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ABSTRACT 
Understanding the human brain is the biggest challenge for 
scientists in the twenty-first century. The Hodgkin-Huxley (HH) 
model is one of the most successful mathematical models for bio-
realistic simulations of the brain. However, the simulation of HH 
neurons involves complex computation, which makes the 
implementation of large-scale brain networks difficult. In this 
paper, we propose a hardware architecture that efficiently 
computes a large-scale network of HH neurons. This architecture 
is based on the neuron machine hardware architecture, which has 
the limitation of speed as it has only one computation node. The 
proposed architecture is essentially a non-Von Neumann 
synchronous system with multiple computation nodes, called 
hardware neurons, to achieve linear speedup. In this paper, the 
design of a digital circuit that computes large-scale networks of 
HH neurons is presented as an example to provide a detailed 
description of the proposed architecture. This design supports 
axonal conduction delay of spikes and short- and long-term 
plasticity synapses, along with floating-point precision HH 
neurons. The design is implemented on a field-programmable gate 
array (FPGA) chip and computes a network of one million HH 
neurons in near real time. The implemented system can compute a 
network with up to 12 million HH neurons and 600 million 
synapses. The proposed design method can facilitate the design of 
systems supporting complex neuron models and their flexible 
implementation on reconfigurable FPGA chips. 
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1 Introduction 
Research investigations of an artiϐicial brain are important to 

understand the underlying causes of brain diseases [1]. The 

artiϐicial brains can also be used in neuro-prosthetic devices 

that replace human visual or auditory sensors [2]. As deep 

learning technology was made possible by a large amount of 

data and high-performance computing [3], experiments with 

large-scale artiϐicial brains using high-speed computing 

devices might lead to the development of new machine 

learning algorithms [4]. In addition, based on the design of 

computers that run artiϐicial brains efϐiciently, a small, low-

power computer with high efϐiciency, which is completely 

different from a conventional computer can be designed. 

Owing to the abovementioned reasons, major projects such as 

the Human Brain Project in Europe [1] and the Brain Initiative 

in the United States [5] have been launched worldwide. 

The Hodgkin-Huxley (HH) model is the most fundamental 

and widely known neuron model among many neural 

computational models. The HH is bio-realistic as it reproduces 

the neuronal mechanism with the ϐlow of ion currents, and the 

model can be extended to reϐlect new ion currents. However, 

the HH model involves complex computation. For example, 

the integrate-and-ϐire model requires 5 FLOPS per 1 ms model 

time for a neuron, whereas the HH model requires 1200 

FLOPS to compute the same time period [6]. Owing to this 

problem, there are little known large-scale HH systems and 

the computation speed of the HH system is slow if any. For 

example, in [7], the original HH model consisting of 3 ion 

currents was extended to 11 ion currents, and a 400,000-

neuron network was computed on a high-end GPU at a speed 

of 14400 s per 1 s model time. To address this problem, 

simple phenomenological models such as the Izhikevich 

model are often used to implement large-scale brain 

networks. However, these models do not accurately describe 

all the physical mechanisms of neurons [7] and are difϐicult to 

incorporate new phenomena observed in the biological 

neurons. 

In this study, a hardware architecture that can efϐiciently 

compute a large network of computationally complex model 

neurons such as the HH model is proposed. This architecture 

is based on the neuron machine (NM) architecture, which has 

been applied to deep learning algorithms such as the back-

propagation algorithm [8], deep belief network [9], and 

convolutional neural networks [10]. It has also been applied 

to neuromorphic models such as Izhikevich [11] and HH [12] 

models and used to design and implement small-scale systems 

computing 1000 neurons. However, the NM architecture 

describes only one computation node in principle, these 

systems do not have a computation speed higher than one 

neuron per clock cycle. 

The hardware architecture proposed in this paper is non-

Von-Neumann and synchronous, wherein the entire system is 

designed as a digital circuit operated by a single system clock. 

In addition, all units in the system are designed as fully 

pipelined circuits, where data are processed in a time-division 



  
 

 

 

manner in a predetermined sequence, with all arithmetic 

operators in the circuit utilized at a rate of nearly 100% 

during the entire computation period to achieve high 

computational efϐiciency. The most notable feature of the 

proposed architecture is that it can comprise multiple 

computation nodes called hardware neurons (HNs) in a 

system, achieving linear speedup. Furthermore, this 

architecture imposes no restrictions on the network topology. 

