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to consider each event log individually when selecting an optimal value. Ensemble schemes improve the
performance of low performing classifiers in this task, such as SVM, whereas high performing classifiers, such
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1 INTRODUCTION
Process mining is a discipline in business process management that aims at analyzing and extracting
previously unknown and useful information about a business process derived from historical data
about process execution [43, 55]. A prominent topic in process mining is predictive monitoring of
business processes [18]. The objective of predictive monitoring is to use historical process data,
normally stored in so-called event logs, to predict some aspect of interest about currently running
cases of a business process. Prediction may concern either aspects related with execution of process
cases, such as predicting the next activities that will be executed in a case or the time at which
future activities are likely to happen [51] or outcomes of a process case, such as the satisfaction or
violation of given service level objectives [41] or logical constraints predicated, for instance, on the
possible occurrence and order of activities [6]. Information obtained from predictive monitoring is
exploited to support pro-active decision making during business process execution, e.g., warning
customers that their request may be honored later than planned or taking corrective actions if an
undesired exception is likely to occur with high probability.
Process predictive monitoring models can be generated using classification or regression tech-

niques [19, 20, 44, 61]. The type of technique chosen for predictive monitoring depends on the
variable to be predicted, whether discrete or continuous. Classification and regression techniques
deal with the prediction of discrete and continuous variables, respectively. For instance, the authors
of [61] propose a method based on Long Short-Term Memory (LSTM) neural networks to predict
the remaining time of a process instance, which can be viewed as solving a regression problem.
Alternatively, the task of predicting the next event most likely to happen in a process case is a
sequence classification problem that can be solved using classification techniques, such as support
vector machines or decision trees [66]. Similarly, predicting process outcomes can also be seen as a
classification problem, i.e., early time series classification [11, 71].

An open issue in predictive monitoring is the one of choosing an appropriate and high performing
machine learning technique in a given scenario [21, 44, 46]. This is a challenging endeavour since
every dataset, i.e., event log, is likely to be different, owing to the fact that the organisational context
and the business process that generate event logs may vary dramatically in practice, spanning
from patient management in a hospital, to IT incident management or manufacturing processes.
Given the high variability of dataset characteristics in the context of process predictive monitoring,
it is desirable to build a comparative study of various machine learning techniques for different
predictive monitoring tasks, in order to support decision-makers in choosing the best machine
learning model for the predictive monitoring task at hand. Quantitative benchmarks of different
machine learning techniques for predicting the remaining time of process cases [67], outcomes of a
process case [63] or next event prediction [57] have been recently published in the literature.

In this paper, we present an extension of our previously published quantitative benchmark [57]
for the next event prediction task. This extension addresses (i) the effect of different encoding,
in particular, the size of the window chosen to generate samples from a trace of events, on the
performance of the classifiers, and (ii) the opportunity of using ensemble classifiers for next event
prediction and, in particular, whether it is worth to choose an ensemble for this prediction task.

Regarding the encoding of features, the previously published benchmark [57] and other published
work, e.g. [47, 61], have made an arbitrary choice of generating features from attributes of a fixed
number of events, i.e., a window, preceding the one to predict. In this paper, we benchmark different
sizes of such a window, showing that choosing an optimal window size is a challenging endeavour
and that the optimal choice may differ for each event log considered.

Regarding the assessment of whether it is worth to use ensemble learners in the particular task
of next event prediction, in this paper, we focus specifically on the issue of comparing different
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ensemble schemes, and on the related issue of choosing the best base classifier to use in an ensemble
scheme. Ensemble classifiers, in fact, have been shown to perform well in process predictive
monitoring. In the context of outcome-based predictive monitoring, [63] reports eXtreme Gradient
Boosting (XGBoost) using decision tree as a base classifier as the best overall performer in more
than 50% of the considered datasets. The performance, however, is evaluated against a limited
number of alternative base classifiers.
Despite ensembles being adopted effectively by previous research, the selection of available

individual classifiers in an ensemble may require prior knowledge about a dataset. Moreover,
researchers are often accustomed to particular individual classification algorithms, which they tend
to select as base classifiers. Therefore, somehow individual base classifiers in ensembles are often
picked arbitrarily, without taking into account other classifiers outside the researcher’s proficiency.
In addition, when proposing a new classifier ensemble, researchers tend to include only a small
number of well known individual classifiers, such as decision trees and neural networks, without
exploring extensively the whole scope of classification techniques available.
Hence, a comparative analysis among classifier ensembles and individual classifiers spanning

from different families, i.e., trees, rule-based, Bayes, and neural-based classifiers, on different types
of event logs is currently lacking. In this paper, we consider 12 base classifiers and 5 ensemble
schemes. We also consider 6 different real world event logs commonly used for benchmarking in
the process mining community, which are produced by different types of business processes.

In line with the ’no free lunch theorem’, while some ensemble schemes may perform better with
particular event logs, the best performers will vary over different event logs [69]. In evaluating the
performance of different ensemble schemes across different event logs, our objective is twofold.
First, we aim at identifying the best performing base classifier for a given ensemble scheme across
all event logs. This is important for allowing decision-makers to make a more informed choice when
adopting ensemble learning in predictive monitoring, allowing them to choose an ensemble scheme
likely to perform well across all possible scenarios. Second, we aim at studying the performance of
ensemble schemes across different groups of events logs with different characteristics. In particular,
we consider event logs characterized by small and large variability at the case level. The results show
that ensemble schemes improve the performance of classifiers performing low when considered as
individuals, while high performing classifiers, particularly in terms of low variability event logs,
tend to be stable, i.e., their performance does not improve particularly when considered in ensemble
schemes.

To summarise, this extended version of the benchmark in [57] for next event prediction addresses
the following research questions:

• RQ1: What is the impact of the encoding of features and, in particular, the size of the window
of events considered to make a prediction, on the performance of a classifier?

• RQ2: Do ensemble schemes improve the performance of base classifiers and, if so, is there a
best choice of the combination of ensemble scheme and base classifier?

The variability of event logs, in terms of frequency distribution of trace variants, is also considered
as a variable in the proposed benchmark. Therefore, for each question we investigate to what extent
the findings change with different levels of event log variability.
The remainder of the paper is organized as follows. Section 2 discusses related work. The

configuration of the proposed comparative analysis is detailed in Section 3, while Section 4 reports
and discusses the experimental results. Finally, concluding remarks are presented in Section 5.
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2 RELATEDWORK
Table 1 summarizes chronologically the existing techniques for predictive monitoring of business
processes that use classification techniques using the following criteria: (i) whether the event logs
used are private or publicly available, (ii) the classification method used, (iii) the main performance
measure considered, (iv) the type of prediction objective, i.e., whether next event or outcome
prediction, and (v) whether a significance test to compare the performance of different classifiers
has been used. Decision tree appears as popular choice as a classification algorithm (7 publications),
followed by random forest (6 publications), and support vector machine (4 publications). Few works
have considered classifier ensembles, i.e., random forests and XGBoost, in their studies [19, 38,
42, 54, 62, 63]. This indicates that classifier ensembles are still unexplored in the published works.
Moreover, only one study [63] considers a statistical test to compare the performance of different
ensemble schemes.

As far as reviews and benchmarks of different predictive monitoring techniques are concerned,
qualitative reviews of research works have been proposed by [21] and [46]. The review in [21]
provides a qualitative value-driven analysis of different predictive process monitoring techniques
to support decision-makers in choosing the best predictive technique for a given task. The criteria
considered in the classification framework are the type of prediction task considered, the input type,
e.g., whether an event log is provided with additional data and/or contextual information, the family
of algorithms and available tool support. The review presented in [46] considers standard criteria
for classifying predictive monitoring approaches in the literature, such as the prediction task or the
type of technique used. Additionally, it characterizes approaches in the literature according to their
process awareness, i.e., whether or not an approach harnesses an explicit representation of process
models.
A genetic algorithm-based method for hyperparameter optimization in predictive monitoring

is presented in [19]. In this work, decision tree and random forest are considered in the task
of predicting process outcomes, formulated as satisfaction of linear temporal logic constraints.
In the paper, the authors argue that there is no single algorithm, under the default learning
parameters, that constantly performs best across all process event logs, therefore calling for the
development of quantitative benchmarks for business process predictive monitoring. Regarding
the prediction of time aspects, the work presented in [67] benchmarks two regression algorithms
based on XGBoost [13] and LSTM neural networks [32] for predicting the remaining time of
process cases. The results indicate that in 14 of 17 datasets, LSTM had been the best-performing
regressor. Regarding the prediction of process outcomes, the work in [63] develops a benchmark
of 4 classification algorithms on several publicly available event logs. The benchmark yields the
XGBoost classifier as the best performer in terms of AUC metric in 15 out of 24 datasets. Regarding
next event prediction, our previously published benchmark [57] provides an empirical comparison
of the performance of 20 different classifiers, including 5 ensemble learners that use decision tree
as the only base classifier.
Overall, the existing quantitative benchmarks in business process predictive monitoring ([57,

63, 67] consider only a limited number of ensemble learners with default base classifiers, never
attempting to study whether and how the choice of ensemble learner and base classifier may impact
the performance of the model.
In the general field of machine learning, it is widely recognised that choosing the best base

classifier when designing an ensemble scheme is a challenging task. As a result, for the sake of
generalization, there are no context rationales to prefer one ensemble to another [22]. Even though
there exists a common understanding among machine learning researchers that the performance
of ensembles often surpasses the one of an individual classifier, this is not promised for all possible
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Table 1. Outline of predictive monitoring using classification algorithms

Study Year dataset Method Performance
measure

Prediction objec-
tive

Significance
test

[37] 2012 Private Support vector
machine

Error rate Process outcome No

[40] 2013 Private Decision tree &
neural network

Precision Process outcome No

[10] 2014 Private Support vector
machine

F-score Next event No

[44] 2014 BPIC2011 Decision tree Precision Process outcome No
[9] 2014 BPIC2012 Expectation-

maximization
Accuracy Process outcome No

[15] 2015 Private Decision tree N/A Process outcome No
[42] 2015 BPIC2011 Hidden Markov

