
Implementation of a 12-Million Hodgkin-Huxley
Neuron Network on a Single Chip

Byungik Ahn
Neurocoms Inc.

 Seoul, South Korea
 jerryahn@neurocoms.com

ABSTRACT
Understanding the human brain is the biggest challenge for
scientists in the twenty-first century. The Hodgkin-Huxley (HH)
model is one of the most successful mathematical models for bio-
realistic simulations of the brain. However, the simulation of HH
neurons involves complex computation, which makes the
implementation of large-scale brain networks difficult. In this
paper, we propose a hardware architecture that efficiently
computes a large-scale network of HH neurons. This architecture
is based on the neuron machine hardware architecture, which has
the limitation of speed as it has only one computation node. The
proposed architecture is essentially a non-Von Neumann
synchronous system with multiple computation nodes, called
hardware neurons, to achieve linear speedup. In this paper, the
design of a digital circuit that computes large-scale networks of
HH neurons is presented as an example to provide a detailed
description of the proposed architecture. This design supports
axonal conduction delay of spikes and short- and long-term
plasticity synapses, along with floating-point precision HH
neurons. The design is implemented on a field-programmable gate
array (FPGA) chip and computes a network of one million HH
neurons in near real time. The implemented system can compute a
network with up to 12 million HH neurons and 600 million
synapses. The proposed design method can facilitate the design of
systems supporting complex neuron models and their flexible
implementation on reconfigurable FPGA chips.

KEYWORDS
Neuromorphic, Hodgkin-Huxley, Hardware architecture, Neuron
Machine architecture, Multinode

1 Introduction
Research investigations of an artiϐicial brain are important to

understand the underlying causes of brain diseases [1]. The

artiϐicial brains can also be used in neuro-prosthetic devices

that replace human visual or auditory sensors [2]. As deep

learning technology was made possible by a large amount of

data and high-performance computing [3], experiments with

large-scale artiϐicial brains using high-speed computing

devices might lead to the development of new machine

learning algorithms [4]. In addition, based on the design of

computers that run artiϐicial brains efϐiciently, a small, low-

power computer with high efϐiciency, which is completely

different from a conventional computer can be designed.

Owing to the abovementioned reasons, major projects such as

the Human Brain Project in Europe [1] and the Brain Initiative

in the United States [5] have been launched worldwide.

The Hodgkin-Huxley (HH) model is the most fundamental

and widely known neuron model among many neural

computational models. The HH is bio-realistic as it reproduces

the neuronal mechanism with the ϐlow of ion currents, and the

model can be extended to reϐlect new ion currents. However,

the HH model involves complex computation. For example,

the integrate-and-ϐire model requires 5 FLOPS per 1 ms model

time for a neuron, whereas the HH model requires 1200

FLOPS to compute the same time period [6]. Owing to this

problem, there are little known large-scale HH systems and

the computation speed of the HH system is slow if any. For

example, in [7], the original HH model consisting of 3 ion

currents was extended to 11 ion currents, and a 400,000-

neuron network was computed on a high-end GPU at a speed

of 14400 s per 1 s model time. To address this problem,

simple phenomenological models such as the Izhikevich

model are often used to implement large-scale brain

networks. However, these models do not accurately describe

all the physical mechanisms of neurons [7] and are difϐicult to

incorporate new phenomena observed in the biological

neurons.

In this study, a hardware architecture that can efϐiciently

compute a large network of computationally complex model

neurons such as the HH model is proposed. This architecture

is based on the neuron machine (NM) architecture, which has

been applied to deep learning algorithms such as the back-

propagation algorithm [8], deep belief network [9], and

convolutional neural networks [10]. It has also been applied

to neuromorphic models such as Izhikevich [11] and HH [12]

models and used to design and implement small-scale systems

computing 1000 neurons. However, the NM architecture

describes only one computation node in principle, these

systems do not have a computation speed higher than one

neuron per clock cycle.

The hardware architecture proposed in this paper is non-

Von-Neumann and synchronous, wherein the entire system is

designed as a digital circuit operated by a single system clock.

In addition, all units in the system are designed as fully

pipelined circuits, where data are processed in a time-division

manner in a predetermined sequence, with all arithmetic

operators in the circuit utilized at a rate of nearly 100%

during the entire computation period to achieve high

computational efϐiciency. The most notable feature of the

proposed architecture is that it can comprise multiple

computation nodes called hardware neurons (HNs) in a

system, achieving linear speedup. Furthermore, this

architecture imposes no restrictions on the network topology.

This paper presents the design of a system that runs large-

scale networks of HH neurons using multiple HNs to provide a

detailed description of the proposed architecture. This design

supports the HH neuron model as well as axonal conduction

delay and synapses with plasticity features. The design was

implemented on a single ϐield-programmable gate array

(FPGA) chip. The implemented system can run a network of 1

million neurons in near real time and a network of 12 million

neurons and 600 million synapses at a speed of 125 s per 1 s

model time.

The remainder of this paper is structured as follows.

