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ABSTRACT

We present a deterministic (global) mincut algorithm for weighted,

undirected graphs that runs inm1+o(1)
time, answering an open

question of Karger from the 1990s. To obtain our result, we de-

randomize the construction of the skeleton graph in Karger’s near-

linear time mincut algorithm, which is its only randomized com-

ponent. In particular, we partially de-randomize the well-known

Benczur-Karger graph sparsification technique by random sam-

pling, which we accomplish by the method of pessimistic estimators.

Our main technical component is designing an efficient pessimistic

estimator to capture the cuts of a graph, which involves harnessing

the expander decomposition framework introduced in recent work

by Goranci et al. (SODA 2021). As a side-effect, we obtain a struc-

tural representation of all approximate mincuts in a graph, which

may have future applications.
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1 INTRODUCTION

The minimum cut of an undirected, weighted graph G = (V , E, w)

is a minimum weight subset of edges whose removal disconnects
∗
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the graph. Finding the mincut of a graph is one of the central prob-

lems in combinatorial optimization, dating back to the work of

Gomory and Hu [5] in 1961 who gave an algorithm to compute the

mincut of an n-vertex graph using n − 1 max-flow computations.

Since then, a large body of research has been devoted to obtain-

ing faster algorithms for this problem. In 1992, Hao and Orlin [7]

gave a clever amortization of the n − 1 max-flow computations to

match the running time of a single max-flow computation. Using

the “push-relabel” max-flow algorithm of Goldberg and Tarjan [4],

they obtained an overall running time of O(mn log(n2/m)) on an

n-vertex, m-edge graph. Around the same time, Nagamochi and

Ibaraki [16] (see also [17]) designed an algorithm that bypasses

max-flow computations altogether, a technique that was further

refined by Stoer and Wagner [20] (and independently by Frank

in unpublished work). This alternative method yields a running

time of O(mn + n2 logn). Before 2020, these works yielding a run-

ning time bound of Õ(mn) were the fastest deterministic mincut

algorithms for weighted graphs.

Starting with Karger’s contraction algorithm in 1993 [9], a parallel

body of work started to emerge in randomized algorithms for the

mincut problem. This line of work (see also Karger and Stein [11])

eventually culminated in a breakthrough paper by Karger [10]

in 1996 that gave an O(m log
3 n) time Monte Carlo algorithm for

the mincut problem. Note that this algorithm comes to within

poly-logarithmic factors of the optimal O(m) running time for this

problem. In this paper, Karger asks whether we can also achieve

near-linear running time using a deterministic algorithm. Even

before Karger’s work, Gabow [2] showed that the mincut can be

computed in O(m + λ2n log(n2/m)) (deterministic) time, where λ
is the value of the mincut (assuming integer weights). Note that

this result obtains a near-linear running time if λ is a constant,

but in general, the running time can be exponential. Indeed, for

general graphs, Karger’s question remains open after more than 20

years. However, some exciting progress has been reported in recent

years for special cases of this problem. In a recent breakthrough,

Kawarabayashi and Thorup [12] gave the first near-linear time

deterministic algorithm for this problem for simple graphs. They
obtained a running time ofO(m log

12 n), which was later improved

by Henzinger, Rao, andWang [8] toO(m log
2 n log log2 n), and then

simplified by Saranurak [18] at the cost ofm1+o(1)
running time.

From a technical perspective, Kawarabayashi and Thorup’s work

introduced the idea of using low conductance cuts to find themincut

of the graph, a very powerful idea that we also exploit in this paper.

In 2020, the author, together with Debmalya Panigrahi [13], ob-

tained the first improvement to deterministic mincut for weighted

graphs since the 1990s, obtaining a running time of O(m1+ϵ ) plus
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polylogarithmic calls to a deterministic exact s − t max-flow algo-

rithm. Using the fastest deterministic algorithm for weighted graphs

of Goldberg and Rao [3], their running time becomes Õ(m1.5).1

Their algorithm was inspired by the conductance-based ideas of

Kawarabayashi and Thorup and introduced expander decomposi-

tions into the scene. While it is believed that a near-linear time

algorithm exists for s − t max-flow—which, if deterministic, would

imply a near-linear time algorithm for deterministic mincut—the

best max-flow algorithms, even for unweighted graphs, is still

m4/3+o(1)
[14]. For the deterministic, weighted case, no improve-

ment since Goldberg-Rao [3] is known.

The main result of this paper is a new deterministic algorithm

for mincut that does not rely on s − t max-flow computations

and achieves a running time ofm1+o(1)
, answering Karger’s open

question.

Theorem 1.1. There is a deterministic mincut algorithm for weighted,
undirected graphs that runs inm1+o(1) time.

1.1 Our Techniques

Our approach differs fundamentally from the one in [13] that relies

on s − t max-flow computations. At a high level, we follow Karger’s

approach and essentially de-randomize the single randomized pro-

cedure in Karger’s near-linear time mincut algorithm [10], namely

the construction of the skeleton graph, which Karger accomplishes

through the Benczur-Karger graph sparsification technique by ran-

dom sampling. We remark that our de-randomization does not

recover a full (1 + ϵ)-approximate graph sparsifier, but the skeleton

graph that we obtain is sufficient to solve the mincut problem.

Let us first briefly review the Benczur-Karger graph sparsification

technique, and discuss the difficulties one encounters when try-

ing to de-randomize it. Given a weighted, undirected graph, the

sparsification algorithm samples each edge independently with a

probability depending on the weight of the edge and the global

mincut of the graph, and then re-weights the sampled edge accord-

ingly. In traditional graph sparsification, we require that every cut

in the graph has its weight preserved up to a (1 + ϵ) factor. There
are exponentially many cuts in a graph, so a naive union bound

over all cuts does not work. Benczur and Karger’s main insight is

to set up a more refined union bound, layering the (exponentially

many) cuts in a graph by their weight. They show that for all α ≥ 1,

there are only ncα many cuts in a graph whose weight is roughly

α times the mincut, and each one is preserved up to a (1 + ϵ) factor

with probability 1 − n−c
′α
, for some constants c ′ ≫ c . In other

words, they establish a union bound layered by the α-approximate

mincuts of a graph, for each α ≥ 1.

One popular method to de-randomize random sampling algorithms

is through pessimistic estimators, which is a generalization of the

well-known method of conditional probabilities. For the graph

sparsification problem, the method of pessimistic estimators can

be implemented as follows. The algorithm considers each edge one

by one in some arbitrary order, and decides on the spot whether to

1
In this paper, Õ (·) notation hides polylogarithmic factors in n, the number of vertices

of the graph.

keep or discard each edge for the sparsifier. To make this decision,

the algorithm maintains a pessimistic estimator, which is a real

number in the range [0, 1) that represents an upper bound on the

probability of failure should the remaining undecided edges each be

sampled independently at random. In many cases, the pessimistic

estimator is exactly the probability upper bound that one derives

from analyzing the random sampling algorithm, except conditioned

on the edges kept and discarded so far. The algorithm makes the

choice—whether to keep or discard the current edge—based on

whichever outcome does not increase the pessimistic estimator;

such a choice must always exist for the pessimistic estimator to be

valid. Once all edges are processed, the pessimistic estimator must

still be a real number less than 1. But now, since there are no more

undecided edges, the probability of failure is either 0 or 1. Since the

pessimistic estimator is an upper bound which is less than 1, the

probability of failure must be 0; in other words, the set of chosen

edges is indeed a sparsifier of the graph.

In order for this de-randomization procedure to be efficient, the

pessimistic estimator must be quickly evaluated and updated after

considering each edge. Unfortunately, the probability union bound

in the Benczur-Karger analysis involves all cuts in the graph, and

is therefore an expression of exponential size and too expensive

to serve as our pessimistic estimator. To design a more efficient

pessimistic estimator, we need a more compact, easy-to-compute

union bound over all cuts of the graph. We accomplish this by

grouping all cuts of the graph into two types: small cuts and large

cuts.

