In Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I, pages 513–524, 2009. 4

[GKK+07] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separations for one-way quantum communication complexity, with appli-
cations to cryptography. STOC, pages 516–525, 2007. 1

[GM08] Sudipto Guha and Andrew McGregor. Tight lower bounds for multi-pass stream com-
putation via pass elimination. In Automata, Languages and Programming, 35th In-
ternational Colloquium, ICALP 2008, July 7-11, 2008, Proceedings, Part I: Tack A:
Algorithms, Automata, Complexity, and Games, pages 760–772, 2008. 4, 47

[GM09] Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile
estimation in random-order streams. SIAM J. Comput., 38(5):2044–2059, 2009. 4, 15,
20, 21

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. In Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski,
Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron,
Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pages
273–301. 2011. 3

39

[GO13] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass
graph processing. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013. 4

[GRZ20] Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations. CoRR,
abs/2007.03631, 2020. 3, 4

[GS20] Noah Golowich and Madhu Sudan. Round complexity of common randomness gener-
ation: The amortized setting. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
1076–1095, 2020. 4

[GT19] Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of
Technology, Cambridge, MA, USA, pages 5:1–5:12, 2019. 1, 2, 27

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming com-
plexity of approximating max 2csp and max acyclic subgraph. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages 8:1–8:19, 2017.
1, 2, 3, 27

[Had75] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM J.
Comput., pages 221–225, 1975. 27

[HP16] Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o(n) space. In
43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, pages 18:1–18:16, 2016. 1, 2, 3, 23, 24, 28, 29

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th
Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA,
23-25 October 1995, pages 538–545, 1995. 3

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
220–229, 1997. 3

[JPY12] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for the
two-party bounded-round public-coin communication complexity. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, October 20-23, 2012,
pages 167–176, 2012. 4

[JRS03] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in
communication complexity via message compression. In Automata, Languages and
Programming, 30th International Colloquium, ICALP 2003, June 30 - July 4, 2003.
Proceedings, pages 300–315, 2003. 4

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 367–376, 2015. 1, 2, 3, 26

40

[KK19] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approx-
imating MAX-CUT. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
277–288, 2019. 1, 2, 26

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of graph
and hypergraph counting. In 59th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 556–567, 2018.
2

[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 734–751, 2014. 1, 3, 25

[KKS15] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for
approximating MAX-CUT. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015, pages 1263–1282, 2015. 1, 2, 3, 26

[KKSV17] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 + Ω(1))-
approximation to MAX-CUT requires linear space. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 1703–1722, 2017. 1, 2, 26

[KMNT20] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space
efficient approximation to maximum matching size from uniform edge samples. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 1753–1772, 2020. 3, 25

[KMPV19] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The com-
plexity of counting cycles in the adjacency list streaming model. In Proceedings of the
38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 119–133,
2019. 1

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997. 5, 47

[Lev85] Leonid A. Levin. One-way functions and pseudorandom generators. In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 363–365, 1985. 3

[LNW14] Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might
as well be linear sketches. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 174–183, 2014. 4

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In Fundamen-
tals of Computation Theory, FCT 1979, Proceedings of the Conference on Algebraic,
Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-Rietz,
Germany, September 17-21, 1979, pages 565–574, 1979. 25

41

[LW16] Yi Li and David P. Woodruff. On approximating functions of the singular values in
a stream. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 726–739,
2016. 2, 25

[MMPS17] Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable
bounded degree graph properties are random order streamable. In 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14,
2017, Warsaw, Poland, pages 131:1–131:14, 2017. 1, 3, 24, 25, 26, 28

[MV16] Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2016, September 7-9, 2016, pages 17:1–17:12, 2016. 1

[MV18] Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming al-
gorithm for matchings in low arboricity graphs. In 1st Symposium on Simplicity in
Algorithms, SOSA 2018, January 7-10, 2018, pages 14:1–14:4, 2018. 1, 25

[MVV16] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting
triangles in data streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 401–411, 2016. 1

[MWY13] Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Beating the direct sum
theorem in communication complexity with implications for sketching. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1738–1756, 2013. 4

[NO08] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 327–336, 2008. 26

[NW91] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8,
1991, New Orleans, Louisiana, USA, pages 419–429, 1991. 4, 15, 20, 21, 33

[PRV99] Stephen Ponzio, Jaikumar Radhakrishnan, and Srinivasan Venkatesh. The communi-
cation complexity of pointer chasing: Applications of entropy and sampling. In Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 602–611, 1999. 4, 15, 20, 21