This paper presents the design of a system that runs large-

scale networks of HH neurons using multiple HNs to provide a 

detailed description of the proposed architecture. This design 

supports the HH neuron model as well as axonal conduction 

delay and synapses with plasticity features. The design was 

implemented on a single ϐield-programmable gate array 

(FPGA) chip. The implemented system can run a network of 1 

million neurons in near real time and a network of 12 million 

neurons and 600 million synapses at a speed of 125 s per 1 s 

model time. 

The remainder of this paper is structured as follows. 

Section 2 describes model neuron for our design and fully 

pipelined circuit design, while Section 3 presents a hardware 

design of the proposed hardware architecture. Section 4 

evaluates the implementation results. Finally, Sections 5 and 6 

present the discussion and the conclusions, respectively. 

2 Background 

2.1 Model Neuron 
In this section, the computational model of the neurons 

supported by the systems designed and implemented in this 

paper is described, as shown in Figure 1. 

 

Figure 1: Features of model neuron 

The brain consists of a network of neurons that send and 

receive electronic spike signals. When a neuron receives a 

spike signal from another neuron, a synapse sends a current 

that changes over time to the cell body of the neuron. The 

dendrites sum up these current signals, and the soma, which is 

the body of the neuron, creates an action potential in response 

to the input current. The spike induced from this action 

potential is transmitted to other neurons through the axon 

terminal. 

Short-term plasticity (STP). The STP, whose conductance 

pattern changes according to the history of the recent input 

spikes, uses the phenomenological model proposed by [13], as  
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Here, u, x, S are state variables and U, A, 𝜏௙, 𝜏ௗ, 𝜏௦ are attributes 

speciϐic to the synapse. 

Long-term plasticity (LTP). The LTP, which performs a 

function corresponding to the long-term memory of the brain, 

is computed using the spike-timing-dependent plasticity 

(STDP) model [14], as  
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Here, x and w are state variables and a+, a-, 𝜏ା, 𝜏ି, 𝑤௠௔௫, 𝜂ା, 𝜂ି 

are attributes speciϐic to the synapse.  In addition, y is a state 

variable speciϐic to the postsynaptic neuron. In STDP, the 

synaptic weight, w, changes in an unsupervised learning 

manner based on the spike timing of the presynaptic and 

postsynaptic neurons. 

Synaptic membrane. Finally, the synaptic currents can be 

computed as follows. 

 𝐼௦௬௡ = 𝑆 × 𝑤 × 𝑔௦௬௡ × (𝐸௦௬௡ − 𝑉௣௢௦௧) (3) 

Here, gsyn and Esyn are synaptic attributes, and Vpost is the 

action potential of the postsynaptic neuron. 

Dendrite. The current values of synapses are all summed 

and sent to the neuron body. 

Hodgkin-Huxley action potential. The membrane potential 

V of a neuron is represented with respect to time by 

 𝐶௠
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ௗ௧
= 𝐼௘௫௧(𝑡) − ∑ 𝐼௜(𝑡, 𝑉)௜  (4) 

where Cm denotes the capacitance of the neuron body, and Iext 

represents an input current. Each ion current Ii is given by 

Ohm’s law as 

 𝐼(𝑡, 𝑉) = g(𝑡, 𝑉) ∙ (𝑉 − 𝑉௘௤) (5) 

where Veq denotes the equilibrium potential of the ion and 

g(t,V) represents the conductance, which can be expanded in 

terms of its constant average ḡ and the activation and 

inactivation fractions m and h, respectively, that determine 

how much of ions can ϐlow through the available membrane 

channels. This expansion is given by 

 g(𝑡, 𝑉) = gത ∙ 𝑚(𝑡, 𝑉)௣ ∙ ℎ(𝑡, 𝑉)௤ (6) 

and the fractions follow the ϐirst-order kinetics 
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with similar dynamics for h, where  and  denote gate 

functions, and m and m represent steady-state activation 

and the time constant, respectively. 



  
 

 

Based on the above form, a number of individual ion 

currents can be included. In the proposed design, an inward 

Na+ current and an outward K+ current are included along 

with a leak current. Detailed equations of the gate functions 

for each ion currents can be found in [15]. 

Axonal conduction delay. Actional conduction delay is 

supported by per-neuron delay applied equally to all output 

connections of each neuron and per-synapse delay speciϐied 

differently for each output connection. 

