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MotioNet: 3D Human Motion Reconstruction from Monocular Video
with Skeleton Consistency
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Fig. 1. Given a monocular video of a performer, our approach, MotioNet, reconstructs a complete representation of the motion, consisting of a single symmetric
skeleton, and a sequence of global root positions and 3D joint rotations. Thus, inverse kinematics is effectively integrated within the network, and is data-driven,
rather than based on a universal prior. The images on the right were rendered from the output of our system after a simple rigging process.

We introduce MotioNet, a deep neural network that directly reconstructs
the motion of a 3D human skeleton from monocular video. While previous
methods rely on either rigging or inverse kinematics (IK) to associate a con-
sistent skeleton with temporally coherent joint rotations, our method is the
first data-driven approach that directly outputs a kinematic skeleton, which
is a complete, commonly used, motion representation. At the crux of our
approach lies a deep neural network with embedded kinematic priors, which
decomposes sequences of 2D joint positions into two separate attributes:
a single, symmetric, skeleton, encoded by bone lengths, and a sequence of
3D joint rotations associated with global root positions and foot contact
labels. These attributes are fed into an integrated forward kinematics (FK)
layer that outputs 3D positions, which are compared to a ground truth. In
addition, an adversarial loss is applied to the velocities of the recovered
rotations, to ensure that they lie on the manifold of natural joint rotations.
The key advantage of our approach is that it learns to infer natural joint
rotations directly from the training data, rather than assuming an underlying
model, or inferring them from joint positions using a data-agnostic IK solver.
We show that enforcing a single consistent skeleton along with temporally
coherent joint rotations constrains the solution space, leading to a more
robust handling of self-occlusions and depth ambiguities.
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ral networks.

Authors’ addresses: Mingyi Shi, Shandong University, AICFVE, Beijing Film Academy;
Kfir Aberman, AICFVE, Beijing Film Academy, Tel-Aviv University; Andreas Aristidou,
University of Cyprus, 75, Kallipoleos, Nicosia, Cyprus, 1678, RISE Research Centre,
a.aristidou@ieee.org; Taku Komura, Edinburgh University; Dani Lischinski, Shandong
University, The Hebrew University of Jerusalem, AICFVE, Beijing Film Academy;
Daniel Cohen-Or, Tel-Aviv University, AICFVE, Beijing Film Academy; Baoquan Chen,
CFCS, Peking University, AICFVE, Beijing Film Academy.

2020. 0730-0301/2020/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Additional Key Words and Phrases: Pose estimation, motion capturing, mo-
tion analysis

ACM Reference Format:
Mingyi Shi, Kfir Aberman, Andreas Aristidou, Taku Komura, Dani Lischinski,
Daniel Cohen-Or, and Baoquan Chen. 2020. MotioNet: 3D Human Motion
Reconstruction from Monocular Video with Skeleton Consistency. ACM
Trans. Graph. 1, 1 (June 2020), 15 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Capturing the motion of humans has long been a fundamental task
with a wide spectrum of applications in data-driven computer ani-
mation, special effects, gaming, activity recognition, and behavioral
analysis. Motion is most accurately captured in a controlled setting
using specialized hardware, such as magnetic trackers, depth sen-
sors, or multi-camera optical systems. An alternative approach that
has been researched extensively in recent years is to perform pose
estimation and 3D motion reconstruction from ordinary monocular
RGB video.
Motion capture from monocular video offers many advantages,

such as a simple uncontrolled setup, low cost, and a non-intrusive
capture process.While 3D human pose estimation is highly challeng-
ing due to depth ambiguities and occlusions, significant progress
has been achieved in recent years by data-driven learning-based
approaches. These approaches utilize deep neural networks to learn
strong priors about the expected motion, which can significantly
help with disambiguation and completion of missing data.
Given a video recording of a human motion, our ultimate goal

is to reconstruct the motion in 3D space. One family of existing
methods extract a sequence of 3D poses from the video, where each
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pose is specified by the 3D location of each joint. However, while
the resulting representation may suffice for some applications, it
is incomplete. In particular, it does not contain all the information
necessary to drive a rigged and skinned virtual 3D character, and
the temporal consistency of the skeleton’s bone lengths is not guar-
anteed. While joint rotations may be recovered from joint positions
via inverse kinematics (IK), the solution is generally not unique,
as demonstrated in Figure 2. Furthermore, enforcing soft temporal
coherence constraints over per-frame pose estimations may not en-
sure that the skeleton geometry remains invariant across all frames,
and might result in unnatural movements.

Another group of works is aiming at the recovery of a parametric
model that depicts the geometry of the body including joint rotations
(see Section 2). However, further rigging is required in order to
extract a kinematic skeleton from such a model.
In this paper, we introduce MotioNet, a deep neural network,

trained to reconstruct the motion of a single performer from an
ordinary monocular video (Figure 1). Instead of inferring a sequence
of 3D joint positions, our network learns to extract a sequence of 3D
joint rotations applied to a single 3D skeleton. Thus, IK is effectively
integrated within the network, and, consequently, is data-driven
(learned). Enforcing both a single skeleton and temporally coherent
joint rotations not only constrains the solution space, ensuring con-
sistency, but also leads to a more robust handling of self-occlusions
and depth ambiguities.

