
A Small, Low Cost Event-Driven Architecture for Spiking Neural
Networks on FPGAs

J. Parker Mitchell
mitchelljp1@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Catherine D. Schuman
schumancd@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Thomas E. Potok
potokte@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee

ABSTRACT
Currently, there is a lack of availability of low cost, low power
neuromorphic hardware. In this work, we introduce the µCaspian
architecture along with an associated development PCB design
which provides a low cost and SWaP (size, weight, and power)
optimized neuromorphic hardware platform. Further, our proposed
system only uses commercial off the shelf components and an open
source FPGA workflow to maximize the accessibility of µCaspian
to all researchers.

CCS CONCEPTS
• Computer systems organization → Neural networks; Re-
configurable computing.

KEYWORDS
neuromorphic, reconfigurable computing, spiking neural network,
fpga
ACM Reference Format:
J. Parker Mitchell, Catherine D. Schuman, and Thomas E. Potok. 2020. A
Small, Low Cost Event-Driven Architecture for Spiking Neural Networks on
FPGAs. In International Conference on Neuromorphic Systems 2020 (ICONS
2020), July 28–30, 2020, Oak Ridge, TN, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3407197.3407216

1 INTRODUCTION
There has been a significant increase in interest in the field of
neuromorphic computing in recent years for a variety of reasons,
including the looming end of Moore’s law and the end of Dennard
scaling, as well as the rise of success of artificial intelligence algo-
rithms and deep learning. In order for neuromorphic computing to
be successful as a computing platform in the coming years, we need
to begin to establish a community of users who have access to both

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8851-1/20/07. . . $15.00
https://doi.org/10.1145/3407197.3407216

hardware and software systems. One barrier to establishing this
community is the lack of availability of hardware. Though there is
a tremendous amount of research in the development of new neu-
romorphic hardware, as well as the development of neuromorphic
chips like IBM’s TrueNorth and Intel’s Loihi, it is still extremely
difficult for a non-neuromorphic researcher to get access to uti-
lize neuromorphic hardware. Moreover, specifically for academic
groups developing neuromorphic hardware, it can be extremely
difficult and/or expensive to fabricate custom neuromorphic hard-
ware systems, which has further decreased the availability and
accessibility of these systems.

With this in mind, we have developed a neuromorphic develop-
ment platform called Caspian, which has both software and hard-
ware components [5]. The initial hardware platform for Caspian
is based on field programmable gate arrays (FPGAs), because they
are inexpensive (allowing for more accessibility), and they can be
programmed and updated as new neuromorphic research emerges.
In this work, we present the µCaspian development board, which
is based on a very small, inexpensive, energy efficient FPGA. This
particular platform was developed with several different use cases
in mind. First, because of its size and energy usage, it is well-suited
for edge deployment applications. Second, because it is inexpensive
and has an associated user-friendly software development system
in Python for programming the system, it is also amenable for
educational purposes.

2 BACKGROUND AND RELATEDWORK
Due to the slow and expensive fabrication processes associated with
developing new hardware, field programmable gate array (FPGA)-
based neuromorphic implementations have been common in neu-
romorphic computing [7]. Because they are easily available and
relatively inexpensive, FPGAs are convenient both as a prototype
for a potential future custom chip design, but also as an end-design
for a low cost, off-the-shelf implementation that can give some of
the energy efficiency and/or speed benefits of custom hardware.
In recent years, energy efficent neuromorphic implementations on
FPGAs have been used to do real-time cortical simulations [10], to
accelerate training [9], and controlling the locomotion of a multi-
legged robot [4]. These types of approaches are targeted towards
relatively large FPGAs, where the goal of this work is to provide a
very inexpensive, very energy efficient platform for rapid develop-
ment and deployment, specifically for edge applications.

There are some example neuromorphic development platforms
that have a complete workflow, including both hardware and soft-
ware components. Notably, the Nengo [2] software framework, built
on principles of the Neural Engineering Framework, has several sup-
ported hardware backends, including an FPGA-based approach [6].

https://doi.org/10.1145/3407197.3407216
https://doi.org/10.1145/3407197.3407216
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3407197.3407216&domain=pdf&date_stamp=2020-07-28

ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA Mitchell, et al.