Network. Any neuron can connect to any other neuron, 

with no limit to the number of inbound and outbound 

connections. 

2.2 Fully Pipelined Circuit  
All the units constituting the proposed system are designed as 

fully pipelined circuits. As an example of the fully pipelined 

circuit, a simple circuit that computes the conductance of N 

synapses is considered using the following formula. 
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1,                                   𝑠𝑝𝑖𝑘𝑒௜ = 1

𝑥௜(𝑇) −
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ఛ
,          𝑠𝑝𝑖𝑘𝑒௜ = 0
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The input of this function is the spike information of the 

presynaptic neuron, while the output is the synaptic 

conductance. The conductance changes to a peak value of 1.0 

each time the spike of the presynaptic neuron is transmitted 

and decays with the time constant . The above equation can 

be computed by implementing the electronic circuit shown in 

Figure 2. 

 

Figure 2: Example pipelined circuit 

In the dual-port memory M, which can be read and written 

simultaneously, the conductance values of all N synapses are 

stored, where the conductance of the ith synapse is stored at 

the ith address. As the address value of signal point A increases 

from 0 to N - 1 by 1 every clock cycle via the control circuit 

(CU), the circuit computes Equation 8 sequentially from 

synapse 0 to synapse N – 1. After the computation of synaptic 

conductance at H, the conductance is written back in the M 

memory at the next clock cycle. It should be noted that the 

time reference speciϐied by tnn in Figure 2 indicates the time 

difference relative to t0. Therefore, the computation is 

performed step by step as the clock cycle progresses. At the 

next clock cycle of each signal point, the next synapse value is 

placed and processed in the same sequence. Such an 

electronic circuit can be designed using a hardware 

description language. For example, the above circuit may be 

coded as using VHDL shown in Figure 3. 

Figure 3: VHDL code for designing example circuit 

In the code illustrated in Figure 3, each signal point or 

register in the circuit is identiϐied by a unique signal name. 

Lines 4 and 5 of this code place the dual-port memory M and 

multiplier Mul in the circuit and specify the connections of the 

wire to each input and output port of the placed component. 

Lines 11–18 of this code specify the connections to the C, E, 

and H registers. The data ϐlow of the above circuit diagram is 

described in the table shown in Figure 4. 

 

 

Figure 4: Data flow table 

In Figure 4, each row represents the data contents at 

various signal points in each clock cycle. To compute N 

synapses, N clock cycles constitute a single timestep, and the 

timestep repeats as the model time progresses. In this ϐigure, 

the green cells indicate the ϐlow of synapse 0, while the yellow 

cells represent the data ϐlow of synapse 1. The result 

computed at H in a timestep is stored in the M memory, and 

subsequently, this value is read as the value of the signal point 

B in the next timestep to repeat the same computation. The 

output value of the ith synapse can be monitored by collecting 

the values of the ith H data from each timestep as shown on the 

right. As shown in this ϐigure, all components continuously 

Clock
cycle t

A B C D E F G H

0 0 … … … … … … …
1 1 x 0 (T) … … … … … …
2 2 x 1 (T) x 0 (T) … … … … …
3 3 x 2 (T) x 1 (T) x 0 (T) /  … … … …
4 4 x 3 (T) x 2 (T) x 1 (T) / x 0 (T) - x 0 (T) /  spike 0 … …
5 5 x 4 (T) x 3 (T) x 2 (T) / x 1 (T) - x 1 (T) / spike 1 0 x 0 (T+1)

6 6 x 5 (T) x 4 (T) x 3 (T) / x 2 (T) - x 2 (T) / spike 2 1 x 1 (T+1)

… … … … … … … … …

N - 1 N - 1 x N - 2 (T) x N - 3 (T) x N - 4 (T) /  x N - 5 (T) - x N - 5 (T) /  spike N - 5 N - 6 x N - 6 (T+1)

N 0 x N - 1 (T) x N - 2 (T) x N - 3 (T) /  x N - 4 (T) - x N - 4 (T) /  spike N - 4 N - 5 x N - 5 (T+1)

N + 1 1 x 0 (T) x N - 1 (T) x N - 2 (T) /  x N - 3 (T) - x N - 3 (T) /  spike N - 3 N - 4 x N - 4 (T+1)