Section 2 describes model neuron for our design and fully

pipelined circuit design, while Section 3 presents a hardware

design of the proposed hardware architecture. Section 4

evaluates the implementation results. Finally, Sections 5 and 6

present the discussion and the conclusions, respectively.

2 Background

2.1 Model Neuron
In this section, the computational model of the neurons

supported by the systems designed and implemented in this

paper is described, as shown in Figure 1.

Figure 1: Features of model neuron

The brain consists of a network of neurons that send and

receive electronic spike signals. When a neuron receives a

spike signal from another neuron, a synapse sends a current

that changes over time to the cell body of the neuron. The

dendrites sum up these current signals, and the soma, which is

the body of the neuron, creates an action potential in response

to the input current. The spike induced from this action

potential is transmitted to other neurons through the axon

terminal.

Short-term plasticity (STP). The STP, whose conductance

pattern changes according to the history of the recent input

spikes, uses the phenomenological model proposed by [13], as

ௗ௨

ௗ௧
= −

௨

ఛ೑
+ 𝑈(1 − 𝑢ି)𝛿൫𝑡 − 𝑡௦௣൯, (1)

ௗ௫

ௗ௧
=

ଵି௫

ఛ೏
+ 𝑢ା𝑥ି𝛿(𝑡 − 𝑡௦௣),

ௗௌ

ௗ௧
= −

ௌ

ఛೞ
+ 𝐴𝑢ା𝑥ି𝛿(𝑡 − 𝑡௦௣).

Here, u, x, S are state variables and U, A, 𝜏௙, 𝜏ௗ, 𝜏௦ are attributes

speciϐic to the synapse.

Long-term plasticity (LTP). The LTP, which performs a

function corresponding to the long-term memory of the brain,

is computed using the spike-timing-dependent plasticity

(STDP) model [14], as

ௗ௫ೕ

ௗ௧
= −

௫ೕ

ఛశ
+ 𝑎ା(𝑥௝) ∑ 𝛿ቀ𝑡 − 𝑡௝

௙
ቁ௙ , (2)

𝑑𝑦

𝑑𝑡
= −

𝑦

𝜏ି
+ 𝑎ି(𝑦) ෍ 𝛿(𝑡 − 𝑡௡)

௡

,

𝑑𝑤௝

𝑑𝑡
= 𝐴ା൫𝑤௝൯𝑥(𝑡) ෍ 𝛿(𝑡 − 𝑡௡) − 𝐴ି൫𝑤௝൯𝑦(𝑡) ෍ 𝛿ቀ𝑡 − 𝑡௝

௙
ቁ

௙௡

,

𝐴ା(𝑤௝)=(𝑤௠௔௫ − 𝑤௝)𝜂ା 𝑎𝑛𝑑 𝐴ି(𝑤௝)=𝑤௝𝜂ି.

Here, x and w are state variables and a+, a-, 𝜏ା, 𝜏ି, 𝑤௠௔௫, 𝜂ା, 𝜂ି

are attributes speciϐic to the synapse. In addition, y is a state

variable speciϐic to the postsynaptic neuron. In STDP, the

synaptic weight, w, changes in an unsupervised learning

manner based on the spike timing of the presynaptic and

postsynaptic neurons.

Synaptic membrane. Finally, the synaptic currents can be

computed as follows.

 𝐼௦௬௡ = 𝑆 × 𝑤 × 𝑔௦௬௡ × (𝐸௦௬௡ − 𝑉௣௢௦௧) (3)

Here, gsyn and Esyn are synaptic attributes, and Vpost is the

action potential of the postsynaptic neuron.

Dendrite. The current values of synapses are all summed

and sent to the neuron body.

Hodgkin-Huxley action potential. The membrane potential

V of a neuron is represented with respect to time by

 𝐶௠
ௗ௏(௧)

ௗ௧
= 𝐼௘௫௧(𝑡) − ∑ 𝐼௜(𝑡, 𝑉)௜ (4)

where Cm denotes the capacitance of the neuron body, and Iext

represents an input current. Each ion current Ii is given by

Ohm’s law as

 𝐼(𝑡, 𝑉) = g(𝑡, 𝑉) ∙ (𝑉 − 𝑉௘௤) (5)

where Veq denotes the equilibrium potential of the ion and

g(t,V) represents the conductance, which can be expanded in

terms of its constant average ḡ and the activation and

inactivation fractions m and h, respectively, that determine

how much of ions can ϐlow through the available membrane

channels. This expansion is given by

 g(𝑡, 𝑉) = gത ∙ 𝑚(𝑡, 𝑉)௣ ∙ ℎ(𝑡, 𝑉)௤ (6)

and the fractions follow the ϐirst-order kinetics

ௗ௠(௧,௏)

ௗ௧
=

௠ಮ(௏)ି௠(௧,௏)

ఛ೘(௏)
= 𝛼௠(𝑉) ∙ (1 − 𝑚) − 𝛽௠(𝑉) ∙ 𝑚 (7)

with similar dynamics for h, where  and  denote gate

functions, and m and m represent steady-state activation

and the time constant, respectively.