To train our network, we leverage existing datasets that contain
accurately captured full 3D human motions. Sequences of 3D poses
are projected into 2D, and the network learns to decompose the
resulting 2D joint position sequences into two separate attributes: a
single, symmetric, skeleton, encoded by bone lengths, which define a
geometric invariant along the entire sequence, and a sequence of 3D
joint rotations, which capture the dynamic aspect of the motion. The
3D skeleton and joint rotations are fed into an integrated forward
kinematics (FK) layer which applies the rotations successively along
the bone hierarchy to reconstruct the original 3D motion sequence.
In addition to the above, our network predicts a sequence of global
positions of the root joint, as well as foot contact labels, because of
the perceptual importance of the latter.
The network loss is a combination of terms that account for the

bone lengths of the 3D skeleton, root global positions and foot
contact labels, as well as joint positions recovered by the FK layer.
While these attributes are compared to the ground truth 3D motion,
the joint rotations are learned using an adversarial loss, which
encourages their velocities to have a distribution of natural rotations.
In addition, in order to mitigate foot skating artifacts, we add a foot
contact loss, to encourage the velocity of each foot to be zero in
frames where it should be in contact with the ground.

A key advantage of our approach is that it does not require an IK
step, which is data-agnostic and assumes an underlying constrained
model. Instead, the task is integrated into the network, which learns
to infer joint rotations directly from training data of real human
motions, rather than solving for them. Furthermore, as our system
represents motion in the space of temporal convolutional filters, the
learned motions are naturally smooth. All of this leads to a more
data-driven human motion reconstruction, via the FK layer.

Fig. 2. Joint rotation ambiguity. Given a set of fixed 3D joint positions,
multiple limb rotations can connect every pair of consecutive joints. Thus,
recovered 3D joint positions alone are not sufficient for driving a rigged and
skinned virtual 3D character.

In order to bridge the gap between the training data and videos
in the wild, we inject joint positional noise to the training input
sequences and augment themwith confidence values whose distribu-
tion mimics that of confidence values extracted by [Cao et al. 2018]
from a variety of real videos. This augmentation step constitutes a
regularizer in the space of the solutions, improves the stability of
the results, and increases the robustness to occlusions. An extensive
set of experiments and ablation studies that we conducted to study
the performance of our system and its different components, demon-
strate the quality and stability of our end-to-end, fully data-driven
approach for monocular motion extraction.

2 RELATED WORK
Prior to the deep learning era, various works performed 3D human
pose estimation by performing exemplar-based IK to a set of con-
straints such as 2D keypoints [Grochow et al. 2004], or by fitting a
skeleton to a voxel-based 3D model that was extracted over time
from a video, e.g., [Liu et al. 2013; Vlasic et al. 2008]. The latter
approaches are broadly divided into generative methods, which
reconstruct human pose by fitting a template model to the observed
data [Wei et al. 2012; Ye and Yang 2014]; discriminative methods,
which cluster pixels to hypothesize body joint positions, fit a model,
and then track the skeleton [Sharp 2012; Shotton et al. 2013]; and
hybrid methods, which combine the aforementioned techniques
to achieve higher accuracy [Baak et al. 2011]. See Sarafianos et
al. [2016] for a detailed overview of 3D pose estimation methods.

3D Joint Position Reconstruction with Deep Learning: Re-
cently, enormous amount of work has been devoted to the develop-
ment of deep learning networks that extract the 3D joint positions of
the human body from an image or a video sequence; Some methods,
which extract the poses directly from the image pixels, have been
popular due to the availability of video datasets that are associated
with ground truth motion capture data (e.g., Human3.6M [Ionescu
et al. 2014] and HumanEva [Sigal et al. 2009]). These methods use
supervised learning to estimate the 3D joint positions [Pavlakos
et al. 2017; Tekin et al. 2016; Tome et al. 2017; Toshev and Szegedy
2014; Zhou et al. 2016]. However, these 3D human pose estimation
methods do not employ rigid body constraints. Thus, some works
integrate an iterative error feedback to regress bones and improve
3D pose estimation [Carreira et al. 2016; Liang et al. 2018; Luvizon
et al. 2018]. The main issue with such methods is that training data
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is captured and annotated in a controlled environment, thus they
do not generalize well to the real world. To address this issue, some
works use weak supervision, where both motion capture data and
images in the wild are used [Mehta et al. 2017a]. In addition, most
of these works operate on a per-frame basis, which might lead to
temporal incoherence and oscillations in motion. There have been
efforts in exploiting temporal information from video to produce
more robust predictions [Katircioglu et al. 2018; Tekin et al. 2016],
e.g., using long short-term memory (LSTM) networks [Lee et al.
2018a; Lin et al. 2017].
Another family of 3D pose estimators relies on 2D pose estima-

tors by first predicting 2D key joint positions in image space [Cao
et al. 2018; Chen et al. 2018a; Newell et al. 2016; Papandreou et al.
2017; Wei et al. 2016], which are subsequently lifted to 3D either
by regression [Martinez et al. 2017; Moreno-Noguer 2017] or model
fitting [Chen and Ramanan 2017]. The latter methods, which are
the most popular, are benefited by the availability of large-scale
datasets and perform a k-nearest neighbor search for a predicted
set of 2D keypoints over a dictionary of 2D skeletons for which the
3D skeleton is available, and then simply output the correspond-
ing 3D pose [Tekin et al. 2017; Yiannakides et al. 2019; Zhou et al.
2017]. Some extensions integrate joint constraints to overcome the
ambiguity in transferring 2D human poses into their 3D pose rep-
resentations [Akhter and Black 2015; Mehta et al. 2019], enforce
priors about bone lengths, and projection consistency with the 2D
ground truth [Brau and Jiang 2016; Dabral et al. 2018; Ramakrishna
et al. 2012; Wang et al. 2019], or use multi-view cameras to improve
supervision [Rhodin et al. 2018b]. Others use adversarial training
to generate anthropometrically feasible poses [Yang et al. 2018]. In
general, these methods outperform those based on direct estima-
tion, since they benefit from intermediate supervision, which can
be trained on images in the wild. Indeed, the state-of-the-art results
for 3D pose estimation are achieved by a recent two-stage method
of Pavllo et al. [2019].