N + 2 2 x 1 (T) x 0 (T) x N - 1 (T) /  x N - 2 (T) - x N - 2 (T) /  spike N - 2 N - 3 x N - 3 (T+1)

N + 3 3 x 2 (T) x 1 (T) x 0 (T) /  x N - 1 (T) - x N - 1 (T) /  spike N - 1 N - 2 x N - 2 (T+1)

N + 4 4 x 3 (T) x 2 (T) x 1 (T) / x 0 (T) - x 0 (T) /  spike 0 N - 1 x N - 1 (T+1)

N + 5 5 x 4 (T) x 3 (T) x 2 (T) / x 1 (T) - x 1 (T) / spike 1 0 x 0 (T+1)

N + 6 6 x 5 (T) x 4 (T) x 3 (T) / x 2 (T) - x 2 (T) / spike 2 1 x 1 (T+1)

… … … … … … … … …

2N - 1 N - 1 x N - 2 (T) x N - 3 (T) x N - 4 (T) /  x N - 5 (T) - x N - 5 (T) /  spike N - 5 N - 6 x N - 6 (T+1)

2N 0 x N - 1 (T) x N - 2 (T) x N - 3 (T) /  x N - 4 (T) - x N - 4 (T) /  spike N - 4 N - 5 x N - 5 (T+1)

2N + 1 1 x 0 (T) x N - 1 (T) x N - 2 (T) /  x N - 3 (T) - x N - 3 (T) /  spike N - 3 N - 4 x N - 4 (T+1)

2N + 2 2 x 1 (T) x 0 (T) x N - 1 (T) /  x N - 2 (T) - x N - 2 (T) /  spike N - 2 N - 3 x N - 3 (T+1)

2N + 3 3 x 2 (T) x 1 (T) x 0 (T) /  x N - 1 (T) - x N - 1 (T) /  spike N - 1 N - 2 x N - 2 (T+1)

2N + 4 4 x 3 (T) x 2 (T) x 1 (T) / x 0 (T) - x 0 (T) /  spike 0 N - 1 x N - 1 (T+1)

2N + 5 5 x 4 (T) x 3 (T) x 2 (T) / x 1 (T) - x 1 (T) / spike 1 0 x 0 (T+1)

2N + 6 6 x 5 (T) x 4 (T) x 3 (T) / x 2 (T) - x 2 (T) / spike 2 1 x 1 (T+1)

… … … … … … … … …

Synapse0

Synapse1

Synapse2

Timestep
T = 0

Timestep
T = 1

Timestep
T = 2

1  -- input: spike(t3), 1_tau(t1), A(t0), G(t4) 
2  -- output: H(t4) 
3  
4  M : decay_mem port map (clk=>clk, raddr=>A, dout=>B,  
       we=>mem_we, waddr=>G, din=>H); 
5  Mul : multiplier port map (clk=>clk, a=>A, b=>1_tau, c=>D); 
6  
7  process (clk) 
8  begin 
9     if ( clk'event and clk ='1') then  
10        -- connect registers 
11        C <= B; 
12        E = C – D; 
13        if (spike='1') then 
14            H <= constant_1.0; 
15        else 
16            H <= E; 
17        end if; 
18    end if; 
19 end process; 



  
 

 

 

process data without interruption during the entire 

computation period. Memory such as M is embedded in the 

circuit, and the input and output ports are continuously read 

and written. 

The throughput of such a fully pipelined circuit is always 

one data per clock cycle regardless of the complexity of the 

circuit. For example, when the system clock is 300 MHz, this 

circuit can compute 300 million synapses per second. It would 

be challenging to compute at such high speeds for a software 

program executing on a processor. 

The described fully pipelined circuit is not new to this 

study and is a common method of designing digital circuits. 

However, the practical issue is to continuously provide input 

data to the circuit and continuously consume the output data 

computed by the circuit. From the system point of view, the 

key aspect is to connect the component pipeline circuits 

seamlessly and ensure that the entire system processes data 

continuously without stopping to maintain a high system 

throughput. The NM hardware architecture accomplishes this 

aspect using one computational node, while the proposed 

architecture uses multiple nodes achieving a linear speedup. 

