
Weblinks: Augmenting Web Browsers
with Enhanced Link Services

Daniel Roßner∗
Hof University

Institute of Information Systems
Hof, Germany

daniel.rossner@iisys.de

Claus Atzenbeck
Hof University

Institute of Information Systems
Hof, Germany

claus.atzenbeck@iisys.de

Daniel Urban
Hof University

Institute of Information Systems
Hof, Germany

daniel.urban@hof-university.de

ABSTRACT
Without any doubt, creating links and navigational trails is funda-
mental to hypertext. The Web is the widest spread representative
among all systems in the history of hypertext, although its under-
lying core concept is kept simple. This is why the Web’s widely
used link functionality is naive, supporting only embedded, unary
and unidirectional links. A strength of the Web is its extensibility,
giving us the opportunity to augment the current functionality of
links. We showcase a browser plugin, which enables users to create
and share complex links over the existing Web. Furthermore, we
discuss the CB-OHS Mother, its link model and how this relates to
existing work. The implementation adopts latest standardization
efforts and is an update to older attempts of enabling external link
services for the Web.

CCS CONCEPTS
• Information systems → Web services; Web applications; Social
tagging systems; • General and reference → Experimentation;
• Human-centered computing → Collaborative and social com-
puting systems and tools.

KEYWORDS
hypertext; navigational hypertext; link service; Web; browser;

1 INTRODUCTION
In his keynote at the 30th ACM Conference on Hypertext and Social
Media 2019, Andries van Dam appealed to the participants: “Every-
body needs to read it and re-read it about once a year [. . . ]”1. He
was talking about Bush’s article As We May Think [8] published in
1945. While technically outdated, Memex’ underlying paradigm is
iconic to the hypertext community and still serves as an inspiration
for current research and technology development. From a current
perspective, the WWW has “won” the race of hypertext systems
by their popularity, partly (or mainly) due to its simplicity and
pragmatic approach [1, 5, 7, 13].

∗Corresponding author
1See keynote video at: https://www.youtube.com/watch?v=g0yx-F1FGnc&t=1100

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HUMAN’20, December 4, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8058-4/20/12.
https://doi.org/10.1145/3406853.3432663

This said, “simple” may be a misleading term, as the Web has
evolved to a rather complex building of (competing) standards and
technology. But it still holds true, because theWeb was never meant
to implement all of the bold visions hypertext researchers worked
on.

One of the missing features is rich support for links. The Web
offers a naive approach towhat is so-called “navigational hypertext”:
links are unary, unidirectional and embedded in the document.
These limitations hinder the creation of links with multiple targets,
which can be traversed in either direction. Document-centered
embedding of links in HTML is foremost a limitation for people
who want to author hypertext, because they need write access for
the document in order to insert a link anchor element.

Bush’s article provides an appropriate quote that summarizes the
motivation of our work: “The process of tying two items together
is the important thing” [8]. Do we need a new, “better” hypertext
system to be used in our daily life? In this paper we propose an
evolution, not a revolution of systems by augmenting what already
exists: the WWW. This brings back richer hypertext functionality,
as already proposed by previous research [7, 9, e.g. ]. Even solutions
for sophisticated navigational links within the Web were already
discussed [6, 10] and implemented in the mid 1990s [11].

Since then the user experience across new platforms and tech-
nology evolved, however, the capabilities of native links are still the
same. The goal of our work is to continue former approaches by im-
proving their underlying concepts or technologies. We do not aim
at establishing a new Web standard, but want to share our efforts
to give users and researchers an idea about what the Web could
look like with external link services and enriched navigational link
semantics.

2 RELATEDWORK
The proposed implementation is framed by previously discussed
ideas, projects, or specifications. This also includes some of our
recent work on spatial hypertext or component-based open hyper-
media systems (CB-OHS). We also consider (evolving) standards or
already existing solutions.