Model and
Random forest

AUC Process outcome No

[65] 2016 Marketing
campaign

Decision tree Accuracy Next event No

[20] 2016 BPIC2011 Decision tree Accuracy Next event No
[62] 2016 Private Random forest

and logistic
regression

F-score Next event No

[66] 2016 Private Support vector
machine

AUC Process outcome No

[47] 2017 BPIC2013 Evolutionary
computing

F-score No

[48] 2017 BPIC2012,
BPIC2013,
and
Helpdesk

Multi-stage deep
learning

Accuracy, Pre-
cision, and Re-
call

Next event No

[23] 2017 BPIC2012
and
BPIC2013

Long Short Term
Memory Neural
Network

Precision Process outcome No

[38] 2018 Synthetic
dataset

Random forest Precision and
Recall

Next event No

[19] 2018 BPIC2011
and
BPIC2015

Decision tree and
random forest

Accuracy Process outcome No

[54] 2018 BPIC2013 Decision tree and
Random forest

Accuracy and
AUC

Next event and
process outcome

No

[63] 2019 BPIC2011,
BPIC2012,
BPIC2015,
BPIC2017,
Production,
Insurance,
Sepsis, Hos-
pital Billing,
and Traffic
Fines

random forest,
XGBoost, logistic
regression, and
support vector
machine

AUC and F-
score

Process outcome Yes
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Table 2. Process log example for the next event prediction

case_id event_type timestamp
173688 activity A 10/01/2011 19:45
173688 activity B 10/01/2011 20:17
173688 activity C 10/13/2011 18:37

173691 activity A 10/01/2011 19:43
173691 activity B 10/01/2011 22:36
173691 activity C 10/10/2011 19:30
173691 activity C 10/10/2011 22:17
· · · · · · · · ·

datasets [39]. Therefore, given a specific type of dataset, there exists a research gap related to
choosing the best base classifier for particular ensemble schemes. Owing to the availability of
public datasets, credit scoring is among the domains in which the effectiveness of ensemble learners
has been investigated extensively. The works [1, 2, 45, 68] compare the performance of base
classifiers and ensemble learners on multiple credit scoring datasets. Despite the fact that ensemble
learners bring significant performance improvements over single classifiers, only a small number
of classifiers are included in these studies. A novel contribution evaluating classifier ensembles
for intrusion detection systems is presented in [59] and [58]. The benchmarks, however, consider
only a few particular datasets, i.e., wireless and wired networks, because benchmark datasets
in this domain are generally not publicly available. In addition, the performance of several tree-
based classifiers for disease prediction, e.g. diabetes, is assessed either as a single classifier or in
ensemble [60]. This research, however, is restricted to a limited number of families of classifiers.

3 PROBLEM DEFINITION AND EXPERIMENTAL BENCHMARK CONFIGURATION
This section describes the configuration of the proposed comparative analysis, covering the problem
definition, materials (i.e., event log datasets), a description of the considered base classifiers and
ensemble techniques, and a brief explanation of the significance tests adopted to investigate the
performance differences among classifiers.

3.1 Problem definition
An event is a tuple e = (c, t ,a, (d1,v1), . . . , (dI ,VI )), where c is the id of the process case to which
e belongs, t is the timestamp at which e has been recorded, a is the event type, e.g., the activity
that was executed, and (di ,vi ), for i = 1, . . . , I are a set of I domain specific attribute-value pairs
associated with e . We refer to A as the universe of event types. We use the notation #x (ei ), with
x ∈ {c, t ,a,d1, . . . ,dI }, to refer to the value assumed by a particular attribute x in an event ei .

A traceσ is the sequence of events executed in a particular process case, i.e.,σ = [e1, . . . , en , . . . , eN ],
with #t (en+1) > #t (en)∀n ∈ [1,N − 1] and #c (ei ) = #c (ej ),∀i, j ∈ [1,N ]. Table 2 shows an example
of events for 2 traces with case id 173688 and 173691 in an event log where only the timestamp
attribute is shown. Let us refer to E and S as the universe of events and sequences of events (i.e.,
including traces), respectively.
A window functionW : S × E × N −→ S maps a trace σ , an event ei ∈ σ onto a window of l

events preceding ei in σ :
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w(σ , ei , l) =
{
[ei−l , . . . , ei−1] ⊆ σ if i − l ≥ 1
⊥ otherwise

We refer to l as the size of the windoww(σ , ei , l).
A window generation relation д : S × N −→ 2S maps a trace σ into the set of all possible

windows of size l generated from it:

д(σ , l) = {w(σ , ei , l) , ⊥,∀ei ∈ σ }
A window encoder function e : S −→ X1, . . . ,Xf , . . . ,XF maps the sequence of events in

a window onto a vector of F features Xf , with f ∈ [1, F ]. Finally, a window labelling function
y : S −→ A maps a sequence of events in a window onto its event type:

y(w(σ , ei , l)) = #a(ei )
The problem of next event prediction is to learn a classifier function cls : X1, . . . ,Xf , . . . ,XF −→

A mapping a feature vector onto its label. With an abuse of notation, in the remainder we use
cls(w) to indicate the output of the classifier applied to the features generated from a window of
eventsw(·).
Note that this problem differs from the one of prediction of outcomes in business process

predictive monitoring. Predictions of outcomes is normally treated as an instance of early time
series classification [63], where the aim is to predict as soon as possible in a case what the outcome
of that case will be. As such, features in prediction of outcomes are derived from prefixes of cases,
which start from the first event registered in a case. Next event prediction, as formalised above, is
an instance of sequence classification, in which a long sequence, i.e., a trace, can be broken down
into a set of small consecutive labeled sequences, i.e., using the window-based encoding described
above, to create the samples for the classification task [56]. Next event prediction may also be
treated as an instance of early time series classification, by considering the label of the next event in
a case as the outcome. However, in this paper we decided to consider the window-based encoding
because it is used extensively by previous research [46, 57].

3.2 Materials
We consider 6 event logs. Besides being publicly available, event logs have been chosen because
they are generated by different types of business processes and because they differ in terms of
variability at the case level, e.g., the number and frequency of case trace variants. In most cases, the
predicted event type ai corresponds to an activity label, i.e., the execution of a particular instance
of a business process. However, in some cases, an event type might represent different information
that could still be utilized for process-aware analysis of event logs, such as the status of customer
loan applications in a financial institution. In the event logs used in this study, when not explicitly
defined, a feature activity is available to be taken into account as event type. The 6 event logs are
described next.
(1) Helpdesk1

This log records events from a ticketing management system of the help desk of an Italian
software company. The log has 9 event types (i.e., distinct activities), 3,804 process cases and
13,710 events.

(2) BPIC 20122
This event log has been made available by the Business Process Intelligence Challenge

1http://dx.doi.org/10.17632/39bp3vv62t.1
2http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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Table 3. A grouping of event log with respect to its variability level [57]

Event log Event types Trace variants
Number of
variants to
80% cases

Variability (ratio) Mean trace
length

Median trace
length

Helpdesk 9 154 5 Low (0.032) 3.60 3
Hospital Billing 16 288 3 Low (0.01) 5.00 5
Road Traffic 11 44 2 Low (0.045) 3.47 2
Sepsis 16 846 635 High (0.75) 14.49 13
BPIC2013 13 2278 767 High (0.33) 20.04 11
BPIC2012 36 4366 1748 High (0.40) 8.68 6

(BPIC) in 2012. It records events from the application procedure for financial products in a
large financial institution. The log comprises 262,200 events in 13,087 cases. The event type
considered is the combination of the attributes concept:name and lifecycle:transition
in the log, which denotes the status of applications. This log includes 36 different event types.

(3) BPIC 20133
This event log has been made available by the BPIC in 2013. It records the events of an
incident and problem management system at a car manufacturer in Belgium. It comprises
65,533 events for 7,554 cases. The event type is an activity label obtained as the combination
of the attributes concept:name and lifecycle:transition. This log has 13 different event
types.

(4) Sepsis4
This log records events of sepsis cases treatment from a hospital as recorded by the hospital’s
enterprise resource planning (ERP) system. It has 15,214 events for 1,050 cases, and 16 different
event types (distinct activities).

(5) Road Traffic Fine Management4
This event log records events from an information system managing road traffic fines for the
local police of a city in Italy. It contains 34,724 events for 10,000 cases, with 11 different event
types (distinct activities).

(6) Hospital Billing4
This event log records events of the billing of medical services from the financial modules of
a regional hospital’s ERP system. The event log includes 49,951 events for 10,000 cases, with
16 different event types (distinct activities).

We split the 6 considered event logs into two groups based on their variability at the case level
(see Table 3). In the low variability group, a small number of case variants are needed to cover the
large majority (80%) of cases in the log, which means that the process generating the event log is
often executed following a limited number of possible ways. Conversely, a much higher number of
case variants is needed to cover 80% of the cases in high variability event logs. The variability of
logs is numerically captured by the variability ratio, defined as the ratio between the number of
trace variants that cover 80% of the cases and the total number of case variants. Note that there is at
least one order of magnitude difference in the value of this ratio between low and high variability
logs. Predictive monitoring in low variability event logs is normally an easier task, that is, models
trained using this type of logs tend to be more stable and accurate [57].
Features are generated considering the event type of events in a window and the duration of

a window. Similarly to [47, 57], in fact, given a window [ei−l , . . . , ei−1] of size l , we consider as

3http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
4https://www.bupar.net/eventdataR.html
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Table 4. Final format of event log example shown in Table 2 in for l = 3

case_id event_1 event_2 event_3 duration next_event
173688 3 5 6 17212 3
173691 3 5 6 12947 6
173691 5 6 6 12941 6
· · · · · · · · · · · · · · · · · ·

features the event types #a(ei−l ), . . . , #a(ei−1) and the duration of the considered window calculated
as #t (ei−1) − #t (ei−l ). As previously discussed, the label for a window is the type of the next event,
i.e., #a(ei ). We consider 3 different window sizes l = 3, 4, 5.

For example, Table 4 shows an example of encoding the event log of Table 2 for l = 3, where the
event type labels have been encoded into numerical attributes (Activity A into 3, B into 5, and C into
6). Note there is no optimal solution for choosing the window size l for encoding and researchers,
such as in [47] and [61], tend to consider only a fixed window size in their experiments.

3.3 Classification Techniques
This section outlines the considered base classifiers and ensemble schemes. Besides a brief descrip-
tion, for each classifier we mention the implementation that we considered and the values that we
considered in experiments for the main parameters. Each classifier, when not explicitly mentioned,
runs using the default learning parameter settings (a list of hyperparameters used in this study is
detailed in the Appendix A).

3.3.1 Individual Classifiers.

(1) Decision Tree (DT)
We consider the J48 algorithm implementation of C4.5 [52]. Decision tree is a well known
classification algorithm, where a tree is formed by a root and a number of nodes. Each node
refers to a class label and samples are assigned to nodes based on the impurity level of the
class label distribution. In our experiment, tree-pruning is performed with confidence factor
equal to 0.25.