Based on the above form, a number of individual ion

currents can be included. In the proposed design, an inward

Na+ current and an outward K+ current are included along

with a leak current. Detailed equations of the gate functions

for each ion currents can be found in [15].

Axonal conduction delay. Actional conduction delay is

supported by per-neuron delay applied equally to all output

connections of each neuron and per-synapse delay speciϐied

differently for each output connection.

Network. Any neuron can connect to any other neuron,

with no limit to the number of inbound and outbound

connections.

2.2 Fully Pipelined Circuit
All the units constituting the proposed system are designed as

fully pipelined circuits. As an example of the fully pipelined

circuit, a simple circuit that computes the conductance of N

synapses is considered using the following formula.

 𝑥௜(𝑇 + 1) = ቊ
1, 𝑠𝑝𝑖𝑘𝑒௜ = 1

𝑥௜(𝑇) −
௫೔(்)

ఛ
, 𝑠𝑝𝑖𝑘𝑒௜ = 0

 (8)

The input of this function is the spike information of the

presynaptic neuron, while the output is the synaptic

conductance. The conductance changes to a peak value of 1.0

each time the spike of the presynaptic neuron is transmitted

and decays with the time constant . The above equation can

be computed by implementing the electronic circuit shown in

Figure 2.

Figure 2: Example pipelined circuit

In the dual-port memory M, which can be read and written

simultaneously, the conductance values of all N synapses are

stored, where the conductance of the ith synapse is stored at

the ith address. As the address value of signal point A increases

from 0 to N - 1 by 1 every clock cycle via the control circuit

(CU), the circuit computes Equation 8 sequentially from

synapse 0 to synapse N – 1. After the computation of synaptic

conductance at H, the conductance is written back in the M

memory at the next clock cycle. It should be noted that the

time reference speciϐied by tnn in Figure 2 indicates the time

difference relative to t0. Therefore, the computation is

performed step by step as the clock cycle progresses. At the

next clock cycle of each signal point, the next synapse value is

placed and processed in the same sequence. Such an

electronic circuit can be designed using a hardware

description language. For example, the above circuit may be

coded as using VHDL shown in Figure 3.

Figure 3: VHDL code for designing example circuit

In the code illustrated in Figure 3, each signal point or

register in the circuit is identiϐied by a unique signal name.

Lines 4 and 5 of this code place the dual-port memory M and

multiplier Mul in the circuit and specify the connections of the

wire to each input and output port of the placed component.

Lines 11–18 of this code specify the connections to the C, E,

and H registers. The data ϐlow of the above circuit diagram is

described in the table shown in Figure 4.

Figure 4: Data flow table

In Figure 4, each row represents the data contents at

various signal points in each clock cycle. To compute N

synapses, N clock cycles constitute a single timestep, and the

timestep repeats as the model time progresses. In this ϐigure,

the green cells indicate the ϐlow of synapse 0, while the yellow

cells represent the data ϐlow of synapse 1. The result

computed at H in a timestep is stored in the M memory, and

subsequently, this value is read as the value of the signal point

B in the next timestep to repeat the same computation. The

output value of the ith synapse can be monitored by collecting

the values of the ith H data from each timestep as shown on the

right. As shown in this ϐigure, all components continuously

Clock
cycle t

A B C D E F G H

0 0 … … … … … … …
1 1 x 0 (T) … … … … … …
2 2 x 1 (T) x 0 (T) … … … … …
3 3 x 2 (T) x 1 (T) x 0 (T) /  … … … …
4 4 x 3 (T) x 2 (T) x 1 (T) / x 0 (T) - x 0 (T) /  spike 0 … …
5 5 x 4 (T) x 3 (T) x 2 (T) / x 1 (T) - x 1 (T) / spike 1 0 x 0 (T+1)

6 6 x 5 (T) x 4 (T) x 3 (T) / x 2 (T) - x 2 (T) / spike 2 1 x 1 (T+1)

… … … … … … … … …

N - 1 N - 1 x N - 2 (T) x N - 3 (T) x N - 4 (T) /  x N - 5 (T) - x N - 5 (T) /  spike N - 5 N - 6 x N - 6 (T+1)

N 0 x N - 1 (T) x N - 2 (T) x N - 3 (T) /  x N - 4 (T) - x N - 4 (T) /  spike N - 4 N - 5 x N - 5 (T+1)

N + 1 1 x 0 (T) x N - 1 (T) x N - 2 (T) /  x N - 3 (T) - x N - 3 (T) /  spike N - 3 N - 4 x N - 4 (T+1)

N + 2 2 x 1 (T) x 0 (T) x N - 1 (T) /  x N - 2 (T) - x N - 2 (T) /  spike N - 2 N - 3 x N - 3 (T+1)

N + 3 3 x 2 (T) x 1 (T) x 0 (T) /  x N - 1 (T) - x N - 1 (T) /  spike N - 1 N - 2 x N - 2 (T+1)

