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Figure 1: Robotic Surgery Training Tasks. This article explores the possibility of predicting surgeons and surgical tasks with deep
learning and neuromorphic learning. Depicted in the figure are three exercises, Pick and Place, Peg Board, and Thread the Rings, on a
simulation device where surgical fellows control physical consoles that mimic surgery robots.

ABSTRACT
Robot-assisted minimally invasive surgery is improving surgeon
performance and patient outcomes. This innovation is also turning
what has been a subjective practice into motion sequences that can
be precisely measured. A growing number of studies have used
machine learning to analyze video and kinematic data captured
from surgical robots. In these studies, models are typically trained
on benchmark datasets for representative surgical tasks to assess
surgeon skill levels. While they have shown that novices and ex-
perts can be accurately classified, it is not clear whether machine
learning can separate highly proficient surgeons from one another,
especially without video data. In this study, we explore the possibil-
ity of using only kinematic data to predict surgeons of similar skill
levels. We focus on a new dataset created from surgical exercises on
a simulation device for skill training. A simple, efficient encoding
scheme was devised to encode kinematic sequences so that they
were amenable to edge learning. We report that it is possible to iden-
tify surgical fellows receiving near perfect scores in the simulation
exercises based on their motion characteristics alone. Further, our
model could be converted to a spiking neural network to train and
infer on the Nengo simulation framework with no loss in accuracy.
Overall, this study suggests that building neuromorphic models
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from sparse motion features may be a potentially useful strategy for
identifying surgeons and gestures with chips deployed on robotic
systems to offer adaptive assistance during surgery and training
with additional latency and privacy benefits.
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1 INTRODUCTION
Robotic surgery has made tremendous progress in recent years
within the medical field. Compared with traditional practice, surgi-
cal robots nowadays enable surgeons to remotely control thin rods
with intricate instruments and video cameras. This has been applied
to many types of surgery including tumor resection, microsurgical
blood vessel reconstruction, and organ transplantation. Because of
the smaller incisions and decreased blood loss during the operation,
patients generally experience less trauma and recover faster. The
precision, stability, and flexibility of the robotic devices also allow
surgeons to perform complex procedures that would otherwise
have been difficult or impossible.
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The digitization of surgical vision and control has made this
field ripe for the next AI revolution. While there are many algorith-
mic and data challenges, the hardware is ready. In fact, there is a
push for rapid technological advancements: new robotic systems
are competing to make surgeons see the targeted anatomy better
and perform procedures that are ever more delicate. At least nine
surgical devices and platforms have been approved by the FDA
and more are under review [18]. Accompanying this trend is the
development of simulation platforms for training surgeons with
similar console input, mimic exercises in virtual reality, and scoring
systems for grading skills.

A clear aspiration in the field is to build autonomous surgical
robots. This however will remain out of reach for some time due
to the complexity of instrument-environment interaction and soft
tissue dynamics. Most AI efforts in surgery have so far been incre-
mental, aimed at building up our understanding of the data recorded
from the robotic surgery platforms [29]. A growing number of stud-
ies have shown that machine learning can help evaluate surgeon
skills or delineate task structures with video and motion data. These
studies typically focus on a benchmark dataset, JIGSAWS [9], with
three representative surgical tasks performed by eight surgeons
binned into three skill levels: novice, intermediate, and expert. The
fact that these surgeons had wide practice gaps (from less than 10
hours of robotic operation time for novices to over 100 hours for
experts) made the classification task well defined.

In this study, we focus on a new dataset created by surgical fel-
lows at UIC performing training exercises with similar levels of
high proficiency. We explore the possibility of surgeon and task
prediction in this challenging settingwithout video data.We demon-
strate that, with a simple encoding of the motion sequences, we
could predict surgeon with 83% accuracy and exercise with 79%
accuracy using kinematic data alone. Our efficient, binary encoding
of motion characteristics outperforms models on raw features and
enables us to convert the models to spiking neural networks with
sparse input and no performance loss.

2 BACKGROUND AND RELATEDWORK
While AI has revolutionized many fields, its impact in surgery has
so far been multifaceted but incremental [10]. Medical images are
processed with deep learning to help pre-operative planning and
intra-operative guidance [29]. Surgical videos are analyzed to as-
sess human proficiency [7], recognize gestures [8, 11, 22] as well as
segment surgical instruments [17, 19] and human anatomy [1, 10].
Likewise, kinematic logs recorded from clinical surgical devices
have been used in skill assessment [13, 16, 28] and gesture recog-
nition [15, 23, 24] via convolutional, recurrent, graph and neural
networks. Many of these studies focused on the aforementioned
JIGSAWS dataset and achieved high classification accuracy.