Small cuts. Recall that our goal is to preserve cuts in the graph up

to a (1+ϵ) factor. Let us first restrict ourselves to all α-approximate

mincuts of the graph for some α = no(1). There can be nΩ(α ) many

such cuts, so the naive union bound is still too slow. Here, our

main strategy is to establish a structural representation of all α-
approximate mincuts of a graph, with the goal of deriving a more

compact “union bound" over all α-approximate cuts. This structure

is built from an expander hierarchy of the graph, which is a hierar-

chical partitioning of the graph into disjoint expanders introduced

by Goranci et al. [6]. The connection between expanders and the

mincut problem has been observed before [12, 13]: in an expander

with conductance ϕ, all α-approximate mincuts must have at most

α/ϕ vertices on one side, so a compact representation is simply

all cuts with at most α/ϕ vertices on one side. Motivated by this

connection, we show that if the original graph is itself an expander,

then it is enough to preserve all vertex degrees and all edge weights

up to an additive ϵ ′λ factor, where λ is the mincut of the graph and

ϵ ′ depends on ϵ,α ,ϕ. We present the unweighted expander case in

Section 2 as a warm-up, which features all of our ideas except for

the final expander decomposition step. To handle general graphs,

we exploit the full machinery of the expander hierarchy [6].

Large cuts. For the large cuts—those that are not α-approximate

mincuts—our strategy differs from the pessimistic estimator ap-

proach. Here, our aim is not to preserve each of them up to a

(1 + ϵ)-factor, but a γ -factor for a different parameter γ = no(1).
This relaxation prevents us from obtaining a full (1+ϵ)-approximate

sparsification of the graph, but it still works for the mincut problem
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since the large cuts do not fall below the original mincut value.

While a deterministic (1 + ϵ)-approximate sparsification algorithm

in near-linear time is unknown, one exists forγ -approximation spar-

sification for some γ = no(1) [1]. In our case, we actually need the

sparsifier to be uniformly weighted, so we construct our own sparsi-

fier in Section 3.2.2, again via the expander hierarchy. Note that if

the original graph is an expander, then we can take any expander

whose degrees are roughly the same; in particular, the sparsifier

does not need to be a subgraph of the original graph. To summa-

rize, for the large cuts case, we simply construct an γ -approximate

sparsifier deterministically, bypassing the need to de-randomize

the Benczur-Karger random sampling technique.

Combining them together. Of course, this γ -approximate sparsifier

destroys the guarantee of the small cuts, which need to be preserved

(1 + ϵ)-approximately. Our strategy is to combine the small cut

sparsifier and the large cut sparsifier together in the following

way. We take the union of the small cut sparsifier with a “lightly”

weighted version of the large cut sparsifier, where each edge in it is

weighted by ϵ/γ times its normal weight. This way, each small cut

of weightw suffers at most an additive γw · ϵ/γ = ϵw weight from

the “light” large cut sparsifier, so we do not destroy the small cuts

guarantee (up to replacing ϵ with 2ϵ). Moreover, each large cut of

weight w ≥ αλ is weighted by at least w/γ · ϵ/γ ≥ αλ/γ · ϵ/γ =
α/γ 2 · ϵλ, where λ is the mincut of the original graph. Hence, as

long as α ≥ γ 2/ϵ , the large cuts have weight at least the mincut,

and the property for large cuts is preserved.

Unbalanced vs. balanced. We remark that our actual separation

between small cuts and large cuts is somewhat different; we use

unbalanced and balanced instead to emphasize this distinction. Nev-

ertheless, we should intuitively think of unbalanced cuts as having

small weight and balanced as having large weight; rather, the line

is not drawn precisely at a weight threshold of αλ. The actual

separation is more technical, so we omit it in this overview section.

1.2 Preliminaries

In this paper, all graphs are undirected, and n and m denote the

number of vertices and edges of the input graph in question. All

graphs are either unweighted or weighted multigraphs with poly-

nomially bounded edge weights, i.e., in the range [ 1

poly(n) , poly(n)].

We emphasize that even weighted graphs are multigraphs,
which we find more convenient to work with.

We begin with more standard notation. For an unweighted graph

G = (V ,E) and vertices u,v ∈ V , let #(u,v) be the number of edges

e ∈ E with endpoints u and v . For a weighted graph G = (V ,E)
and edge e ∈ E, letw(e) be the weight of the edge, and for vertices

u,v ∈ V , letw(u,v) be the sum of the weightsw(e) of all (parallel)
edges e between u and v . For disjoint sets of vertices S,T ⊆ V ,
define E(S,T ) ⊆ E as the set of edges with one endpoint in S and

the other inT , and define ∂S := E(S,V \S). For a set F ⊆ E of edges,

denote its cardinality by |F | ifG is unweighted, and its total weight

byw(F ) ifG is weighted. Define the degree deg(v) of vertexv ∈ V to

be |∂({v})| if G is unweighted, andw(∂({v})) if G is weighted. For

a set S ⊆ V , define vol(S) :=
∑
v ∈S deg(v). A cut of G is the set of

edges ∂S for some ∅ ( S ( V , and the mincut of G is the cut ∂S in

G that minimizes |∂S | orw(∂S) depending on ifG is unweighted or

weighted. When the graphG is ambiguous, we may add a subscript

of G in our notation, such as #G (u,v).

1.2.1 Karger’s Approach. In this section, we outline Karger’s ap-

proach to his near-linear time randomized mincut algorithm and

set up the necessary theorems for our deterministic result. Karger’s

algorithm has two main steps. First, it computes a small set of (un-

weighted) trees on vertex set V such that the mincut 2-respects one
of the trees T , defined as follows:

Definition 1.2. Given a weighted graphG and an unweighted treeT
on the same set of vertices, a cut ∂GS 2-respects the treeT if |∂T S | ≤ 2.

Karger accomplishes this goal by first sparsifying the graph into an

unweighted skeleton graph using the well-known Benzcur-Karger

sparsification by random sampling, and then running a tree packing
algorithm of Gabow [2] on the skeleton graph.

Theorem 1.3 (Karger [10]). Let G be a weighted graph, letm′ and
c ′ be parameters, and let H be an unweighted graph on the same
vertices, called the skeleton graph, with the following properties:

(a) H hasm′ edges,

(b) The mincut of H is c ′, and

(c) The mincut in G corresponds (under the same vertex partition) to
a 7/6-approximate mincut in H .

Given graphs G and H , there is a deterministic algorithm in
O(c ′m′

logn) time that constructs O(c ′) trees on the same vertices
such that one of them 2-respects the mincut in G.

The second main step of Karger’s algorithm is to compute the

mincut of G given a tree that 2-respects the mincut. This step is

deterministic and is based on dynamic programming.

Theorem 1.4 (Karger [10]). Given a weighted, undirected graph G
and a (not necessarily spanning) tree T on the same vertices, there
is a deterministic algorithm in O(m log

2 n) time that computes the
minimum-weight cut in G that 2-respects the tree T .

Our main technical contribution is a deterministic construction

of the skeleton graph used in Theorem 1.3. Instead of designing

an algorithm to produce the skeleton graph directly, it is more

convenient to prove the following, which implies a skeleton graph

by the following claim.

Theorem 1.5. For any 0 < ϵ ≤ 1, we can compute, in deterministic
ϵ−42O (logn)5/6(log logn)O (1)

m time, an unweighted graph H and some
weightW = ϵ4λ/2O (logn)5/6(log logn)O (1)

such that

(1) For any mincut ∂S∗ of G, we haveW · |∂HS
∗ | ≤ (1 + ϵ)λ, and

(2) For any cut ∅ ( S ( V of G, we haveW · |∂HS | ≥ (1 − ϵ)λ.

Claim 1.6. For ϵ = 0.01, the graph H in Theorem 1.5 fulfills the
conditions of Theorem 1.3 withm′ =m1+o(1) and c ′ = no(1).
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Proof. Since the algorithm of Theorem 1.5 takesm1+o(1)
time, the

output graph H must havem1+o(1)
edges, fulfilling condition (a) of

Theorem 1.3. For anymincut S∗ ofG , by property (1) of Theorem 1.5,

we have |∂HS
∗ | ≤ (1 + ϵ)λ/W ≤ no(1), fulfilling condition (b). For

any cut ∅ ( S ( V , by property (2), we have |∂HS | ≥ (1 − ϵ)λ/W .