N + 4 4 x 3 (T) x 2 (T) x 1 (T) / x 0 (T) - x 0 (T) /  spike 0 N - 1 x N - 1 (T+1)

N + 5 5 x 4 (T) x 3 (T) x 2 (T) / x 1 (T) - x 1 (T) / spike 1 0 x 0 (T+1)

N + 6 6 x 5 (T) x 4 (T) x 3 (T) / x 2 (T) - x 2 (T) / spike 2 1 x 1 (T+1)

… … … … … … … … …

2N - 1 N - 1 x N - 2 (T) x N - 3 (T) x N - 4 (T) /  x N - 5 (T) - x N - 5 (T) /  spike N - 5 N - 6 x N - 6 (T+1)

2N 0 x N - 1 (T) x N - 2 (T) x N - 3 (T) /  x N - 4 (T) - x N - 4 (T) /  spike N - 4 N - 5 x N - 5 (T+1)

2N + 1 1 x 0 (T) x N - 1 (T) x N - 2 (T) /  x N - 3 (T) - x N - 3 (T) /  spike N - 3 N - 4 x N - 4 (T+1)

2N + 2 2 x 1 (T) x 0 (T) x N - 1 (T) /  x N - 2 (T) - x N - 2 (T) /  spike N - 2 N - 3 x N - 3 (T+1)

2N + 3 3 x 2 (T) x 1 (T) x 0 (T) /  x N - 1 (T) - x N - 1 (T) /  spike N - 1 N - 2 x N - 2 (T+1)

2N + 4 4 x 3 (T) x 2 (T) x 1 (T) / x 0 (T) - x 0 (T) /  spike 0 N - 1 x N - 1 (T+1)

2N + 5 5 x 4 (T) x 3 (T) x 2 (T) / x 1 (T) - x 1 (T) / spike 1 0 x 0 (T+1)

2N + 6 6 x 5 (T) x 4 (T) x 3 (T) / x 2 (T) - x 2 (T) / spike 2 1 x 1 (T+1)

… … … … … … … … …

Synapse0

Synapse1

Synapse2

Timestep
T = 0

Timestep
T = 1

Timestep
T = 2

1 -- input: spike(t3), 1_tau(t1), A(t0), G(t4)
2 -- output: H(t4)
3
4 M : decay_mem port map (clk=>clk, raddr=>A, dout=>B,
 we=>mem_we, waddr=>G, din=>H);
5 Mul : multiplier port map (clk=>clk, a=>A, b=>1_tau, c=>D);
6
7 process (clk)
8 begin
9 if (clk'event and clk ='1') then
10 -- connect registers
11 C <= B;
12 E = C – D;
13 if (spike='1') then
14 H <= constant_1.0;
15 else
16 H <= E;
17 end if;
18 end if;
19 end process;

process data without interruption during the entire

computation period. Memory such as M is embedded in the

circuit, and the input and output ports are continuously read

and written.

The throughput of such a fully pipelined circuit is always

one data per clock cycle regardless of the complexity of the

circuit. For example, when the system clock is 300 MHz, this

circuit can compute 300 million synapses per second. It would

be challenging to compute at such high speeds for a software

program executing on a processor.

The described fully pipelined circuit is not new to this

study and is a common method of designing digital circuits.

However, the practical issue is to continuously provide input

data to the circuit and continuously consume the output data

computed by the circuit. From the system point of view, the

key aspect is to connect the component pipeline circuits

seamlessly and ensure that the entire system processes data

continuously without stopping to maintain a high system

throughput. The NM hardware architecture accomplishes this

aspect using one computational node, while the proposed

architecture uses multiple nodes achieving a linear speedup.

3 Hardware Design

3.1 System Configuration

Figure 5: (a) System configuration, (b) block diagram of HN

One of the systems designed and implemented in this study

can process 12 million neurons and consists of 8 HNs each

computing 1.5 million neurons as shown in Figure 5(a). Each

HN produces the spike information, i.e., binary data indicating

whether an action potential is ϐired. The spike information of

the neurons computed by each HN is shared with the other

HNs through the axon bus. Using a synchronous

communication scheme proposed in this study, each HN

acquires the spike information of all neurons in the system

immediately after the end of each network timestep.

3.2 HN
Each HN computes the neurons and synapses assigned to it in

a time-division manner. The input of the HN is the spike

information of all neurons computed in the previous timestep,

while the output is the new spike information computed by

this HN. One HN computes P synapses and one HH action

potential in every clock cycle.

As shown in Figure 5(b), each HN consists of P network

units (NUs), P synapse units (SNUs), one dendrite unit (DU),

and one soma unit (SU). As indicated by the name of each unit,

the NU provides communication function between the

neurons, SNU computes synaptic functions, DU adds up the

synaptic currents, and SU computes the HH action potential.