3 Hardware Design 

3.1 System Configuration  

 

Figure 5: (a) System configuration, (b) block diagram of HN 

One of the systems designed and implemented in this study 

can process 12 million neurons and consists of 8 HNs each 

computing 1.5 million neurons as shown in Figure 5(a). Each 

HN produces the spike information, i.e., binary data indicating 

whether an action potential is ϐired. The spike information of 

the neurons computed by each HN is shared with the other 

HNs through the axon bus. Using a synchronous 

communication scheme proposed in this study, each HN 

acquires the spike information of all neurons in the system 

immediately after the end of each network timestep. 

3.2  HN 
Each HN computes the neurons and synapses assigned to it in 

a time-division manner. The input of the HN is the spike 

information of all neurons computed in the previous timestep, 

while the output is the new spike information computed by 

this HN. One HN computes P synapses and one HH action 

potential in every clock cycle. 

As shown in Figure 5(b), each HN consists of P network 

units (NUs), P synapse units (SNUs), one dendrite unit (DU), 

and one soma unit (SU). As indicated by the name of each unit, 

the NU provides communication function between the 

neurons, SNU computes synaptic functions, DU adds up the 

synaptic currents, and SU computes the HH action potential. 

Here, the number P of NUs and SNUs is a system design 

parameter, with P = 2 in the proposed design. Each unit of HN 

is designed as a fully pipelined circuit. In each HN, the NUs, 

SNUs, and DU operate with a network timestep of 1 ms, while 

the SU operates with a neuron timestep of 0.04 ms. The data 

of these two different timesteps are exchanged through 

memory buffers located at the outputs of the DU and SU. The 

data are cycled in the order of the NU, SNU, DU, SU, and NU. 

From the perspective of the computational architecture, an 

example of the neuronal and synaptic computation is provided 

here, and the hardware implementation of an arbitrarily 

complex neuron model can be developed in a similar manner. 

3.3  Network Unit (reading part) 
The NU converts the postsynaptic spikes computed from the 

SU into presynaptic spikes before sending it to the SNU, which 

corresponds to the communication between the neurons. 

In all HNs, each NU and its corresponding SNU are in 

charge of 1 / P of all synapses of all neurons computed by the 

HN. Here, the ath synapse of the pth NU-SNU pair of the hth HN 

can be deϐined as follows. 

𝑆௣
௛(𝑎) = ൜𝑠௜∙௝

௛ ฬ
௜ | ∑ ඃேೖ

೓/௉ඇ ஸ௔ழ∑ ඃேೖ
೓/௉ඇ೔

ೖసబ
೔షభ
ೖసబ

௝ୀඋ൫௔ି∑ ඃேೖ
೓/௉ඇ೔షభ

ೖసబ ൯௉ඏା௣         
ൠ 

Here, 𝑠௜௝
௛  is the jth synapse of the ith neuron processed by the 

hth HN, and 𝑁௞
௛ is the number of input synapses of the kth 

neuron of the hth HN. This is equivalent to dividing the input 

synapses of each neuron into P-sized pieces and stacking 

them. For example, if P = 2 and the number of synapses of the 

ϐirst three neurons are 2, 5, and 4, respectively, the synapses 

will be arranged as shown in Figure 6. 

 

Figure 6: Synapse arrangement when 𝑵𝒌
𝒉= {𝟐, 𝟓, 𝟒, … } 

When the synapses of each neuron are divided into P-sized 

units, the remaining positions are ϐilled with null synapses 

whose synaptic output value is always 0. The NU can be 

described separately as reading part and writing part. For 

convenience, only the reading part is described here, while the 
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writing part will be described in a later section. The function 

of the reading part of each NU is to output the presynaptic 

neuron's spike information for each synapse processed by the 

NU, one data at each clock cycle. The output of the pth NU of 

the hth HN in the tth clock cycle after the start of a timestep can 

be deϐined as: 

𝑁𝑈௣
௛(𝑡) = 𝑥௠

ೄ೛
೓(೟)

 

Here, xj is the spike information of the jth neuron, and mS is the 

identiϐication number of the presynaptic neuron of synapse S. 

In the reading part of the NU, the MM and MX memories are 

connected in series as shown in Figure 7. The memories are 

pipelined using the R1 and R2 registers. 

 

Figure 7: Circuit of the NU reading part 

In this circuit, the topology information of the network is 

stored in the MM memory. In the ath address of the MM 

memory in the pth NU of the hth HN, the identiϐication number 

of the presynaptic neuron of the ath synapse in the NU is 

stored and can be deϐined as follows. 