[PS18] Pan Peng and Christian Sohler. Estimating graph parameters from random order
streams. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
2449–2466, 2018. 1, 3, 28

[PVZ12] Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand mul-
tiparty communication complexity, made easy. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 486–501, 2012. 4

42

[RS16] Anup Rao and Makrand Sinha. A direct-sum theorem for read-once branching
programs. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris,
France, pages 44:1–44:15, 2016. 4

[Sha03] Ronen Shaltiel. Towards proving strong direct product theorems. Comput. Complex.,
12(1-2):1–22, 2003. 4, 48

[She11] Alexander A. Sherstov. Strong direct product theorems for quantum communication
and query complexity. In Proceedings of the 43rd ACM Symposium on Theory of Com-
puting, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 41–50, 2011. 4

[TS78] H Te Sun. Nonnegative entropy measures of multivariate symmetric correlations. 1978.
45

[Tut47] William T Tutte. The factorization of linear graphs. Journal of the London Mathemat-
ical Society, 1(2):107–111, 1947. 25

[VW08] Emanuele Viola and Avi Wigderson. Norms, XOR lemmas, and lower bounds for
polynomials and protocols. Theory Comput., 4(1):137–168, 2008. 4

[VY11] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by
reversals, and other problems. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, January 23-25, 2011, pages
11–25, 2011. 1, 2

[Wei15] Omri Weinstein. Information complexity and the quest for interactive compression.
SIGACT News, 46(2):41–64, 2015. 50

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91, 1982. 1, 3

[Yeh16] Amir Yehudayoff. Pointer chasing via triangular discrimination. Electronic Colloquium
on Computational Complexity (ECCC), 23:151, 2016. 4, 15, 20, 21, 33, 47

43

Appendix

A Basic Tools From Information Theory

We now briefly introduce some definitions and facts from information theory that are needed in
this paper. We refer the interested reader to the text by Cover and Thomas [CT06] for an excellent
introduction to this field.

For a random variable A, we use supp(A) to denote the support of A and dist(A) to denote
its distribution. When it is clear from the context, we may abuse the notation and use A directly
instead of dist(A), for example, write A ∼ A to mean A ∼ dist(A), i.e., A is sampled from the
distribution of random variable A.

We denote the Shannon Entropy of a random variable A by H(A), which is defined as:

H(A) :=
∑

A∈supp(A)

Pr (A = A) · log (1/Pr (A = A)) (15)

The conditional entropy of A conditioned on B is denoted by H(A | B) and defined as:

H(A | B) := E
B∼B

[H(A | B = B)] , (16)

where H(A | B = B) is defined in a standard way by using the distribution of A conditioned on the
event B = B in Eq (15).

The mutual information of two random variables A and B is denoted by I(A ;B) and defined as:

I(A ;B) := H(A)−H(A | B) = H(B)−H(B | A). (17)

The conditional mutual information I(A ;B | C) is H(A | C)−H(A | B,C) and hence by linearity of
expectation:

I(A ;B | C) = E
C∼C

[I(A ;B | C = C)] . (18)

A.1 Useful Properties of Entropy and Mutual Information

We use the following basic properties of entropy and mutual information throughout.

Fact A.1 (cf. [CT06]). Let A, B, C, and D be four (possibly correlated) random variables.

1. 0 ≤ H(A) ≤ log |supp(A)|. The right equality holds iff dist(A) is uniform.

2. I(A ;B | C) ≥ 0. The equality holds iff A and B are independent conditioned on C.

3. Conditioning on a random variable reduces entropy: H(A | B,C) ≤ H(A | B). The equality
holds iff A ⊥ C | B.

4. Subadditivity of entropy: H(A,B | C) ≤ H(A | C) +H(B | C).

5. Chain rule for entropy: H(A,B | C) = H(A | C) +H(B | C,A).

6. Chain rule for mutual information: I(A,B ;C | D) = I(A ;C | D) + I(B ;C | A,D).

7. Data processing inequality: for a deterministic function f(A), I(f(A) ;B | C) ≤ I(A ;B | C).

44

We also use the following generalization of sub-additivity of entropy.

Fact A.2 (Entropy Subset Inequality [TS78]). For any set of n random variables X1, . . . ,Xn and
set S ⊆ [n], we define XS := {Xi | i ∈ S}. For every k ∈ [n], define:

H
(k)(X) :=

1(n
k

)
∑

S⊆[n]:|S|=k

H(XS)

k
.