However, a major limitation of these pose estimation methods, is
that the positional representation can only describe a small set of the
full human motion articulation, which highly complex and dynamic.
Moreover, since motion is not assigned to a character model to
enforce kinematic constraints, resulting temporal bone length may
be violated. Some works use reference objects in the scene with
known position and scale, or other distinct parts of the human body
(e.g., heads), to better estimate the person’s height [Bieler et al. 2019;
Günel et al. 2018]. More recently, body regression models have
been employed to enforce some form of skeleton constraints [Mehta
et al. 2019; Yoshiyasu et al. 2018]. Our goal is to enable a complete
representation of motion, which consists of a skeleton and joint
rotations.

In addition, positional representation allows ambiguities regard-
ing the geometry and orientation of the limb segments as illustrated
in Figure 2). A full motion representation requires reconstruction of
joint rotations. Converting a positional representation into 3D joint
rotations is rather challenging, since this problem is highly under-
constrained [Dong et al. 2017]. Mehta et al. [2017b] fit a rigged
skeleton model over time to estimated 2D and 3D joint locations,
and use IK as a post-process to recover 3D rotations of each joint. In
contrast, our network directly extracts 3D joint rotations from 2D

joint positions, producing the same format as that of commercial
motion capture systems. The sequence of 3D joint rotations refers
to a single 3D skeleton, thus ensuring that bone lengths remain
constant over time, and learning joint quaternions directly from the
data results in a natural motion without assuming an underlying
model or employing IK solvers.

3D shape recovery: A parallel, related line of research aims at
recovering full 3D shapes of people from images [Huang et al. 2017;
Kolotouros et al. 2019a], using mainly statistical body shape (SMPL)
models [Loper et al. 2015]. These approaches are typically based on
parameterized 3D meshes and regression, and focus less on pose
accuracy [Anguelov et al. 2005; Loper et al. 2015]. More recently, a
number of deep convolutional methods have been proposed that
map all human pixels of an RGB image to the 3D surface of a human
body [Alldieck et al. 2018; Güler et al. 2018; Lassner et al. 2017;
Zheng et al. 2019]. Next, in order to extract the 3D human pose
from silhouettes, they fit a body shape model to the 2D joints, and
minimize an objective function that penalizes the error between
the projected 3D model joints and detected 2D joints [Kanazawa
et al. 2018; Kolotouros et al. 2019b; Pavlakos et al. 2018b; Zhou
et al. 2018]. As a consequence, they predict the joint rotations as
a function of the surface. Moreover, additional steps and optimiza-
tions are required to ensure temporal consistency on the geometry
mesh [Arnab et al. 2019; Bogo et al. 2016; Güler and Kokkinos 2019;
Xu et al. 2018, 2019], including, in some cases, multi-view cameras to
learn a geometry-aware representation of human shape, where the
3D pose is estimated through direct regression [Rhodin et al. 2018a],
or the employment of networks that can learn and predict the hu-
man dynamics [Kanazawa et al. 2019; Zhang et al. 2019]. However,
these works do not guarantee a consistent skeleton across different
frames. Even though temporal coherence of the geometric model
is encouraged, phenomena such as bone stretching may appear. In
order to extract a single kinematic skeleton from such a geometric
model, rigging should be applied. In contrast, our work aims to
reconstruct a set of joint rotations along with a single kinematic
skeleton in an end-to-end, data-driven fashion.
Unlike these methods, we utilize a single network that supports

direct regression of 3D joint rotations, and at the same time ensures
the temporal consistency of the skeleton, solving both problems end-
to-end. More specifically, instead of fitting a skeleton to detect the
3D human pose, we integrate kinematics into the neural network,
similarly to [Kanazawa et al. 2018; Pavllo et al. 2018; Villegas et al.
2018; Zhou et al. 2016], where joint angles are recovered by learning
the rotational data directly. However, Zhou et al. employ loss only
on joint locations, and the joint angles are estimated as a byproduct,
while Kanazawa et al. recover the joint rotation angles as part of the
parameters for the SMPL body model using unpaired adversarial
training, with a separate discriminator for each joint. On the other
hand, Pavllo et al. [2018] focus on human motion prediction by
regressing the joint rotations, applying forward kinematics, and then
employing a loss on joint positions. In contrast, our network learns
to output temporally coherent joint angles with natural velocities
using training data from available motion capture datasets, and is
trained on motion sequences, as opposed to individual frames. In
addition, the structure of our network enforces a single consistent
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skeleton, which can be directly converted into an animation file
without the need to apply IK or temporal smoothing [Arnab et al.
2019; Peng et al. 2018].