(2) Credal Decision Tree (C-DT)
We consider the JCDT implementation of the credal decision tree [3]. This classifier, unlike
C4.5, uses imprecise probabilities and uncertainty measures for assigning samples to nodes.
In the experiment, tree-pruning is applied, the parameter used to fix the root node of the
tree (k-th root variable) and the parameter used in the Imprecise Dirichlet Model (Svalue ) are
both set to 1.

(3) Random Tree (RT)
This classifier is a decision tree that uses K randomly selected attributes at each node to build
the tree, without pruning [8]. In the experiment, we consider the implementation of this
classifier in Weka. The parameter maximum depth of the tree is set to unlimited, whereas the
number of randomly chosen attributes is set to 0.

(4) Decision Stump (DS)
This is a 1-level decision tree, where the root is immediately connected to the leaves [35]. It
is commonly employed as a base classifier in boosting ensembles. In this study, we use the
implementation of this classifier provided in Weka.

(5) Naive Bayes (NB)
This classification technique takes into account the conditional probabilities of a categorical
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class variable defined by an independent predictor variables using the Bayes rule [36]. It
assumes independence of the predictor attributes. We consider the Java implementation
of the classifier available in Weka. We consider a normal distribution instead of a kernel
estimator since we deal with both categorical and numeric attributes.

(6) Support Vector Machine (SVM)
This classifier generates a set of hyperplanes in a higher dimensional space used for classifi-
cation and regression [17]. As suggested by [34], we use a LIBLINEAR [24] implementation
because it is faster than other implementations, such as LIBSVM [12], to achieve a classifi-
cation model with comparable accuracy. In the experiment, we employ a L2-loss support
vector classification (dual). The tolerance of the termination criterion ϵ is set to 0.01, the cost
parameter C to 1.0, and the maximum number of iterations n to 1000.

(7) k-Nearest Neighbor (k-NN)
The k-nearest neighbor classifier does not have an explicit training process. For a test sample,
it calculates the k samples from the training set that are nearest to the test sample. Next,
the test sample is classified by choosing the majority class among the k samples [5]. In our
experiment, we use the IBk implementation [4] provided by Weka. The number of neighbors
to use k is set to 2, while the linear search using Euclidean distance is considered as the
nearest neighbor search algorithm.

(8) RIPPER (JRip)
Repeated Incremental Pruning to Produce Error Reduction (RIPPER) has been originally
proposed to improve the performance of the IREP algorithm [14]. It generates a classification
rule by (i) splitting the samples randomly into two disjoint subsets, i.e., a growing set and
a pruning set, and (ii) generating classification rules using the FOIL algorithm. Once a rule
is generated, it is immediately pruned by repealing any final sequence of conditions. We
consider the Java implementation of this classifier available in Weka, namely JRip.

(9) OneR
OneR is a simple classification algorithm that yields one rule for each predictor in a dataset
and finds the rule with minimum total error as its final rule. A rule for a predictor is obtained
by creating a frequency table for each predictor variable against the target variable [33]. We
consider the implementation provided by Weka, where the minimum bucket size used for
discretizing numeric attributes is set to 6.

(10) Conjunctive Rule (CR)
This classifier generates rules in which the successor considers the distribution of the number
of classes in the dataset, whereas the predecessor is found by calculating the information gain
of each predecessor and cutting off the resulting rules using reduced error pruning (REP ).
This procedure reduces the complexity of the final classifier, as a rule with small prediction
would be pruned [27]. In the experiment, we consider the implementation provided in Weka,
where pre-pruning for predecessors is performed.

(11) Bayesian Network (BN)
Bayesian network is a probabilistic graphical model that represents a set of attributes and
their conditional dependencies [50]. For a classification task, it learns the network structure
and the probability tables defining conditional dependencies. We consider the BayesNet
implementation of this classifier in in Weka using the simple estimator for searching the
conditional probability tables. The method used for finding network structures is the K2
algorithm [16].

(12) Decision Table and Naive Bayes Hybrid Classifier (DTNB)
The DTNB in a Bayes classifier that splits the attributes of a dataset into two disjoint subsets,
one partition for decision tables and the other for naive Bayes. A forward selection search
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is used to assess the merit of subsets. At first, all attributes are modeled using decision
tables, while at each assessment step, selected attributes are modeled by naive Bayes and the
rest by decision tables [30]. We consider the implementation of this classifier provided by
Weka. The search method used to find attribute combinations for the decision table is the
BackwardWithDelete algorithm, whilst the leave-one-out technique is used to evaluate the
features.

3.3.2 Ensemble Schemes.

(1) Bagging
Bagging applies the same individual classification algorithm (i.e., the base classifier) to
different bootstrap samples of the training set [7]. It aims at improving unstable estimations
by reducing variance, while slightly increasing bias, for a given base classifier. The outputs of
single classifiers are aggregated to calculate the final output using amajority voting rule. Given
D as a training set, bagging producesm bootstrap samples with replacement D1,D2, ...,Dm ,
randomly chosen from D, of size n. For each bootstrap sample Di , a single classification
algorithm clsi is trained by utilizing the same classifier. To predict a test samplew , bagging
feeds the samples to the single classifiers to obtainm predictions O = {cls1(w), . . . , clsm(w)}
and chooses the predicted label as the most frequent in O . We use the bagging algorithm
implemented in Weka. The number of bagsm is set to 10, while the size of each random
sample n is 100%.

(2) Boosting
Boosting trains a set of classifiers sequentially and aggregates their results for final prediction
by imposing that later classifiers paymore attention to the classification errors made by earlier
learners. Many implementations of boosting exist. In this work we use the one considered
by many as the most popular boosting algorithm, i.e., AdaBoost [26]. Let D be the input
of boosting, cls a base classifier, and R the number of learning rounds. The procedure of
boosting can be described as follows: (i) applying individual classifier cls to the original
dataset D, (ii) determining the weight of the samples in D such that they are inversely
proportional to the classification error of clsr , where r is the current round, (iii) if r , R,
then increase r of one unit and go back to step (i). Given a test samplew and the predictions
O = {cls1(w), . . . , clsR (w)}, the predicted label is chosen as the most frequent in O . The
AdaBoostM1 algorithm available in Weka is considered in the experiment with the number
of weak models to createM set to 10.

(3) Random Subspace
Random subspace uses several feature subsets to train models using the base classifier [31].
It is, therefore, a parallel algorithm in which individual classifiers are trained independently
using different features. Let F be the number of features generated from a dataset, d be an
integer, with d < F , and M be the ensemble size, i.e., the number of base classifiers that
will be trained. Random subspace trainsM models cls1, . . . , clsM using some base learning
algorithms, where for each model only d features are randomly selected. Given a test sample
w and the predictions O = {cls1(w), . . . , clsM (w)}, the predicted labels forw is chosen as the
most frequent in O . We use the random subspace algorithm implemented in Weka with F set
to 50% and the number of base learnersM set to 10.

(4) Nested Dichotomies
A nested dichotomy (ND) decomposes a multi-class classification problem into a set of
binary problems [25]. The performance of a nested dichotomy relies on the selection of
the decomposition and the choice of individual learners, i.e., base classifiers. Given a set
Y = {a1, . . . ,ai , . . . ,aI } ⊆ A of I distinct event types in an event log, a nested dichotomy is
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a recursive splitting (Ya ,Yb ) of Y into pairs of disjoint and non-empty subsets [49]. More
specifically, ND builds a binary tree with I leaf nodes, which are uniquely labelled by the
event types. For instance, Figure 1 shows the recursive separation of five distinct event types
using four base classifiers. The first classifier (cls1) splits event type #a(e) = γ from the union
of other event types #a(e) ∈ {α , β ,δ , ϵ}; in a similar fashion, the second classifier (cls2) splits
event types #a(e) ∈ {α ,δ } from #a(e) ∈ {β , ϵ}, and so forth.
Once the hierarchy of base classifiers has been trained, a test samplew can be predicted in
a probabilistic manner. For each leaf node, a classification probability pi (w) of #a(e) = ai is
calculated by multiplying the probabilities along the path from the root of the tree to the leaf
with #a(e) = ai . The event type ai with highest probability pi (w) is chosen as the predicted
one for a test sample w(·). In this paper, we employ the implementation of ND algorithm
supplied by Weka, where the number of base classifiers is set to 10.

cls1

#a(e) = γ cls2

cls3

#a(e) = α #a(e) = δ

cls4

#a(e) = β #a(e) = ϵ

Fig. 1. Illustration of a recursive splitting in a nested dichotomy [49]

(5) Dagging
Dagging creates several disjoint samples (instead of bootstrap in bagging) and feeds each
sample of data into a copy of the given of single classifier [64]. Given a dataset D, it randomly
samples D intoM disjoint partitions without replacement of size I . Then, it trainsM models
clsm using some base classifier. To classify a test instance w , the predictions are made via
averaging inO = {cls1(w), . . . , clsM (w)}. In the experiment, we consider the implementation
of dagging provided by Weka with number M set to 10.

3.4 Validation and performance significance tests
Repeated hold-out is chosen as a validation procedure for the experiments. At each iteration, the
training samples are drawn from dataset D without replacement in a specified percentage (67%),
while the remaining samples are used for testing. The procedure is then repeated 30 times to reduce
variations in the random splits.

We use two different statistical tests to assess whether the performance differences among the
considered classifiers are significant. First, we compare all the classification algorithms using the
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Friedman test. The Friedman test [28] assigns a different rank to each classifier for a given dataset in
a performance ascending way, i.e., such that the the best performer is assigned the rank 1. Next, an
all inclusive Friedman p-value is adopted to detect whether at least one of the classifiers performs
significantly differently than the others. This test is considered to reject the null hypothesis that
performance differences among all classifiers for a given dataset are not significant.

When the Friedman test rejects the null hypothesis, two pair-wise tests, i.e., Friedman posthoc [29]
and Rom [53] tests with the corresponding p-value adjustment are applied for multiple comparisons
among the classifier performances. Two alternatives for pairwise comparisons are available, i.e.,
comparison with a control and all pairwise comparisons. In this paper, we consider the top ranked
classifier as the control classifier. Friedman and Rom posthoc are chosen since they are not complex
while still powerful procedures when the alternatives to compare are greater than 5, such as in our
case.