Here, the number P of NUs and SNUs is a system design

parameter, with P = 2 in the proposed design. Each unit of HN

is designed as a fully pipelined circuit. In each HN, the NUs,

SNUs, and DU operate with a network timestep of 1 ms, while

the SU operates with a neuron timestep of 0.04 ms. The data

of these two different timesteps are exchanged through

memory buffers located at the outputs of the DU and SU. The

data are cycled in the order of the NU, SNU, DU, SU, and NU.

From the perspective of the computational architecture, an

example of the neuronal and synaptic computation is provided

here, and the hardware implementation of an arbitrarily

complex neuron model can be developed in a similar manner.

3.3 Network Unit (reading part)
The NU converts the postsynaptic spikes computed from the

SU into presynaptic spikes before sending it to the SNU, which

corresponds to the communication between the neurons.

In all HNs, each NU and its corresponding SNU are in

charge of 1 / P of all synapses of all neurons computed by the

HN. Here, the ath synapse of the pth NU-SNU pair of the hth HN

can be deϐined as follows.

𝑆௣
௛(𝑎) = ൜𝑠௜∙௝

௛ ฬ
௜ | ∑ ඃேೖ

೓/௉ඇ ஸ௔ழ∑ ඃேೖ
೓/௉ඇ೔

ೖసబ
೔షభ
ೖసబ

௝ୀඋ൫௔ି∑ ඃேೖ
೓/௉ඇ೔షభ

ೖసబ ൯௉ඏା௣
ൠ

Here, 𝑠௜௝
௛ is the jth synapse of the ith neuron processed by the

hth HN, and 𝑁௞
௛ is the number of input synapses of the kth

neuron of the hth HN. This is equivalent to dividing the input

synapses of each neuron into P-sized pieces and stacking

them. For example, if P = 2 and the number of synapses of the

ϐirst three neurons are 2, 5, and 4, respectively, the synapses

will be arranged as shown in Figure 6.

Figure 6: Synapse arrangement when 𝑵𝒌
𝒉= {𝟐, 𝟓, 𝟒, … }

When the synapses of each neuron are divided into P-sized

units, the remaining positions are ϐilled with null synapses

whose synaptic output value is always 0. The NU can be

described separately as reading part and writing part. For

convenience, only the reading part is described here, while the

s00

s01

s10

s11

s12

s13

s14

-

s20

s21

s22

s23

p = 0

p = 1

0 1 2 3 4 5

a

writing part will be described in a later section. The function

of the reading part of each NU is to output the presynaptic

neuron's spike information for each synapse processed by the

NU, one data at each clock cycle. The output of the pth NU of

the hth HN in the tth clock cycle after the start of a timestep can

be deϐined as:

𝑁𝑈௣
௛(𝑡) = 𝑥௠

ೄ೛
೓(೟)

Here, xj is the spike information of the jth neuron, and mS is the

identiϐication number of the presynaptic neuron of synapse S.

In the reading part of the NU, the MM and MX memories are

connected in series as shown in Figure 7. The memories are

pipelined using the R1 and R2 registers.

Figure 7: Circuit of the NU reading part

In this circuit, the topology information of the network is

stored in the MM memory. In the ath address of the MM

memory in the pth NU of the hth HN, the identiϐication number

of the presynaptic neuron of the ath synapse in the NU is

stored and can be deϐined as follows.

𝑀𝑀௣
௛(𝑎) = 𝑚ௌ೛

೓(௔)

Here, ms is a 24-bit data that identiϐies one of all neurons in

the system. Each MX memory in every HN has a memory space

of 224  1, and the spike information of all neurons in the

entire system is stored. At the start of a new timestep, the

address t of the MM memory starts from 0 and increases by 1

at each clock cycle, which is provided by the control unit.

Subsequently, the output of the NU appears in register R2 in

the following clock cycles.

3.4 Synapse Unit
The SNU is responsible for computing the synaptic current

that changes over time in response to spikes from presynaptic

neurons.

Figure 8: Block diagram of the SNU

In the proposed system, the SNU consists of the axonal

conduction delay per synapse (ACDS), STP, LTP, and

membrane parts as shown in Figure 8. The ACDS part

supports spike delay from 0 ms to 24 ms. The STP, LTP, and

membrane parts compute Equations 1, 2, 3, respectively

3.5 Dendrite Unit
The DU serves to sum the synaptic current of each neuron.

The computation results are stored in the Netsum memory,

which is a dual-port memory, where the write port operates

as the network timestep and the read port as the neuron

timestep.

3.6 Soma Unit
The SU computes the HH action potential. All HH equations

are computed by 32-bit single-precision ϐloating point

operators. SU computes one action potential per clock cycle. In

our high-capacity system, SU uses a total of 1.5 million clocks

for one 40 s neuron timestep, whereas NU, SNU, and DU use

37.5 million clock cycles to advance 1 ms network timestep.

During one network timestep, the SU executes 25 neuron

timesteps. Figure 9 shows the block diagram of the SU.

Figure 9: Block diagram of the SU

The external current from the DU is converted to a ϐloating-

point number before its use in the HH parts. The HH parts on

the left side of Figure 11 contain four 32-bit state memories,

namely, V, n, m, and h. The blocks with vertical stripes

compute the HH action potential, as deϐined in Equation 4–7.