In other words, S∗ is a (1+ ϵ)/(1− ϵ)-approximate mincut, which is

a 7/6-approximate mincut for ϵ = 0.01, fulfilling condition (c). �

With the above three statements in hand, we now prove Theo-

rem 1.1 following Karger’s approach. Run the algorithm of The-

orem 1.5 to produce a graph H which, by Claim 1.6, satisfies the

conditions of Theorem 1.3. Apply Theorem 1.3 on G and the skele-

ton graph H , producing no(1) many trees such that one of them

2-respects the mincut in G. Finally, run Theorem 1.4 on each tree

separately and output the minimum 2-respecting cut found among

all the trees, which must be the mincut in G. Each step requires

2
O (logn)5/6(log logn)O (1)

m deterministic time, proving Theorem 1.1.

Thus, the main focus for the rest of the paper is proving Theo-

rem 1.5.

1.2.2 Spectral Graph Theory. Central to our approach are the well-

known concepts of conductance, expanders, and the graph Laplacian
from spectral graph theory.

Definition 1.7 (Conductance, expander). The conductance of a
weighted graph G is

Φ(G) := min

∅(S(V

w(E(S,V \ S))

min{vol(S), vol(V \ S)}
.

For the conductance of an unweighted graph, replacew(E(S,V \ S))
by |E(S,V \ S)|. We say that G is a ϕ-expander if Φ(G) ≥ ϕ.

Definition 1.8 (Laplacian). The Laplacian LG of a weighted graph
G = (V ,E) is the n × n matrix, indexed by V ×V , where

(a) Each diagonal entry (v,v) has entry deg(v), and

(b) Each off-diagonal entry (u,v) (u , v) has weight −w(u,v) if
(u,v) ∈ E and 0 otherwise.

The only fact we will use about Laplacians is the following well-

known fact, that cuts in graphs have the following nice form:

Fact 1.9. For any weighted graph G = (V ,E) with Laplacian LG ,
and for any subset S ⊆ V , we have

w(∂S) = 1TS LG1S ,

where 1S ∈ {0, 1}V is the vector with value 1 at vertex v if v ∈ S ,
and value 0 otherwise. For unweighted graph G, replacew(∂S) with
|∂S |.

2 EXPANDER CASE

In this section, we prove Theorem 1.5 restricted to the case when

G is an unweighted expander. Our aim is to present an informal,

intuitive exposition that highlights our main ideas in a relatively

simple setting. Since this section is not technically required for

the main result, we do not attempt to formalize our arguments,

deferring the rigorous proofs to the general case in Section 3.

Theorem 2.1. Let G be an unweighted ϕ-expander multigraph. For
any 0 < ϵ ≤ 1, we can compute, in deterministicm1+o(1) time, an
unweighted graph H and some weightW = ϵ3λ/no(1) such that

(a) For any mincut ∂GS∗ of G, we haveW · |∂HS
∗ | ≤ (1 + ϵ)λ, and

(b) For any cut ∂GS of G, we haveW · |∂HS | ≥ (1 − ϵ)λ.

For the rest of this section, we prove Theorem 2.1.

Consider an arbitrary cut ∂GS . By Fact 1.9, we have

|∂GS | = 1TS LG1S =

(∑
v ∈S

1Tv

)
LG

(∑
v ∈S

1v

)
=

∑
u,v ∈S

1Tu LG1v . (1)

Suppose we can approximate each 1Tu LG1v to an additive error of

ϵ ′λ for some small ϵ ′ (depending on ϵ); that is, suppose that our
graph H and weightW satisfy

|1Tu LG1v −W · 1Tu LH 1v | ≤ ϵ ′λ

for all u,v ∈ V . Then, by (1), we can approximate |∂GS | up to an

additive |S |2ϵ ′λ, or a multiplicative (1 + |S |2ϵ ′), which is good if

|S | is small. Similarly, if |V \ S | is small, then we can replace S
with V \ S in (1) and approximate |∂GS | = |∂G (V \ S)| to the same

factor. Motivated by this observation, we define a set S ⊆ V to be

unbalanced if min{vol(S), vol(V \ S)} ≤ αλ/ϕ for some α = no(1)

to be set later. Similarly, define a cut ∂GS to be unbalanced if the

set S is unbalanced. Note that an unbalanced set S must have either

|S | ≤ α/ϕ or |V \ S | ≤ α/ϕ, since if we assume without loss of

generality that vol(S) ≤ vol(V \ S), then

|S |λ ≤
∑
v ∈S

deg(v) = vol(S) ≤ αλ/ϕ, (2)

where the first inequality uses that each degree cut ∂({v}) has
weight deg(v) ≥ λ. Moreover, since G is a ϕ-expander, the mincut

∂GS
∗
is unbalanced because, assuming without loss of generality

that vol(S∗) ≤ vol(V \ S∗), we obtain

|∂G (S
∗)|

vol(S∗)
≥ Φ(G) ≥ ϕ =⇒ vol(S∗) ≤ 1/ϕ ≤ αλ/ϕ .

To approximate all unbalanced cuts, it suffices by (1) and (2) to

approximate each 1Tu LG1v up to additive error (ϕ/α)2ϵλ. Whenu ,

v , the expression 1Tu LG1v is simply the negative of the number of

parallel (u,v) edges inG . So, approximating 1Tu LG1v up to additive

error ϵλ simply amounts to approximating the number of parallel

(u,v) edges. When u = v , the expression 1TvLG1v is simply the

degree of v , so approximating it amounts to approximating the

degree of v .

Consider what happens if we randomly sample each edge with

probability p = Θ(
α logn
ϵ 2ϕλ ) and weight the sampled edges by Ŵ :=

1/p to form the sampled graph Ĥ . For the terms 1Tu LG1v (u , v),
we have #G (u,v) ≤ vol(S) ≤ αλ/ϕ. Let us assume for simplicity

that #G (u,v) = αλ/ϕ, which turns out to be the worst case. By
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Chernoff bounds, for δ = ϵϕ/α ,

Pr

[���#Ĥ (u,v) − p · #G (u,v)
��� > δ · p · #G (u,v)

]
(3)

< 2 exp(−δ2 · p · #G (u,v)/3)

= 2 exp

(
−

(
ϵϕ

α

)
2

· Θ

(
α logn

ϵ2ϕλ

)
·
αλ/ϕ

3

)
(4)

= 2 exp(−Θ(logn)),

which we can set to be much less than 1/n2. We then have the

implication ���#Ĥ (u,v) − p · #G (u,v)
��� ≤ δ · p · #G (u,v)

=⇒

���1Tu (LG − LĤ )1v
��� ≤ δ · #G (u,v) = ϵϕ/α · αλ/ϕ = ϵλ.

Similarly, for the terms 1TvLG1v , we have deg(v) ≤ vol(S) ≤ αλ/ϕ,
and the same calculation can be made.

From this random sampling analysis, we can derive the following

pessimistic estimator. Initially, it is the sum of the quantities (4) for

all (u,v) satisfying either u = v or (u,v) ∈ E. This sum has O(m)

terms which sum to less than 1, so it can be efficiently computed

and satisfies the initial condition of a pessimistic estimator. After

some edges have been considered, the probability upper bounds (4)

are modified to be conditional to the choices of edges so far, which

can still be efficiently computed. At the end, for each unbalanced

set S , the graph Ĥ will satisfy��|∂GS |−Ŵ ·|∂ĤS |
�� ≤ ϵλ =⇒ (1−ϵ)|∂GS | ≤ Ŵ ·|∂ĤS | ≤ (1+ϵ)|∂GS |.

Since any mincut ∂GS
∗
is unbalanced, we fulfill condition (a) of

Theorem 2.1. We also fulfill condition (b) for any cut with a side

that is unbalanced. This concludes the unbalanced case; we omit

the rest of the details, deferring the pessimistic estimator and its

efficient computation to the general case, specifically Section 3.2.1.

Define a cut to be balanced if it is not unbalanced. For the balanced

cuts, it remains to fulfill condition (b), which may not hold for

the graph Ĥ . Our solution is to “overlay” a fixed expander onto

the graph Ĥ , weighted small enough to barely affect the mincut

(in order to preserve condition (a)), but large enough to force all

balanced cuts to have weight at least λ. In particular, let H̃ be an

unweighted Θ(1)-expander on the same vertex set V where each

vertex v ∈ V has degree Θ(degG (v)/λ), and let W̃ := Θ(ϵϕλ). We

should think of H̃ as a “lossy" sparsifier ofG , in that it approximates

cuts up to factor O(1/ϕ), not (1 + ϵ).