Then, H(1)(X) ≥ · · · ≥ H
(n)(X). This equation also holds for conditional entropy.

We also use the following two standard propositions, regarding the effect of conditioning on
mutual information.

Proposition A.3. For random variables A,B,C,D, if A ⊥ D | C, then,

I(A ;B | C) ≤ I(A ;B | C,D).

Proof. Since A and D are independent conditioned on C, by Fact A.1-(3), H(A | C) = H(A | C,D)
and H(A | C,B) ≥ H(A | C,B,D). We have,

I(A ;B | C) = H(A | C)−H(A | C,B) = H(A | C,D)−H(A | C,B)
≤ H(A | C,D)−H(A | C,B,D) = I(A ;B | C,D).

Proposition A.4. For random variables A,B,C,D, if A ⊥ D | B,C, then,

I(A ;B | C) ≥ I(A ;B | C,D).

Proof. Since A ⊥ D | B,C, by Fact A.1-(3), H(A | B,C) = H(A | B,C,D). Moreover, since
conditioning can only reduce the entropy (again by Fact A.1-(3)),

I(A ;B | C) = H(A | C)−H(A | B,C) ≥ H(A | D,C)−H(A | B,C)
= H(A | D,C)−H(A | B,C,D) = I(A ;B | C,D).

A.2 Measures of Distance Between Distributions

We will use the following two standard measures of distance (or divergence) between distributions.

KL-divergence. For two distributions µ and ν, the Kullback-Leibler divergence between µ and
ν is denoted by D(µ || ν) and defined as:

D(µ || ν) := E
a∼µ

[
log

Prµ(a)

Prν(a)

]
. (19)

The following states the relation between mutual information and KL-divergence.

Fact A.5. For random variables A,B,C,

I(A ;B | C) = E
(b,c)∼(B,C)

[
D(dist(A | B = b,C = c) || dist(A | C = c))

]
.

45

Total variation distance. We denote the total variation distance between two distributions µ
and ν on the same support Ω by ‖µ − ν‖tvd, defined as:

‖µ − ν‖tvd := max
Ω′⊆Ω

(
µ(Ω′)− ν(Ω′)

)
=

1

2
·
∑

x∈Ω

|µ(x)− ν(x)| . (20)

We use the following basic properties of total variation distance.

Fact A.6. Suppose µ and ν are two distributions for E, then, Prµ(E) ≤ Prν(E) + ‖µ − ν‖tvd.
Fact A.7. Suppose µ and ν are two distributions over the same support Ω; then, given one sample
s from either µ or ν, the probability we can decide whether s came from µ or ν is 1

2 +
1
2 · ‖µ−ν‖tvd.

Finally, the following Pinsker’s inequality bounds the total variation distance between two
distributions based on their KL-divergence,

Fact A.8 (Pinsker’s inequality). For any distributions µ and ν, ‖µ− ν‖tvd ≤
√

1
2 · D(µ || ν).

A.3 XOR and Biases

For a 0/1 random variable X, we define the bias of X as

bias(X) := |Pr(X = 0)− Pr(X = 1)| = 2argmax
x∈{0,1}

Pr(X = x)− 1,

which measures how much X is biased a particular value. For b := argmaxx∈{0,1} Pr(X = x):

Pr (X = x) =

{
1
2 + bias(X)

2 if x = b
1
2 − bias(X)

2 if x = 1− b
.

We use the following standard equality that shows taking XOR of independent random variables
significantly dampen the resulting bias8.

Proposition A.9. For independent random variables X1, . . . ,Xt,

bias(X1 ⊕ · · · ⊕ Xt) =
t∏

i=1

bias(Xi).

Proof. Let βi := bias(Xi) and bi = argmaxx∈{0,1} Pr[Xi = x], and so Pr[Xi = bi] =
1
2(1 + βi). We

prove this proposition by induction. Consider the base case of t = 2. We have,

Pr[X1 ⊕ X2 = b1 ⊕ b2] = Pr[X1 = b1 ∧ X2 = b2] + Pr[X1 = 1− b1 ∧ X2 = 1− b2]

=
1

2
(1 + β1)

1

2
(1 + β2) +

1

2
(1− β1)

1

2
(1− β2)

=
1

4
((1 + β1)(1 + β2) + (1− β1)(1 − β2))

=
1

4
(1 + β1 + β2 + β1β2 + 1− β1 − β2 + β1β2)

=
1

2
(1 + β1β2) =

1

2
(1 + bias(X1)bias(X2)) .

