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ABSTRACT
Locomotion is a crucial challenge for legged robots that is addressed
“effortlessly” by biological networks abundant in nature, named
central pattern generators (CPG). The multitude of CPG network
models that have so far become biomimetic robotic controllers is
not applicable to the emerging neuromorphic hardware, depriving
mobile robots of a robust walking mechanism that would result
in inherently energy-efficient systems. Here, we propose a brain-
morphic CPG controler based on a comprehensive spiking neural-
astrocytic network that generates two gait patterns for a hexapod
robot. Building on the recently identified astrocytic mechanisms
for neuromodulation, our proposed CPG architecture is seamlessly
integrated into IntelâĂŹs Loihi neuromorphic chip by leveraging a
real-time interaction framework between the chip and the robotic
operating system (ROS) environment, that we also propose. Here,
we demonstrate that a Loihi-run CPG can be used to control a walk-
ing robot with robustness to sensory noise and varying speed pro-
files. Our results pave the way for scaling this and other approaches
towards Loihi-controlled locomotion in autonomous mobile robots.
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1 INTRODUCTION
Mobile robots have become successful in various applications in-
cluding manned and autonomous vehicles [31], rescue missions
[11], and planetary or underwater exploration [4, 52].With wheeled
robots being challenged by uneven terrains, an alternative is legged
robots that mimic animal locomotion [8, 40]. For controlling their
articulated limbs, robots often utilize central pattern generators
(CPG), a long-debated control mechanism [6, 25] for a variety of
repetitive behaviors that are not restricted to locomotion [21, 22],
as it extends from respiration [50] to mastication [26]. Functionally,
CPGs are specialized neuronal networks that can generate periodic
output in the absence of a periodic input.

Dynamical systems that mimic the oscillatory activity of CPG
networks are commonly used to control robotic locomotion as
a repetitive behavior [8, 24, 38]. Multiple CPGs are combined to
endorse robots with a remarkable set of gait patterns [3, 5], motion
speed variation [9, 49] and terrain adaptation [40]. Although such
controllers are typically validated based on accuracy, robustness
and velocity of the movement, mobile robots deployed in real-
world environments have also been increasingly challenged by
their power consumption.

Large-scale neuromorphic processors emerged with a central
promise to alleviate the energy limitations in mobile robots [12, 19,
28, 41]. Indeed, it was recently demonstrated how brain-dictated
spiking neural networks (SNN) developed on Intel’s Loihi, can
greatly improve power consumption of wheeled robots, while being
as accurate as state-of-the-art methods [46, 48]. For legged robots,
integrating CPGs into such chips requires a bottom-up rethinking
of the conventional algorithms, since the mathematical formalism
governing the oscillators is not translatable to non-Von Neumann
architectures.

Inspired by the underlying neuronal connectome [5, 27], SNNs
are developed for controlling multiple gait patterns [3, 39, 45] and
adjusting the speed of mobile robots [8]. This body of prior work
spurred a recent interest on neuromorphic implementations of
CPGs [16, 23, 33]. However, the application of SNN-controlled CPGs
in real-world tasks is staggered by their intrinsic limitations. First,
SNN-based CPG controllers mostly operate in open-loop, which
inhibits their ability to change their behavior in response to their
environment [15, 23] (but see also [44]). Most of them are primed
to drive a single pattern and have rather limited abilities in switch-
ing between distinct behaviors, especially in response to sensory
stimuli. Second, even when they include sensory feedback, its spike-
based encoding is prone to noise. This is mitigated by engineered
principles that often deviate from biology. For example, some spike-
based CPGs encode continuous ranges of joint movement in limited
discrete states [23], which decreases motion smoothness and fine
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Figure 1: A spiking CPG on Intel’s Loihi neuromorphic pro-
cessor controlling a hexapod in the Gazebo simulator. Loihi
communicated with ROS in real-time using channel inter-
faces between the local host and the USB chipset. ROS de-
coded the spikes from 24 motor neurons on Loihi and con-
trolled the positions of 12 servos supporting the hexapod.

limb control. Other solutions artificially impose inter-limb delays
that limit flexibility in the robot and interpretability in the model.
Interestingly, a universal attribute of all the above approaches is that
they regard CPG behavior as an emergent property of exclusively
neuronal networks.