Consider taking the “union” of the graph Ĥ weighted by Ŵ and

the graph H̃ weighted by W̃ . More formally, consider a weighted

graph H ′
where each edge (u,v) is weighted by Ŵ · wĤ (u,v) +

W̃ ·wH̃ (u,v). We now show two properties: (1) the mincut gains

relatively little weight from H̃ in the unionH ′
, and (2) any balanced

cut automatically has at least λ total weight from H̃ .

(1) For a mincut ∂GS
∗
in G with volG (S∗) ≤ |∂GS

∗ |/ϕ = λ/ϕ, the
cut crosses

w(∂ĤS
∗) ≤ volĤ (S∗) ≤ Θ(1) · volG (S∗)/λ ≤ Θ(1/ϕ)

edges in H̃ , for a total cost of at most Θ(1/ϕ) · Θ(ϵϕλ) ≤ ϵλ.

(2) For a balanced cut ∂GS , it satisfies |∂GS | ≥ ϕ · volG (S) ≥ αλ,
so it crosses

w(∂ĤS) ≥ Θ(1) · volĤ (S) ≥ Θ(1) · volG (S)/λ ≥ Θ(α/ϕ)

many edges in H̃ , for a total cost of at least Θ(α/ϕ) · Θ(ϵϕλ).
Setting α := Θ( 1ϵ ), the cost becomes at least λ.

Therefore, in the weighted graphH ′
, the mincut has weight at most

(1+O(ϵ))λ, and any cut has weight at least (1− ϵ)λ. We can reset ϵ
to be a constant factor smaller so that the factor (1+O(ϵ)) becomes

(1 + ϵ).

To finish the proof of Theorem 2.1, it remains to extract an un-

weighted graph H and a weightW from the weighted graph H ′
.

SinceŴ = Θ(
ϵ 2ϕλ
α logn ) = Θ(

ϵ 3ϕλ
logn ) andW̃ = Θ(ϵϕλ), we can makeW̃

an integer multiple of Ŵ , so that each edge in H ′
is an integer mul-

tiple ofŴ . We can therefore setW := Ŵ and define the unweighted

graph H so that #H (u,v) = wH ′(u,v)/Ŵ for all u,v ∈ V .

3 GENERAL CASE

This section is dedicated to proving Theorem 1.5. For simplicity,

we instead prove the following restricted version first, which has

the additional assumption that the maximum edge weight in G is

bounded. At the end of this section, we show why this assumption

can be removed to obtain the full Theorem 1.5.

Theorem 3.1. There exists a function f (n) ≤ 2
O (logn)5/6(log logn)O (1)

such that the following holds. Let G be a graph with mincut λ and
maximum edge weight at most ϵ4λ/f (n). For any 0 < ϵ ≤ 1,
we can compute, in deterministic 2O (logn)5/6(log logn)O (1)

m time, an
unweighted graph H and some weightW ≥ ϵ4λ/f (n) such that the
two properties of Theorem 1.5 hold, i.e.,

(1) For any mincut S∗ of G, we haveW · |∂HS
∗ | ≤ (1 + ϵ)λ, and

(2) For any cut ∅ ( S ( V of G, we haveW · |∂HS | ≥ (1 − ϵ)λ.

3.1 Expander Decomposition Preliminaries

Our main tool in generalizing the expander case is expander de-
compositions, which was popularized by Spielman and Teng [19]

and is quickly gaining traction in the area of fast graph algorithms.

The general approach to utilizing expander decompositions is as

follows. First, solve the case when the input graph is an expander,

which we have done in Section 2 for the problem described in Theo-

rem 1.5. Then, for a general graph, decompose it into a collection of

expanders with few edges between the expanders, solve the prob-

lem each expander separately, and combine the solutions together,

which often involves a recursive call on a graph that is a constant-

factor smaller. For our purposes, we use a slightly stronger variant

than the usual expander decomposition that ensures boundary-
linkedness, which will be important in our analysis. The following

definition is inspired by [6]; note that our variant is weaker than

the one in Definition 4.2 of [6] in that we only guarantee their

property (2). In the full version of this paper, we include a full proof

that is similar to the one in [6], and assuming a subroutine called

WeightedBalCutPrune from [1].
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Theorem 3.2 (Boundary-linked expander decomposition). Let
G = (V ,E) be a graph and let r ≥ 1 be a parameter. There is a
deterministic algorithm inm1+O (1/r ) + Õ(m/ϕ2) time that, for any
parameters β ≤ (logn)−O (r 4) and ϕ ≤ β , partitionsV = V1⊎· · ·⊎Vk
such that

(1) Each vertex set Vi satisfies

min

∅(S(Vi

w(∂G[Vi ]S)

min

{
volG [Vi ](S )+

β
ϕw (EG (S,V \Vi )),

volG [Vi ](Vi \S )+
β
ϕw (EG (Vi \S,V \Vi ))

} ≥ ϕ . (5)

Informally, we call the graph G[Vi ] together with its boundary
edges EG (Vi ,V \Vi ) a β-boundary-linked ϕ-expander.2 In par-
ticular, for any S satisfying

volG[Vi ](S) +
β

ϕ
w(EG (S,V \Vi ))

≤ volG[Vi ](Vi \ S) +
β

ϕ
w(EG (Vi \ S,V \Vi )),

we simultaneously obtain

w(∂G[Vi ]S)

volG[Vi ](S)
≥ ϕ

and
w(∂G[Vi ]S)

β
ϕw(EG (S,V \Vi ))

≥ ϕ ⇐⇒
w(∂G[Vi ]S)

w(EG (S,V \Vi ))
≥ β .

The right-most inequality is where the name “boundary-linked"
comes from.

(2) The total weight of “inter-cluster" edges,w(∂V1 ∪ · · · ∪ ∂Vk ), is
at most (logn)O (r 4)ϕvol(V ).

Note that for our applications, it’s important that the boundary-

linked parameter β is much larger than ϕ. This is because in our re-

cursive algorithm, the approximation factor will blow up by roughly

1/β per recursion level, while the instance size shrinks by roughly

ϕ.

In order to capture recursion via expander decompositions, we now

define a boundary-linked expander decomposition sequence {Gi } on

the graph G in a similar way to [6]. Compute a boundary-linked

expander decomposition for β and ϕ ≤ β to be determined later,

contract each expander,
3
and recursively decompose the contracted

graph until the graph consists of a single vertex. Let G0 = G be

the original graph andG1,G2, . . . ,GL
be the recursive contracted

graphs. Note that each graph Gi
has minimum degree at least λ,

since any degree cut in any Gi
induces a cut in the original graph

G . Each time we contract, we will keep edge identities for the edges

that survive, so that E(G0) ⊇ E(G1) ⊇ · · · ⊇ E(GL). Let U i
be the

vertices of Gi
.

2
For unweighted graphs, [6] uses the notationG[Vi ]β/ϕ to represent a graph where

each (boundary) edge in E(Vi , V \Vi ) is replaced with β/ϕ many self-loops at the

endpoint in Vi . With this definition, (5) is equivalent to saying that G[Vi ]β/ϕ is a

ϕ-expander.
3
Since we are working with weighted multigraphs, we do not collapse parallel edges
obtained from contraction into single edges.

For the rest of Section 3.1, fix an expander decomposition sequence

{Gi } of G. For any subset ∅ ( S ( V , we now define an decom-
position sequence of S as follows. Let S0 = S , and for each i > 0,

construct Si+1 as a subset of the vertices ofGi+1
, as follows. Take

the expander decomposition of Gi
, which partitions the vertices

U i
of Gi

into, say,U i
1
, . . . ,U i

ki
. Each of theU i

j gets contracted to a

single vertex uj in Gi
. For each U i

j , we have a choice whether to

add uj to S
i
or not. This completes the construction of Si . Define

the “difference” Di
j = Uj \ S

i
if uj ∈ Si , and Di

j = Uj ∩ Si otherwise.

The sets Si ,U i
j , and D

i
j define the decomposition sequence of S .