Spike Dispatch

Dendrite

Neuron System
Control

Synapse Synapse Synapse Synapse

Axon

External
Interface

Figure 1: µCaspian Architecture Overview

A key issue with the Nengo-based approach is that it can be dif-
ficult or impractical to use outside of the context of the Neural
Engineering Framework.

Other neuromorphic development platforms include commercial
systems such as Intel’s Loihi [3] and IBM’s TrueNorth [1]. These
systems have associated software to aid in development; however,
the hardware systems themselves are not readily available to the
community, which can make it difficult or impossible to deploy or
evaluate on a real-world application.

3 ARCHITECTURE
µCaspian implements an event-driven pipeline of neuromorphic
modules. As shown in Figure 1, the architecture is divided into a few
major components – spike dispatch, synapses, dendrites, neurons,
axons, and system control. Each component operates as a separate
stage of the overall pipeline with a simple flow control interface
and global time synchronization. Any associated configuration or
state is stored local to the component using small block RAMs. This
design allows the implementation to be both flexible and modular.
In the following subsections, we explain the role of each component.

3.1 System Control and Communication
The system controller is responsible for processing input packets
and generating output packets. It also handles control and synchro-
nization signals for the overall system. The system is not allowed
to progress to the next time step until every module in the system
reports as idle after which time is incremented and a sync pulse is
sent.

For both input and output, µCaspian implements a variable
length packet scheme to minimize required bandwidth. Input pack-
ets may:

• Add charge to a specified dendrite/neuron
• Advance network time
• Clear the current state of the network
• Clear the configuration of the network
• Set the configuration values for a neuron or synapse

Some input input packets (clear, configuration) generate re-
turn acknowledgement packets upon completion of the operation.
µCaspian also provides the spiking activity of neurons through
output packets. Each neuron can be configured to send its output
as needed.

3.2 Synapse
In µCaspian, there are four synapse units. Each synapse unit con-
tains the configuration of 1024 synapses including its signed 8-bit
weight value and its target, or post-synaptic, neuron. When there is
an incoming spike, the synapse is responsible for passing the synap-
tic weight to correct dendrite address. In the future, it is possible
to implement additional functionality into this module for features
like synaptic plasticity.

3.3 Dendrite
The dendrite is where intermediate charge values are accumulated
during the course of a single time step. Within each time step, it
receives input charge from synapses as well as input charge from
the system controller. The dendrite accumulates charge into a block
RAM where the address corresponds to the target neuron id. There
are two separate blocks RAMs which alternate on every time step,
so at any one point in time, charge is being written to one RAM
while the other RAM is flushing its charge to the neuron component.
At the end of each time step, the RAMs swap roles such that the
previously accumulated charge will then get flushed to the neurons.
This functionality allows for coherent and predictable operation
by avoiding any race conditions or requiring duplicate checking of
neurons state.

3.4 Neuron
The neuron provides long term storage of charge. Every time step,
charge from one of the dendrite buffers is flushed. Each neuron’s
charge value is updated as necessary, and if the charge exceeds the
configured threshold, the neuron will emit a spike to the axon and
reset the charge value back to zero. A neuron may be configured
with an 8-bit unsigned threshold, and each neuron has a 16-bit
signed charge. Neurons are allowed to hold a negative charge up
to −215, but any positive charge of 28 or greater will cause a spike
because the maximum configurable threshold is currently 255.

3.5 Axon
The axon serves to map spikes from neurons to the appropriate
range of synapses. All output synapses for a given neuron are
allocated to a contiguous range of synapse addresses. This means
the mapping of a neuron’s spike to synapses can be stored by the
first index and the total number of synapses. Axons also provide
a temporal delay capability which shifts the timing of each spike
from a given neuron. Each axon can be configured with a separate
delay value from 0 to 15 time steps. Delay is implemented using
virtual shift registers where the state is stored as a bit field in a
block RAM. New spikes are added as the i-th bit where i is the
number of cycles of delay required, and the bit field is shifted once
per time step. After shifting, if the least significant bit is set, the
axon emits the spike at that time.

A Small, Low Cost Event-Driven Architecture for Spiking Neural Networks on FPGAs ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA

Figure 2: µCaspian Development Board

3.6 Spike Dispatch
The spike dispatch is an intermediary module between the axon
and the synapse units which coordinates the four synapse units.
It iterates across the synapses as dictated by the output from the
axon while decoupling the axon from the exact configuration of
the synapses.