4 EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the results obtained from the experiments. The complete experimental results
and the datasets are publicly available to foster reproducibillity in future research5.
The accuracy achieved by each classifier individually and using different ensemble schemes is

shown in Table 11 - 15, which are reported in the Appendix B for maintaining the readability of the
manuscript. The classifiers ranked first, second, and third in these tables are highlighted using bold,
underlined, and italic fonts, respectively. Tree-based classifiers emerge as the best base classifiers
for both groups of event logs. In particular, DT achieves a higher average rank in both groups. This
implies that DT is a stable classifier, that is, there is no substantial difference in the performance
obtained using DT as an individual classifier or as the base classifier in an ensemble. The other top-4
performers are C-DT, DTNB, JRip, and NB. The worst performers are DS, SVM, and CR. The poor
performance of SVMmay be unexpected since SVM-based classifiers show remarkable performance
in several application domains. However, this result is in line with the experiments in [1, 57, 63]
using credit scoring datasets, where SVM was also the worst classifier. The poor performance
of SVM classifiers, in this case, may be due to a poor choice and parameterization of the kernel
functions. A different parameterization may be in fact needed for each different event log.

More in detail, the results of Table 11 - 15 can be summarised as follows:
• DT wins the benchmark in almost all ensemble schemes and event logs groups, except when
it is placed in boosting.

• Generally speaking, C-DT is the second best performing classifier over any ensemble schemes
and any variability level of event log datasets.

• Compared to JRip, DTNB is superior in any ensemble schemes, except dagging with high
variability event logs. For overall performance, DTNB occupies the third best performing
classifier in our experiment.

• The best result for JRip is obtained when it is placed in nested dichotomies or boosting.
Note that the overall results of Table 11 - 15 confirm the ones of our previously published bench-

mark regarding the level of accuracy achieved. The top-performing classifiers for low variability
event logs achieve an average accuracy of around 85%, while this average drops to around 65% for
high variability logs. This confirms that high variability logs are significantly more challenging for
this prediction task than low variability ones and also shows that ensemble schemes do not help to
improve the performance of classifiers on high variability logs.
In order to answer the research question RQ1, regarding the impact of the size of the window

l for encoding on the classifier performance, Table 5 shows, for the top-2 ranked classifiers in
5http://bit.ly/ensembleprocessmonitoring
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each setting (individual and ensemble schemes), the relative percentage performance difference on
different event logs, using l = 3 as a baseline. The results should be interpreted by considering,
as an additional characterisation of the data at hand, the number of samples obtained from the
application of the window-based encoding for different values of l , which is shown in Table 6. For
some event logs, in fact, the number of samples available decreases dramatically with the increase
of l , which makes the models obtained unreliable and prone to overfitting. For instance, for the Road
Traffic event log, the number of samples available decreases by 92% (from 10,042 to 767 samples)
when the window size increases from l = 3 to l = 5.

Table 7 summarises, from a qualitative standpoint, the results obtained for different window sizes
in respect of three characteristics of an event log: (i) the number of samples for larger values of l ,
(ii) the event log variability and (iii) the mean/median trace length. Based on Table 7, we highlight
the following insights:

• The choice of the optimal window size does not depend on the variability of an event log,
but the optimal window size should be assessed individually for each event log;

• Increasing the window size may reduce drastically the number of samples available to train a
model, so the performance obtained should always be assessed in term of its reliability based
on the number of samples available;

• Despite the caveats highlighted above, a lower window size (l = 3, 4) appears to be a safer
choice that is likely to perform satisfactorily in most cases. However, in case of large logs
with longer traces, e.g., Sepsis and BPIC 2013, we suggest to test a larger set of window sizes
to find an optimal one. For instance, in the case of Sepsis, l = 4 or l = 5 lead to the best
performance in all ensemble schemes, whereas in the case of BPIC 2013, the baseline l = 3 is
the optimal choice in all schemes except Random Subspace.

In order to answer RQ2, regarding to what extent classifier ensembles result in a performance
increase over individual classifiers, Figure 2-7 show the average accuracy of all classifiers indi-
vidually and in different ensemble schemes for low variability and high variability event logs for
l = 3, 4, 5, 6, 7, 8, respectively. The implementation of ensemble methods always brings significant
improvements over individual classifiers, i.e. DS, RT and CR, and for SVM (except in the dagging
ensemble for large window sizes). This implies that these classifiers are unstable in this prediction
task. Conversely, the other classifiers can be considered stable in this prediction task, since their
usage in ensemble schemes does not improve their performance (but, actually, in some cases per-
formance clearly deteriorates when using these base classifiers in an ensemble scheme). Focusing
only on the top-performers (C-DT, DTNB, DT), it can be noted that these are very stable for both
low and high variability event logs.
We perform significance tests for each ensemble scheme using the Friedman test. The test is

carried out at the level of significance of α = 0.05. As can be seen in Table 8, the difference
among classifiers is highly significant (p-value < 0.05), which means that there is at least one of
the classifiers that performs significantly different than others. Therefore, the null hypothesis (all
classifiers have performed equivalently) must be rejected and posthoc tests should be carried out.

Table 9 and 10 show the pairwise comparison results of the raw (unadjusted) p-value using the
Friedman posthoc test and all the adjusted p-values for each scenario that incorporates a control
classifier using Rom posthoc test. We consider the best performer, DT as a control classifier and
compare its performance with one of all the other classifiers considered in our benchmark. Within
a tolerance of α=0.05, we can see that when p < 0.05, the classifiers are worse than the control
classifier.

In summary, Table 9 and 10 show that:

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



An empirical investigation of different classifiers, encoding and ensemble schemes for next event prediction using business
process event logs 1:15

Table 5. Relative differences (%) of the best two classifiers w.r.t different window sizes, where size l = 3 is the
baseline. For example, C-DT performance on the Helpdesk event log is 13.85% higher with l = 4 than with
l = 3.

Scheme Classifier Window
baseline l

Window
size l Helpdesk Hospital

Billing
Road
Traffic BPIC2012 BPIC2013

Incident Sepsis

Individual

C-DT 3

4 13.85 -1.49 -7.64 0.95 -4.58 10.06
5 16.05 -4.59 -6.89 -5.92 -1.67 10.15
6 14.94 -7.36 -12.04 -8.33 -3.78 8.60
7 12.32 -8.13 -14.51 -15.70 -2.87 7.75
8 -0.71 -5.21 -24.90 -10.85 -3.98 2.48

DT 3

4 11.40 -1.51 -7.83 0.91 -4.51 10.30
5 12.71 -4.66 -6.27 -6.08 -1.75 11.29
6 12.53 -7.28 -11.37 -7.06 -4.21 9.66
7 17.27 -7.79 -16.17 -11.14 -2.98 8.35
8 15.10 -4.69 -27.77 -8.09 -4.09 2.63

Bagging

C-DT 3

4 11.98 -1.45 -7.80 0.87 -4.63 11.61
5 14.63 -4.64 -7.35 -6.17 -1.32 12.53
6 15.41 -7.38 -10.52 -8.10 -3.75 10.35
7 15.56 -7.77 -13.49 -13.85 -2.46 9.17
8 15.29 -5.11 -19.87 -13.75 -3.39 4.95

DT 3

4 13.37 -1.37 -8.01 0.74 -5.68 11.76
5 13.75 -4.70 -6.52 -6.30 -2.11 14.38
6 18.66 -7.09 -9.01 -8.18 -4.04 12.08
7 20.46 -7.56 -12.33 -13.62 -3.04 12.08
8 21.86 -4.40 -27.86 -14.40 -4.39 7.32

Boosting

C-DT 3

4 13.69 -1.51 -7.67 1.03 -4.34 9.62
5 16.09 -4.65 -5.99 -5.74 -1.39 10.25
6 14.92 -7.22 -11.12 -8.70 -3.55 8.60
7 14.15 -7.91 -13.48 -17.21 -2.73 7.17
8 8.46 -5.08 -17.33 -14.50 -3.80 3.41

DT 3

4 9.07 -1.38 -8.09 0.71 -5.58 8.93
5 10.14 -1.94 -7.92 -5.94 -3.91 8.15
6 8.32 -5.37 -9.92 -7.03 -6.73 4.63
7 10.05 -6.52 -13.47 -10.95 -5.90 4.41
8 11.49 -3.77 -16.40 -5.52 -8.24 -2.35

Random Subspace

C-DT 3

4 14.42 -0.47 -6.94 1.30 -0.33 12.97
5 17.21 -4.35 -10.69 -5.49 1.88 12.87
6 19.11 -7.13 -9.51 -7.85 0.98 12.55
7 14.38 -6.98 -12.24 -16.41 0.66 8.11
8 18.17 -3.52 -18.73 -10.67 0.38 7.80

DT 3

4 12.86 -0.37 -7.03 1.30 0.72 14.35
5 15.18 -4.44 -8.50 -5.78 3.24 14.88
6 18.08 -7.22 -8.84 -7.54 1.76 16.23
7 18.34 -7.32 -14.33 -12.40 1.54 10.07
8 17.92 -3.10 -23.23 -10.08 1.29 11.46

Nested Dichotomies

C-DT 3

4 10.51 -1.53 -7.84 0.89 -4.94 9.78
5 13.39 -4.68 -7.82 -7.41 -1.96 11.02
6 16.46 -7.41 -18.07 -10.44 -3.71 7.99
7 9.84 -8.20 -21.13 -13.06 -2.66 6.52
8 4.39 -4.82 -27.40 -14.19 -3.53 2.70

DT 3

4 12.37 -1.59 -7.93 0.70 -4.29 10.25
5 13.86 -4.70 -7.24 -6.54 -3.30 11.22
6 14.46 -7.60 -16.37 -7.45 -3.74 9.00
7 18.90 -8.07 -17.37 -11.54 -3.54 6.90
8 17.96 -5.19 -26.40 -10.39 -5.81 1.90
Continued on next page
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Continued on previous page

Scheme Classifier Window
baseline l

Window
size l Helpdesk Hospital

Billing
Road
Traffic BPIC2012 BPIC2013

Incident Sepsis

Dagging

C-DT 3

4 12.86 -1.83 -5.93 1.32 -4.61 3.02
5 12.17 -5.09 -11.02 -5.79 -1.63 3.77
6 9.61 -8.28 -26.53 -15.42 -3.39 2.90
7 -13.32 -8.83 -47.67 -15.86 -2.39 4.72
8 -20.48 -6.28 -46.93 -10.56 -3.20 3.19

DT 3

4 11.41 -1.50 -7.92 1.35 -4.53 6.94
5 13.91 -4.71 -11.49 -5.63 -1.50 7.63
6 17.01 -7.55 -20.41 -7.78 -3.71 4.79
7 2.61 -8.22 -20.63 -13.89 -2.97 4.22
8 -26.14 -5.33 -31.40 -10.52 -3.49 1.98

Table 6. Sample size after encoding for different window size l

Event log Sample size
l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

Helpdesk 2,477 1,117 490 227 101 56
Hospital Billing 24,337 17,066 9,877 4,936 3,696 2,887
Road Traffic 10,042 5,402 767 163 101 49
Sepsis 12,043 11,029 10,016 9,064 8,144 7,251
BPIC2013 42,883 37,101 32,193 27,709 23,964 20,789
BPIC2012 6,579 3,657 1,911 952 444 197

Table 7. Qualitative evaluation of optimal encoding window length l for different event logs.