Overturning our assumptions about neural mechanisms, mount-
ing evidence suggests that it is not only neurons that participate in
CPGs [1, 7]. Astrocytes, the most abundant type of non-neuronal
cells, in addition to their effects on synaptic plasticity [13, 35], are
now seen as âĂĲa primary source for generating neural activityâĂİ
[32]. Linked to the long suspected role in modulating neural oscilla-
tions [17, 34, 37], an astrocytic mechanism that controls CPGs was
recently found. Astrocytes are now known to measure the intensity
of sensory stimulation and conditionally switch the neuronal firing
mode from regular spiking to bursting [30]. With bursting emerging
in a periodic fashion, astrocytes may switch neurons to pacemakers
which shape patterns of repetitive behavior [27, 30]. Paradoxically,
as astrocytes are the underappreciated cells in brain hypotheses,
have not been incorporated in possible CPG mechanisms.

In this work, we developed a comprehensive neuronal-astrocytic
CPG and implemented it on Loihi, Intel’s neuromorphic chip, to
control the locomotion of a hexapod robot. The astrocytic com-
ponent i) modulated the bursting activity of the CPG neurons, ii)
modified the behavior of the network by acting as a switch that
turned the CPG on and off, and iii) filtered out the low-frequency in-
put activity associated with sensory noise. Here, we also introduce
a multi-spike joint control that results in a fine speed control. To

achieve these results, we also developed the first interaction frame-
work between Loihi and the robot operating system (ROS) that
allows real-time control of robots. Overall, supported by the inher-
ent energy-efficiency of neuromorphic approaches, our work aims
to become one of the first hints that robotics will soon be, if they
are not already are, the sweet spot for neuromorphic computing.

2 METHODS
We took a bottom-up approach to design the CPG controller for
the robotic hexapod. At the cellular level, we devised a bursting
neuron by expanding the neuron model compartments that Loihi
currently supports. We then utilized the neuron’s bursting activity
as a pacemaker, to control the flexion/extension of the joints. By
connecting a number of such pacemaker neurons together, we
created the CPG network, which drove the robot’s walking pattern.
To incorporate real-time control of the robotic locomotion, we
designed an interactive framework between our Loihi-run CPG
and the ROS environment. These steps are presented in more detail
below.

2.1 Design of a Bursting Neuron on Loihi
Neurons that exhibited bursting activity were the building block
of our spiking CPG network. However, spiking compartments on
Loihi only support the leaky integrate-and-fire (LIF) neuronal model
without any bursting dynamics, defined by the following equations:

ui (t) = ui (t − 1) · decu +
∑
j
wi j · sj (1)

vi (t) = vi (t − 1) · decv + ui (t) (2)

where t is the Loihi step, ui is the current, vi is the voltage, decu
is the current decay, decv is the voltage decay and wi j are the
connection weights between the presynaptic compartment j and
the postsynaptic compartment i .

We took advantage of Loihi’s fully customizable multi-compart-
mental neurons to introduce bursting dynamics to our neurons.
Specifically, Loihi neurons are defined as binary trees, where either
the spikes or the voltage of the child node are passed to the parent
node. When a child node passes its voltage to a parent node, the
voltage equation of the parent becomes:

vi (t) = vi (t − 1) · decv + ui (t) +vch (t), (3)

where vch (t) is the voltage of the compartment that is the child
node to the parent compartment i . A child node can also pass its
spikes to its parent node, which can be used as binary control
signals. Another Loihi’s feature that was crucial for our CPG im-
plementation was its support of non-spiking compartments that
had no voltage reset. We used those non-spiking compartments to
inform their parent nodes about a voltage in a child node exceeding
a threshold, without transmitting spikes. This was important to
build a bursting neuron on the neuromorphic chip, as described
below.

This allowed us to design a conditionally bursting neuron as
a multi-compartment neuron on Loihi (Fig. 2A), as described be-
low. The neuron’s input drove two non-spiking compartments: a)
the input compartment (Inp) that directly transformed the input
current to voltage, and b) the astrocytic membrane compartment



An Astrocyte-Modulated Neuromorphic Central Pattern Generator for Hexapod Robot Locomotion on Intel’s Loihi ICONS ’20, July 28–30, 2020, Virtual Conference

Figure 2: Bottom-up architecture of the neuronal-astrocytic
CPG network. A. Compartmental model of an astrocyte-
dependent, conditionally bursting neuron on Loihi; B. Net-
work controlling a single tibia joint of the robot; C. CPG
architecture for the robot’s locomotion. Dots denote con-
nections. Blue arrows with arrowheads represent excitatory
connections and red arrows with dotted heads show in-
hibitory connections.