3 MOTION RECONSTRUCTION
At the crux of our approach lies a deep neural network, MotioNet,
whose unique structure is inspired by the common working method-
ology in the animation field. MotioNet enables extraction of 3D
poses with natural, data-driven, rotational information, which can
be directly converted into motion file formats used in animation
platforms and game engines.
In practice, our network learns to map 2D joint positions, ex-

tracted from an input video, into two separate components: (i) a
single, symmetric, skeleton, represented by its bone lengths; (ii) a
dynamic, skeleton-independent, sequence of: joint rotations, global
root positions and foot contact labels. These two parts constitute a
complete, global, description of motion, requiring no further pro-
cessing, or IK, to obtain a full 3D animation.
To train our network, we leverage motion capture datasets that

comprise temporal sequences of various motions performed by
different subjects, where each motion is represented by a single
skeleton and a temporal sequence of 3D joint rotations and global
positions. During training, the 3Dmotion is projected onto 2D planes
from arbitrary view angles, and the network is trained to recover the
aforementioned components from the projected sequence. The foot
contact labels are extracted from the captured motions by examining
the distance of the foot joints from the ground and their velocity.
During test time, the predicted labels can used to constraint the
position of the joints, via IK optimization

Our main technical contribution is a new 2-branch network that
reconstructs the dynamic properties of the motion – joint rotations,
global root positions, foot contact labels, separately from the static
ones – a single kinematic skeleton. Our network consists of various
components, some of which were previously proposed by other
methods, while others are new. The forward kinematics layer that
we use was originally proposed by Villegas et al. [2018] in the
context of motion retargeting. However, we are the first to use it
for pose estimation. In addition, Kanazawa et al. [2018] already
applied a discriminator to joint rotation angles, but did so in a
per-frame fashion and using absolute angle values. In contrast, our
discriminator judges the realism of temporal sequences of angular
velocities. Lastly, Pavllo et al. [2019] have also used 1D temporal
convolution in the context of 3D pose estimation. However, their
network is trained to lift 2D joint positions into 3D, while ours is
trained to convert joint positions to rotations.

3.1 Network Architecture
Let Ps,q,r ∈ RT×3J denote a temporal sequence of 3D joint positions
generated by a skeleton s ∈ RL with joint rotations q ∈ RT×Q J and
global root positions r ∈ RT×3, where L is the number of limbs,T is
the temporal length of the sequence, J is the number of joints, and
Q is the size of the rotations representation vector, which will be
discussed later.
Our goal is to train a deep neural network to decompose se-

quences of projections of 3D joints, C(Ps,q,r ; c) ∈ RT×2J (C is a

perspective projection operator, which projects the 3D joint posi-
tions into 2D using camera parameters c ∈ C), into four attributes:
q̃ ∈ RT×Q J , that captures the dynamic, rotational information of
the motion, s̃ ∈ RL , that describes the single, consistent, skeleton,
r̃ ∈ RT×3 that estimates the global positions of the root along time,
and f̃ ∈ {0, 1}T×2 that predicts whether each of the two feet touches
the ground in each frame. The first three attributes can be then
combined via forward kinematics to estimate the global 3D pose
sequence, P̃s̃,q̃, r̃ ∈ RT×3J , specified by joint positions.

A high level diagram of our approach is shown in Figure 3. During
training, each data sample, C(Ps,q,r ; c) ∈ RT×2J , is fed, in parallel,
into two networks, ES and EQ . The task of Es is to estimate the
single skeleton

s̃ = ES (C(Ps,q,r ; c)), (1)
while EQ aims to estimate rotations, global root positions, and foot
contact labels via

q̃, r̃, f̃ = EQ (C(Ps,q,r ; c))], (2)

respectively. We train a single network to estimate all the three
dynamic attributes due to the strong correlation between them (e.g.,
the global root position of a running human, is temporally correlated
with the rotations of the limbs, and the timing of contact with the
ground).
Since the rotations, global positions and contact labels are dy-

namic (change per frame), we design EQ to retain temporal infor-
mation. In practice, it employs one-dimensional convolution layers
over the time axis, yielding a temporal set of joint rotations. In
contrast, the skeleton is a static attribute, and ES employs adaptive
pooling to collapse the temporal axis, resulting in a fixed size vector
of bone lengths, regardless the input dimensions, as illustrated in
Figure 5.

Forward Kinematics. In order to convert s̃, q̃ and r̃ into 3D joint
positions, we use Forward Kinematics (FK), which refers to the
process of computing the joint positions, given the joint rotations
and the initial skeleton. FK is performed by successively rotating
the limbs of an input skeleton tree starting from the root joint
and ending in the leaf joints (see Figure 4). Since these are linear
operations, we can integrate them into the network as a differential
layer [Villegas et al. 2018] FK , which allows back propagation. In
practice, given the estimated bone lengths, s̃, we first reconstruct
a “T-pose”, s̃init ∈ R3J , by positioning the joints in 3D coordinates.
This is done by placing the root at the origin, while the other joints
are placed on the XY plane, based on the offsets specified in s̃ (as
demonstrated by the left most character in Figure 4). Then, at each
time step t , the FK layer is applied to s̃init, using the joint rotations
of the t-th frame, q̃t ∈ R4J to obtain

P̃ts̃,q̃, r̃=0 = FK (s̃init, q̃t ), (3)

where P̃ts̃,q̃, r̃=0 is the local 3D pose (root positioned in the origin) at
frame t . Rotations are applied successively to each joint starting from
the root and ending at the leaf joints, P̃tn = P̃tparent(n) + Rtn s̃n , where