Event log
Number of
samples for
larger l

Event Log
Variability

Me-
dian/Mean

Trace
Length

Optimal value(s) of l

Helpdesk Low Low Low No clear optimal value;
unreliable results for larger
values of l .

Hospital Billing High Low Low l = 3
Reliable results for all
values of l .

Road Traffic Low Low Low l = 3
Unreliable results for larger
values of l .

Sepsis High High High l = 4, 5
Reliable results for all
values of l .

BPIC2013 High High High l = 3
Reliable results for all
values of l .

BPIC2012 Low High Low l = 4
Unreliable results for larger
values of l .
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Fig. 2. Average accuracy of all classifiers over low (a) and high (b) variability for l = 3

• Regarding individual classifiers, DT (used as control) achieves statistically better performance
than RT, DS, SVM, CR, and BN.

• When using bagging, the control classifier outperforms DS, NB, SVM, k-NN, CR, and BN.
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Fig. 3. Average accuracy of all classifiers over low (a) and high (b) variability for l = 4

• When using boosting, some classifiers, such as RT, DS, CR, NB, k-NN, and SVM, have
performed significantly worse than the control.

• When using random subspace, DT has performed better than other classifiers, i.e. DS, NB,
SVM, k-NN, OneR, CR, and BN.
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Fig. 4. Average accuracy of all classifiers over low (a) and high (b) variability for l = 5

• When using nested dichotomies, the Rom test indicates that the control classifier is better
than DS, NB, SVM, CR, and BN.

• When using dagging, DS, CR, and SVM have unsatisfactory performance in comparison with
the control classifier.
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Fig. 5. Average accuracy of all classifiers over low (a) and high (b) variability for l = 6

To sum up, the statistical tests have confirmed that the worst performers in all schemes are
SVM, DS, and CR. Furthermore, based on the results we suggest to avoid RT, BN, and and NB for
the next event prediction task. Overall, this analysis has highlighted that ensemble schemes in
the next event prediction task of predictive monitoring are advantageous only when considered
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Fig. 6. Average accuracy of all classifiers over low (a) and high (b) variability for l = 7

for badly performing classifiers. For high performing classifiers, such as DT, C-DT, and DTNB,
the performance of individual classifiers is comparable to the one of ensemble schemes. It can be
concluded, therefore, that ensemble learning is not a particularly high rewarding choice in the case
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Fig. 7. Average accuracy of all classifiers over low (a) and high (b) variability for l = 8

of predicting the next event in a case in an event log. Users may be better off focusing on individual
high performing classifiers, such as DT and C-DT.
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Table 8. Results of Friedman test for all classifier schemes

Variability Scheme χ 2F p-value H0 rejection

Low

Individual 115.89 < 2.2E-16 Yes
Bagging 127.76 < 2.2E-16 Yes
Boosting 128.03 < 2.2E-16 Yes
Random
Subspace 115.37 < 2.2E-16 Yes

Nested
Dichotomies 119.66 < 2.2E-16 Yes

Dagging 119.29 < 2.2E-16 Yes

High

Individual 149.17 < 2.2E-16 Yes
Bagging 134.94 < 2.2E-16 Yes
Boosting 143.84 < 2.2E-16 Yes
Random
Subspace 141.85 < 2.2E-16 Yes

Nested
Dichotomies 136.99 < 2.2E-16 Yes

Dagging 122.75 < 2.2E-16 Yes

Table 9. Result of Friedman posthoc and Rom with p-value adjustment for low variability event logs with DT
as the control algorithm. Bold indicates significance.

Classifier scheme Posthoc test C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Individual Unadj.-p 0.277 0.006 0 0.012 0 0.010 0.712 0.367 0 0.007 0.835
pRom 1 0.047 0 0.058 0 0.057 1 1 0 0.047 1

Bagging Unadj.-p 0.474 0.033 0 0 0 0 0.380 0.027 0 0 0.595
pRom 1 0.132 0 0.003 0 0.002 1 0.130 0 0.002 1

Boosting Unadj.-p 0.083 0 0 0 0 0 0.332 0.024 0 0 0.782
pRom 0.246 0.002 0 0 0 0 0.663 0.092 0 0.002 0.782

Random Subspace Unadj.-p 0.908 0.015 0 0.001 0 0.002 0.052 0.001 0 0.003 0.212
pRom 0.908 0.060 0 0.006 0 0.009 0.155 0.008 0 0.015 0.424

Nested Dichotomies Unadj.-p 0.248 0.025 0 0 0 0.017 0.799 0.257 0 0.001 1
pRom 0.975 0.122 0.001 0.002 0 0.102 1 .975 0 0.005 1

Dagging Unadj.-p 0.052 0.052 0.005 0.079 0 0.579 0.309 0.392 0 0.071 0.694
pRom 0.409 0.409 0.045 0.420 0 1 1 1 0 0.420 1

Unadj.-p : the p-value obtained by Friedman post-hoc; pRom : the p-value obtained by Rom post-hoc with adjustment.

4.1 Threats to Validity
As far as internal validity is concerned, the benchmark developed in this paper suffers from an
intrinsic limitation related to the multiple degrees of freedom available while designing the experi-
ments. For instance, more options for encoding features or other hyperparameter configurations
for classifiers may have been considered. To keep the number of experiments and statistical tests
manageable, however, we have decided to focus only on one type of encoding (window-based)
that is used by all other approaches in the literature for the considered prediction task. Regarding
hyperparameter configuration, our choice has been to avoid complex hyperparameter optimization,
so as to develop models that can be quickly developed and easily managed even by practitioners
with limited technical knowledge.
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Table 10. Result of Friedman posthoc and Rom with p-value adjustment for high variability event logs with
DT as the control algorithm. Bold indicates significance.

Classifier scheme Posthoc test C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Individual Unadj.-p 1 0 0 0.001 0 0 0.004 0.001 0 0.006 0.548
pRom 1 0 0 0.004 0 0 0.014 0.004 0 0.019 1

Bagging Unadj.-p 0.188 0 0 0 0 0 0.001 0 0 0.003 0.746
pRom 0.375 0 0 0.001 0 0 0.006 0 0 0.010 0.746

Boosting Unadj.-p 0.419 0 0 0.004 0 0 0.002 0 0 0.061 0.945
pRom 0.837 0 0 0.014 0 0 0.010 0.001 0 0.181 0.945

Random Subspace Unadj.-p 0.488 0 0 0.002 0 0 0.001 0 0 0.009 0.764
pRom 0.976 0 0 0.008 0 0 0.005 0 0 0.027 0.976

Nested Dichotomies Unadj.-p 0.405 0 0.002 0.005 0 0 0.729 0 0 0.017 0.871
pRom 1 0 0.011 0.025 0 0 1 0.003 0 0.068 1

Dagging Unadj.-p 0.075 0.729 0 0.004 0 0.204 0.111 0.061 0 0.049 0.392
pRom 0.369 0.785 0 0.030 0 0.603 0.436 0.360 0 0.339 0.785

Unadj.-p : the p-value obtained by Friedman post-hoc; pRom : the p-value obtained by Rom post-hoc with adjustment.

Furthermore, this work focuses mainly on evaluating the ability of base learners in ensembles, but
it does not extensively target their diversity. While diversity is addressed by ensemble schemes that
train base classifiers on different samples, such as bagging, future work should consider different
structures and parameter settings to increase diversity in traditional ensemble schemes [70].

Regarding external validity, the generalizability of the results presented in this paper is restricted
to the domain of predictive monitoring with event logs. As acknowledged by the recent publication
of several benchmarks for predictive monitoring, there is a growing need for empirical studies that
can support practitioners, who often lack deep technical machine learning knowledge, to choose
the best model for their prediction task. The proposed benchmark fits within this line of applied
research and the presented results should not be generalized to other domains.

5 CONCLUSIONS
This paper extends a benchmark previously published by the authors [57] regarding the next
event prediction task in business process monitoring, by considering the effect of increasing the
window size for encoding features and benchmarking the performance of 12 individual classification
algorithms and 6 ensemble schemes. The benchmark has identified a set of high performing tree-
based classifiers, the performance of which improves only slightly when considered in ensembles as
opposed to being used as individual classifiers. Moreover, the benchmark highlights that ensemble
schemes improve accuracy only in the case of low performing classifiers, such as SVM. Regarding
the size of the window considered for encoding features, this benchmark did not obtain conclusive
evidence. Generally, we suggest to assess the optimal window size for each event log, while we also
highlight that lower window sizes, e.g., l = 3 as consistently considered previously in the literature,
strike a good balance between performance and availability of samples for training and testing.

The proposed benchmark fills a gap in the literature related with providing informed guidelines
about how to select a high performing machine learning model for given prediction tasks in business
process predictive monitoring. Future work will concern extending this type of benchmark to
different prediction tasks, such as outcome-based process prediction or prediction of remaining
times in process execution. The benchmark can also be extended by considering other approaches
for classification based on neural networks. Also, the runtime performance of different classifiers
will be benchmarked, which is particularly useful when choosing a classifier in scenarios in which
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predictions are supposed to be made in (near) real-time to support pro-active decision making
scenarios.
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Appendix A LIST OF HYPERPARAMETER VALUES
We provide here the list of hyperparameter settings used for each base classifier. Note that, when a
parameter is not mentioned below, the default value in the considered implementation has been
used.

• Decision tree (J48)
Confidence factor: 0.25; minimum number of instances per leaf: 2; number of folds used for
reduced-error pruning: 3; pruning is performed: FALSE; reduced-error pruning: FALSE.

• Credal decision tree
Parameter in imprecise Dirichlet model: 1.0; maximum tree depth: -1; minimum weight of
the instances in a leaf: 2.0; no pruning: FALSE; amount of fold used for pruning: 3.