Based on the action potential, the spike detector generates a

spike when the action potential crosses a zero point from a

negative value. The spike information stored in the Spike 1

memory is ϐlushed out in the last timestep of every 25 neuron

timesteps. The spike information is used to compute the

postsynaptic STDP and per-neuron axonal conduction delay

(ACDN), which has a delay range of 0–256 ms. The delayed

spike is ϐinally output as the postsynaptic spike of the SU.

3.7 Network Unit (writing part)
Each MX memory in the NU consists of 8 internal dual-port

memories, as shown in Figure 10, with each dual-port

memory occupying 221 address spaces and the ϐirst 1.5 million

address spaces implemented as a real memory.

MM MX
t = 0, 1, 2, …

𝑚ௌ೛
೓(௧)

𝑥௠
ೄ೛

೓(೟)

R1 R2

Figure 10: Circuit of the NU writing part

All the read address ports of these 8 memories are combined

with a decoder circuit to form one MX memory with an

address space of 224. In contrast, the write ports of all 8 dual-

port memories are used separately, and the dual-port

memories located at the same location in all the 16 NUs of the

system are tied together to form the axon bus. Therefore, the

axon bus provides 8 write memory ports, and the ith port is

connected to the spike output of the ith HN. When ith HN writes

the output, the same contents are stored in the ith memories of

all 16 NUs.

The control unit operates the network and the neuron

timesteps with the timing shown in Figure 11.

Figure 11: Timestep sequence

The spike data output by the SU at every 25th neuron timestep

is written to the NU's MX memory via the axon bus. As the

read and write ports of the dual-port memory access the same

memory contents, the data written to the write port is

immediately available from the read port. Therefore, following

the completion of one network timestep, the new spike

information of all neurons in the network is stored in the MX

memory of all the Nus, which can be accessed directly from

the reading part of the NU at the next timestep without delay.

There is no delay in communication, and there are no

restrictions on the network topology regardless of the

physical location of the neurons.

3.8 Control Unit
Generation of control signals. The entire system is operated by

the control unit, which transmits control signals of

appropriate timing to each control point of the system. Most of

the control signals are read and write addresses of the

memories distributed over the system. As the memory

addresses have different time references with the same

sequence, the control unit can be easily implemented using a

counter and shift register array.

Attribute memories. Instead of storing all the synaptic and

neuronal attribute data in the memory, attribute set memories

can be used to save memory space. For example, each SNU has

a memory table of 1024  180 bits. By referring to the

attribute set in this table, 180-bit rich attributes can be

provided using just 10 bits of index data speciϐic to each

synapse. A similar method can be used for the SU.

System initialization and logging. The network topology

and the initial state and attribute values of the synapses and

neurons are set by separate back-end circuits, before system

execution. In addition, checkpoints are captured as the system

is running and the results are either displayed in real time

through the HDMI port or recorded in the main memory and

later accessed by the processor.

4 Implementation Results

4.1 Hardware Board and Chip
The proposed design was implemented on a Xilinx VU37P

FPGA chip mounted on a VCU128 evaluation board as shown

in Figure 12. The VU37P chip has substantial LUT and DSP

resources to construct the circuit and supports on-chip

memories that can construct up to 4,500 independent

memories with a total capacity of 377 megabits. In particular,

the chip has a built-in high bandwidth memory (HBM) that

can support data rates of up to 460 GB/s with 8 GB capacity,

therefore requiring no external memory.

Figure 12: (a) VCU128 board, and (b) VU37P FPGA chip

The VCU128 board consists of a video output, an Ethernet

interface, and a VU37P FPGA chip. A MicroBlaze soft processor

and the neural network system designed in this work were

implemented inside the FPGA. The Ethernet interface is

connected to the user's PC. The PC houses a communication

program and MySQL database. Following the design of a HH

network by the user, the neuron, synapse, and attribute tables

in the MySQL database can be conϐigured using a database

script program. The communication program reads the

database and divides all the neurons into 8 even groups

0
2
4
6

1
3
5
7

0
2
4
6

1
3
5
7

0
2
4
6

1
3
5
7

0
2
4
6

1
3
5
7

Axon Bus
(To other HNs)

MXwrite

MXread

MM
memories

HN0 HN1HN2 HN3HN3 HN5HN6 HN7

each
1.5M
clock
cycles

0 1 2 3 4 5 6 7 8 9 … 20 21 22 23 24 0 1 2 3 …

T T + 1

Write

Write port

Read port

MX memories
in network
timesteps

(1 ms)

SU
in neuronal
timesteps
(40 s)

each
37.5M
clock
cycles

before sending this information through the Ethernet. Via the

processor, the transmitted data are stored in the memories of

each HN. The HH network is executed when the system

execution command is issued from the PC, and real-time

information of the pre-selected neurons and synapses is

displayed on the monitor through the HDMI port as the

timesteps progress.