P̃tn ∈ R3 is the position of the n-th joint at time t , P̃tparent(n) ∈ R
3 is

the position of its parent, Rn ∈ R3×3 is the rotation matrix of the
n-th joint, and s̃n ∈ R3 is the 3D offset of the n-th joint relative to
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Fig. 3. Our framework receives 2D joint positions along with per-joint confidence values, which are simulated based on empirical experiments from real
videos. It extracts per-frame joint rotations and global root positions along with foot contact labels, and a static (duration-independent) skeleton, using two
encoders, EQ and ES . The extracted rotations are fed into a discriminator D that is trained to tune the temporal differences of the rotation angles to mimic
the distribution of natural rotations, using adversarial training. In addition, the rotations and the static feature that is converted to a “T-pose”, are fed into the
forward kinematic layer, FK , that extracts 3D joint positions, which are compared to a ground truth.

qt
0

qt
1

qt
2

qt
3

qt
J

Fig. 4. Our network applies forward kinematics on a “T-pose” skeleton by
successively rotating the limbs from the root to the end-effectors.

its parent in s̃init. Finally, given the local pose of the 3D skeleton,
we add the global translation to obtain the full estimated 3D pose
in frame t ,

P̃ts̃,q̃, r̃ = FK (s̃init, q̃t ) + r̃t . (4)

Since FK consists of differential operators, it can be integrated into
the network as a layer through which back-propagation may be
applied. The FK process for a given time step is illustrated in Figure 4.

3.2 Training and Loss
To train our network, we leverage publicly available motion capture
datasets described in more detail in Section 3.3. We use a combina-
tion of full self-supervised and partial self-supervised training. For
the fully supervised training we use captured human motions for
which the full, rotational and positional 3D joint data is available,
while the partially supervised training only makes use of 3D joint
positions (positional representation). In both cases, the 2D inputs
are generated automatically by projecting the 3D training data, thus
the paired training is essentially self-supervised.

The loss function that we use consists of four components: skele-
ton loss LS, global root position loss LR, joint position loss LP, and

rotations GAN loss LQ_GAN. These components are described in
more detail below.

Skeleton Loss. Let Ps,q,r ∈ P denote a 3D motion sequence in our
dataset P, and C(Ps,q,r , ci ) denote its 2D projection using a camera
ci ∈ C. The skeleton loss LS ensures that the encoder ES correctly
extracts the skeleton s:

LS = EPq,s,r∼P,ci∼C
[
∥ES (C(Ps,q,r , ci )) − s∥2] . (5)

When perspective projection is used, the 3D skeleton can be re-
constructed only up to a scale factor. In order to avoid this scale
ambiguity, we globally rescale all the 3D skeletons in the data such
that their average bone length is equal to 1. At inference time, if the
real spine length of the performer is known, the reconstructed 3D
pose can be rescaled into a real metric space.

Joint Position Loss. This is our main loss, designed to ensure that
the joints in the extracted poses are placed in the right 3D positions.
Unlike naive supervised reconstruction of 3D joint positions, in
this case, the positions are constrained by the geometric structure
of the reconstructed skeleton, which leads to smaller, correlated,
search spaces. Although the first part of the network (ES and EQ )
is supposed to output the full, positional and rotational description
of the motion, the joint position loss is essential since a direct loss
over the joint rotations is not applied. In addition, since errors can
be accumulated during FK from the root to the end-effectors, the
FK-reconstructed joint positions, per frame, tune the joint rotations
such that the reconstructed 3D joint position match the original
ground truth ones:

LP = EPq,s,r∼P,ci∼C
[
∥FK (s̃init, q̃) − Ps,q,r=0∥2] . (6)
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Since human observers are particularly sensitive to the motion of
end effectors in animations, we split the joints into two groups and
penalize the end-effectors part, LPEE with a different weight (λPEE ).

Adversarial Rotation Loss. Applying a loss (only) over the skele-
ton and joint positions, trains the network to reconstruct correct
positions, without imposing constraints on the rotations. Due to
the inherent ambiguity that exists in IK, the resulting rotations and
their velocities might be unnatural, which can lead to distortions
when skinning is applied to the skeleton. Although a part of the
data contains 3D rotations that were captured in motion capture
systems, a direct loss applied to the rotations may not converge.
Due to the fact that the T-poses for different samples in the dataset
are not aligned, namely, two similar poses might be represented
by different rotations, thus, a direct loss on the rotations can not
be applied, unless, the entire set is retargeted to share the T-pose,
which is a time consuming operation. Due to the potential differ-
ence between the absolute values of rotations that represent the
same pose, our network is trained to output rotations with natural
velocities distribution using adversarial training. The idea is to focus
on the temporal differences of joint rotations rather than their abso-
lute values. For example, if a specific joint is constrained to move
only in a specific direction we want to follow that rule, in a data-
driven manner. In order to incorporate the adversarial loss we add
J discriminators, D j , where each is aimed to distinguish between
temporal differences of the output rotations and real rotations from
the dataset for a specific joint,

LQ_GANj
= Eq∼Q

[
∥D j (∆tqj )∥2] (7)

+ EPq,s,r∼P,ci∼C
[
∥1 − D j (∆tEQ (C(Ps,q,r , ci ))qj ∥2] ,

where EQ (·)qj denotes the rotations of the jth joint of the output
of EQ , Q represents the distribution of natural joint angles that are
taken from the dataset, and ∆t stands for temporal differences. The
full architecture of each components can be found in the Appen-
dix A.
Note that due to the averaging behavior of the temporal con-

volutions and the temporal continuity of the input sequence, the
estimated joint rotations are encouraged to be smooth along the
temporal axis, resulting in smooth animations.