2.1 IWInxt
This project is driven by requirements we have in the project Next
Generation Intelligent Maintenance System for the Industry 4.0 (IWI-
nxt), aiming at implementing an intelligent maintenance solution
for Industry 4.0 applications. Maintenance often involves many
distributed documents like reports, manuals, and tutorials. Often
responsible employees do not have the ability of linking relevant
sections among these documents. Furthermore, such created links

https://www.youtube.com/watch?v=g0yx-F1FGnc&t=1100
https://doi.org/10.1145/3406853.3432663
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3406853.3432663&domain=pdf&date_stamp=2020-11-25


have to be accessible by co-workers to gather and grow specialized
knowledge.

2.2 Mother
Our implementation of the linking mechanism is part of the CB-
OHS Mother, which we described in further detail in [4]. The core
concept is based on an optimized version of the Dexter Hypertext
Reference Model [12]. We use external link bases that store links as
first-class entities. Access to those is granted by an external API.

Mother’s is built with a three-layered architecture, separating
the user interface, data and (partly intelligent) structure-aware com-
ponents from each other [3]. This enables Mother to host structure
services of various types, including spatial, navigational, or hier-
archical structures. Dexter originated in the time before the first
CB-OHS were implemented and, thus, only considered a limited
number of structure types, mainly links andes collections. In order
to match both worlds we had to reassemble parts of Dexter, which
led to a minimized, less complex model. For Mother’s linking fea-
tures we focused on the navigational only, including 𝑛-arity and
endpoint directions, while removing the support of composites,
presentation specifications and any content related fields [3]. Re-
moved features features could be (and partly are) implemented in
separate components. An example is Mother’s metadata service
which is used by the linking service to annotate endpoints/anchors
with location specifications. A more detailed discussion will follow
in Sect. 3.

2.3 Hypothesis
Due to chosen requirement to use current Web technologies, the
obvious way for using our linking features was to extend the Web
browser. Most modern browser implementations allow some sort
of plugin mechanism, which can be used to intercept the rendering
process and gives access to visited resources. Therefore, we chose
to implement a browser plugin for Google Chrome and Mozilla
Firefox. The plugin shares some ideas with and uses code from the
Hypothesis Project, which is “a new effort to implement an old idea:
A conversation layer over the entire web that works everywhere,
without needing implementation by any underlying site.”2.

Hypothesis is a browser plugin, which allows users to annotate
arbitrary web pages. These annotations can be shared in groups or
with the public. The claim of supporting conversation is driven by
the ability to reply to annotations. Hypothesis can be used without
additional plugins, if the web page is visited via the offered Web
proxy3.

As we have similar demands and requirements (in particularWeb
compatibility for our services), it is no surprise that our solution
for a linking layer borrows some fundamentals of Hypothesis. For
example, the linking service shows a similar sidebar and uses the
same method of selecting parts of a Web page.

2.4 Web Annotation Data Model
An required feature of annotating and linking is selecting specific
parts of a document. In books we use pages, chapters, paragraphs,

2https://web.hypothes.is/about/, visited 2020-09-23
3An example of such access via proxy is https://via.hypothes.is/https://www.
theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

etc. Legal texts are typically referenced with various section or
sentence numbers. Web pages are accessible using a URI, possibly
including a fragment identifier ; the part of an URI that is preceded
by the number sign “#”. The resolution of fragments depends on
the MIME type of the requested resource and is handled by the
Web browser. For example, for HTML the browser searches for
elements with a matching id or name4, whereas parts of X(HT)ML
can be selected using XPointer. Both methods require pre-structured
content, as it is not possible to select only parts of an element or
element overarching text. Some browsers allow “text fragments”5,
which select the first appearance of a certain text, defined in the
fragment.