Hence X1 ⊕X2 has bias bias(X1)bias(X2). For the induction step k, we can set Y = X1 ⊕ . . .⊕Xk−1

and by the induction hypothesis, we have bias(Y) = Πk−1
i=1 bias(Xi). We can then apply the above

argument again for random bits Y and Xk, and conclude the proof.
8This is basically the intuition why one would expect any form of XOR Lemma to hold in the first place.

46

B Strong vs Weak XOR Lemmas and Optimality of Theorem 1

The literature on XOR Lemmas distinguishes between the notion of “weak” XOR Lemmas vs
“Strong” XOR Lemmas. Roughly speaking, in a weak XOR Lemma, the goal is to show that the
advantage over random guessing for f⊕ℓ is exponentially smaller than that of f , given the same
resources (or sometimes even less resources). In a strong XOR Lemma however, the goal is to
show that this exponential drop in the advantage happens even if we are given almost ℓ times more
resources than what is needed for solving f itself. The reason to expect strong XOR Lemmas to
hold, and they do hold in certain setting such as query complexity [BKLS20], is that we expect the
ℓ-copy algorithm to have to “spread” its resources across each copies of f and thus get to spend ℓ
times less resources per each individual copy. Which of these two categories our Theorem 1 belongs
to?

Syntactically speaking, our Streaming XOR Lemma is clearly a weak XOR lemma as it uses
the same exact resource of p-pass and s-space for both f and f⊕ℓ. On the other hand, it is easy to
see that one of the resources of interest here, space, is inherently different from the other resources
considered in XOR lemmas such as circuit size, communication cost, or query complexity: unlike
all these resources, space is reusable. As a result, it is pretty simple to show some examples where
Theorem 1 is in fact optimal. For instance:

− Example 1. Let f : {0, 1}2m → {0, 1} be the inner product of the first half and second half of
x ∈ {0, 1}2m, i.e., f(x) =

∑m
i=1 xi · xm+i mod 2.

It follows from standard communication complexity lower bounds of the inner product problem
(see, e.g. [KN97]) that any single-pass m/3-space algorithm for f over the uniform distribution
µ on {0, 1}2m has probability of success ≤ 1/2 + 2−Θ(m).

On the other hand, for the problem f⊕ℓ(x1, . . . , xℓ), there is a trivial single-pass (m + O(1))-
space algorithm that succeeds with probability one: Simply compute each f(xi) using m space
and then maintain a running XOR of these values.

This example shows that in any streaming XOR lemma, we cannot increase the space of the
algorithm for f⊕ℓ by more than a factor of 3. As a result for any ℓ > 3, there is no hope of
getting any strong form of XOR lemma, at least for single pass algorithms.

− Example 2. Let f be a lopsided multi-party pointer chasing problem as follows:

f : [m2]m × [m2]m
2 × · · · [m2]m

2

︸ ︷︷ ︸
r

→ {0, 1} ,

and for a given h : [m2]m → [m2]m
2

and g1, . . . , gr : [m2]m
2 → [m2]m

2

, compute the parity of

h(g1(g2(· · · (gr(1))))).

It again follows from standard communication complexity lower bounds for pointer chasing
(e.g. [Yeh16]; see also [GM08] for extension to multi-party version and streaming) that over the
uniform distribution over h, g1, . . . , gr (with this order of arrival in the stream), any (r−1)-pass
streaming algorithm requires Ωr(m) space while any (r − 2)-pass algorithm requires Ωr(m

2)
space and both bounds are tight (because size of h is small enough to be “shortcut” by an Ω(m)
space algorithm).

Again, let s be such that any (r − 1)-pass algorithm for f with space s only succeeds with
probability, say, ≤ 2/3. It suffices to have s = α(r) ·m for a sufficiently small α(r) as a function

47

of r. Now, for the problem f⊕ℓ, an algorithm that has ℓ ·m space for ℓ > α(r)−1 can solve the
problem even in (r − 2) passes breaking a strong XOR Lemma.

This example shows that in any streaming XOR lemma, we cannot increase the space of the
algorithm for f⊕ℓ by some large factor (which is at least proportional to the number of passes).
Note that we chose f in this example so that the algorithm for f⊕ℓ has to still use (r−2) passes;
we can also play with number of h and g functions in definition of f to change this quantity to
any other number of passes. This suggests that for any number of passes, one cannot hope for
a strong streaming XOR Lemma.