Reference T-pose. Since our rotations are guided by velocities,
their absolute values might be unnatural and erroneous. These
errors can be observed when skinning is applied to the underlying
skeleton. In order to let the network learn a correct reference point,
in each epoch, we train the network with a few T-poses (T-pose
per character), and require that their reconstructed rotations will
be zero using a direct loss over the output rotations.

Global Root Position Loss. In order to avoid the learning of unnec-
essary information in the reconstruction of the global root position
in frame t , rt = (X t

r ,Y
t
r ,Z

t
r ), we estimate only the depth parameter

Z t
r and then derive the global root position by(

X t
r ,Y

t
r ,Z

t
r
)

=
(
Z t
r
f
xtr ,

Z t
r
f
ytr ,Z

t
r

)
, (8)

where (xr ,yr ) is the root position in the projected 2D input sequence,
and f = 1 is the assumed focal length of the camera model. Then

the loss is given by

LR = EPq,s,r∼P,ci∼C
[
∥EQ (C(Ps,q,r , ci ))r − Zr ∥2] , (9)

where EQ (·)r denotes the root position part of the output of EQ .

Foot Contact Loss. In order to handle foot sliding artifacts we
supervisedly train the network to output f̃ that predicts whether
each foot is in contact with the ground in each frame via

LF = EPq,s,r∼P,ci∼C
[
∥EQ (C(Ps,q,r , ci ))f − f ∥2] , (10)

where EQ (·)f denotes the foot contact label part, f̃ ∈ {0, 1}T×2, of
the output of EQ . Based on that binary GT vector, f , another loss,
that encourages the velocity of foot positions to be zero during
contact frames, is added

LFC = EPq,s,r∼P,ci∼C

[
∥fi

∑
j

∆t FK (s̃init, q̃)fi ∥
2
]
, (11)

where FK (·, ·)fi ∈ RT×3 and fi denote the positions and the contact
labels of one of the feet joints (i ∈ left, right), and ∑

j sums the
components along the coordinate axis. The contribution of this
component is evaluated in the ablation study in Section 5.2.

Summing the four terms, we obtain our total loss:

Ltot = LP + λSLS + λQ
∑
j ∈J

LQ_GANj
+ λRLR + λFLPF + λFCLPFC ,

(12)
where in all of our experiments λS = 0.1, λQ = 1, λR = 1.3, λF = 0.5,
λFC = 0.5.

3.3 Motion Dataset
Our training data is constructed from the CMU motion capture
dataset [CMU 2019], and from the Human3.6M human pose dataset
[Ionescu et al. 2014]. The CMU dataset consists of 2605 captured
motions performed by 144 subjects. The motions include elemen-
tary actions (walking, jumping, kicking, etc.), and various dancing
moves (samba, salsa, etc.). The Human3.6M dataset consists of over
3.6 million 3D human poses with corresponding images, viewed
from four different angles using synchronized cameras. The mo-
tions are performed by 11 actors and include 17 everyday scenarios,
such as eating, smoking, talking on the phone, walking, etc. The
actors in both datasets feature a variety of body shapes and skeleton
proportions.
In order to train the network to extract foot contact labels in a

supervised fashion, we must first extract “ground truth” labels from
the dataset. Specifically, we consider a foot to be in contact if its
height above the ground is below 20mm, and its average velocity
magnitude in the surrounding 5-frame window is below 1mm/frame.
The height of the ground is approximated by the average of the
lowest 20-percentile of all the foot heights in the sequence.

The actual input data samples fed into the network are generated
by projecting the sequences of 3D joint positions (represented in
camera coordinates space) onto different camera view angles, using
perspective projection. As a result, we obtain a rich dataset with
ground truth, which demonstrates how skeletons of different char-
acters, performing various motions, appear from different views
when projected into 2D.
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Fig. 5. Our network contains two encoders, EQ which generates a temporal
set of joint rotations, global positions and foot contact labels using parallel
convolutions, and ES which outputs a static attribute that represents the
skeleton, using an adaptive pooling layer that collapses the temporal axis.

In test time, when videos in the wild are used, we use the method
of Cao et al. [2018] to extract 16 joints (root, neck, thorax, head,
shoulders, hips, knees, feet, elbows, and hands). These joints exist
in the aforementioned datasets as well. In addition, a spine joint
which exists only in the 3D datasets is artificially added (calculated
as the 2D spatial average between the root and the neck joint).

Preprocessing. In order to normalize the 2D input data we apply
two operations: (i) Subtract the root position from every joint loca-
tion (in all the frames), (ii) Subtracting the mean joint position and
divide it by the standard deviation, while the mean and standard
deviation are empirically calculated per joint over the entire dataset.
Since global information is discarded from the normalized local
representation, we append to it the global 2D velocity (per-frame).

3.4 Implementation Details
In practice, our implementation consists of two encoders, EQ and
ES , a forward kinematics layer FK , and a discriminator D. The lay-
ers and the dimensions of the two encoders are shown in Figure 5,
while the FK layer is described by Villegas et al. [2018]. For a de-
tailed description of the parameters of each layer, please refer to the
appendix.