(AM) that integrated the current. The Conditional Integrator (CI)
was Inp’s and AM’s non-spiking parent node. Inp passed its voltage
to CI, while AM passed the information about exceeding its volt-
age threshold, which is the equivalent of spiking for non-spiking
compartments. By using the Loihi’s "PASS" operation to process
CI’s inputs, CI integrated the voltage from Inp only when AM’s
voltage was above threshold. This allowed the neuron to change its
activity based on the sensory input only when the input was promi-
nent enough to depolarize AM above its threshold, introducing a
condition for the neural bursting. CI gave the bursting neuron’s
membrane voltage. As this Loihi compartment was non-spiking,
our neuron model was lacking two crucial mechanisms: (i) spik-
ing bursts and (ii) resetting after the bursts. To address the first
issue, we added the somatic compartment (S) as the parent of CI,
to receive from CI the information on the voltage exceeding the
respective threshold. We used the Loihi’s "OR" operation for S to
spike whenever CI’s voltage was above its threshold. For addressing

the second issue (voltage reset), an inhibitory compartment (IN)
was added. When IN fired, it decreased CI’s voltage and reset the
neuron to its resting state. By modifying the number of spikes from
S that were necessary to make the IN compartment spike and reset
CI, we obtained a bursting neuron with adjustable burst duration.

2.2 Single Joint Control using Bursting
Neurons

We employed the bursting neuron as the building block for control-
ling each of the robotic joints. Specifically, the periodic bursting
was used as a pacemaker for the repetitive flexion/extension of the
joints. For a single tibia joint (Fig. 2B), we connected a bursting neu-
ron to a pair of flexor-extensor motorneurons (FMN/EMN). We used
the sensory input to drive the bursting neuron and this, in turn, ex-
cited the FMN and inhibited the EMN to form the flexion/extension
alternation. We drove the EMN with tonic excitation, which nor-
mally comes from the higher brain centers [43]. The spikes of the
EMN/FMN were then used to drive the servomotors and move
the joint. To do so, we decoded each spike of the FMN/EMNs to
an increment of the joint’s angle, as described by the following
equation:

θ
spike
←−−−−− θ + δθ , δθ =

∆θmax
Tj

, (4)

where θ is the joint’s angle, δθ is its increment, ∆θmax is its maxi-
mum range, and Tj is the tolerance of the joint to incoming spikes,
i.e. the maximum number of spikes of a FMN/EMN that move the
joint to its full range.

2.3 Spiking CPG for locomotion
To control the robotâĂŹs locomotion, we designed a CPG network,
consisting of simple joint controllers (Fig. 2C). To achieve a tripod
gait, in which at least three of the robot’s legs were always in
contact with the ground for stability, we grouped the robot’s legs
into two triplets, the right and the left. The right triplet comprised
of the front and hind leg of the robot’s right side and the middle leg
of the robot’s left side. The left triplet consisted of the remaining
three legs. Each leg was controlled by two joints (Fig. 1), the tibia
joint which lifted and lowered the leg, and the coxa joint which
moved the leg back and forth.

First, we needed to generate the alternating movement of the
two triplets, referred to as the triplet cycle. For this, we connected
two mutually inhibiting bursting neurons (BNL and BNR ), which
fired in an alternating fashion and each of them controlled the
movement of one triplet. Hence, the two triplets never moved si-
multaneously, which stabilized the robot on the ground. Preserving
this alternating motion required the full cycle of a single leg (lifting-
forward-lowering-backward) to be completed in half the duration
of the triplet cycle. For this, we connected BNL and BNR to the
joints of the respective limbs through an additional layer of burst-
ing neurons, the tibia bursting neurons (BNTi ). We designed the
BNTi to have a bursting frequency that is double the frequency of
the triplet cycle. As a result, the BNTi completed one full leg cycle
before BNL and BNR alternated.