4.2 Display Output
Figure 13 shows the display output of the proposed system. At

the left of the ϐigure, neuron states are displayed in a 1000 

1000 area, where each pixel indicates the action potential of a

neuron. The four areas on the right side of the screen show

the internal statuses changing over time. From the top, the

ϐiring pattern of neurons, the state of the selected neuron, and

the states of the two selected synapses are shown

respectively. At the bottom right of the screen, the weight

distribution is displayed.

Figure 13: Display output for a one-million neuron network:
(a) neuron states, (b) firing pattern, (c) state of an excitatory
neuron, (d) state of a spike-timing facilitation synapse, (e)
state of a spike-timing depression synapse, and (f) weight
distribution.

4.3 Implementations
As the proposed design is of a synchronous system , in which

all the data ϐlow is predetermined, the system speed can be

calculated in advance using the following equation.

𝑚𝑜𝑑𝑒𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑠

𝑎𝑐𝑡𝑢𝑎𝑙_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑠
=

1
𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑓𝑟𝑒𝑞_𝑐𝑘 × 𝑁ுே

𝑁௡௘௨௥௢௡

Here, freq_ck, NHN, and Hneuron are the clock frequency, the

numbers of HNs, and neurons, respectively. Two versions of

the design were implemented with different design

parameters: high-capacity and high-speed implementations,

each with a 300 MHz system clock. The speeds of the

implementations are shown in Table 1.

Table 1. Implementation Results of the Proposed Design

The resource utilization of the high-capacity and high-

speed implementations are shown in Table 2 and 3,

respectively.

Table 2. Resource Utilization: High-Capacity Implementation

In the high-capacity implementation, the network topology

data (24 bits per synapse), synaptic (56 bits) and neuronal

(192 bits per neuron) states are stored in the HBM memory

and spike information in the MXs are stored in the on-chip

memories.
Table 3. Resource Utilization: High-Speed Implementation

In the high-speed implementation, 32 HNs are used and the

neuronal states in the SU are stored in the on-chip memories

to speed-up the computation.

4.4 Performance Comparison
As listed in Table 4, two systems implemented in this work

show noticeable results in speed and capacity among known

HH systems.

Table 4. Performance Comparison of HH Systems

Network Neuron
12 M 600 M 8 1 0.04 125.0 High-capacity
1 M 50 M 32 1 0.04 2.6 High-speed

Neurons Synapses HNs
Timestep Time (s) /

Model s
Implementation

Resource NU SNU DU SU CU
Total
used

Available
on VU37P

Utilization

Onchip (Mbit) 183 3 0 0.3 0 186 378 49.3%
Onchip rate (Gbit/s) 10 864 0 614 0 1488 - -
HBM (MB) 1717 4005 72 320 0 6114 8192 74.6%
HBM rate (GB/s) 14 61 1 134 0 211 460 45.8%
LUT resource (k) 1 13 4 118 18 154 1304 11.8%
DSP resource 0 240 0 1061 6 1306 9024 14.5%

Resource NU SNU DU SU CU
Total
used

Available
on VU37P

Utilization

Onchip (Mbit) 67 11 24 192 0 295 378 77.9%
Onchip rate (Gbit/s) 38 3456 941 5530 0 9965 - -
HBM (MB) 119 334 6 0 0 459 8192 5.6%
HBM rate (GB/s) 48 245 0 0 0 293 460 63.7%
LUT resource (k) 4 46 14 411 19 494 1304 37.9%
DSP resource 0 838 0 3712 6 4556 9024 50.5%

Ref. Platform Model Neurons Synapses
Time (s) /

Model second
[7] GPU HH1) 400 K 3.2 M 14400
[16] GPU HH2) 1 M 8 M 400
[17] Multinode Phi KNL HH2) 2 M 2 B 600
[18] Gordon Supercomputer HH 1 M 4 B 22
This FPGA HH 1 M 50 M 2.6
This FPGA HH 12 M 600 M 125
1) Extended to 11 ion currents, 2) Extended for and limited to the inferior olive of the brain

5 Discussion and Future Work
The proposed single-chip system demonstrated high speed

mainly because all arithmetic operators are nearly 100%

utilized during the entire computation cycle, with no complex

overhead circuits such as sophisticated communication

modules employed as in other systems [19][20]. This can be

compared to a single brain chip with one million HH physical

neurons, each computing with ϐloating-point precision and

running in a near real-time. The proposed system has the

same functionality as the above system, which, in addition,

supports unlimited network topology.

In the proposed implementations, many computational

resources (LUTs and DSPs) from the FPGA chip remain

unutilized, as shown in Table 2. These resources can be used

to implement complex multi-compartmental models [20] in

the future using fully pipelined circuits, as shown in Figure 14.