We now prove some key properties of the boundary-linked ex-

pander decomposition sequence in the context of graph cuts, which

we will use later on. First, regardless of the choice whether to add

each uj to S
i
, we have the following lemma relating the sets Di

j to

the original set S .

Lemma 3.3. For any decomposition sequence {Si } of S ,

∂GS ⊆

L⋃
i=0

⋃
j ∈[ki ]

∂G iDi
j .

Proof. Observe that

(∂G i Si )△(∂G i+1Si+1) ⊆
⋃
j ∈[ki ]

∂G iDi
j . (6)

In particular,

∂G i Si ⊆ ∂G i+1Si+1 ∪
⋃
j ∈[ki ]

∂G iDi
j .

Iterating this over all i ,

∂GS ⊆

L⋃
i=0

⋃
j ∈[ki ]

∂G iDi
j .

�

We now define a specific decomposition sequence of S , by setting

up the rule whether or not to include each uj in Si . For eachU i
j , if

volG i [U i
j ]
(Si ∩U i

j ) +
β

ϕ
w(EG i (Si ∩U i

j ,U
i \U i

j ))

≥ volG i [U i
j ]
(U i

j \ S
i ) +

β

ϕ
w(EG i (U i

j \ S
i ,U i \U i

j )),

then add uj to S
i
; otherwise, do not add uj to S

i
. This ensures that

volG i [U i
j ]
(U i

j \ D
i
j ) +

β

ϕ
w(EG i (U i

j \ D
i
j ,U

i \U i
j ))

≥ volG i [U i
j ]
(Di

j ) +
β

ϕ
w(EG i (Di

j ,U
i \U i

j )). (7)

Since Gi [U i
j ] is a β-boundary-linked ϕ-expander, by our construc-

tion, we have, for all i, j,

w(∂G i [U i
j ]
Di
j )

volG i [U i
j ]
(Di

j )
≥ ϕ (8)
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and

w(∂G i [U i
j ]
Di
j )

w(EG i (Di
j ,U

i \U i
j ))

≥ β . (9)

For this specific construction of {Si }, called the canonical decom-

position sequence of S , we have the following lemma, which com-

plements Lemma 3.3.

Lemma 3.4. Let {Si } be any decomposition sequence of S satisfying
(9) for all i, j. Then,

L∑
i=0

∑
j ∈[ki ]

w(∂G iDi
j ) ≤ β−O (L)w(∂GS).

Proof. By (9),

w(EG i (Di
j ,U

i \U i
j )) ≤

1

β
·w(∂G i [U i

j ]
Di
j ).

The edges of ∂G i [U i
j ]
Di
j are inside ∂G i Si and are disjoint over dis-

tinct j, so in total,∑
j ∈[ki ]

w(∂G iDi
j ) ≤

∑
j ∈[ki ]

1

β
·w(∂G i [U i

j ]
Di
j ) ≤

1

β
·w(∂G i Si ).

From (6), we also obtain

∂G i+1Si+1 ⊆ ∂G i Si ∪
⋃
j ∈[ki ]

∂G iDi
j .

Therefore,

w(∂G i+1Si+1) ≤ w(∂G i Si )+w
©­«

⋃
j ∈[ki ]

∂G iDi
j
ª®¬ ≤

(
1 +

1

β

)
·w(∂G i Si ).

Iterating this over all i ∈ [L], we obtain

w(∂G i Si ) ≤

(
1 +

1

β

)i
·w(∂GS).

Thus,

L∑
i=0

∑
j ∈[ki ]

w(∂G iDi
j ) ≤

L∑
i=0

1

β
·w(∂G i Si )

≤

L∑
i=0

1

β
·

(
1 +

1

β

)i
·w(∂GS)

= β−O (L)w(∂GS).

�

3.2 Unbalanced Case

In this section, we generalize the notion of unbalanced from Sec-

tion 2 to the general case, and then prove a (1 + ϵ)-approximate

sparsifier of the unbalanced cuts.

Fix an expander decomposition sequence {Gi } of G for the Sec-

tion 3.2. For a given set ∅ ( S ( V , let {Si } be the canonical

decomposition sequence of S , and define Di
j as before, so that they

satisfy (8) and (9) for all i, j. We generalize our definition of unbal-
anced from the expander case as follows, for some τ = no(1) to be

specified later.

Definition 3.5. The set S ⊆ V is τ -unbalanced if for each level i ,∑
j ∈[ki ] volG i (Di

j ) ≤ τλ/ϕ. A cut ∂S is τ -unbalanced if the set S is
τ -unbalanced.

Note that ifG is originally an expander, then in the first expander

decomposition of the sequence, we can declare the entire graph as a

single expander; in this case, the expander decomposition sequence

stops immediately, and the definition of τ -unbalanced becomes

equivalent to that from the expander case. We now claim that for

an appropriate value of τ , any mincut is τ -unbalanced.

Claim 3.6. For τ ≥ β−Ω(L), any mincut ∂S∗ of G is τ -unbalanced.

Proof. Consider the canonical decomposition sequence of S , and
define Di

j as usual. For each level i and index j ∈ [ki ],

volG i (Di
j ) = volG i [U i

j ]
(Di

j ) +w(EG i (Di
j ,U

i \U i
j ))

(8)
≤

1

ϕ
w(∂G i [U i

j ]
Di
j ) +w(EG i (Di

j ,U
i \U i

j ))

≤
1

ϕ
w(∂G iDi

j ).

Summing over all j ∈ [ki ] and applying Lemma 3.4,∑
j ∈[ki ]

volG i (Di
j ) ≤

∑
j ∈[ki ]

1

ϕ
w(∂G iDi

j )

=
1

ϕ
·

∑
j ∈[ki ]

w(∂G iDi
j )

Lem.3.4
≤

1

ϕ
· β−O (L)w(∂GS

∗) ≤
τλ

ϕ
,

so S∗ is τ -unbalanced. �

Let us now introduce some notation exclusive to this section. For

each vertex v ∈ U i
, let v ⊆ V be its “pullback” on the original set

V , defined as all vertices in V that get contracted into v in graph

Gi
in the expander sequence. For each set Di

j , let D
i
j ⊆ V be the

pullback of Di
j , defined as Di

j =
⋃
v ∈Di

j
v . We can then write

1S =
∑
i, j

±1
Di
j
=

∑
i, j

∑
v ∈Di

j

±1v ,

where the ± sign depends on whether Di
j = U

i
j \S

i
or Di

j = U
i
j ∩Si .

Then,

w(∂GS) = 1TS LG1S =
∑

i, j,k,l

±1T
Di
j

LG1Dk
l

=
∑

i, j,k,l

∑
u ∈Di

j ,v ∈Dk
l

±1Tu LG1v . (10)

Claim 3.7. For an τ -unbalanced set S , there are at most ((L+1)τ/ϕ)2

nonzero terms in the summation (10).
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Proof. Each vertex v ∈ Di
j has degree at least λ in Gi

, since it

induces a cut (specifically, its pullback v ⊆ V ) in the original graph

G. Therefore,

τλ/ϕ ≥
∑
j ∈[ki ]

volG i (Di
j ) ≥

∑
j ∈[ki ]

|Di
j | · λ,

so there are at most τ/ϕ many choices for j and u ∈ Di
j given

a level i . There are at most L + 1 many choices for i , giving at

most (L + 1)τ/ϕ many combinations of i, j,u. The same holds for

combinations of k, l ,v , hence the claim. �

The main goal of this section is to prove the following lemma.

Lemma 3.8. There exists a constant C > 0 such that given any
weight W ≤

Cϵϕλ
τ ln(Lm)

, we can compute, in deterministic Õ(L2m)

time,4 an unweighted graph H such that for all levels i,k and vertices
u ∈ U i ,v ∈ U k satisfying degG i (u) ≤ τλ/ϕ and degGk (v) ≤ τλ/ϕ,���1Tu LG1v −W · 1Tu LH 1v

��� ≤ ϵλ. (11)

Before we prove Lemma 3.8, we show that it implies a sparsifier of

τ -unbalanced cuts, which is the lemma we will eventually use to

prove Theorem 3.1:

Lemma 3.9. There exists a constant C > 0 such that given any
weightW ≤

Cϵϕλ
τ ln(Lm)

, we can compute, in deterministic Õ(L2m) time,
an unweighted graph H such that for each τ -unbalanced cut S ,��w(∂GS) −W ·w(∂HS)

�� ≤ (
(L + 1)τ

ϕ

)
2

· ϵλ.