𝑀𝑀௣
௛(𝑎) = 𝑚ௌ೛

೓(௔) 

Here, ms is a 24-bit data that identiϐies one of all neurons in 

the system. Each MX memory in every HN has a memory space 

of 224  1, and the spike information of all neurons in the 

entire system is stored. At the start of a new timestep, the 

address t of the MM memory starts from 0 and increases by 1 

at each clock cycle, which is provided by the control unit. 

Subsequently, the output of the NU appears in register R2 in 

the following clock cycles. 

3.4  Synapse Unit 
The SNU is responsible for computing the synaptic current 

that changes over time in response to spikes from presynaptic 

neurons. 

 

Figure 8: Block diagram of the SNU 

In the proposed system, the SNU consists of the axonal 

conduction delay per synapse (ACDS), STP, LTP, and 

membrane parts as shown in Figure 8. The ACDS part 

supports spike delay from 0 ms to 24 ms. The STP, LTP, and 

membrane parts compute Equations 1, 2, 3, respectively 

3.5  Dendrite Unit 
The DU serves to sum the synaptic current of each neuron. 

The computation results are stored in the Netsum memory, 

which is a dual-port memory, where the write port operates 

as the network timestep and the read port as the neuron 

timestep. 

3.6  Soma Unit 
The SU computes the HH action potential. All HH equations 

are computed by 32-bit single-precision ϐloating point 

operators. SU computes one action potential per clock cycle. In 

our high-capacity system, SU uses a total of 1.5 million clocks 

for one 40 s neuron timestep, whereas NU, SNU, and DU use 

37.5 million clock cycles to advance 1 ms network timestep. 

During one network timestep, the SU executes 25 neuron 

timesteps. Figure 9 shows the block diagram of the SU. 

 

Figure 9: Block diagram of the SU 

The external current from the DU is converted to a ϐloating-

point number before its use in the HH parts. The HH parts on 

the left side of Figure 11 contain four 32-bit state memories, 

namely, V, n, m, and h. The blocks with vertical stripes 

compute the HH action potential, as deϐined in Equation 4–7. 

Based on the action potential, the spike detector generates a 

spike when the action potential crosses a zero point from a 

negative value. The spike information stored in the Spike 1 

memory is ϐlushed out in the last timestep of every 25 neuron 

timesteps. The spike information is used to compute the 

postsynaptic STDP and per-neuron axonal conduction delay 

(ACDN), which has a delay range of 0–256 ms. The delayed 

spike is ϐinally output as the postsynaptic spike of the SU. 

3.7  Network Unit (writing part) 
Each MX memory in the NU consists of 8 internal dual-port 

memories, as shown in Figure 10, with each dual-port 

memory occupying 221 address spaces and the ϐirst 1.5 million 

address spaces implemented as a real memory. 

MM MX
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Figure 10: Circuit of the NU writing part 

All the read address ports of these 8 memories are combined 

with a decoder circuit to form one MX memory with an 

address space of 224. In contrast, the write ports of all 8 dual-

port memories are used separately, and the dual-port 

memories located at the same location in all the 16 NUs of the 

system are tied together to form the axon bus. Therefore, the 

axon bus provides 8 write memory ports, and the ith port is 

connected to the spike output of the ith HN. When ith HN writes 

the output, the same contents are stored in the ith memories of 

all 16 NUs.  

The control unit operates the network and the neuron 

timesteps with the timing shown in Figure 11. 

 

 

Figure 11: Timestep sequence 

The spike data output by the SU at every 25th neuron timestep 

is written to the NU's MX memory via the axon bus. As the 

read and write ports of the dual-port memory access the same 

memory contents, the data written to the write port is 

immediately available from the read port. Therefore, following 

the completion of one network timestep, the new spike 

information of all neurons in the network is stored in the MX 

memory of all the Nus, which can be accessed directly from 

the reading part of the NU at the next timestep without delay. 

There is no delay in communication, and there are no 

restrictions on the network topology regardless of the 

physical location of the neurons. 

3.8  Control Unit 
Generation of control signals. The entire system is operated by 

the control unit, which transmits control signals of 

appropriate timing to each control point of the system. Most of 

the control signals are read and write addresses of the 

memories distributed over the system. As the memory 

addresses have different time references with the same 

sequence, the control unit can be easily implemented using a 

counter and shift register array. 