Selector Description
Fragment Selector Fragment selection as defined by the

corresponding MIME type
XPath Selector XPath selection for resources that

supports the DOM (HTML, XML)
Text Quote Selector Range of text by quoting it; prefix and

suffix text can be defined
Text Position Selector Range of text by defining character

numbers of the resource
Range Selector Range of text by defining start and

end with other selectors
Refinement of Selection Composition of selections, which re-

fine the selection
Table 1: Selectors defined by theWeb AnnotationModel and
suitable for HTML resources

Today, Web content is often dynamic, with frequently changing
content or layout. This makes anchoring specific parts challenging.
Similar to Hypothesis we adapt selectors as they are defined in
theWeb Annotation Data Model6. The model does not define new
selection methods, but proposes “a common model and syntax to
express and possibly combine selections”7. Table 1 lists selectors,
which work with HTML resources.

3 LINK SERVICE
The browser plugin is backed by an external link service component.
As described earlier, its link model is derived by simplification of
the Dexter Hypertext Reference Model. Using a component-based
approach, many specifications and properties can be omitted and
modeled with other, fitting structure services. Figure 1 depicts the
link model. A detailed description can be found in [3].

A component is any entity that can be identified by a URI, thus,
this is not limited to Web resources. Books, for example, can be
referenced with their ISBN or many research papers by their DOI;
both would be valid URIs for the link service. It is important to
note, that links are first-class objects and consequently themselves
components with URIs. This URI is managed by the link service
4https://www.w3.org/TR/html52/browsers.html#navigating-to-a-fragment-
identifier
5https://wicg.github.io/scroll-to-text-fragment/
6https://www.w3.org/TR/annotation-model/
7https://www.w3.org/TR/selectors-states/

https://web.hypothes.is/about/
https://via.hypothes.is/https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://via.hypothes.is/https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.w3.org/TR/html52/browsers.html#navigating-to-a-fragment-identifier
https://www.w3.org/TR/html52/browsers.html#navigating-to-a-fragment-identifier
https://wicg.github.io/scroll-to-text-fragment/
https://www.w3.org/TR/selectors-states/


Link
Service

Link

endpoints: Collection

1

Component

componentID: URI

is a

Endpoint

direction: Direction

componentID: URI

[anchorID]

Anything that can
be referenced
with a URI is a

component

Direction

BIDIRECTIONAL, FROM, TO

Meta Data
Service

Spatial Hypertext
Service

Other Structure
Services

Figure 1: Link Model in context of Mother

upon creation and serves as HTTP resource, where clients can GET,
DELETE, or PUT the underlying link object.

In Sect. 2.4 we emphasized the importance to specify a selec-
tor for endpoints. The Dexter model, for example, defines an “an-
chor value” to identify “some location, region, item, or substructure
within a component”[12]. Others implement a “Selectors” collection
into their link metamodel [14]. On the other hand, our simplified
version does not cover such features, instead, selectors are modeled
as annotations within the metadata service. That service uses a
triplestore which manages triples of subjects, predicates, and ob-
jects. For a selector annotation, the object is the JSON serialized
form of a selector as listed in Tab. 1. We follow the vocabulary of
the Web Annotation Data Model, however, as components can be
anything that has an URI, selectors for various types may be needed
in the future. The predicate distinguishes selector annotations from
other annotations; it is named hasSelector. Subjects are endpoints,
uniquely identified by the URI of the corresponding link and the
anchorID (see Fig. 2). An anchorID has to be unique across a link
object and is optional, as long as no selectors are associated. End-
points without selectors target the whole document. This is also
the case if a client can not resolve a selector.

The metadata service augments the minimized link model, yet it
is not bundled with the link service. This has the advantage that
it can be used for other purposes as well. Therefore it is possible
to introduce more predicates, for example, to enable comments
for links or endpoints or support “presentation specifications”, as
suggested by Dexter.

The flexibility that comes with the use of a separate metadata
service raises the question of which properties should be part of
the link model and which should be added by the metadata service.
For example, it is a design decision whether endpoint directions
should be defined in the link model or be modeled as metadata of
endpoints. Thus, the litmus test for any property is the following:
Is property x needed to model navigation, that is, the trail from a
point to one or many other points? For directions on endpoints, in

our case, the answer is yes, while selectors are only necessary to
implement a working piece of software.