There has been much effort to convert commonly used classical
networks into spiking neural networks (SNN) [5, 6], in favor of
its energy efficiency and biological plausibility. Recent successes
in application of SNN to event-driven data [3, 25] reveal poten-
tial in handling difference-encoded time-series data in surgery. We
hypothesize that it will take advances in novel neuromorhpic hard-
ware architectures and SNN design to enable breakthroughs in AI
advanced robotic surgery.

3 METHODS
3.1 Data
Surgical fellows at UIC have endeavoured to create a dataset of
paired video and kinematic sequences recorded from surgical sim-
ulation exercises. These procedures were performed on MIMIC’s
FlexVR portable 3D standalone surgical system. In this study, we
focus on a subset 120 exercises performed by 4 surgical fellows on 4
representative tasks training hand-eye coordination, ambidexterity,
and fine motor control. For each exercise, there are on average 4000
timesteps of kinematic data describing instrument positions, ori-
entations, and gripper angles that correspond to 0.5-6 minute long
videos. Data was stratified by both surgeon and exercise, maintain
a fair class-balance and avoid any data-leak.

3.2 Sparse encoding of kinematic sequence
Using the MIMIC simulator dataset described in Section 3.1, deep
learning models were trained to predict two ground truth labels
extracted from the kinematic logs. The logs begin in the format
of 30 positional recordings per second describing the location and
configuration of the camera and apertures. This is converted from
positional data at each timestep to the difference or movement be-
tween timesteps. While the accuracy of the models trained on these
movements was good, we ultimately convert these movements to
binary events. All movements above a small threshold are coded as
an event for that feature. While this results in an overall loss of in-
formation, the motivation is twofold; (1) the capture rate of events is
sufficient that the micro movements between subsequent timesteps
may be primarily operator or sensor noise and (2) encoding the
data stream as binary spikes dramatically increases the sparsity of
the data, potentially greatly reducing any memory or computation
footprints, and directly enabling an efficient spike-time encoding
for use with neuromorphic hardware.

3.3 LSTM and CNN models
We trained a long short-term memory (LSTM) recurrent neural net-
work (RNN) consisting of two bidirectional LSTM layers followed
by two dense layers and final dense softmax output. For compar-
ison, we developed convolutional neural network (CNN) with a
single one dimensional convolutional layer followed by two dense
layers and softmax output. The number of neurons used in each
layer are [128, 64, 64, 16] and [128, 128, 16] respectively. Additional
convolutional, dense layers, or increased number of neurons/filters
did not improve accuracy. Dropout and batch normalization were
employed between layers.

3.4 Conversion to spiking neural networks
The conversion from classical neural network to spiking neural
network (SNN) is made with Nengo [2], which is a neural simulator
based on the flexible Neural Engineering Framework capable of
supporting multiple backends, including neuromorphic hardware
such as the Intel Loihi chip [4], with minimal change in code. It
also has a deep learning extension module NengoDL [20], which
is a bridge module between Keras and Nengo. Similar to other
classical to spiking model conversion software like SNN Toolbox
[21], Nengo-DL has a converter for a deep neural network model
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Table 1: Model comparison for 4-class task prediction.

Task Model LSTM CNN FCN LGBM

Base-Raw 75.77 62.89 63.73 71.57
Base-Event 79.13 69.05 67.79 65.96
SNN-Raw 76.71 63.29 63.43 -
SNN-Event 79.14 67.57 67.00 -

Table 2: Model comparison for 4-class surgeon prediction

Surgeon Model LSTM CNN FCN LGBM

Base-Raw 80.11 63.32 60.22 70.31
Base-Event 82.63 64.99 66.67 64.98
SNN-Raw 75.57 58.71 60.67
SNN Event 83.43 64.71 65.43

in Keras to a native Nengo neuron model by replacing Keras layers
with equivalent implementations wired with Nengo neurons.

We used the builtin converter in NengoDL to convert the afore-
mentioned deep neural networks to spiking neural network mod-
els. The converter uses a differentiable approximation of the non-
differentiable spiking functions in neurons during the training
phase and replaces it with the original function at inference [12].
The dense models were converted to native Nengo models without
modification. The data of the convolution model was flattened as
Nengo nodes only accept one-dimensional inputs. Due to the lack
of recurrent support in NengoDL, the LSTM layer cannot be directly
converted. As a workaround, a hybrid SNN model was created with
the LSTM layer executed in Keras and the rest in Nengo.

4 RESULTS
4.1 Task and Surgeon Prediction
Tables 1 and 2 show the comparative results of three deep learning
model architectures and the decision tree method Light Gradient
Boosting Machine (LGBM) [14]. At a high level, these results serve
as a fair baseline for two easily understood tasks on our novel
kinematic surgery dataset with no external data. While the se-
quences extracted from the kinematic data are short and may not
capture complex, long-range action associations, the recurrent neu-
ral network performs adequately at learning representations that
exploit subtle differences between both surgeons and tasks. Many
of these mini-action sequences should be common across many or
all surgical tasks, and there are a finite many ways a surgeon can
navigate and perform in a scripted environment. With more classes
we should see decreased performance, but more separable and rec-
ognizable clusters of common as well as unique action sequences.
Such clusters may be observed in Figures 4 and 5.

