
ar
X

iv
:2

10
1.

00
10

1v
2

 [
cs

.D
S]

 2
3

A
pr

 2
02

1

Climbing LP Algorithms

Leonid A. Levin

Boston University∗

Abstract

NP (search) problems allow easy correctness tests for so-
lutions. Climbing algorithms allow also easy assessment of
how close to yielding the correct answer is the configura-
tion at any stage of their run. This offers a great flexibility,
as how sensible is any deviation from the standard proce-
dures can be instantly assessed.

An example is the Dual Matrix Algorithm (DMA)
for linear programming, variations of which were consid-
ered by A.Y.Levin in 1965 and by Yamnitsky and myself
in 1982. It has little sensitivity to numerical errors and to
the number of inequalities. It offers substantial flexibility
and, thus, potential for further developments.

1 Introduction

A Climbing algorithm A(x) is supplied with an easily
computable valuation V (s). A runs by iterating a step
transformation T (s) starting from s← x and ending with
output y ← s once the required valuation V (s) = R(x) is
reached. The efficiency of the algorithm reflects the effort
required to compute T, V and the progress in V toward
R(x) each iteration of T assures.

The following account is an example of such algorithm.
It adds algebraic details to previously published geomet-
ric versions. Some of these details exploit the flexibility
provided by its climbing nature to help with worst case-
performance by deviating in appropriate cases from the
standard procedure. The main point is to emphasize the
flexibility assured by this climbing nature as an example
that may be useful to follow for some other algorithms
and problems.

1.1 The Idea

Notations. df

= indicates definitions. det(C) denotes
the determinant of a matrix C; the Euclidean norm of
a vector b is |b|. For clarity row vectors may be under-
lined: 1 = (1, . . . , 1), column overlined: 0 = (0, . . . , 0). I
is the identity matrix, ek, ek are its k-th row and column.
We are to solve a system of inequalities Ax > 0 for a
rational vector x, given an m×n integer matrix A. Our
inequalities are akx > 0 for ak

df

= ekA, linearly indepen-
dent for k ≤ n. Let n and all entries of A be < l bits long,
so each ak has < L = nl bits. By Hahn-Banach Theorem,
the system Ax > 0 is inconsistent iff bA = 0 for some
vector b ≥ 0 6= b. The same holds if |bA| < b1/4L.

∗Computer Science dept., 111 Cummington Mall, Boston,
MA 02215; Home page: https://www.cs.bu.edu/fac/Lnd

The DMA searches for b in the form dB, where matrix
B has no negative entries, C df

=BA=V −1, d df

=uV=1D>0
for a diagonal D, u df

=
∑

k≤n
ak. We must grow b1

to >4L. This growth is hard to keep monotone, so a
lower bound log(n! det(DC))<n log(b1)+3L is grown in-

stead. It is − log of the volume of the simplex ⊳
B

with faces Cx=0, ux=1, vertices V D−1ek, 0, and center
v=V D−11/(n+1). The original simplex ⊳

o
starts with

Bo
k,k = 1, Bo

k,k′ 6=k = 0.
It turns out that by incrementing a single entry of B

one can always increase ln det(DC) by > 1/2n2, as long
as x = v fails the Ax > 0 requirement. This provides an
O(n3L) steps algorithm. Each step takes O(n2) arithmetic
operations, on O(L)-bit numbers and one call of a proce-
dure which points an inequality akx > 0 violated by a
given solution candidate x. This call is the only operation
that may depend on the number m of inequalities, which
could even be an infinite family with an oracle providing
the violated ak.

1.2 Some Comparisons

The above bound has n times more steps than Ellipsoid
Method (EM). However, the EM is much more demand-
ing with respect to the precision with which the numbers

are to be kept. The simplex ⊳
B

cannot possibly fail to in-
clude all solutions of Ax > 0, ux < 1, whatever B with no
negative entries is taken. In contrast, the faithful transfor-
mation of ellipsoids in the EM is the only guarantee that
they include all solutions.

Also, for m = O(n) several Karmarkar-type algorithms
have lower polynomial complexity bounds. Yet, they work
in the dual space and their bounds are in terms of the
number m of inequalities, while the above DMA bound
is in terms of n. For DMA, m may even be infinite, e.g.,
forming a ball instead of a polyhedron. Then dual-space
complexity bounds break down, while the DMA complex-
ity is not affected (as long as a simple procedure finds a
violated inequality for any candidate x).

To assure fast progress, numbers are kept with O(L)
digits. This bound cannot be improved since some con-
sistent systems have no solutions with shorter entries.
Yet, this or any other precision is not actually required

by DMA. Any rounding (or, indeed, any other deviation
from the procedure) can be made any time as long as
log det(DC) keeps growing, which is immediately observ-
able. This leaves DMA open to a great variety of further
developments. In contrast, an inappropriate rounding in
the EM, can yield ellipsoids which, while still shrinking
fast, lose any relation to the set of solutions and produce
a false negative output.

1

http://arxiv.org/abs/2101.00101v2
https://www.cs.bu.edu/fac/Lnd

2 Climbing LP Algorithms Leonid A. Levin

1.3 A Historical Background

The bound det(DC) is inversely proportional to the vol-

ume of ⊳
B

, which parallels the EM. Interestingly, in his-
tory this parallel went in the opposite direction: The sim-
plexes enclosing the solutions were first used by A.Y.Levin
in 1965 [1] and the EM was developed by Nemirovsky and
Yudin in 1976 [2] as their easier to analyze variation.