In the EQ encoder there are five 1D convolution layers. The first
layer expands the number of channels, and the result is then fed in
parallel into three convolution layers with kernels of three different
sizes. This is inspired by the inception module from GoogLeNet.
The three results are then summed together after adaptive pooling
and fed into a final layer that generates the temporal sequence of
quaternions and root depths.

The ES encoder uses a simple sequence of 1D convolution layers.
Again, the first layer expands the number of channels, and the last
layer outputs a vector of bone length, which implicitly enforces
symmetry, since each pair of symmetric limbs is encoded by the
same coordinate.

The discriminatorD also uses a sequence of 1D convolution layers.
There is a per-joint convolution layer which is summarized into a
fully connected layer that dictates whether the rotational velocity
is real or fake.

4 SUPPORTING VIDEOS IN THE WILD
During training, the input to our network is produced by projecting
mostly clean motion captured data from 3D to a 2D image plane.
However, at test time, the network should be able to cope with 2D
joint positions extracted from videos in the wild, using the OpenPose
library [Cao et al. 2018]. In order to overcome the gap between the
distribution of the training inputs and the test-time ones, we employ
confidence values and augmentation.

Confidence Values. During test time, when 2D joint positions are
extracted from videos in-the-wild, there might positional errors
or even missing joints due to occlusion. In order to simulate such
input characteristics during the training, we leverage the output
structure that state-of-the-art 2D pose estimators provide and attach
for each joint a value cn ∈ [0, 1], which specifies the confidence in
the estimation of that joint’s 2D position. For a completely missing
joint the confidence cn is set to 0.

Thus, in practice, we concatenate another vector c ∈ RJ×T to our
input, both during training and at test time. At test time the values
of c are extracted from the output of Cao et al. [2018], while during
training we randomly draw the values, based on an empirically
determined distribution. The distribution was determined using
the confidence values that were extracted from a diverse set of
videos in-the-wild taken from [Johnson and Everingham 2010]. We
calculate the histogram of each joint separately, and model each
distribution as a sum of two parts: a delta distribution around zero
(with probability of δj ) and a Gaussian distribution (µ j ,σj ) clipped
at 1 (probability of 1− δj ). Figure 6 plots the normalized histograms
of the confidence values for 4 different joints and the per-joint
parameters (δj , µ j ,σj ) are listed in the appendix. It may be seen that
joints that are closer to the end-effectors tend to be occluded more
frequently.
Once a confidence value cn > 0 is drawn, we compute a spatial

displacement, which is applied as a noise to the 2D coordinate. The
direction of the displacement is drawn uniformly from [0◦, 360◦],
while the magnitude is drawn from [0, β(1 − cn )] for β = 6. For
cn = 0 we set the value of the coordinate to (0, 0). Thus, similarly
to denoising autoencoders, our network is trained to be robust to
inaccurately estimated, or even missing joint locations.

Augmentation. To enrich the observed samples, we apply data
augmentation in two different ways:

(1) Clip length: since our model is fully convolutional, input mo-
tion clips with varying lengths can be forwarded through the
same network. However, due to the use of batches a fixed tem-
poral length can improve training time. Thus, we randomly
pick the temporal length (T ) of the samples in the batch, per
iteration, to be an integer in the range of 60 to 200. This aug-
mentation step enhances the disentanglement of the static
parameters and the temporal length of the sequences.

(2) Camera augmentation: since we work in the 3D camera co-
ordinate space, our projections are augmented by modifying
the depth of the 3D character (global translation along the
z axis) and its orientation (global rotation of the root). This
operation is important since it trains the network to map
similar poses in different 2D scales into the same (local) 3D
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Neck Shoulder

Ankle Wrist

Fig. 6. Modeling the distribution of joint confidence values (continuous red
line) using empirical distribution of confidence values (bins), extracted from
videos in the wild.

parameters (rotations and bones length), thus extending the
distribution of the inputs of the training data.

(3) Flipping: we left-right flip the 3D joint positions (camera co-
ordinate space) of the samples, before the projections, to
obtain augmented poses with P̃rj =

(
−(P lj )x , (P

l
j )y , (P

l
j )z

)
,

P̃ l =
(
−(Prj )x , (Prj )y , (Prj )z

)
, were Prj and P lj are the left and

right positions of a symmetric joint j (e.g, left and right shoul-
der). For single joints without symmetry (root, neck, etc.) we
use P̃j =

(
−(Pj )x , (Pj )y , (Pj )z

)
.

5 RESULTS AND EVALUATION
In this section, we show 3D human motion reconstruction results
obtained by MotioNet, conduct experiments and ablation studies
to analyze the performance of various components in our frame-
work and present comparisons to state-of-the-art 3D human motion
estimation techniques. Figure 7 shows a gallery of results which
demonstrate the ability of MotioNet to extract a variety of human
motions from videos in the wild, while being robust to partial oc-
clusions and tolerant to different body types. In order to produce
the animations, we convert the tensors produced by our network
into BVH files, and use the Blender software to read these files and
render the videos, without any further post processing. The quality
of the resulting animations may be examined in the supplementary
video.

5.1 Comparison to Other Methods
Wefirst compare the accuracy of the reconstruction of joint positions
by our approach to a variety of existing methods.

Fig. 7. Examples of motions reconstructed by MotioNet from videos in-the-
wild. MotioNet can reconstruct a variety of human motions, while being
robust to partial occlusions and tolerant to different body types. Frames
from the video are on the left, and the reconstructed pose is on the right.