• Random tree
Number of randomly chosen attributes: 0; allow unclassified instances: FALSE; break ties
randomly: FALSE; maximum depth of the tree: unlimited; minimum weight of the instances
in a leaf: 1.0; amount of data used for backfitting: 0.

• Decision stump
Learning parameters are not available.

• Naive Bayes
Use kernel estimator: FALSE.

• Support vector machine
Type: L2-loss support vector machines (dual); bias term: 1.0; costC : 1.0; termination criterion
ϵ : 0.01.

• k-Nearest neighbor
Number of neighbor used: 2; cross-validation is used: FALSE; distance weighting: no; search
algorithm: linear search.

• JRip
Amount of folds used for pruning: 3; minimum weight of the instances in a rule: 2; number
of optimization runs: 2, use pruning: TRUE.

• OneR
Minimum bucket size: 6.

• Conjunctive rule
Amount of folds used for pruning: 3; minimum weight of the instances in a rule: 2; number
of antecedents allowed: -1.

• Bayesian network
Estimator: simple; search algorithm: K2; use the data structure for increasing speed: FALSE.

• DTNB
Number of folds for cross-validation: 1 (leave one out); search algorithm: backwards with
delete; use k − NN instead of majority class: FALSE.

Appendix B PERFORMANCE RESULTS
This section presents the detailed performance results of all classifier schemes over different event
log datasets and window sizes.
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Table 11. Results of average accuracy for each classifier and dataset as an individual classifier

Variability dataset Window size DT C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Low

Helpdesk

3 66.42 64.92 58.41 62.94 63.22 19.21 58.41 64.03 65.04 62.94 63.59 65.84
4 73.99 73.91 65.82 72.09 70.03 27.84 65.88 73.27 74.12 72.09 69.98 73.27
5 74.86 75.34 69.02 72.87 70.64 26.98 68.59 72.87 75.70 72.87 70.23 73.05
6 74.74 74.62 71.11 73.97 74.61 35.77 72.40 73.71 77.20 73.97 74.48 75.26
7 77.89 72.92 70.87 68.55 71.17 35.24 68.55 74.71 74.10 69.73 72.34 75.85
8 76.45 64.46 69.07 64.30 73.29 20.56 70.65 71.76 77.56 60.84 77.48 72.76

Hospital Billing

3 92.63 92.58 88.10 61.43 90.98 59.07 88.10 92.61 92.27 61.43 90.93 92.51
4 91.23 91.20 86.36 73.42 87.97 47.80 86.34 90.96 90.56 73.42 88.07 91.01
5 88.31 88.33 83.05 58.26 83.84 30.60 82.97 87.91 87.45 58.26 83.95 87.76
6 85.89 85.77 81.96 44.31 79.56 26.67 82.04 85.11 83.98 44.31 79.88 84.37
7 85.41 85.05 81.03 48.94 77.63 30.17 80.71 84.68 84.27 48.94 78.19 84.03
8 88.29 87.76 84.13 54.93 79.04 26.41 83.42 87.91 86.57 54.93 79.53 86.70

Road Traffic

3 96.21 95.70 96.10 77.65 88.94 3.01 96.17 95.86 87.40 77.65 92.52 94.97
4 88.68 88.39 87.31 79.10 85.38 19.89 87.39 88.82 81.03 79.01 85.89 87.34
5 90.18 89.11 88.42 60.91 77.37 28.99 88.99 88.46 74.91 60.91 81.93 87.23
6 85.27 84.18 86.68 54.32 80.21 14.26 87.21 82.70 75.90 54.67 77.52 84.18
7 80.65 81.81 82.73 63.63 82.93 28.13 84.78 81.15 62.45 63.92 78.57 80.92
8 69.49 71.87 74.85 78.75 78.05 42.10 74.23 75.48 79.89 77.54 73.79 79.34

Average Friedman rank 2.50 3.81 7.11 9.28 6.83 12.00 6.92 4.25 4.89 9.31 7.06 4.06

High

BPIC2012

3 75.87 75.73 66.29 73.44 67.60 32.73 66.36 75.46 73.65 73.44 67.86 75.74
4 76.56 76.45 69.21 76.18 76.40 28.13 69.28 76.60 76.40 75.97 76.44 76.46
5 71.26 71.25 64.26 71.19 71.29 28.34 64.18 71.06 71.19 71.19 71.31 71.22
6 70.51 69.42 60.22 69.49 69.27 41.95 60.44 68.10 65.94 69.27 69.12 70.75
7 67.42 63.84 59.60 64.10 63.83 48.91 59.60 65.03 59.77 63.24 63.11 67.16
8 69.73 67.51 57.69 67.06 62.01 40.54 57.24 70.21 62.56 66.33 61.27 71.69

BPIC2013 Incident

3 64.09 64.80 59.35 50.17 60.80 34.06 59.32 52.19 61.70 50.17 62.77 63.96
4 61.20 61.83 55.14 46.15 57.38 26.97 55.12 47.81 58.41 46.09 58.86 61.02
5 62.97 63.72 57.53 49.20 59.13 22.37 57.32 50.89 60.22 49.20 60.80 62.95
6 61.39 62.35 55.48 47.30 57.32 27.18 55.40 49.71 58.94 47.30 59.58 61.64
7 62.18 62.94 56.62 48.66 58.36 26.15 55.31 51.61 59.81 48.66 59.60 62.42
8 61.47 62.22 55.16 47.31 57.52 30.08 53.55 50.97 59.16 47.45 59.03 61.69

Sepsis

3 53.32 53.69 45.83 29.41 48.77 24.82 45.72 49.60 48.83 29.66 49.12 53.52
4 58.81 59.09 51.40 29.27 51.54 22.76 51.17 56.74 50.15 29.27 51.55 57.40
5 59.34 59.14 52.10 29.50 52.32 19.63 52.09 57.44 49.88 29.63 52.56 57.08
6 58.47 58.31 50.06 30.06 54.53 21.95 49.20 56.78 51.45 30.19 54.81 55.98
7 57.77 57.85 49.74 34.29 52.98 21.34 48.09 56.19 54.12 34.29 53.21 55.24
8 54.72 55.02 46.05 35.29 50.94 22.96 43.10 53.93 53.45 35.79 50.75 52.96

Average Friedman rank 2.11 2.11 8.42 8.97 6.17 12.00 9.03 5.61 6.19 9.17 5.39 2.83
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Table 12. Results of average accuracy for each classifier and dataset as a base classifier in Bagging

Variability dataset Window size DT C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Low

Helpdesk

3 65.38 65.88 59.69 62.94 63.36 25.63 58.64 65.48 55.63 62.47 63.57 66.7
4 74.12 73.77 67.48 72.09 69.51 18.49 66.06 72.88 73.99 72.09 70.16 73.59
5 74.37 75.52 71.48 72.87 71.19 39.40 69.25 73.95 75.52 72.87 70.59 75.82
6 77.58 76.03 75.39 73.44 74.61 47.42 72.66 75.39 77.20 73.58 73.83 77.34
7 78.76 76.13 75.85 69.42 72.07 38.71 69.13 78.13 74.66 68.55 72.93 78.46
8 79.67 75.95 76.37 68.63 70.04 30.89 70.15 70.07 76.48 66.05 74.26 73.90

Hospital Billing

3 92.5 92.63 88.91 61.43 91.01 69.29 88.73 92.43 92.27 61.43 90.99 92.51
4 91.23 91.29 87.30 73.42 87.97 65.80 86.91 90.91 90.57 73.42 88.06 91.15
5 88.15 88.33 84.05 58.26 83.89 54.26 83.52 87.93 87.46 58.26 83.89 87.89
6 85.94 85.79 83.24 44.31 79.60 40.51 82.37 85.52 83.83 44.31 80.05 85.21
7 85.51 85.43 82.60 48.94 77.87 43.11 80.94 85.32 84.22 48.94 78.29 84.44
8 88.43 87.90 86.10 54.93 79.43 47.01 83.60 88.09 86.55 54.93 79.80 86.59

Road Traffic

3 96.27 95.89 96.16 77.65 88.95 18.54 96.13 96.00 87.40 77.65 92.56 95.44
4 88.56 88.41 87.89 79.05 85.35 23.48 87.83 88.59 81.04 79.08 85.86 87.26
5 89.99 88.84 88.72 60.91 78.33 18.98 88.30 89.15 74.80 61.03 82.01 87.76
6 87.60 85.80 87.04 63.13 79.47 25.40 86.51 83.61 74.11 63.47 77.15 85.61
7 84.40 82.95 84.46 66.54 84.12 37.96 84.77 82.35 64.82 67.44 79.46 83.85
8 69.45 76.84 73.64 77.50 79.93 48.82 71.80 76.76 81.14 78.12 70.70 79.37

Average Friedman rank 2.28 3.14 5.69 9.53 7.36 11.89 7.44 4.19 5.81 9.42 7.47 3.78

High

BPIC2012

3 75.91 75.88 67.07 73.44 67.59 45.73 67.01 75.57 73.64 73.44 67.90 75.71
4 76.47 76.54 69.52 76.18 76.44 59.77 69.82 76.19 73.98 76.18 76.44 76.47
5 71.13 71.20 64.49 71.09 71.29 41.28 65.00 69.89 56.03 71.11 71.31 71.31
6 69.70 69.73 60.38 69.24 69.39 63.47 60.50 68.44 56.67 68.78 69.12 71.06
7 65.57 65.37 59.94 64.76 64.17 57.40 60.53 64.37 58.20 64.96 63.11 67.49
8 64.98 65.45 58.14 67.52 62.76 60.20 57.98 66.94 60.94 66.63 61.87 71.38

BPIC2013 Incident

3 62.14 64.30 59.47 50.17 61.09 39.58 59.31 52.89 61.69 50.17 62.88 63.86
4 58.61 61.32 55.50 49.75 57.46 36.42 55.20 48.83 58.38 50.94 58.90 61.31
5 60.83 63.45 58.18 49.20 58.93 33.67 57.51 51.94 60.22 49.20 60.81 63.48
6 59.63 61.89 57.06 47.30 57.36 31.95 55.74 50.98 58.94 47.30 59.58 60.53
7 60.25 62.72 57.76 48.66 58.64 39.21 55.72 53.06 59.82 48.66 59.60 60.53
8 59.41 62.12 57.06 50.96 57.52 37.67 53.98 52.35 59.15 48.68 59.06 59.99