4 PLUGIN IMPLEMENTATION
4.1 Technologies
As described above, today, the best way to extend the functionality
of the Web is extending the software we use to explore it: the Web
browser. Such browser plugins can be developed independently and
are loaded as external modules. Plugins have access to the internal
APIs of the browser and contents of visited websites. Especially the
latter is important to augment the functionality of the Web. This
access is guaranteed by an interface called theWebExtensions API
which is provided by many browsers8.

Browser plugins can be implemented as pages that are shown
in separate tabs, popup windows, or as sidebars. Since the plugin
will be used to create links on Web resources, a page in a separate
tab is not the preferable solution. A popup window is also not
feasible, because it would close automatically when losing the user
interaction focus. Thus, a sidebar is the best solution for our use
case. It gets injected into the website as an iframe, which opens a
higher level of flexibility with respect to functionality and design
without restrictions by the API. The same approach is used by
Hypothesis, as discussed in Sect. 2.3.

Like other web extensions, our project consists of a content script,
running in the context of the website, and a background script that
runs in the context of the browser. Both scripts are developed
using common web technologies: HTML, CSS, and JavaScript. To
manage the user interactions in the views, we use Knockout.js, a
lightweight library for data binding between data model and view
model. Structure and dependencies of each script are managed with
Node.js in combination with Browserify to make Node.js modules
employable on the client-side.

4.2 Anchors View
The sidebar contains several views, each responsible for a specific
task. The anchors view (as shown in Fig. 3) shows a list of all link
endpoints associated with the currently shown website. Further-
more, new endpoints and links can be created. If the user decides
to create a new endpoint with a click on the “new anchor” button,
he/she can either assign it to an already existing link or create a
new link with this endpoint. Initially, new links are stored in the
local browser storage only. The reason is that the link service does
not allow the creation of invalid links. A link is complete or valid if
it contains at least two endpoints with at least one FROM and one
TO or BIDIRECTIONAL endpoint. Valid links can be submitted to
the link service.

4.3 Links View
The links view presents links managed by the link service. For
inspecting a specific link, the user either clicks on an endpoint in
the anchors view or use the search bar searching the link manually.
The corresponding link will be presented as shown in Fig. 4. Using
this view, new links can be created or existing links can be edited

8The WebExtensions API is a cross-browser platform by Mozilla. It is used by Firefox
and compatible with the extension API of Chromium-based browsers.



Meta Data
Service

Endpoint

BIDIRECTIONAL

http://example.com/

"a_arbitrary_anchor_id"

Link

http://linkservice/links/
      0000-1111-1337-42

<http://linkservice/links/
      0000-1111-1337-

42/a_arbitrary_anchor_id>

<hasSelector>

<selector_X>

"selector_X": {

      "type": "TextQuoteSelector",

      "exact": "for",

      "prefix": "asking ",

      "suffix": " permission"

    }

Figure 2: Endpoint on http://example.com with TextQuoteSelector as metadata

Figure 3: Anchors View – Annotated link endpoints on the
HUMAN’20 website

or deleted. Any editing process must lead to a valid link at the end;
otherwise the update gets rejected by the link service.

4.4 Not Submitted View
The third and final view of the plugin, the “not submitted view”, is
depicted in Fig. 5. It contains a list of all locally stored links that are
not yet submitted. As such, they may be invalid. This view offers
users to delete locally stored links or add valid links to the link
service.

Users can create new links by either creating a new endpoint via
the anchors view or by creating a link via the links view directly.
Assume that a user wants to create a new endpoint first, he/she
would click on the “new anchor” button in the anchors view. This
leads to the view for creating new endpoints. Now, the user can
enter the URI of the website that should be referenced. If only
parts of a website should be referenced, the user would start a
selection via the annotation button andmark the corresponding text.
A button would appear next to this selection (as shown in Fig. 6) to
confirm the annotation. This new endpoint would then be used for
the new link to be created (or alternatively be added to an existing
link). After having created a new endpoint, the corresponding text
appears highlighted and the new link is created locally with one
initial endpoint. Figure 3 shows the differently highlighted areas
on the HUMAN’20 website with the corresponding endpoints in

Figure 4: Links View – The links view with a selected link

the sidebar. Blue highlighting refer to endpoints of local links, red
ones to links stored by the link service.