Proof. Let C > 0 be the same constant as the one in Lemma 3.8.

Applying (10) to ∂HS as well, we have

w(∂GS)−W ·w(∂HS) =
∑

i, j,k,l

∑
u ∈Di

j ,v ∈Dk
l

±(1Tu LG1v−W ·1Tu LH 1v ),

so that��w(∂GS)−W ·w(∂HS)
�� ≤ ∑

i, j,k,l

∑
u ∈Di

j ,v ∈Dk
l

��1Tu LG1v −W ·1Tu LH 1v
��.

By Claim 3.7, there are at most ((L + 1)τ/ϕ)2 nonzero terms in the

summation above. In order to apply Lemma 3.8 to each such term,

we need to show that degG i (u) ≤ τλ/ϕ and degGk (v) ≤ τλ/ϕ.
Since S is an τ -unbalanced cut, we have

degG i (u) ≤ volG i (Di
j ) ≤

∑
j ∈[ki ]

volG i (Di
j ) ≤ τλ/ϕ,

and similarly for degGk (v). Therefore, by Lemma 3.8,��w(∂GS) −W ·w(∂HS)
�� ≤ (

(L + 1)τ

ϕ

)
2

· ϵλ,

as desired. �

4
outside of computing the boundary-linked expander decomposition sequence

The rest of Section 3.2 is dedicated to proving Lemma 3.8.

Expand out LG =
∑
e ∈E Le , where Le is the Laplacian of the graph

consisting of the single edge e of the same weight, so that 1Tu Le1v ∈

{−w(e),w(e)} if exactly one endpoint of e is in u and exactly one

endpoint of e is in v , and 1Tu Le1v = 0 otherwise. Let Eu,v,+ denote

the edges e ∈ E with 1Tu Le1v = w(e), and Eu,v,− denote those with

1Tu Le1v = −w(e).

3.2.1 Random Sampling Procedure. Consider the Benzcur-Karger
random sampling procedure, which we will de-randomize in this

section. Let Ĥ be a subgraph of G with each edge e ∈ E sampled

independently with probabilityw(e)/W , which is at most 1 by the

assumption of Theorem 3.1. Intuitively, the parameterW ≥ λ/f (n)
is selected so that with probability close to 1, (11) holds over all

i,k,u,v .

We now introduce our concentration bounds for the random sam-

pling procedure, namely the classical multiplicative Chernoff bound.

We state a form that includes bounds on the moment-generating

function E[etX ] obtained in the standard proof.

Lemma 3.10 (Multiplicative Chernoff bound). Let X1, . . . ,XN be
independent random variables that take values in [0, 1], and let X =∑N
i=1 Xi and µ = E[X ] =

∑N
i=1 pi . Fix a parameter δ , and define

tu = ln(1 + δ ) and t l = ln

(
1

1 − δ

)
. (12)

Then, we have the following upper and lower tail bounds:

Pr[X > (1 + δ )µ] ≤ e−t
u (1+δ )µ E[et

uX ] ≤ e−δ
2µ/3, (13)

Pr[X < (1 − δ )µ] ≤ et
l (1−δ )µ E[e−t

lX ] ≤ e−δ
2µ/3. (14)

We now describe our de-randomization by pessimistic estimators.

Let F ⊆ E be the set of edges for which a value Xe ∈ {0, 1} has

already been set, so that F is initially ∅. For each i,k , vertices u ∈

U i ,v ∈ U k
, and sign ◦ ∈ {+,−} such that Eu,v,◦ , ∅, we first

define a “local” pessimistic estimator Φu,v,◦(·), which is a function

on the set of pairs (e,Xe ) over all e ∈ F . The algorithm computes

a 3-approximation λ̃ ∈ [λ, 3λ] to the mincut with the Õ(m)-time

(2 + ϵ)-approximation algorithm of Matula [15], and sets

µu,v,◦ =
w(Eu,v,◦)

W
and δu,v,◦ =

ϵλ̃

6w(Eu,v,◦)
. (15)

Following (12), we define

tuu,v,◦ = ln(1 + δu,v,◦) and t lu,v,◦ = ln

(
1

1 − δu,v,◦

)
,

(16)

and following the middle expressions (the moment-generating func-

tions) in (13) and (14), we define

Φu,v,◦({(e,Xe ) : e ∈ F })

= e
−tuu,v,◦(1+δu,v,◦)µu,v,◦

∏
e ∈Eu,v,◦∩F

e
tuu,v,◦Xe

∏
e ∈Eu,v,◦\F

E[e
tuu,v,◦Xe ]

+ e
t lu,v,◦(1−δu,v,◦)µu,v,◦

∏
e ∈Eu,v,◦∩F

e
−t lu,v,◦Xe

∏
e ∈Eu,v,◦\F

E[e
−t lu,v,◦Xe ].
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Observe that if we are setting the value of Xe ′ for a new edge e ′ ∈
Eu,v,◦ \ F , then by linearity of expectation, there is an assignment

Xe ′ ∈ {0, 1} for which Φu,v,◦(·) does not decrease:

Φu,v,◦({(e,Xe ) : e ∈ F } ∪ (e ′,Xe ′)) ≤ Φu,v,◦({(e,Xe ) : e ∈ F }).

Since the Xe terms are independent, we have that for any t ∈ R
and E ′ ⊆ E,

E
[
et

∑
e∈E′ Xe

]
=

∏
e ∈E′

E[etXe ].

By the independence above and the second inequalities in (13) and (14),

the initial “local” pessimistic estimator Φu,v,◦(∅) satisfies

Φu,v,◦(∅) ≤ 2 exp

(
−
δ2u,v,◦µu,v,◦

3

)
= 2 exp

(
−
(ϵλ̃/(6w(Eu,v,◦)))

2 ·w(Eu,v,◦)/W ·

3

)
= 2 exp

(
−

ϵλ̃2

108w(Eu,v,◦)W

)
.

We would like the above expression to be less than 1. To upper

boundw(Eu,v,◦), note first that every edge e ∈ Eu,v,◦ must, under

the contraction from G all the way to Gi
, map to an edge incident

to u in Gi
, which gives w(Eu,v,◦) ≤ degG i (u). Moreover, since

degG i (u) ≤ τλ/ϕ by assumption, we have

w(Eu,v,◦) ≤ degG i (u) ≤ τλ/ϕ (17)

so that

Φu,v,◦(∅) ≤ 2 exp

(
−

ϵλ̃2

108(τλ/ϕ)W

)
≤ 2 exp

(
−

ϵλ2

108(τλ/ϕ)W

)
= 2 exp

(
−

ϵϕλ

108τW

)
.

Assume that

W ≤
ϵϕλ

108τ ln
(
16(L + 1)2m

) , (18)

which satisfies the bounds in Lemma 3.8, so that

Φu,v,◦(∅) ≤ 2 exp

(
−

ϵϕλ

108τW

)
≤

1

8(L + 1)2m
.

Our actual, “global” pessimistic estimator Φ(·) is simply the sum of

the “local” pessimistic estimators:

Φ({(e,Xe ) : e ∈ F }) =
∑
i,k,

u ∈U i ,v ∈U k ,
◦∈{+,−}

Φu,v,◦({(e,Xe ) : e ∈ F }).

The initial pessimistic estimator Φ(∅) satisfies

Φ(∅) =
∑
i,k,

u ∈U i ,v ∈U k ,
◦∈{+,−}

Φu,v,◦(∅) ≤
∑
i,k,

u ∈U i ,v ∈U k ,
◦∈{+,−}

1

8(L + 1)2m

Clm.3.12
≤ 4(L + 1)2m ·

1

8(L + 1)2m
=

1

2

.

Again, if we are setting the value of Xf for a new edge f ∈ E \ F ,
then by linearity of expectation, there is an assignment Xf ∈ {0, 1}

for which Φ(·) does not decrease:

Φ({(e,Xe ) : e ∈ F } ∪ (f ,Xf )) ≤ Φ({(e,Xe ) : e ∈ F }).