The above examples point out the optimality of Theorem 1 in various cases. More conceptually, the
intuition behind XOR Lemmas is that the naive algorithm that attempts to solve each subproblem
individually (and thus independently), is more or less optimal. In most settings, this corresponds
to a strong XOR Lemma. However, as above examples suggest, in the streaming, even the naive
algorithm that solve each problem individually does not need to spend more resources per each
subproblem as space is reusable. As such, it seems that semantically speaking, our Theorem 1 is
the strongest type of XOR Lemma in our setting9.

Remark B.1. It is worth pointing out the work of Shaltiel [Sha03] who gave several nice examples
in showing limitations of strong XOR Lemmas in general (e.g., circuit complexity, communication
complexity, or query complexity). However, those examples and ours seem entirely different. In
particular, Shaltiel’s examples are based on working with distributions that are “often” easy and
just become hard with small probability, which allows the algorithm for f⊕ℓ to spend more of its
resources on a particular subproblem among the ℓ ones. Our examples do not have such a property
and in fact they hold even for the notion of “fair” algorithms studied in [Sha03] that are algorithms
that use the same amount of resources for each of the ℓ subproblems in f⊕ℓ (and break the examples
of [Sha03]). We believe these differences are rooted in the different nature of space as a resource.

Finally, let us conclude this section by a (rather unrelated) comment about Theorem 1.

Remark B.2. Theorem 1 is stated as a distributional lower bound, which we found more natural
for our purpose in this paper. However, it can also be stated as a worst-case lower bound by applying
Yao’s minimax principle twice: once to get a hard distribution for f , then applying Theorem 1, and
another one to get a worst-case lower bound for f⊕ℓ.

C An Optimal Algorithm for Noisy Gap Cycle Counting

We give a short and simple proof that demonstrate the asymptotic optimality of our lower bounds
for noisy gap cycle counting in Theorem 2.

Proposition C.1. For any p, k ∈ N
+ such that k divides 2p, there is a p-pass streaming algorithm

for Noisy Gap Cycle Counting NGCn,k that uses Op,k((n/k)
1−2p/k · log n) bits of space and outputs

the correct answer with probability at least 2/3.

For simplicity of exposition, we presented Proposition C.1 for the case when 2p | k. One can
trivially extends the bounds to an (n/k)1−O(p/k) algorithm using this result (by picking the p̃ < p
such that 2p̃ | k and running the algorithm for p̃ passes). A bit more careful calculation can also

give a sharper bound of Op,k((n/k)
1− 1

⌈k/2p⌉ log n) for every p ≤ k; we omit the details.

9Although we should note that one can consider more general type of Theorem 1 which, for instance, is defined
by interleaving the streams of subproblems instead of concatenating them; such an approach is not particularly
meaningful for our application in this paper but is an interesting question on its own.

48

Proof of Proposition C.1. Consider the following algorithm:

ALGORITHM 1: An optimal algorithm for the noisy gap cycle counting problem

1: Sample each vertex independently with probability q := 36 · (n/k)−2p/k to get a set U – if
|U | > 100q · n terminate and return FAIL.

2: For every vertex ui ∈ U , find the depth-p BFS tree of ui in G in p passes.

3: If there is a k-cycle among the visited BFS trees, output G is a “k-cycle case”; otherwise
output it is a “(2k)-cycle case”.

The pass complexity of Algorithm 1 is clearly p. For space complexity, considering the graph
consists of only cycles and paths, every depth-p BFS tree can have at most O(p) vertices and so the
total space needed by the algorithm is O(p |U | log n) = Op,k((n/k)

1−2p/k log n) bits by the condition
on terminating the algorithm.

We now prove the correctness. In the following, for simplicity, we remove the condition in
the algorithm that terminates whenever U is large; as by Markov bound this event happens with
probability 1/100 anyway, this can only change the final probability of success calculated this way
by a value of −1/100. Moreover, considering the algorithm has a one-sided error, i.e., never outputs
“k-cycle” on a graph that does not have a k-cycle, we only need to prove that when the graph has
a k-cycle, the algorithm finds it with probability at least 2/3, which we do in the following.