5 CONCLUSION AND FUTUREWORK
In this paper we described and showcased a browser plugin, which
enables a richer linking functionality for Web browsers. Based on
our underlying infrastructure Mother we proposed an external link
service and a client, implemented as a browser plugin. The link
server functionality is based on a minimized variant of the Dexter
Hypertext Reference Model, focusing on the navigational features
only. Metadata, as used for link anchor selectors, is managed by the
Mother’s metadata service. Externalizing the link service allows
links that are more flexible than HTML native, unary Web links. As

http://example.com


Figure 5: Not Submitted View – A local link with only one
endpoint that is listed in the view for local links

Figure 6: Next to the marked text passage, a button will ap-
pear to confirm the annotation

such it empowers users to create sophisticated links that go beyond
today’s wide-spread HTML-embedded URIs.

The browser plugin is a technical demonstration of Mother’s
link service. It is a first step toward using Mother for augmenting
the Web with more sophisticated hypertext fundamentals.

We aim at improving the plugin with features that allow us to
use it in productive work environments. This includes user man-
agement, integration with various systems, a new designed user
interface, and optimized workflows for users to create, modify,
traverse, or share links.

Furthermore, our goal is to use and test the plugin in various ap-
plication domains, foremost for education. We plan to integrate the
plugin with our university’s learning management system (LMS)
Moodle in order to ease user management such as to offer access
rights for specific courses or study groups. It is planned that the
plugin will be used in our recently started project International

Teaching and Research in Hypertext (INTR/HT), which aims at pro-
viding joint hypertext classes for students worldwide. The link
service will enable students to link various document sources and
share those connections.

We believe that the link service will be further beneficial in
any other application domain in which users may want to create
associations. This includes, for example, linking from objects in
a spatial hypertext environment to external documents. As such,
the ongoing project IWInxt, further described in [2], provides is a
possible scenario.

With its application in various domains and the commitment
to get it working in productive environments, we hope that the
link service and the plugin will be used by a number of people
that is sufficiently large enough for meaningful user testing. In
particular, we hope to answer questions regarding the overall use
of the service and retrieve insights in the link structure built, the
nature of the links (arity, directions, traversal, etc.), or the commu-
nication intended by users when sharing links. It is a step toward
augmenting today’s Web with “traditional” hypertext ideas.

ACKNOWLEDGMENTS
IWInxt and this work are funded by the Bavarian State Ministry of
Science and the Arts (grant ID Kap. 15 49 Tit. 547 78-2/2018).

REFERENCES
[1] Claus Atzenbeck and Mark Bernstein. 2018. Interview with Andy van Dam. ACM

SIGWEB Newsletter (March 2018).
[2] Claus Atzenbeck and Peter Nürnberg. 2019. Hypertext as Method. In Proceedings

of the 30th ACM Conference on Hypertext and Social Media (HT ’19). ACM, 29–38.
https://doi.org/10.1145/3342220.3343669

[3] Claus Atzenbeck, Daniel Roßner, and Manolis Tzagarakis. 2018. Mother - An
integrated approach to hypertext domains. In HT 2018 - Proceedings of the 29th
ACM Conference on Hypertext and Social Media. ACM Press, New York, New York,
USA, 145–149. https://doi.org/10.1145/3209542.3209570

[4] Claus Atzenbeck, Thomas Schedel, Manolis Tzagarakis, Daniel Roßner, and Lucas
Mages. 2017. Revisiting hypertext infrastructure. In HT 2017 - Proceedings of the
28th ACM Conference on Hypertext and Social Media (HT ’17). ACM, New York,
NY, USA, 35–44. https://doi.org/10.1145/3078714.3078718