Therefore, if we always select such an assignment Xe , then once

we have iterated over all e ∈ E, we have

Φ({(e,Xe ) : e ∈ E}) ≤ Φ(∅) ≤
1

2

≤ 1. (19)

This means that for each i,k,u ∈ U i ,v ∈ U k
, and sign ◦ ∈ {+,−},

Φu,v,◦({(e,Xe ) : e ∈ E})

= e
−tuu,v,◦(1+δu,v,◦)µu,v,◦

∏
e ∈Eu,v,◦

e
tuu,v,◦Xe

+ e
t lu,v,◦(1−δu,v,◦)µu,v,◦

∏
e ∈Eu,v,◦

e
−t lu,v,◦Xe

≤ 1.

In particular, each of the two terms is at most 1. Recalling from defi-

nition (15) that µu,v,◦ = w(Eu,v,◦)/W andδu,v,◦ = ϵλ̃/(6w(Eu,v,◦)),
we have ∑

e ∈Eu,v,◦

Xe ≤ (1 + δu,v,◦)µu,v,◦ =
w(Eu,v,◦)

W
+

ϵλ̃

6W

and ∑
e ∈Eu,v,◦

Xe ≥ (1 − δu,v,◦)µu,v,◦ =
w(Eu,v,◦)

W
−

ϵλ̃

6W
.

Therefore,���1Tu LG1v −W · 1Tu LĤ 1v
��� ≤ ∑

◦∈{+,−}

������w(Eu,v,◦) −W ·
∑

e ∈Eu,v,◦

Xe

������
≤

ϵλ̃

6

+
ϵλ̃

6

=
ϵλ̃

3

≤ ϵλ,

fulfilling (11).

It remains to consider the running time. We first bound the number

of i,k,u,v such that either Eu,v,+ , ∅ or Eu,v,− , ∅; the others

are irrelevant since 1Tu LG1v = 1Tu LĤ 1v = 0.

Claim 3.11. For each pair of vertices x ,y, there are at most (L + 1)2

many selections of i,k and u ∈ U i ,v ∈ U k such that x ∈ u and
y ∈ v .

Proof. For each level i , there is exactly one vertex u ∈ U i
with

x ∈ u, and for each level k , there is exactly one vertex v ∈ U k
with

y ∈ v . This makes (L + 1)2 many choices of i,k total, and unique

choices for u,v given i,k . �

Claim 3.12. For each edge e ∈ E, there are at most 4(L + 1)2 many
selections of i,k and u ∈ U i ,v ∈ U k such that e ∈ Eu,v,+ ∪ Eu,v,−.

Proof. If e ∈ Eu,v,+∪Eu,v,−, then exactly one endpoint of e is inu
and exactly one endpoint of e is in v . There are four possibilities as
to which endpoint is inu and which is inv , and for each, Claim 3.11

gives at most (L + 1)2 choices. �
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Claim 3.13. There are at most 4(L + 1)2m many choices of i,k,u,v
such that either Eu,v,+ , ∅ or Eu,v,− , ∅.

Proof. For each such choice, charge it to an arbitrary edge (x ,y) ∈
Eu,v,+ ∪ Eu,v,−. Each edge is charged at most 4(L + 1)2 times by

Claim 3.12, giving at most 4(L + 1)2m total charges. �

By Claim 3.12, each new edge e ∈ E \ F is in at most 4(L+ 1)2 many

sets Eu,v,◦, and therefore affects at most 4(L + 1)2 many terms

Φu,v,◦({(e,Xe ) : e ∈ F }). The algorithm only needs to re-evaluate

these terms with the new variable Xe set to 0 and with it set to

1, and take the one with the smaller new Φ(·). This takes O(L2)
arithmetic operations.

How long do the arithmetic operations take? We compute each

exponential in Φ(·) with c logn bits of precision after the decimal

point for some constant c > 0, which takes polylog(n) time. Each

one introduces an additive error of 1/nc , and there are poly(n)
exponential computations overall, for a total of 1/nc ·poly(n) ≤ 1/2

error for a large enough c > 0. Factoring in this error, the inequality

(19) instead becomes

Φ({(e,Xe ) : e ∈ E}) ≤ Φ(∅) +
1

2

≤
1

2

+
1

2

= 1,

so the rest of the bounds still hold.

This concludes the proof of Lemma 3.8.

3.2.2 Balanced Case. Similar to the expander case, we treat bal-

anced cuts by “overlaying" a “lossy", no(1)-approximate sparsifier of

G top of the graph Ĥ obtained from Lemma 3.9. In the expander case,

this sparsifier was just another expander, but for general graphs,

we need to do more work. At a high level, we compute an expander

decomposition sequence, and on each level, we replace each of the

expanders with a fixed expander (like in the expander case). Due

to the technical proof and lack of novel ideas, we defer the proof to

the full version.

Theorem 3.14. LetG be an weightedmultigraphwithmincut λwhose
edges have weight at most O(λ). For any parameters λ̃ ∈ [λ, 3λ] and
∆ ≥ 2

O (logn)5/6 , we can compute, in deterministic
2
O (logn)5/6(log logn)O (1)

m +O(∆m) time, an unweighted multigraph
H such that W · H is a γ -approximate cut sparsifier of G, where
γ ≤ 2

O (logn)5/6(log logn)O (1)

andW = λ̃/∆. (The graph H does not
need to be a subgraph ofG .) Moreover, the algorithm does not need to
know the mincut value λ.

3.2.3 Combining Them Together. We now combine the unbalanced

and balanced cases to prove Theorem 3.1, restated below.

Theorem 3.1. There exists a function f (n) ≤ 2
O (logn)5/6(log logn)O (1)

such that the following holds. Let G be a graph with mincut λ and
maximum edge weight at most ϵ4λ/f (n). For any 0 < ϵ ≤ 1,
we can compute, in deterministic 2O (logn)5/6(log logn)O (1)

m time, an
unweighted graph H and some weightW ≥ ϵ4λ/f (n) such that the
two properties of Theorem 1.5 hold, i.e.,

(1) For any mincut S∗ of G, we haveW · |∂HS
∗ | ≤ (1 + ϵ)λ, and

Par. Value

λ Mincut of G
λ̃ 3-approximation of λ
ϵ Given as input

r (logn)1/6

β (logn)−O (r 4)
from Theorem 3.2

ϕ (logn)−r
5

L O (
logn
r 5

)

γ 2
O (logn)5/6(log logn)O (1)

from Theorem 3.14

∆ 2
Θ(logn)5/6

from Theorem 3.14

τ β−cLγ 2/ϵ for large enough constant c > 0

ϵ ′ 1

2
(

ϕ
(L+1)τ )

2ϵ

Ŵ min{
Cϵ ′ϕλ̃
τ ln(Lm)

, λ̃∆ } where C > 0 is the constant from Lemma 3.9

W̃ ϵ
2γ · λ̃∆

Figure 1: The parameters in the proof of Theorem 3.1.

(2) For any cut ∅ ( S ( V of G, we haveW · |∂HS | ≥ (1 − ϵ)λ.

Our high-level procedure is similar to the one from the expander

case. For the τ -unbalanced cuts, we use Lemma 3.9. For the balanced

cuts, we show that their size must be much larger than λ, so that
even on a γ -approximate weighted sparsifier guaranteed by Theo-

rem 3.14, their weight is still much larger than λ. We then “overlay”

theγ -approximate weighted sparsifier with a “light” enough weight

onto the sparsifier of τ -unbalanced cuts. The weight is light enough
to barely affect the mincuts, but still large enough to force any

balanced cut to increase by at least λ in weight.

Claim 3.15. If a cut S is balanced, thenw(∂GS) ≥ βO (L)τλ.

Proof. Consider the level i for which
∑
j ∈[ki ] volG i (Di

j ) > τλ/ϕ.