Recall that n = 6t · k in NGCn,k and we are interested in the case G has 2t vertex-disjoint
k-cycles. Let C1, . . . , C2t denote these cycles. Fix an arbitrary cycle C = (v0, v1, . . . , vk−1) from
this list. Pick the following β := (k/2p) vertices from C: v0, v2·p, v4·p, . . . , v2β·p(= vk). The distance
between any consecutive pairs of vertices in this list inside G is at most 2p and thus their depth-p
BFS trees intersect with each other. As such, if we sample all these vertices in the algorithm, the set
of BFS trees returned by the algorithm contains a k-cycle. As each vertex is sampled independently
with probability q, the probability that this event happens is qβ.

On the other hand, since all cycles C1, . . . , Cβ are vertex-disjoint, the above event happens for
each of them independently. As such, the probability that we do not see a k-cycle is at most

(1− qβ)2t ≤ exp
(
−qβ · 2t

)
= exp

(
−(36 · (k/n)2p/k)k/2p · (n/3k)

)
≤ exp (−12) < 1/100.

As such Algorithm 1 outputs the correct answer with probability at least 1− 2/100 > 2/3.

D A Technical Comparison with the Lower Bound of [AKSY20]

[AKSY20] previously proved a multi-pass lower for the (no-noise) gap cycle counting problem.
Their work starts by proving a lower bound for a generalization of pointer chasing wherein the goal
is to chase multiple pointers simultaneously; this lower bound is also in the low-probability regime,
i.e., 1/poly(n) advantage over random guessing, but only works for single-pass algorithms. This is
then plugged into an intricate round/pass-elimination argument that, informally speaking, shows
that solving the problem in p passes for depth-k pointers is as hard as solving the problem in p− 1
passes but for depth k/2 instead. Applying this step inductively gives an Ω(log k) pass lower bound
for no(1)-space algorithms. A quick technical summary of [AKSY20] is then the following: prove a
“strong” single-pass lower bound first and then increase the number of passes without “weakening”
the lower bound too much. This somewhat the exact opposite of what we do in this paper: we
prove a “weak” multi-pass lower bound first and then plug it into our streaming XOR Lemma to

49

amplify its hardness and obtain a “strong” lower bound via a reduction that slightly reduces the
number of passes. This natural hardness amplification approach leads to exponentially stronger
lower bound of Ω(k) passes for no(1)-space algorithms with a considerably simpler proof.

It is worth pointing out two other differences (both technical and conceptual) as well. Firstly,
owing to the introduction of noise, we obtain a clear reduction from pointer chasing instead of
the implicit connection in [AKSY20] that is scattered throughout the proof. Secondly, we directly
consider streaming algorithms as opposed to working with the two-party communication model
in [AKSY20] and reducing it to streaming only at the end; this is critical in our work as our XOR
Lemma is for streaming algorithms and not (two-party) communication (obtaining XOR Lemmas
in communication complexity is an interesting open question; see, e.g. [Wei15, Open Problem 6.3]).

50

	1 Introduction
	1.1 Gap Cycle Counting With a Little Bit of ``Noise''
	1.2 Graph Streaming Lower Bounds from Noisy Gap Cycle Counting
	1.3 Streaming XOR Lemma

	2 Notation and Preliminaries
	3 Streaming XOR Lemma
	4 The Lower Bound for the Noisy Gap Cycle Counting Problem
	4.1 A Hard Distribution for NGC
	4.2 The High Level Plan
	4.3 Step One: Decorrelating distngc
	4.4 Step Two: Applying the Streaming XOR Lemma
	4.5 Step Three: A Lower Bound for the Single-Copy Problem
	4.6 Putting Everything Together: Proof of thm:ngc

	5 Other Graph Streaming Lower Bounds via Reductions
	5.1 Minimum Spanning Tree
	5.2 Maximum Matching Size and Matrix Rank
	5.3 Maximum Cut
	5.4 Maximum Acyclic Subgraph
	5.5 Property Testing: Connectivity, Bipartiteness, and Cycle-freeness

	6 A Streaming Lower Bound for Pointer Chasing
	A Basic Tools From Information Theory
	A.1 Useful Properties of Entropy and Mutual Information
	A.2 Measures of Distance Between Distributions
	A.3 XOR and Biases

	B Strong vs Weak XOR Lemmas and Optimality of thm:xor-lemma
	C An Optimal Algorithm for Noisy Gap Cycle Counting
	D A Technical Comparison with the Lower Bound of AssadiKSY20