As a baseline, the best performing traditional learning algorithm
(LGBM) does not outperform any deep learning methods on the
event encoded data. However, the baseline model does outperform
all but the LSTM on the raw kinematic motion data. For the deep
learning approaches, accuracy was improved with the lossy con-
version to binary event sequences. This supports our hypothesis

that neuromorhpic, particularly recurrent approaches will offer an
advantage for real-time event based surgical data.

Figure 2: Confusion matrix for task prediction

Figure 3: Confusion matrix for surgeon prediction

From the confusion matrix shown in Figure 2 it is clear that most
of the misclassifications are between the Ring & Rail and Thread the
Rings tasks. These tasks frequently require rotating of the wrists,
direct hand offs of objects, and manually moving the camera. The
Pick and Place task does not require any of these key movements.
Note that while the data was stratified by surgeon and exercise the
total number of sequences varies slightly due to completion time.

4.2 Visualization of kinematic actions
Following the input encoding and model training in the previous
sections, visualizations of the latent-layer kinematic actions are
generated as follows:

• The 20 dimensional, 40 step time-series kinematic sequences
are propagated through the network until the final 16 neuron
hidden Dense layer. This is the layer immediately preceding
the output of the model.

• The 16 dimensional vectors are decomposed to two dimen-
sions with t-distributed stochastic neighbor embedding (t-
SNE) [26] an approach similar to principle components anal-
ysis (PCA).
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• These 2D coordinates are plotted and colored according to
the ground truth label used to train the model.

Figure 4: Visualization of task based kinematic encoding

Figure 5: Visualization of surgeon based kinematic encoding

We may observe in 2D the separability of the classes, as well as
clusters of similar actions across 2 or more classes. This is particu-
larly noticeable for the surgeon prediction visualization shown in
figure 5 which has a noticeable cluster for each permutation of the
surgical fellows. Also of note is the difference in spread of the sur-
geon’s movements. Fellow A’s actions are fairly tightly distributed,
while Fellow C and D’s movements are spread farther apart despite
having completed the same surgical tasks. The fact that our model
appears to capture motion signatures of different surgical fellows
of similar proficiency is promising. This indicates neuromorphic
chips deployed on edge could be potentially useful in providing
personalized assistance in surgery and training.

4.3 Neuromorphic approach
We compared the performance of the base and converted SNN mod-
els with the binary-encoded dataset. As shown in Table 1 and 2,
the best-performing model is the LSTM, which achieves 79% test
accuracy for surgery task prediction and 83% for surgeon prediction.
Meanwhile, the convolution neural network model and fully con-
nected model have roughly 10% and 7% accuracy drain respectively.
Among the converted models, both the hybrid LSTM model and
the other native Nengo models have roughly achieved the same
accuracy as their DNN counterparts, suggesting no noticeable loss
of performance in the spiking neural network conversion.

Figure 6: Feature Importance for Surgeon Prediction. Bars
represent accuracy differences between an LSTM model trained on
all features and the same model with one of the features removed.

4.4 Feature Importance
To identify the kinematic features that distinguish different sur-
geons, we examined the contribution of each feature to prediction
accuracy. A traditional method is to query machine learning models
directly for feature importance. However, this method would give
the importance of a feature instance at some specific time stamp
instead of its influence over the whole time series. To address this
issue, we repeatedly removed one feature from the input data and
ran the top performing LSTM models with identical configurations.
The resulting accuracy changes are shown in Fig. 6 for all single
features. The results show that certain features play an essential
role in surgeon and task prediction. For example, Pitch and Roll
actions on the left arm are top features for both surgeon and task
classification. This could be explained by the nature of the exer-
cises: Pick and Place requires almost no rotation, while in Thread
the Rings, the surgeons tend to pick, rotate and pierce the needle
through the ring with the left arm. There appears to be no standout
feature that have an oversized impact, which again suggests that
the model has learned representations of motion characteristics
from the sequence of actions.

5 FUTUREWORK
We are excited by recent advancements in neuromorphic hardware
and algorithm design and applicability to open challenges in robotic
surgery. Given our success with RNNs, on short sequences, we are
keen to explore Applied Brain Research’s LMU [27] networks for
long-term memory associations in very long sequences. Addition-
ally, we must explore the potential of models and techniques for
domain adaptation, leveraging data from programmable simulators
for clinical application. Following the success of our event encoding
scheme for this novel time-series kinematic data set and conversion
to SNN with no accuracy loss, we must investigate the computation
speed and other advantages of real-time on-chip processing for
surgical tasks using neuromorphic hardware.
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