Figure 14: (a) Concept diagram and (b) pipelined circuit
design of a multi-compartmental model

It should be noted that a larger system can be built using

multiple FPGA chips. In this case, only NUs need to be changed

to incorporate a larger number of neurons. For example, 100

FPGA chips each computing 12 million neurons can be

combined to implement a system supporting 1.2 billion HH

neurons and 60 billion synapses. In this case, each MX

memory in the NU would require on-chip memories with 1.2

gigabits capacity, which current FPGA technology cannot

support. The design of a separate memory chip dedicated to

the NUs could provide a potential solution.

The object of this study was to implement a high-

performance computing project. With respect to developing

tools for brain research, the requirements from

neuroscientists were not sufϐiciently reϐlected. With the

growth of neural networks, a network authoring tool, which

current work lacks, is necessary. Ultimately, the authoring

system that automatically creates a hardware design from the

equations of the neuron model could be developed. The input

and output interfaces need to be further optimized for the

artiϐicial brain system to support AI research. For example, the

pixel values of the deep learning training images can be

mapped to the input neurons and dynamically changed.

6 Conclusion
In this paper, a hardware architecture suitable for the artiϐicial

brain implementation of a large network of complex neuron

models was demonstrated. This new hardware architecture

can be used for developing artiϐicial brains, which can, in turn,

be used for further studies of the brain, implementation of

neural prosthetic devices, and development of new machine

learning algorithms. Further study is required for the multi-

chip systems that compute large-scale networks of multi-

compartmental neurons.

REFERENCES
[1] Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S.,

Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., et al. Introducing the
human brain project. Procedia Computer Science 7 (2011), 39–42.

[2] Carmena, J. M. Advances in neuroprosthetic learning and control. PLoS biology
11, 5 (2013).

[3] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems (2012), pp. 1097–1105.

[4] Lee, J. H., Delbruck, T., and Pfeiffer, M. Training deep spiking neural networks
using backpropagation. Frontiers in neuroscience 10 (2016), 508.

[5] Koroshetz, W., Gordon, J., Adams, A., Beckel-Mitchener, A., Churchill, J.,
Farber, G., Freund, M., Gnadt, J., Hsu, N. S., Langhals, N., et al. The state of
the nih brain initiative. Journal of Neuroscience 38, 29 (2018), 6427–6438

[6] Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE
transactions on neural networks 15, 5 (2004), 1063–1070.

[7] Florimbi, G., Torti, E., Masoli, S., D’Angelo, E., Danese, G., and Leporati, F.
The human brain project: Parallel technologies for biologically accurate
simulation of granule cells. Microprocessors and Microsystems 47 (2016), 303–
313.

[8] Ahn, J. B. Computation of backpropagation learning algorithm using neuron
machine architecture. In 2013 Fifth International Conference on Computational
Intelligence, Modelling and Simulation (2013), IEEE, pp. 23–28.

[9] Ahn, B. Computation of deep belief networks using special-purpose hardware
architecture. In 2014 International Joint Conference on Neural Networks
(IJCNN) (2014), IEEE, pp. 141–148.

[10] Ahn, B. Real-time video object recognition using convolutional neural network.
In 2015 International Joint Conference on Neural Networks (IJCNN) (2015),
IEEE, pp. 1–7.

[11] Ahn, J. B. Extension of neuron machine neurocomputing architecture for
spiking neural networks. In The 2013 International Joint Conference on Neural
Networks (IJCNN) (2013), IEEE, pp. 1–8.

[12] Ahn, B. Special-purpose hardware architecture for neuromorphic computing. In
2015 International SoC Design Conference (ISOCC) (2015), IEEE, pp. 209–
210.

[13] Markram, H., and Tsodyks, M. Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature 382, 6594 (1996), 807–810.

[14] Song, S., Miller, K. D., and Abbott, L. F. Competitive hebbian learning through
spiketiming-dependent synaptic plasticity. Nature neuroscience 3, 9 (2000),
919–926.

[15] Borgers, C., Krupa, M., and Gielen, S. The response of a classical hodgkin–
huxley neuron to an inhibitory input pulse. Journal of computational
neuroscience 28, 3 (2010), 509–526.

[16] Du Nguyen, H. A., Al-Ars, Z., Smaragdos, G., and Strydis, C. Accelerating
complex brain-model simulations on gpu platforms. In 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE) (2015), IEEE,
pp. 974–979.

[17] Chatzikonstantis, G., Sidiropoulos, H., Strydis, C., Negrello, M., Smaragdos,
G., De Zeeuw, C. I., and Soudris, D. Multinode implementation of an extended
hodgkin–huxley simulator. Neurocomputing 329 (2019), 370–383.

[18] Long, L. N. Toward human-level massively-parallel neural networks with
hodgkin-huxley neurons. In International Conference on Artificial General
Intelligence (2016), Springer, pp. 314–323.

[19] Lenander, P., and Fosselius, A. A survey of the spinnaker project: A massively
parallel spiking neural network architecture. Irish Research Council for Science
(IRCSE) 10 .

[20] Qiao, N., and Indiveri, G. A bi-directional address-event transceiver block for
low-latency inter-chip communication in neuromorphic systems. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS) (2018), IEEE, pp. 1–
5.

[21] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge
University Press, 2014.