For each j ∈ [ki ], we have

volG i (Di
j ) = volG i [U i

j ]
(Di

j ) +w(EG i (Di
j ,U

i \U i
j ))

(8)
≤

1

ϕ
w(∂G i [U i

j ]
Di
j ) +w(EG i (Di

j ,U
i \U i

j ))

≤
1

ϕ

(
w(∂G i [U i

j ]
Di
j ) +w(EG i (Di

j ,U
i \U i

j ))
)

=
1

ϕ
w(∂G iDi

j ),

so summing over all j ∈ [ki ],∑
j ∈[ki ]

1

ϕ
w(∂G iDi

j ) ≥
∑
j ∈[ki ]

volG i (Di
j ) >

τλ

ϕ
.

By Lemma 3.4, it follows that

w(∂GS) ≥ βO (L)
∑
j ∈[ki ]

w(∂iGD
i
j ) ≥ βO (L)τλ.

�

We now set some of our parameters; see Figure 1 for a complete

table of the parameters in our proof. For r := (logn)1/6, let β :=

(logn)−O (r 4)
and ϕ := (logn)−r

5

, so that by Theorem 3.2, the total

weight of inter-cluster edges, and therefore the total weight of the
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next graph in the expander decomposition sequence, shrinks by fac-

tor (logn)O (r 4)ϕ = (logn)−Ω(r
5)
. Since edge weights are assumed to

be polynomially bounded, this shrinking can only happen O(
logn
r 5 )

times, so L ≤ O(
logn
r 5 ).

Let λ̃ ∈ [λ, 3λ] be a 3-approximation to the mincut, computable

in Õ(m) time [15], Let ϵ ′ := 1

2
(

ϕ
(L+1)τ )

2ϵ for parameter τ that we

set later, and let Ĥ be the sparsifier of τ -unbalanced cuts from

Lemma 3.9 for this value of ϵ ′ (instead of ϵ) and the following value

of Ŵ ≤
Cϵ ′ϕλ
τ ln(Lm)

(taking the place ofW ):

Ŵ := min

{
Cϵ ′ϕλ̃

3τ ln(Lm)
,
λ̃

∆

}
= min

{
Ω

(
ϵϕ3λ̃

τ 3L2 ln(Lm)

)
,
λ̃

∆

}
.

Let H̃ be the unweighted graph from Theorem 3.14 applied to

λ̃ and ∆, so that λ̃/∆ · H̃ is a γ -approximate cut sparsifier for

γ := 2
O (logn)5/6(log logn)O (1)

. Define W̃ := ϵ
2γ · λ̃∆ , and let H ′

be the

“union" of the graph Ĥ weighted by Ŵ and the graph H̃ weighted

by W̃ . More formally, consider a weighted graph H ′
where each

edge (u,v) is weighted by Ŵ ·wĤ (u,v) + W̃ ·wH̃ (u,v).

For an τ -unbalanced cut ∂S , the addition of the graph H̃ weighted

by W̃ increases its weight by

W̃ ·w(∂H̃S) =
ϵ

2γ
·

(
λ

∆
w(∂H̃S)

)
≤

ϵ

2γ
· γw(∂GS) =

ϵ

2

w(∂GS),

so that ���w(∂GS) −
(
Ŵ ·w(∂ĤS) + W̃ ·w(∂H̃S)

)���
≤

��w(∂GS) − Ŵ ·w(∂ĤS)
�� + W̃ ·w(∂H̃S

∗)

≤

(
(L + 1)τ

ϕ

)
2

· ϵ ′λ +
ϵ

2

w(∂GS)

=
ϵλ

2

+
ϵ

2

w(∂GS)

≤ ϵw(∂GS).

In particular, any τ -unbalanced cut satisfies

(1 − ϵ)λ ≤ Ŵ ·w(∂ĤS) + W̃ ·w(∂H̃S) ≤ (1 + ϵ)λ. (20)

Next, we show that all balanced cuts have weight at least λ in the

graph H̃ weighted byW̃ . This is where we finally set τ := β−cLγ 2/ϵ
for large enough constant c > 0. For a balanced cut S ,

W̃ ·w(∂H̃S) =
ϵ

2γ
·

(
λ

∆
w(∂H̃S)

)
≥

ϵ

2γ
·

(
1

γ
w(∂GS)

)
Clm.3.15

≥
ϵ

γ 2
· βO (L)τλ ≥ λ.

Moreover, by Claim 3.6 for this value of τ ≥ β−O (L)
, the mincut

∂S∗ is τ -unbalanced, and therefore has weight at least (1 − ϵ)λ in

H ′
by (20).

Therefore,H ′
preserves the mincut up to factor ϵ and has mincut at

least (1 − ϵ)λ. It remains to make all edge weights the same on this

sparsifier. Since W̃ = ϵ
2γ · λ̃∆ and the only requirement for ∆ from

Theorem 3.14 is that ∆ ≥ 2
O (logn)5/6

, we can increase or decrease ∆

by a constant factor until either W̃ /Ŵ or Ŵ /W̃ is an integer. Then,

we can letW := min{Ŵ ,W̃ } and define the unweighted graphH so

that #H (u,v) = wH ′(u,v)/W for all u,v ∈ V . Therefore, our final
weightW is

W = min{Ŵ ,W̃ } = min

{
Ω

(
ϵϕ3λ̃

τ 3L2 ln(Lm)

)
,
λ̃

∆
,
ϵ

2γ
·
λ̃

∆

}
≥ ϵ42−O (logn)5/6(log logn)O (1)

λ,

so we can set f (n) := 2
O (logn)5/6(log logn)O (1)

, as desired.

Finally, we bound the running time. The expander decomposition

sequence (Theorem 3.2) takes timem1+O (1/r ) + Õ(m/ϕ2), the un-

balanced case (Theorem 3.2) takes time Õ(L2m), and the balanced

case takes time 2
O (logn)5/6(log logn)O (1)

m . Altogether, the total is

2
O (logn)5/6(log logn)O (1)

m, which concludes the proof of Theorem 3.1.

3.3 Removing the MaximumWeight
Assumption

Let f (n) = 2
O (logn)5/6(log logn)O (1)

be the function fromTheorem 3.1.

In this section, we show how to use Theorem 3.1, which assumes

that the maximum edge weight in G is at most ϵ4λ/f (n), to prove

Theorem 1.5, which makes no assumption on edge weights.

First, we show that we can assume without loss of generality that

the maximum edge weight in G is at most 3λ. To see why, the

algorithm can first compute a 3-approximation λ̃ ∈ [λ, 3λ] to the

mincut with the Õ(m)-time (2 + ϵ)-approximation algorithm of

Matula [15], and for each edge in G with weight more than λ̃,

reduce its weight to λ̃. Let the resulting graph be G̃. We now claim

the following:

Claim 3.16. Suppose an unweighted graph H and some weightW
satisfy the two properties of Theorem 1.5 for G̃ . Then, they also satisfy
the two properties of Theorem 1.5 for G.

Proof. The only cuts that change value betweenG and G̃ are those

with an edge of weight more than λ̃, which means their value must

be greater than λ̃ ≥ λ. In particular, since G and G̃ have the same

mincuts and the samemincut values, both properties of Theorem 1.5

also hold when the input graph is G. �

For the rest of the proof, we work with G̃ instead of G. Define

W̃ := ϵ4λ̃/(3f (n)), which satisfies W̃ ≤ ϵ4λ/f (n). For each edge e

in G̃ , split it into ⌈w(e)/W̃ ⌉ parallel edges of weight at mostW̃ each,

whose sum of weights equals w(e); let the resulting graph be Ĝ.

Apply Theorem 3.1 on Ĝ , which returns an unweighted graphH and

weightW ≥ ϵ4λ/f (n) such that the two properties of Theorem 1.5

hold for Ĝ. Clearly, the cuts are the same in G̃ and Ĝ: we have

w(∂G̃S) = w(∂ĜS) for all S ⊆ V . Therefore, the two properties also

hold for Ĝ, as desired.

We now bound the size ofG ′
and the running time. Sincew(e) ≤ λ̃,

we have ⌈w(e)/W̃ ⌉ ≤ ⌈3f (n)/ϵ4⌉, so each edge splits into at most

O(f (n)/ϵ4) edges and the total number of edges is m̂ ≤ O(f (n)/ϵ4)·
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m. Therefore, Theorem 3.1 takes time 2
O (logn)5/6(log logn)O (1)

m̂ =

ϵ−42O (logn)5/6(log logn)O (1)

m, concluding the proof of Theorem 1.5.
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