Sepsis

3 50.83 53.32 46.6 31.25 48.67 31.21 46.34 51.66 48.8 33.39 49.07 53.92
4 56.81 59.51 52.46 31.91 51.03 28.18 51.81 58.69 50.07 31.89 51.45 58.10
5 58.14 60.00 53.98 30.30 52.25 23.95 52.55 60.01 49.78 30.71 52.59 58.41
6 56.97 58.84 53.18 34.23 54.36 25.38 49.57 58.97 51.35 33.47 54.80 57.61
7 56.97 58.21 53.50 34.29 53.09 25.69 48.36 57.36 53.97 34.29 53.21 56.90
8 54.55 55.96 50.56 35.96 50.94 29.83 43.28 54.95 53.42 37.80 50.94 53.14

Average Friedman rank 3.42 1.83 8.00 8.81 6.33 11.72 8.78 5.67 7.00 8.86 5.36 2.22
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Table 13. Results of average accuracy for each classifier and dataset as a base classifier in Boosting

Variability dataset Window size DT C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Low

Helpdesk

3 66.26 65.15 58.66 62.94 63.22 23.98 58.27 64.44 61.49 62.94 63.59 66.47
4 72.27 74.07 66.14 72.09 70.03 21.24 65.80 73.01 72.30 72.09 69.98 73.14
5 72.98 75.63 69.14 72.87 70.64 40.73 68.59 73.29 74.49 72.87 70.23 74.24
6 71.77 74.87 70.98 73.97 74.62 36.63 72.40 74.08 76.15 73.97 74.48 76.15
7 72.92 74.37 71.18 68.55 69.45 26.28 68.55 76.74 73.22 69.73 72.67 79.34
8 73.87 70.66 72.74 64.30 68.57 26.71 70.65 71.59 73.84 64.42 71.77 68.55

Hospital Billing

3 88.53 92.61 88.09 61.43 90.98 47.71 88.09 92.61 92.24 61.43 90.93 92.51
4 87.31 91.21 86.40 73.42 87.97 49.13 86.32 90.96 90.57 73.42 88.07 91.01
5 86.81 88.30 83.10 58.26 83.84 38.81 82.92 87.90 87.46 58.26 83.95 87.76
6 83.78 85.92 82.53 44.31 79.56 25.71 81.97 84.56 83.49 44.31 79.88 85.54
7 82.76 85.28 81.65 48.94 77.63 28.10 80.67 84.43 84.22 48.94 78.19 85.06
8 85.19 87.91 84.57 54.93 81.27 31.39 83.36 87.40 86.46 54.93 81.80 87.61

Road Traffic

3 96.27 95.88 96.14 77.65 89.13 11.66 96.17 95.86 87.08 77.65 94.86 95.46
4 88.48 88.53 87.62 79.10 85.81 15.59 87.94 88.52 80.50 79.01 87.32 88.64
5 88.65 90.14 88.80 60.91 83.89 26.71 89.03 89.15 77.18 60.91 86.11 88.92
6 86.72 85.22 85.94 54.32 81.09 20.23 87.40 87.78 74.60 54.67 84.16 88.14
7 83.30 82.96 82.73 63.63 80.34 28.83 84.78 84.08 72.10 63.92 81.26 86.22
8 80.48 79.26 78.53 78.75 75.00 34.45 74.23 72.16 83.01 77.54 76.87 78.12

Average Friedman rank 4.56 2.47 6.86 9.42 7.61 12.00 7.33 3.64 5.19 9.33 6.78 2.81

High

BPIC2012

3 75.87 75.67 66.30 73.44 67.60 38.45 66.28 75.43 69.83 73.44 67.86 75.74
4 76.41 76.45 69.13 76.18 76.40 39.05 69.37 76.40 67.39 75.97 76.44 76.46
5 71.36 71.33 64.21 71.19 71.31 40.78 64.15 70.60 64.05 71.19 71.17 71.31
6 70.54 69.09 60.22 69.49 70.04 45.32 60.38 68.62 61.95 69.27 70.54 70.88
7 67.56 62.65 59.47 63.97 65.09 34.15 59.60 64.77 61.31 63.38 66.56 67.42
8 71.68 64.70 57.24 67.06 69.46 49.40 57.24 65.75 60.51 63.95 70.35 72.73

BPIC2013 Incident

3 62.89 64.74 59.34 50.17 60.80 29.99 59.32 52.19 61.65 50.17 62.77 63.96
4 59.38 61.93 55.16 46.15 57.38 29.15 55.12 47.81 58.37 46.09 58.86 61.02
5 60.43 63.84 57.45 49.20 59.13 20.80 57.04 51.03 60.21 49.20 60.80 62.95
6 58.66 62.44 56.14 47.30 57.32 15.98 55.28 49.84 58.94 47.30 59.58 61.64
7 59.18 62.97 56.92 48.66 58.36 24.18 55.30 51.61 59.80 48.66 59.60 62.42
8 57.71 62.28 55.84 47.31 57.52 31.59 53.54 50.97 59.14 47.45 59.03 61.69

Sepsis

3 53.10 53.73 45.82 29.41 48.77 24.62 45.71 49.66 48.76 29.66 49.12 53.51
4 57.84 58.90 51.66 29.27 51.67 21.37 51.17 56.74 49.93 29.27 51.87 57.48
5 57.43 59.24 52.52 29.50 52.32 20.31 52.07 57.44 49.71 29.63 52.56 58.03
6 55.56 58.35 51.15 30.06 54.53 18.49 49.22 56.78 51.21 30.19 54.81 56.57
7 55.44 57.58 51.83 34.29 52.98 19.70 48.17 56.19 53.99 34.29 53.21 55.82
8 51.85 55.56 48.19 35.29 50.94 22.04 43.09 53.93 53.31 35.79 50.75 52.96

Average Friedman rank 3.25 2.28 8.25 9.00 5.78 12.00 8.92 5.97 6.72 9.11 4.53 2.19
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Table 14. Results of average accuracy for each classifier and dataset as a base classifier in Random Subspace

Variability dataset Window size DT C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Low

Helpdesk

3 64.83 64.27 59.14 60.56 64.27 42.95 59.18 61.96 62.14 59.31 64.03 64.29
4 73.17 73.54 66.28 70.67 70.85 33.54 66.17 72.51 72.22 70.67 70.96 72.72
5 74.67 75.33 70.76 71.48 72.57 55.65 70.28 74.37 74.49 71.54 72.63 74.31
6 76.55 76.55 73.20 74.10 73.96 50.67 73.71 75.90 77.20 73.71 74.73 75.27
7 76.72 73.51 75.81 69.14 70.61 58.58 71.72 74.39 73.81 69.72 70.87 72.62
8 76.45 75.95 78.06 65.96 71.20 52.17 73.26 70.63 74.92 62.83 73.35 73.90

Hospital Billing

3 90.99 91.11 87.44 63.28 90.36 67.78 87.43 88.67 89.28 63.28 90.40 90.89
4 90.65 90.68 87.42 73.41 88.38 68.75 87.43 89.36 88.80 73.41 88.47 90.04
5 86.95 87.15 83.03 61.05 83.57 58.84 83.05 82.13 81.84 61.05 83.69 86.55
6 84.42 84.61 79.84 44.31 80.07 55.92 79.84 82.43 77.62 44.31 80.13 83.68
7 84.33 84.75 81.02 48.94 77.75 57.66 80.57 83.65 80.79 48.94 78.27 83.74
8 88.17 87.90 86.49 54.93 81.81 58.52 85.60 87.79 85.74 54.93 82.10 87.00

Road Traffic

3 92.76 92.24 92.82 77.65 85.62 64.12 92.84 90.18 84.38 77.65 89.71 91.1
4 86.24 85.84 85.82 75.64 81.98 59.84 85.86 85.20 78.73 75.58 82.27 84.97
5 84.88 82.38 84.66 61.68 74.56 59.31 84.62 82.69 70.61 61.91 75.59 81.08
6 84.56 83.47 86.51 65.09 78.78 44.25 85.96 83.67 70.86 66.15 77.56 81.15
7 79.47 80.95 83.01 67.16 80.29 58.59 84.17 79.75 64.50 67.16 79.76 77.45
8 71.21 74.96 76.73 80.59 76.76 51.88 72.43 75.51 72.43 76.91 74.34 81.14

Average Friedman rank 2.64 2.78 5.69 9.69 6.81 11.56 6.58 5.11 6.69 9.83 6.33 4.28

High

BPIC2012

3 75.59 75.57 68.25 73.44 73.46 48.82 68.30 74.38 73.66 71.49 72.77 75.44
4 76.57 76.55 70.45 76.19 76.36 56.61 70.52 76.41 76.37 76.20 76.47 76.49
5 71.22 71.42 67.26 71.09 71.29 70.02 67.23 71.54 71.09 71.09 71.31 71.31
6 69.89 69.64 61.80 69.33 69.36 60.60 61.83 68.81 65.54 69.21 69.18 70.04
7 66.22 63.17 60.92 65.23 63.77 49.36 61.18 65.44 61.89 64.10 63.57 66.57
8 67.97 67.51 59.47 67.22 62.90 53.62 59.91 70.19 64.05 67.81 62.62 70.51

BPIC2013 Incident

3 59.79 61.02 55.49 48.45 59.06 41.79 55.58 48.93 54.06 48.66 60.44 60.94
4 60.22 60.82 55.65 46.19 58.81 40.56 55.69 46.41 57.48 46.87 59.63 60.45
5 61.73 62.17 58.40 49.20 61.10 41.67 58.43 49.15 58.77 49.20 61.19 61.94
6 60.84 61.62 56.38 47.60 59.02 42.63 56.31 47.52 55.81 48.07 60.08 61.24
7 60.71 61.42 56.10 49.59 58.85 40.04 56.12 48.56 54.20 49.93 59.57 61.03
8 60.56 61.25 56.67 48.00 58.36 42.72 56.53 47.66 55.58 48.15 59.20 60.78

Sepsis

3 49.05 50.9 42.53 30.42 47.49 34.27 42.58 48.12 39.61 30.45 47.67 50.15
4 56.09 57.50 47.79 29.21 51.45 32.44 47.85 52.88 48.87 29.19 51.79 56.21
5 56.35 57.45 48.43 30.20 52.40 34.49 48.42 53.29 45.39 30.29 52.54 55.39
6 57.01 57.29 51.30 31.38 54.32 36.11 50.98 56.12 47.16 31.66 54.54 56.13
7 53.99 55.03 48.72 35.70 52.88 36.40 48.46 55.18 49.08 35.50 52.97 54.40
8 54.67 54.87 48.92 41.13 52.90 38.12 48.15 54.23 48.05 40.77 52.97 53.91