The A.Y.Levin’s algorithm starts with a large simplex
guaranteed to contain all solutions. Its center of gravity is
checked, and, if it fails some inequality, the corresponding
hyperplane cuts out a “half” of the simplex. The process
repeats with the resulting polyhedron. Each cut decreases
the volume by a constant factor and so, after some number
q(n) of steps the remaining body can be re-enclosed in a
new smaller simplex. Only a weak upper bound q(n) <
n log n was proven by A.Y.Levin; it did not preclude the
simplex from turning into a too complex to manipulate
in polynomial time polyhedron.

Nemirovsky and Yudin replaced simplexes with ellip-
soids and made q(n) = 1. Both they and A.Y.Levin used
real numbers and looked for approximate solutions with
a given accuracy. Khachian in 1979 [3] modified the EM
for rationals and exact solutions. Yamnitsky and myself
in 1982 [4] proved q(n) = 1 for the original A.Y.Levin’s
simplex splitting method. Below, an algebraic version of
that geometric algorithm and some implementation im-
provements are considered and analyzed.

2 Main Algorithm and Analysis

Let u df

=
∑

k≤n
ak, C df

=BA=V −1, d df

= uV , dk df

= dek,
ck df

= ekC, vk df

=V ek/dk.
For some i, j, s let a df

= ai, v df

= vj , t df

=(s2−1)av. Then
C′ df

=(B+ejei/tdj)A=(V ′)−1, d′ df

=uV ′, δk df

= d′ek/dk.
With σ df

= I+ejaV/tdj, C
′=σC, det(σ)=(1+av/t) =

1+1/(s2−1), V=V ′σ, d=d′σ. Thus, dk=d′σek =

dkδk+δjavkdk/t and 1=δk+δjavk/t=δk+
δjavk

(s2−1)av
.

Taking k=j, 1=δj(1+1/(s2−1)), δj=(s2−1)/s2 =
1−1/s2 = 1/det(σ), δk=1− avk

s2av
. Our gain is lnλ for

λ df

=
∏

k
δk det(C

′)/det(C) =
∏

k
δk det(σ)=

∏
k 6=j

δk.
Now v df

=
∑

k
vk take i, j with aiv ≤ 0, aivj=maxk aivk.

Then δk ≥ δj ,
∑

k
δk = n − av

s2av
≥ n, and

∏
k 6=j

δk ≥

δ
(n−2)
j (δj+n(1−δj)) = (1−1/s2)n−1(1+n/(s2−1)).

So, lnλ ≥ (n−1) ln(1−1/s2)+ ln(1+n/(s2−1)). For s =
n−1 and f(s) df

= s ln(1+1/s) this is f(s)−f(s−1) > 1/2n2.
This > 1/2n2 gain holds if s is accurate to O(l) digits,

so t can be rounded to O(l) significant digits, too.

3 Some Improvements

Inverting matrices may take cubic time, but when
a matrix with a known inverse is moderately modified,
Sherman-Morrison formula gives its inverse in O(n2)
steps. In our case the inverse of C′ is V ′ df

=V− vaV
avs2

. Fi-
nally, the following occasional deviations from the

standard step help the worst-case performance and also
illustrate the potential allowed by the flexibility of the
algorithm.

Digits. The nodes vok of the starting simplex ⊳
o

lie in
a 4L ball. Rounding t, DB to O(L) digits preserves the
> 1/2n2 gain in steps with maxk log |vk| < 4L. Yet, at

some steps a longest edge (vi, vj) of ⊳
B

may grow up to
2O(nL) long. But there would be only O(n) of such steps,
since they allow large gains in ln det(DC) as follows. Let
w df

=(vj−vi)
T, M df

= maxk wvok, m df

= maxk′,k w(vok−v
o
k′),

t′ df

= (wvj−M)/m, t df

= max{0, t′−1}/(|w|2di),

hi,j
df

=(Mu−w)t. ⊳
B

has area p of its projection along w
and volume p|w|/n. Its slice of height m/|w|=O(4L) cut
by hi,jx≥0, hj,ix≥0 encloses ⊳

o
. Note that hi,j = bA for

b df

= hi,jV
oBo = t(M1−wV o)Bo ≥ 0. The new simplex re-

places faces ci, cj in⊳
B

with ci+hi,j , cj+hj,i. It is up to 3
times wider and higher than the above slice. So its volume
is O(4L3np). This gains > log |w| − 3L in log detDC.

Maintaining Sparsity. Given a row b of B let
S df

= {i : bi 6=0}. When |S| exceeds 2n, we can (in O(n3)
arithmetic operations) simplify B to get |S|≤n without
changing C. We find a set F of |S|−n linearly indepen-
dent vectors f such that {i : fi 6=0} ⊂ S and fA=0.

Then repeat the following. Use an f∈F and i∈S with
maximal |fi|

bi
to annul bi via b ← b − bi

fi
f . This preserves

bA, keeps b≥0, and shrinks S. As S looses an entry i
we use an f∈F to annul the i-th component in all other
vectors in F and drop f from F .

References

[1] A.Yu. Levin. 1965. On an Algorithm for
the Minimization of Convex Functions.
Soviet Math., Doklady, 6:286-290.

[2] D.B. Yudin, A.S. Nemirovsky. 1976.
Informational Complexity and Effective Methods for
Solving Convex Extremum Problems. Economica i

Mat. Metody, 12(2):128-142; transl. MatEcon 13:3-25.

[3] L.G. Khachian. 1979.
A Polynomial Algorithm for Linear Programming.
Soviet Math., Doklady, 20(1):191-194.

[4] B. Yamnitsky, L.A. Levin. 1982. An Old Linear
Programming Algorithm Runs in Polynomial Time.
FOCS-82, pp: 327-328

	1 Introduction
	1.1 The Idea
	1.2 Some Comparisons
	1.3 A Historical Background

	2 Main Algorithm and Analysis
	3 Some Improvements