To mobilize a single leg, we first connected the BNTi to the
tibia FMN/EMN (FTi /ETi ), as described in section 2.2 (Fig. 2B). This
allowed us to control the flexion/extension of these joints and,
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consequently the lifting/lowering of the legs. Tonic excitation drove
the tibia EMNs (ETi ) to reset the joints after the flexion. The back
and forth leg movement was accomplished through the control of
the coxa joints of the leg. The forward movement of a leg by its coxa
flexion coincided temporally with both, the lifting of the same leg
by its tibia flexion, and the backward movement of the contralateral
leg by its coxa extension. Hence, we connected the BNTi to the coxa
FMN (FCi ) of the same leg and the coxa EMN of the contralateral leg
(ECi+3 ).To prevent the tibia joint extensions from interfering with
their opposite leg cycles, even under persistent tonic excitation, we
included contralateral inhibitory connections. These connections
allowed the tibia FMN/EMN pairs (FTi /ETi ) to suppress the tibia
EMNs on the opposite leg (ETi+/−3 ).

The spiking activity of the twelve pairs of FMNs/EMNs was
decoded to joint angles to control the servomotors, as described in
section 2.2.

2.4 Loihi-ROS Interaction for Neuromorphic
Implementation

To achieve online robotic control, we developed a faster-than-real-
time interaction between the Loihi Kapoho-Bay USB chipset and
ROS, and utilized it to control our hexapod robot (Fig. 1). Our SNN
CPG controller utilized less than 10% of resources of a single Loihi
core (64 compartments and 68 connections). Given that Loihi is
an asynchronous system, we expanded our Loihi Astrocytic Mod-
ule [47] to synchronize the chip with the ROS. This was done by
blocking the faster system and forcing it to wait for the slower
one. The ROS node iterated 100 times/s to sustain smooth control
of the hexapod. For synchronization, Tepoch Loihi iterations were
executed during a single iteration of the robotic control loop. Each
robotic control loop iteration included: i) transferring neuron spikes
from Loihi to ROS, ii) decoding the spikes into servo positions (by
increasing or decreasing the joint angles by a fixed amount delta
until the pre-defined limits - max or min), and iii) setting servo
positions through ROS topics. We set Tepoch to 10, so that each
Loihi iteration represented exactly 1 ms. The “chokepoint” was the
communication between Loihi and the local host machine that ran
the ROS node. To avoid data transfer in every Loihi iteration, we
implemented a Sequential Neural Interacting Process (SNIP) on the
x86 LMT chip (within the Loihi chipset) to store the number of
spikes for Tepoch iterations.

3 RESULTS
To test whether, and to what extent, the expected behavior can
emerge out of the CPG network, we observed the kinematics of
the robotâĂŹs joints and the robot’s motion with respect to the
sensory input. Here, we first report the internal dynamics of the
bursting neuron, and then we relate this cellular behavior to that of
the CPG network in controlling the robotâĂŹs gait cycle. We then
examine the relation between the speed profile of the robot and
the sensory input’s frequency. Finally, we showcase the real-time
interaction of Loihi with ROS and our hexapod robot.

3.1 A Bursting Neuron Responding Only to
Meaningful Stimuli

The activity within the bursting neuron’s compartments is shown in
Fig. 3. In this example, we stimulated the neuron with a 4s Poisson
spike train. For the first 500 ms, the firing frequency was kept
to its baseline 5Hz, representing sensory noise. Between 500ms
and 3500ms, the firing frequency increased to 40Hz, representing
sensory neuron activity that encodes input stimulus. Using the
mechanisms described in section 2.1, Inp transformed its input
current to voltage (Fig. 3, bottom-left panel), and AM integrated
the input to its voltage (Fig. 3, bottom-right panel). This allowed
for the sensory noise to be filtered out, as it was only when the
frequency increased to 40 Hz that CI started integrating the voltage
of its child node, Inp, into its own (Fig.3, middle-left panel). The
S compartment received from CI the information about whether
CI’s voltage exceeded its threshold. The S compartment continued
spiking (Fig. 3, top-left panel) for as long as CI’s voltage was above
its threshold. This created the spike burst activity. In turn, the
spikes of the S compartment stimulated IN, which integrated them
in its voltage. The spikes of IN (Fig. 3, top-right panel) generated
inhibitory currents that closed the loop by being fed into CI (Fig.
3, middle-right panel). This current decreased CI’s voltage (Fig. 3,

Figure 3: Activity of the bursting neuron’s compartments.
Inp voltage is a direct transformation of the input current
to voltage. AM is the integral of the input current. CI’s volt-
age is the bursting neuron’s membrane voltage; when it ex-
ceeds the threshold (red dotted) the somatic compartment S
spikes. These somatic spikes drive IN to spike and stimulate
CI to reset the neuron.