[5] Belinda Barnet. 2019. Hypertext before the Web – or, What the Web Could Have
Been. In The SAGE Handbook of Web History, Niels Brügger and Ian Milligan
(Eds.). SAGE Publications Ltd, 1 Oliver’s Yard, 55 City Road London EC1Y 1SP,
Chapter 15, 215–226. https://doi.org/10.4135/9781526470546.n15

[6] Niels Olof Bouvin. 2002. Augmenting the web through open hypermedia. New
Review of Hypermedia and Multimedia 8, 1 (jan 2002), 3–25. https://doi.org/10.
1080/13614560208914733

[7] Niels Olof Bouvin and Clemens Nylandsted Klokmose. 2016. Classical hypermedia
virtues on the web with webstrates. In HT 2016 - Proceedings of the 27th ACM
Conference on Hypertext and Social Media. Association for Computing Machinery,
Inc, NewYork, NewYork, USA, 207–212. https://doi.org/10.1145/2914586.2914622

[8] Vannevar Bush. 1945. As we may think. The Atlantic Monthly 176, 1 (7 1945),
101–108. http://www.theatlantic.com/doc/194507/bush

[9] Robert Cailliau and Helen Ashman. 1999. Hypertext in the Web - a History.
Comput. Surveys 31, 4 (dec 1999), 35. https://doi.org/10.1145/345966.346036

[10] L. Carr, W. Hall, H. Davis, and R. Hollom. 1994. The microcosm link service and
its application to the World Wide Web. Computer Networks and ISDN Systems 27,
2 (nov 1994), 307. https://doi.org/10.1016/s0169-7552(94)90146-5

[11] Les A. Carr, David C. DeRoure,WendyHall, and Gary J. Hill. 1995. The Distributed
Link Service: A Tool for Publishers, Authors and Readers. In Proceedings of the
Fourth International World Wide Web Conference. Boston, MA, 647–656. https:
//www.w3.org/Conferences/WWW4/Papers/178/

[12] Frank Halasz and Mayer Schwartz. 1994. The Dexter hypertext reference model.
Commun. ACM 37, 2 (feb 1994), 30–39. https://doi.org/10.1145/175235.175237

[13] Frank G. Halasz. 2001. Reflections on "Seven Issues". ACM Journal of Computer
Documentation 25, 3 (aug 2001), 109–114. https://doi.org/10.1145/507317.507328

[14] Beat Signer and Moira C. Norrie. 2007. As we may link: A general metamodel for
hypermedia systems. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 4801
LNCS. Springer Verlag, 359–374. https://doi.org/10.1007/978-3-540-75563-0_25

https://doi.org/10.1145/3342220.3343669
https://doi.org/10.1145/3209542.3209570
https://doi.org/10.1145/3078714.3078718
https://doi.org/10.4135/9781526470546.n15
https://doi.org/10.1080/13614560208914733
https://doi.org/10.1080/13614560208914733
https://doi.org/10.1145/2914586.2914622
http://www.theatlantic.com/doc/194507/bush
https://doi.org/10.1145/345966.346036
https://doi.org/10.1016/s0169-7552(94)90146-5
https://www.w3.org/Conferences/WWW4/Papers/178/
https://www.w3.org/Conferences/WWW4/Papers/178/
https://doi.org/10.1145/175235.175237
https://doi.org/10.1145/507317.507328
https://doi.org/10.1007/978-3-540-75563-0_25

	Abstract
	1 Introduction
	2 Related Work
	2.1 IWInxt
	2.2 Mother
	2.3 Hypothesis
	2.4 Web Annotation Data Model

	3 Link Service
	4 Plugin Implementation
	4.1 Technologies
	4.2 Anchors View
	4.3 Links View
	4.4 Not Submitted View

	5 Conclusion and Future Work
	Acknowledgments
	References