Average Friedman rank 2.78 1.94 8.56 9.36 5.67 11.33 8.33 5.89 7.67 9.08 5.08 2.31

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



An empirical investigation of different classifiers, encoding and ensemble schemes for next event prediction using business
process event logs 1:33

Table 15. Results of average accuracy for each classifier and dataset as a base classifier in Nested Dichotomies

Variability dataset Window size DT C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Low

Helpdesk

3 65.75 65.85 58.53 62.94 63.31 34.58 58.45 65.31 62.62 62.47 63.25 66.04
4 73.88 72.77 65.96 71.93 69.88 21.23 65.88 73.42 73.17 73.30 69.95 73.30
5 74.86 74.67 69.20 72.93 69.68 50.64 68.59 74.62 74.74 72.75 69.50 72.33
6 75.26 76.69 71.38 71.89 72.41 29.31 72.40 73.06 75.39 71.65 73.05 75.64
7 78.18 72.33 70.03 69.72 69.15 36.96 68.55 77.31 76.46 69.72 70.92 77.05
8 77.56 68.74 71.24 66.44 68.96 16.11 70.65 71.76 78.14 55.92 70.08 73.31

Hospital Billing

3 92.59 92.54 88.09 88.54 90.33 53.96 88.08 92.43 92.27 88.36 90.20 92.52
4 91.12 91.12 86.34 87.04 86.09 51.08 86.32 91.07 90.57 87.54 86.60 90.82
5 88.24 88.21 82.76 80.69 82.15 42.98 82.89 87.86 87.44 80.66 82.06 87.64
6 85.55 85.68 81.66 71.80 72.95 33.58 81.99 85.35 83.82 70.83 74.48 84.69
7 85.12 84.95 81.18 78.29 73.99 27.69 80.66 84.87 84.18 78.10 74.52 84.19
8 87.78 88.08 83.83 78.58 71.27 32.20 83.35 87.64 86.56 78.94 71.24 86.08

Road Traffic

3 96.11 95.91 96.13 83.83 87.34 21.83 96.23 95.86 90.4 83.94 90.58 95.37
4 88.49 88.39 87.30 80.62 79.74 33.46 87.72 88.23 84.41 81.25 83.36 88.08
5 89.15 88.41 88.42 72.85 76.56 12.29 88.92 88.72 79.60 76.15 79.28 87.61
6 80.38 78.58 84.72 73.88 73.18 18.39 87.57 83.46 80.72 73.16 67.80 82.41
7 79.42 75.64 82.14 72.04 74.73 35.24 84.78 82.40 72.38 66.80 70.31 78.88
8 70.74 69.63 77.24 74.41 79.34 27.83 74.23 73.16 73.82 68.79 76.80 79.96

Average Friedman rank 2.47 3.86 6.56 8.47 8.28 12.00 6.72 3.56 5.22 9.06 7.94 3.86

High

BPIC2012

3 75.85 75.41 66.24 73.60 70.10 39.13 66.33 75.43 74.37 73.58 70.19 75.68
4 76.38 76.08 69.16 76.48 76.31 42.15 69.33 76.55 76.38 76.37 76.38 76.51
5 70.89 69.82 64.18 71.36 71.31 46.52 64.17 70.97 71.28 71.22 71.31 71.28
6 70.20 67.54 60.10 69.55 69.33 39.49 60.31 68.47 66.06 68.47 69.21 71.00
7 67.10 65.56 59.47 64.50 63.84 48.21 59.60 65.24 58.66 63.24 63.70 67.09
8 67.97 64.71 57.39 67.82 61.72 53.58 57.24 69.31 62.27 66.64 61.28 73.03

BPIC2013 Incident

3 63.87 64.23 59.32 57.71 60.23 35.31 59.01 61.90 58.38 56.13 61.31 63.76
4 61.13 61.06 55.12 53.75 57.08 21.59 54.82 60.08 55.86 53.09 57.79 60.90
5 61.76 62.97 57.22 57.29 58.03 30.27 57.21 60.71 56.90 55.88 58.78 62.01
6 61.48 61.85 55.54 56.42 56.64 23.76 55.26 60.63 56.51 59.55 57.61 60.58
7 61.61 62.52 56.12 55.50 56.20 29.58 55.26 61.45 57.96 55.62 57.16 60.17
8 60.16 61.96 54.99 56.06 57.18 30.45 53.51 60.50 56.10 54.68 57.67 58.53

Sepsis

3 53.65 53.35 45.7 45.36 48.15 22.23 45.75 51.25 47.68 44.81 48.47 53.51
4 59.15 58.57 50.79 44.76 50.29 20.24 51.22 56.46 47.79 44.39 50.36 58.08
5 59.67 59.23 51.79 47.40 51.37 16.05 52.15 55.99 45.55 44.65 51.68 57.14
6 58.48 57.61 49.30 47.64 51.73 18.71 49.20 54.79 44.71 44.36 51.87 55.92
7 57.35 56.83 49.31 50.85 49.61 20.49 48.13 54.95 51.39 49.11 49.33 54.70
8 54.67 54.79 45.26 52.09 50.21 21.84 43.10 53.92 50.48 52.19 50.07 50.31

Average Friedman rank 2.22 3.22 8.89 6.94 6.58 12.00 9.33 3.64 7.47 8.58 6.08 3.03
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Table 16. Results of average accuracy for each classifier and dataset as a base classifier in Dagging

Variability dataset Window size DT C-DT RT DS NB SVM k-NN JRip OneR CR BN DTNB

Low

Helpdesk

3 65.98 65.23 65.49 62.76 62.63 41.71 65.36 64.04 64.68 59.22 63.06 64.90
4 73.51 73.62 72.54 72.09 70.19 47.97 72.35 72.27 71.98 71.22 70.27 72.09
5 75.16 73.17 72.69 72.33 71.43 43.35 71.79 72.45 73.29 71.30 70.16 72.21
6 77.20 71.50 74.23 73.32 72.81 48.92 75.53 74.22 74.10 68.64 71.12 74.10
7 67.70 56.54 67.98 66.55 69.14 45.49 70.91 61.52 64.76 55.65 66.52 70.29
8 48.73 51.87 63.41 62.44 53.34 43.28 68.63 51.87 55.50 49.65 66.55 51.81

Hospital Billing

3 92.49 92.38 92.32 61.43 90.82 67.16 92.24 92.31 92.27 61.43 91.08 92.24
4 91.10 90.69 91.00 73.42 87.11 66.49 90.55 90.22 90.55 73.42 87.38 90.70
5 88.13 87.68 87.50 58.26 82.79 54.49 86.82 86.56 87.40 58.26 83.51 87.14
6 85.51 84.73 84.64 44.23 78.39 31.57 82.86 83.52 83.60 44.18 78.90 82.94
7 84.89 84.22 84.57 48.82 76.16 31.60 81.92 82.83 84.03 48.77 76.53 82.48
8 87.56 86.58 87.35 54.77 76.68 34.02 84.11 84.76 86.27 54.74 78.58 85.78

Road Traffic

3 94.65 92.00 95.65 77.64 88.49 41.55 95.49 93.84 85.26 77.62 89.63 91.73
4 87.15 86.54 88.31 79.04 84.70 23.67 87.78 87.42 81.37 79.11 85.01 85.75
5 83.77 81.86 87.92 61.07 71.69 26.16 85.31 81.98 74.80 61.87 68.78 77.65
6 75.33 67.59 78.47 66.93 76.60 26.82 70.67 65.38 67.27 54.80 69.79 67.45
7 75.12 48.14 72.73 65.40 81.51 34.30 70.33 44.68 65.40 54.29 74.50 73.68
8 64.93 48.82 67.68 71.40 76.91 45.81 68.24 48.82 55.33 46.32 71.29 68.31

Average Friedman rank 2.72 5.06 2.72 8.42 7.17 11.89 4.39 6.28 6.08 10.53 7.22 5.53

High

BPIC2012

3 75.45 75.48 74.65 73.44 67.33 15.27 74.22 75.23 73.72 73.44 67.54 75.38
4 76.47 76.48 75.82 76.15 76.12 38.74 75.39 76.22 76.19 76.13 76.44 76.18
5 71.20 71.11 69.33 71.06 71.20 57.17 68.72 70.73 71.37 71.03 71.20 71.26
6 69.58 63.84 67.57 68.19 69.49 57.92 67.11 68.59 69.67 66.83 69.21 70.50
7 64.97 63.51 65.51 64.37 64.17 49.66 65.58 64.44 65.30 63.51 63.57 65.37
8 67.51 67.51 66.51 66.33 63.06 60.30 67.09 67.67 62.61 67.51 63.05 69.76

BPIC2013 Incident

3 64.67 64.37 63.00 50.17 60.50 41.34 62.93 51.99 61.65 51.31 62.71 63.92
4 61.74 61.40 60.14 52.19 57.44 36.28 59.80 48.04 58.38 53.39 58.83 60.78
5 63.70 63.32 62.55 49.20 58.68 33.26 61.98 50.89 60.21 49.20 60.88 62.68
6 62.27 62.19 61.30 47.30 57.77 28.08 60.49 49.12 58.94 47.30 59.57 61.58
7 62.75 62.83 61.55 48.66 58.36 22.43 60.72 50.71 59.77 48.66 59.80 62.18
8 62.41 62.31 60.96 53.27 57.65 16.19 59.52 50.59 59.16 53.21 59.13 61.64

Sepsis

3 53.06 51.74 52.12 42.02 48.21 28.48 51.64 49.87 48.66 41.4 49.07 50.6
4 56.74 53.30 57.58 43.35 51.97 26.63 57.65 54.86 49.84 42.34 52.64 54.06
5 57.11 53.69 58.19 37.09 51.46 23.96 57.37 54.82 49.38 40.37 52.27 54.48
6 55.60 53.24 56.17 38.12 53.30 23.66 54.36 55.15 51.15 40.34 53.63 55.27
7 55.30 54.18 54.93 34.73 52.86 22.73 51.99 55.29 53.53 35.15 53.01 55.06
8 54.11 53.39 52.19 42.74 52.38 26.11 47.98 53.65 53.25 45.68 52.22 53.63

Average Friedman rank 2.11 4.25 4.67 9.44 7.72 12.00 5.78 6.17 6.50 9.53 6.61 3.22

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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