An Astrocyte-Modulated Neuromorphic Central Pattern Generator for Hexapod Robot Locomotion on Intel’s Loihi ICONS ’20, July 28–30, 2020, Virtual Conference

Figure 4: Example of a single hexapod gait cycle controlled
by the spiking CPG. Raster plot for motor-neuron spiking
activity in the CPG resulted in sequential change of the ser-
vos’ position, for both flexion and extension.

middle-left panel) and reset the neuron to the resting state. The
time needed for CI’s voltage to reach the threshold again, after it
was reset, was the inactive period between spike bursts.

3.2 Gait Cycle
To achieve the regular walking pattern of the robot, a single gait
cycle (Fig. 4) was repeated, as described below. During the gait
cycle, the BN of the tibia (BNT 0) drove both the coxa FMN of the
same leg (FC0) and the coxa EMN of the opposite leg (EC1). In
this way, a leg was lifted by its tibia joint, while its coxa joint
moved it forward. Simultaneously, the coxa joint of the opposite
leg moved it backwards (Phase 1). Then, the extension of the tibia
joint lowered the leg to the ground (Phase 2). This concluded half
of the gait cycle and was followed up by the other half (Phases 3
and 4). During this next half, the coxa joints of the legs that had
previously moved forward (C0) now moved them backwards and
vice versa (C1). Likewise, the legs that were previously in contact
with the ground were now lifted by their respective tibia joints (T1).

3.3 Control of the Robot’s Speed Using the
Input frequency

The dependence of the robot’s speed on the input frequency emerged
out of our CPG design. We used random Poisson spike trains with a
mean firing rate to test the ability of our CPG network to generate
a periodic output given a non-periodic input. We chose 4 represen-
tative input frequencies to stimulate the CPG network and tracked

the robot’s speed. Specifically, we first drove our CPG network with
a 5Hz Poisson train that simulated sensory noise, as in the case
of the single BN (section 3.1). As expected, this baseline sensory
activity was insufficient to depolarize the AM compartment of the
BNL and BNR , and consequently, could not generate any robot
motion. We then increased the sensory input frequency beyond the
noise level. When the firing activity exceeded the threshold, the
AM compartment started getting depolarized and the CPG network
generated the motion pattern based on the gait cycle described
in section 3.2. In Fig. 5, we show the speed of the walking robot
(second panel) in response to its input frequency (top panel) which
increased from 5Hz to 20Hz (for t=[0,20]s), 30Hz (for t=[20,40]s)
and 45Hz (for t=[40,60]s). This resulted in a smooth increase of the
robotâĂŹs average speed (Fig. 5, second panel; red dotted line). The
spiking frequency of the joints’ FMNs/EMNs successfully adapted
to the input frequency, as shown in the raster plots (Fig. 5, two
bottom panels.)

Figure 5: Acceleration and deceleration of the hexapod by
changing the input firing activity to the CPG every 20 sec-
onds in a single experiment.



ICONS ’20, July 28–30, 2020, Virtual Conference Polykretis et al.

3.4 Speed Profile in Response to Stimulus
Frequency

We tracked the robot’s speed as a function of input frequency over
the whole functional range of our CPG network. For this, we stim-
ulated the CPG network with 60s Poisson trains, whose frequency
ranged between 20Hz and 50Hz with a step of 5Hz. This was done
10 times for each input frequency, and we recorded the robot’s
average speed for each such trial. Then we computed the mean of
these average speeds to obtain the average speed profile, shown
in Fig. 6. This plot describes the effective range of the movement
speed as a function of the input sensory frequency.