4 DEVELOPMENT BOARD
As a development platform for the µCaspian architecture, we de-
veloped a custom PCB with a Lattice ice40 UltraPlus FPGA. The
primary communication interface is USB 2.0 High Speed through
an FTDI 2232H interface chip. This manages USB and bridges it to
an asynchronous FIFO-style interface which connects to the FPGA.
The FTDI chip also handles configuring the FPGA logic through
SPI. It should be noted that USB 2.0 provides great usability for
development, but it also incurs a significant latency overhead of at
least 1ms which causes significant overhead on small transfers. To
determine energy efficiency, the board includes power monitoring
capabilities with two Texas Instruments INA226 chips which com-
municate through an I2C bus. The FPGA may be used as the I2C
bus master, or an external microcontroller can connect through the
pin header on the right side of the board. The resulting board is
pictured in Figure 2.

The Lattice ice40 UltraPlus series was chosen specifically for a
few key reasons. First, it offers favorable power characteristics with
both low static and dynamic power with total power consumption
on order of 10mW. Second, it offers an appropriate amount of logic
and small block RAM resources for the proposed architecture. Third,
there is an open source toolchain consisting of yosys and nextpnr
[8] which can allow end users to modify and update the FPGA
logic without downloading large software packages or purchasing
licenses.

Currently, we are able to implement µCaspian with 256 neurons
and 4096 synapses on this platform. There are no configuration
restrictions in terms of network connectivity, so while this is a
modest number of resources, it is quite useful for sparse, recurrent
graph structures.

0 50 100 150 200 250
Number of Neurons

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ex
ec

ut
io

n
Ti

m
e

(s
)

Pass Network Performance
Simulator
FPGA

Figure 3: A performance comparison using length pass net-
works of varying length up to the device maximum of 256

5 RESULTS
5.1 Pass Network
Evaluating passthrough networks is a simple benchmark task to
compare µCaspian on an FGPA to the Caspian simulator. A pass
network is a chain of neurons where each neuron has one incoming
and one outgoing connection such that a spike will start a neuron
0 and eventually reach neuron N − 1 where N is the size of the net-
work. Each neuron has a minimal threshold such that any positive
charge results in a spike. We evaluated pass networks from 5 to 255
neurons and applied 1000 input spikes. We evaluated the networks
until we received 1000 output spikes which results in N + 1000 time
steps. The results of this experiment are shown in Figure 3. Across
the tests, the FPGA is typically around 6 to 7 times slower than the
simulator running on an Intel i7 5820K CPU. While this initially
may seem less than ideal, this is actually a very compelling result
from an energy efficiency standpoint. The FPGA is using on the
order of 1000 times less power than the Intel CPU while running
on the order of 10 times slower. Further, there are several planned
implementation improvements which will yield improved results.
In future work, we plan to carefully examine and quantify the en-
ergy and performance trade-offs between CPU-based simulation
and FPGA evaluation.

5.2 All to All Recurrent Network
The next benchmark uses a fully connected recurrent network.
Every neuron in the network is connected to each other neuron
with a synapse of random weight. Every neuron is specified as an
input and output node in the network. The rate of input for each
neuron is randomly selected from a uniform distribution of 0 to
100 which corresponds to the interval between subsequent inputs.
The networks are evaluated for 1000 time steps, and the results
from 5 different random seeds are averaged to generate the final
metric. The collected results are shown in Figure 4. Similar to the
pass network tests, the FPGA is slower than the software simulator
running on aworkstation. In this test, the FPGA is typically between
3 to 6 times slower than the simulator, but again, it is important to

ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA Mitchell, et al.

10 20 30 40 50 60
Number of Neurons

0.00

0.01

0.02

0.03

0.04

0.05

Ex
ec

ut
io

n
Ti

m
e

(s
)

All to All Recurrent Network Performance
Simulator
FPGA

Figure 4: A performance comparison using all to all recur-
rent networks of varying size

remember that this still yields a many times over energy efficiency
advantage for the FPGA based solution.