Attribute memories. Instead of storing all the synaptic and 

neuronal attribute data in the memory, attribute set memories 

can be used to save memory space. For example, each SNU has 

a memory table of 1024  180 bits. By referring to the 

attribute set in this table, 180-bit rich attributes can be 

provided using just 10 bits of index data speciϐic to each 

synapse. A similar method can be used for the SU. 

System initialization and logging. The network topology 

and the initial state and attribute values of the synapses and 

neurons are set by separate back-end circuits, before system 

execution. In addition, checkpoints are captured as the system 

is running and the results are either displayed in real time 

through the HDMI port or recorded in the main memory and 

later accessed by the processor. 

4 Implementation Results 

4.1 Hardware Board and Chip 
The proposed design was implemented on a Xilinx VU37P 

FPGA chip mounted on a VCU128 evaluation board as shown 

in Figure 12. The VU37P chip has substantial LUT and DSP 

resources to construct the circuit and supports on-chip 

memories that can construct up to 4,500 independent 

memories with a total capacity of 377 megabits. In particular, 

the chip has a built-in high bandwidth memory (HBM) that 

can support data rates of up to 460 GB/s with 8 GB capacity, 

therefore requiring no external memory. 

 

Figure 12: (a) VCU128 board, and (b) VU37P FPGA chip 

The VCU128 board consists of a video output, an Ethernet 

interface, and a VU37P FPGA chip. A MicroBlaze soft processor 

and the neural network system designed in this work were 

implemented inside the FPGA. The Ethernet interface is 

connected to the user's PC. The PC houses a communication 

program and MySQL database. Following the design of a HH 

network by the user, the neuron, synapse, and attribute tables 

in the MySQL database can be conϐigured using a database 

script program. The communication program reads the 

database and divides all the neurons into 8 even groups 
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before sending this information through the Ethernet. Via the 

processor, the transmitted data are stored in the memories of 

each HN. The HH network is executed when the system 

execution command is issued from the PC, and real-time 

information of the pre-selected neurons and synapses is 

displayed on the monitor through the HDMI port as the 

timesteps progress. 

4.2  Display Output 
Figure 13 shows the display output of the proposed system. At 

the left of the ϐigure, neuron states are displayed in a 1000  

1000 area, where each pixel indicates the action potential of a 

neuron. The four areas on the right side of the screen show 

the internal statuses changing over time. From the top, the 

ϐiring pattern of neurons, the state of the selected neuron, and 

the states of the two selected synapses are shown 

respectively. At the bottom right of the screen, the weight 

distribution is displayed. 

 

Figure 13: Display output for a one-million neuron network: 
(a) neuron states, (b) firing pattern, (c) state of an excitatory 
neuron, (d) state of a spike-timing facilitation synapse, (e) 
state of a spike-timing depression synapse, and (f) weight 
distribution. 

4.3  Implementations 
As the proposed design is of a synchronous system , in which 

all the data ϐlow is predetermined, the system speed can be 

calculated in advance using the following equation. 

𝑚𝑜𝑑𝑒𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑠

𝑎𝑐𝑡𝑢𝑎𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑠
=

1
𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑓𝑟𝑒𝑞_𝑐𝑘 × 𝑁ுே

𝑁௡௘௨௥௢௡

 

Here, freq_ck, NHN, and Hneuron are the clock frequency, the 

numbers of HNs, and neurons, respectively. Two versions of 

the design were implemented with different design 

parameters: high-capacity and high-speed implementations, 

each with a 300 MHz system clock. The speeds of the 

implementations are shown in Table 1. 

 

Table 1. Implementation Results of the Proposed Design 

 
 

The resource utilization of the high-capacity and high-

speed implementations are shown in Table 2 and 3, 

respectively. 

Table 2. Resource Utilization: High-Capacity Implementation 

 
In the high-capacity implementation, the network topology 

data (24 bits per synapse), synaptic (56 bits) and neuronal 

(192 bits per neuron) states are stored in the HBM memory 

and spike information in the MXs are stored in the on-chip 

memories. 
Table 3. Resource Utilization: High-Speed Implementation 

 
In the high-speed implementation, 32 HNs are used and the 

neuronal states in the SU are stored in the on-chip memories 

to speed-up the computation. 