3.5 Loihi-ROS Interaction for a Real-Time
Control of Robots

Our framework exhibited a faster-than-real-time interaction be-
tween ROS and Loihi. To verify this, we measured the real-time
factor (RTF) defined as follows:

RTF =
texec
twc

(5)

where texec is the execution time of a single iteration and twc is
the wall-clock time, which for a ROS node iterating at 100 Hz is
always equal to 0.01s. When averaged over all the iterations, we
obtained an RTF of 1.6, which is far above the minimum require-
ment of a real-time system (Fig. 7). Consequently, our ROS-Loihi
interaction framework can indeed be used to control a real-time
hexapod robotic system. In fact, since this framework is not hard-
ware specific, it can be used to control other robotic systems as
well.

Moreover, since Tepoch Loihi iterations were executed during a
single iteration of the robotic control loop, this reduced the commu-
nication cost between Loihi and the local host machine by a factor
of Tepoch .

Figure 6: Average speed of the hexapod for different input
frequencies. Each data point is themean of 10 average speed
recordings obtained over 60s long experiments. The vertical
line shows the speed range within the trials.

Figure 7: The real-time factor for the spiking CPG system
based on time recordings from each ROS iteration.

4 DISCUSSION
In this paper, we presented a comprehensive neuronal-astrocytic
CPG network and its integration into IntelâĂŹs Loihi neuromorphic
processor, to control the locomotion of a hexapod robot.We also pro-
posed a framework for the real-time interaction between the ROS
environment and Loihi. This work aims to translate the advantages,
including that of simplicity, carried by traditional oscillator-based
CPG models [5, 40] into the emerging neuromorphic chips that
promise significant energy-efficiency, robustness and versatility
in solving real-world robotic problems. Unlike conventional ap-
proaches that use dynamical systems as coupled oscillators [5, 8,
24, 40], our proposed neuromorphic control algorithm generated
the periodic movement pattern by virtue of the modeled brain
cell’s properties, as well as the interaction between neuronal and
astrocytic activity.

At the cellular level, we introduced the first conditionally-bursting
neuron on a neuromorphic hardware drawing inspiration from
biological findings in insect locomotion [14, 21, 27]. Current neuro-
morphic chips provide an efficient hardware implementation of the
LIF neuron model only, and, therefore, lack an inherent mechanism
for emulating the bursting neuronal activity that is present in the
brain [27, 30]. While LIF neurons are far from ideal when driving
periodic behavior, our proposed CPG model is a perfect fit for a
behavior that repeated itself every few hundred milliseconds – a
time window that coincides with the behavioral time scale. Such
long periodic interchanges between active and inactive periods are
primed for tasks where robustness to sensory neuronal noise mat-
ters. The proposed bursting neurons encode the oscillatory activity
in a bandpass manner (using their inter- and intra-burst bands),
which makes them robust to noise present in the full operating
spectrum. Our approach also draws from the recent impressive
empirical evidence of the neuromodulatory abilities that astrocytes
exhibit [30]. Indeed, the astrocyte added a computational layer to
the brain-morphic CPG, which was orthogonal to the neuronal
layer, and enabled switching of the network’s behavior depending
on the input stimulus. The astrocytic component decreased the
sensitivity of our network to low-frequency sensory activity, which
represents noise in the adopted frequency-encoding regime. In con-
trast to the fast spiking noise-prone neurons, astrocytes can use
their much larger temporal and spatial integration scales [34, 36]
to filter out noise transients from meaningful stimuli. We expect
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this approach to become a significant component in our and others’
efforts towards robust spiking neural networks. In that sense, this
work captures the newly identified roles of astrocytes and solidify
them as computational primitives applicable to spiking neuronal-
astrocytic networks integrated to large-scale neuromorphic chips.