6 DISCUSSION AND FUTUREWORK
Akey advantage of the proposedwork is the utility of a low cost, low
power neuromorphic platform using only off the shelf components.
The system is intended to be simple to use by integratingwith both a
C++ and a PythonAPI as well as a software-based simulation engine.
However, a downside of our approach is that capacity is currently
limited to relatively small networks and the energy efficiency of an
FPGA solution will always be at a disadvantage compared to custom
ASICs. Additionally, our development board uses a relatively slow
clock speed which results in lower performance than simulation
on a workstation but will offer much greater energy efficiency.

For future work, we intend to investigate the use and deployment
of Caspian for a wide variety of different applications, including
robotics, autonomous vehicles, and real-time sensor data analysis.
Though this work presents a full development board, there are
also opportunities to utilize µCaspian without the full board by
embedding a small FPGA into the target application. The platform
currently uses USB to communicate with PCs, but the interface can
be exchanged with microcontroller friendly options like UART. In
the future, we plan to measure the logic power consumption of the
FPGA and also quantify the overhead of USB 2.0 based communica-
tion. These results are particularly relevant if the end user decides
to embed µCaspian without the full development board.

Thiswork focuses on the development specifically of the µCaspian
system. However, the Caspian platform is scalable and can be ex-
tended for larger FPGAs for different use cases. The event-driven
pipeline concept can extend to a larger number of neurons and
synapses. Further, we can envision a multi-core approach where
the cores execute subsets of a larger network or execute a collection
of small individual networks.

Because one of the key motivations for the development of this
work is to make neuromorphic computing more accessible for new
users, we intend to develop learning modules for Caspian that

include both software and hardware components. In particular, we
hope to develop learning modules that will be appropriate for short
workshops to introduce new users to neuromorphic computing, as
well as longer, more detailed curricula that are appropriate for use
in an academic setting (perhaps as part of a course on neuromorphic
computing).

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, under contract number DE-AC05-00OR22725, and by
the Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory.

REFERENCES
[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John

Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam,
et al. 2015. Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34, 10 (2015), 1537–1557.

[2] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C Stew-
art, Daniel Rasmussen, Xuan Choo, Aaron Russell Voelker, and Chris Eliasmith.
2014. Nengo: A Python tool for building large-scale functional brain models. Fron-
tiers in Neuroinformatics 7, 48 (2014). https://doi.org/10.3389/fninf.2013.00048

[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 1 (2018), 82–99.

[4] Erick Israel Guerra-Hernandez, Andres Espinal, Patricia Batres-Mendoza, Car-
los Hugo Garcia-Capulin, Rene De J Romero-Troncoso, and Horacio Rostro-
Gonzalez. 2017. A FPGA-based neuromorphic locomotion system formulti-legged
robots. IEEE Access 5 (2017), 8301–8312.

[5] J Parker Mitchell, Catherine D Schuman, Robert M Patton, and Thomas E Potok.
2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the
Neuro-inspired Computational Elements Workshop. 1–6.

[6] Benjamin Morcos. 2019. NengoFPGA: an FPGA Backend for the Nengo Neural
Simulator. Master’s thesis. University of Waterloo.

[7] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell,
Mark E Dean, Garrett S Rose, and James S Plank. 2017. A survey of neuromorphic
computing and neural networks in hardware. arXiv preprint arXiv:1705.06963
(2017).

[8] David Shah, Eddie Hung, Clifford Wolf, Serge Bazanski, Dan Gisselquist, and
Miodrag Milanovic. 2019. Yosys+ nextpnr: an open source framework from
verilog to bitstream for commercial fpgas. In 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
1–4.

[9] Qian Wang, Youjie Li, Botang Shao, Siddhartha Dey, and Peng Li. 2017. Energy
efficient parallel neuromorphic architectures with approximate arithmetic on
FPGA. Neurocomputing 221 (2017), 146–158.

[10] Runchun M Wang, Chetan S Thakur, and André van Schaik. 2018. An FPGA-
based massively parallel neuromorphic cortex simulator. Frontiers in neuroscience
12 (2018), 213.

https://doi.org/10.3389/fninf.2013.00048

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Architecture
	3.1 System Control and Communication
	3.2 Synapse
	3.3 Dendrite
	3.4 Neuron
	3.5 Axon
	3.6 Spike Dispatch

	4 Development Board
	5 Results
	5.1 Pass Network
	5.2 All to All Recurrent Network

	6 Discussion and Future Work
	Acknowledgments
	References