4.4 Performance Comparison 
As listed in Table 4, two systems implemented in this work 

show noticeable results in speed and capacity among known 

HH systems. 

 

Table 4. Performance Comparison of HH Systems 

 

Network Neuron
12 M 600 M 8 1 0.04 125.0 High-capacity 
1 M 50 M 32 1 0.04 2.6 High-speed 

Neurons Synapses HNs
Timestep Time (s) /

Model s
Implementation

Resource NU SNU DU SU CU
Total
used

Available
on VU37P

Utilization

Onchip (Mbit) 183 3 0 0.3 0 186 378 49.3%
Onchip rate (Gbit/s) 10 864 0 614 0 1488 - -
HBM (MB) 1717 4005 72 320 0 6114 8192 74.6%
HBM rate (GB/s) 14 61 1 134 0 211 460 45.8%
LUT resource (k) 1 13 4 118 18 154 1304 11.8%
DSP resource 0 240 0 1061 6 1306 9024 14.5%

Resource NU SNU DU SU CU
Total
used

Available
on VU37P

Utilization

Onchip (Mbit) 67 11 24 192 0 295 378 77.9%
Onchip rate (Gbit/s) 38 3456 941 5530 0 9965 - -
HBM (MB) 119 334 6 0 0 459 8192 5.6%
HBM rate (GB/s) 48 245 0 0 0 293 460 63.7%
LUT resource (k) 4 46 14 411 19 494 1304 37.9%
DSP resource 0 838 0 3712 6 4556 9024 50.5%

Ref. Platform Model Neurons Synapses
Time (s) /

Model second
[7] GPU HH1) 400 K 3.2 M 14400
[16] GPU HH2) 1 M 8 M 400
[17] Multinode Phi KNL HH2) 2 M 2 B 600
[18] Gordon Supercomputer HH 1 M 4 B 22
This FPGA HH 1 M 50 M 2.6
This FPGA HH 12 M 600 M 125
1) Extended to 11 ion currents, 2) Extended for and limited to the inferior olive of the brain



  
 

 

 

5 Discussion and Future Work 
The proposed single-chip system demonstrated high speed 

mainly because all arithmetic operators are nearly 100% 

utilized during the entire computation cycle, with no complex 

overhead circuits such as sophisticated communication 

modules employed as in other systems [19][20]. This can be 

compared to a single brain chip with one million HH physical 

neurons, each computing with ϐloating-point precision and 

running in a near real-time. The proposed system has the 

same functionality as the above system, which, in addition, 

supports unlimited network topology. 

In the proposed implementations, many computational 

resources (LUTs and DSPs) from the FPGA chip remain 

unutilized, as shown in Table 2. These resources can be used 

to implement complex multi-compartmental models [20] in 

the future using fully pipelined circuits, as shown in Figure 14. 

 

 

Figure 14: (a) Concept diagram and (b) pipelined circuit 
design of a multi-compartmental model 

It should be noted that a larger system can be built using 

multiple FPGA chips. In this case, only NUs need to be changed 

to incorporate a larger number of neurons. For example, 100 

FPGA chips each computing 12 million neurons can be 

combined to implement a system supporting 1.2 billion HH 

neurons and 60 billion synapses. In this case, each MX 

memory in the NU would require on-chip memories with 1.2 

gigabits capacity, which current FPGA technology cannot 

support. The design of a separate memory chip dedicated to 

the NUs could provide a potential solution. 

The object of this study was to implement a high-

performance computing project. With respect to developing 

tools for brain research, the requirements from 

neuroscientists were not sufϐiciently reϐlected. With the 

growth of neural networks, a network authoring tool, which 

current work lacks, is necessary. Ultimately, the authoring 

system that automatically creates a hardware design from the 

equations of the neuron model could be developed. The input 

and output interfaces need to be further optimized for the 

artiϐicial brain system to support AI research. For example, the 

pixel values of the deep learning training images can be 

mapped to the input neurons and dynamically changed. 

6 Conclusion 
In this paper, a hardware architecture suitable for the artiϐicial 

brain implementation of a large network of complex neuron 

models was demonstrated. This new hardware architecture 

can be used for developing artiϐicial brains, which can, in turn, 

be used for further studies of the brain, implementation of 

neural prosthetic devices, and development of new machine 

learning algorithms. Further study is required for the multi-

chip systems that compute large-scale networks of multi-

compartmental neurons. 
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