At the network level, the CPG connectome was inspired, and
partially constrained, by its biological counterpart [14, 21, 27]. This
significantly decreased the size of our proposed network, which
consisted of only 64 Loihi compartments (less than 0.5% of the
15K-compartment network in [48] that consumed just 9mW). Al-
though we did not measure the power consumption of our network,
the asynchronous computation on Loihi that consumes power pro-
portionally to the utilized resources make it reasonable to expect
significant power efficiency. The network’s architecture also en-
sured a range of linear dependence, in which the period of the gait
cycle was inversely proportional to the frequency of the sensory
input. Contrary to typical neuron models in conventional multi-
layer networks that can be optimized to perform complex com-
putational tasks, spiking neuron models have a non-differentiable
output (their all-or-none firing) and therefore are incompatible
with standard gradient-descent supervised learning methods. In
the absence of a strong learning algorithm, the main criticism to
neuromorphic solutions is that promising preliminary results [48]
cannot share the same scaling abilities with the mainstream deep
learning approaches. Adding biological constraints to neuromor-
phic algorithms, such as the ones we introduced here, removes the
need for assuming all-to-all initial connectivity for the trainable
network. This may translate to further improvements in training
efficiency, as it limits learning to a small number of synaptic connec-
tions. Recent applications of gradient-descent alternatives to SNNs
[18, 42] are also promising but they inherit the main limitations that
the conventional neuronal networks have. For example, learning
through backpropagation will basically match the networkâĂŹs
input to its output, much regarding and, thereby, structuring the
network as a black-box. Bottom-up neuromorphic approaches in
developing neural-controlled robots, such as the one proposed here,
can give an additional benefit, by serving as test-beds to inform
brain scientists on how the neural system could be structured to
function properly. In that sense, this work contributes to a novel di-
rection, where “machine behavior” in general, and robotic function
in particular, can emerge naturally from a basic a-priori knowledge
of its controllerâĂŹs structure.

The coupling between the robotâĂŹs speed and the sensory
input frequency is crucial in our CPG design as it may give rise to
a number of distinct control strategies that depend on the sensory
input. Consider, for example, a visual stimulus being the input to the
proposed CPG; The representation of the distance from a desirable
target using the input frequency (rate encoding) would lead to a
robotic speed that depends on how close the robot is to the perceived
target: A large distance would be encoded as high input frequency
and cause the robot to move fast towards its target; As the robot
approaches the target, the speed decreases. In contrast, encoding
the distance from a dangerous object into the input frequency could
force the robot to move fast away from that object, when being in
close proximity to it. Therefore, our proposed CPG design allows
for multiple parallel perception-action loops, that drive the same
spiking network and can modify the robot’s speed in response

to a number of sensed changes in a varying environment. It is
true that the embodiment of spiking neural networks into robots
has been rather sparse and most of the current approaches aim
to give a proof of concept [2, 29], rather than a whole-behaving
robot. While there is definitely value in studying simplified tasks
and basic sensory representations [20], there is an ongoing need
to propose new architectures capable of naturally handling richer,
noisier and more complex scenarios [10]. Our work paves the way
for developing novel active sensing neuromorphic solutions by
drawing biological principles from neuroscience and translating
them to computational primitives.

When it comes to innervating robots, there is no scarcity of
communication frameworks between ROS and most of the popular
neuron simulators [51]. Currently, however, there is no coupling
between the most recently introduced neuromorphic chip, Loihi,
and ROS. To propose an end-to-end solution, we had to bridge the
gap between our on-chip CPG network and the robot’s joints, by
proposing a real-time intercommunication framework. For a reason-
able communication to take place, the control commands need to
be generated before they are required by the robot. Our framework
established a faster-than-real-time intercommunication between
ROS and Loihi that can further incorporate more computationally
intensive Loihi networks that would communicate with ROS and
add up to the functionality of the robot.

Overall, an autonomous robot should, among others, 1) be ro-
bust to a noisy neural representation, 2) adapt to a fast changing
environment, and 3) learn with no or limited supervision or rein-
forcement. The emergence of neuromorphic computing calls for a
bottom-up rethinking of the real-time control algorithms for robots,
that can seamlessly integrate into non-Von Neumann hardware,
promising unparalleled energy-efficiency and a robust yet versatile
alternative to the brittle inference-based AI solutions. This paper
brings us closer to realize this promise, focusing on the CPG, a
crucial mechanism for legged robots.

5 CONCLUSION
Effective as they may have become, robots still cannot duplicate
a range of human behaviors, such as responding to changing en-
vironments using error-prone sensors. This work draws from the
structure of the brain areas associated with the targeted behavior as
well as the recently identified principles for information processing
in the brain and introduces a neuromorphic approach in designing
robotic controllers. The reported robotic behavior was achieved by
emulating the connectome and the underlying types of brain cells,
not through learning. This suggests that the co-development of
brain-morphic algorithms and neuromorphic hardware for solving
scalable robotic problems is a direction worth pursuing.
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