Quantitative comparison. A quantitative comparison is reported
in Table 1, which reports the mean per joint position error (MPJPE):

E(P̃, P) =
1
J

J∑
j=1

∥P̃j − Pj ∥. (13)

We evaluated our method on two datasets. The first one is Hu-
man3.6M dataset [Ionescu et al. 2014] which adopts a 17-joint skele-
ton representation. For this dataset, the network was trained on five
subjects (S1, S5, S6, S7, S8), and tested on two (S9 and S11), using
a single model that was trained for all actions. The second dataset
is HumanEva-I [Sigal et al. 2009] which adopts a 15-joint skeleton
representation, including three different subjects. We evaluated our
system on two actions (Walk, Jog) by training a single model. Note
that similarly to other approaches, the evaluation with this dataset
is computed after performing a rigid alignment with the ground
truth including scale, rotation, and translation (a.k.a P-MPJPE).

In order to apply a fair comparison we did not simulate the confi-
dence map, and used 2D detected key-points during both training
and test time. We followed Pavllo et al. [2019] and used the cascaded
pyramid network (CPN) [Chen et al. 2018b] to extract 2d poses. The
bounding box required by CPN is extracted by Mask-RCNN [He
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et al. 2017] and the 2d detector is fine-tuned by 2d ground truth
samples from Human3.6M.

As may be seen from the results in Table 1 and Table 2, while our
method does not achieve the highest accuracy for joint positions,
it is usually among the top 2–3 methods. This is despite the fact
that our method aims at a slightly different task. Furthermore, note
that enforcing a single underlying skeleton may introduce some
errors into the reconstructed joint positions due to inaccuracies
(even small ones) in the estimated bone lengths. In order to measure
the effectiveness of the the rotations branch and eliminate the effect
of errors in the skeleton reconstruction, we conduct an experiment
that uses the ground truth (GT) skeleton instead of the reconstructed
one. In this experiment only EQ was trained, while FK received the
GT skeleton. The result reported in Table 1 shows that if the exact
skeleton is known, the accuracy of poses can be even higher.

In order to demonstrate the effectiveness of our dynamic encoder
EQ , we replaced its structure by the dilated 1-D convolution ar-
chitecture proposed by Pavllo et al. [2019], originally designed to
output positions. The results which demonstrate that our architec-
ture fits better to the prediction of rotations are also depicted in
Table 1.

Qualitative comparison. We next conducted qualitative compari-
son with methods that aim to reconstruct joint rotations. A qualita-
tive quantitative comparison is not enabled in that case since these
different methods use a different number of joints and the rotation
values might be ambiguous. The comparison is done against 3 meth-
ods: VNECT [Mehta et al. 2017b], HMR [Kanazawa et al. 2018] and
Pavllo et al. [2019], and may be seen in the supplementary video.
To compare the reconstructed motions qualitatively to Pavllo et

al. [2019], which output joint positions, the positions have to be
converted to rotations. This conversion task is challenging due to
ambiguities that are caused by the absence of the roll axis, temporally
inconsistent skeleton size, and bone length violations that amplify
the reconstruction errors and lead to abnormalities in the resulting
animation.

In our comparison, we employ the rudimentarymethod of Dong et
al. [2017], which iteratively computes the local joint angles using
intrinsic rotations.

Mehta et al. [2017b] use Inverse kinematics (IK) to calculates joint
rotations and fit a single skeleton to given joint positions. Compared
to position-to-rotation conversion using intrinsic rotations [Dong
et al. 2017], IK yields more stable rotations suitable for animation,
however, it limits the degrees of freedom to regulate the joint rota-
tions, restricting the nature of motion.
Kanazawa et al. [2018] learn joint rotations in an adversarial

manner in a per frame fashion. While their approach is also data
driven, with no temporally consistent rotations, an animation can
not be extracted directly from their per frame output. In addition,
in order to extract an animation, an average skeleton should be
calculated.
The full comparison can be found in the supplementary video,

and some extracted frames are depicted in Figure 8. It can be seen
that the combination of Pavllo et al. [2019] and Dong et al. [2017]
exhibits abnormalities in the rotations resulting from the converted
rotations, while the animations extracted by MotioNet do not suffer

from the same issues. In addition, while Kanazawa et al. [2018]
produce inconsistent rotations, especially next to the end-effectors
(as evidenced by shaking limbs), our reconstruction yields plausible
stable global motions. Due to their per-frame adversarial loss, the
rotations reconstructed by their method are not temporally coherent.
In order to extract a stable animation form their method, temporal
smoothing and IK optimization is required, as has been done in
Peng et al. [2018].

Overall, these experiments show that MotioNet can recover joint
positions comparably to state-of-the-art pose estimation methods,
while generating more natural, temporally consistent joint rotations
and plausible animations, compared to other existing methods.

Bone Lengths Estimation. In this experiment we evaluate the ac-
curacy of the bone lengths estimation and compare the results
with other methods, including VNECT [Mehta et al. 2017b], HMR
[Kanazawa et al. 2018], Martinez et al. [2017], and Pavllo et al. [2019].
We tested the methods using Human3.6M and measured the results
against the ground truth skeleton, where each bone length was cal-
culated by the Euclidean distance between the two relevant joints.
In order to avoid the scaling bias, a normalization is applied to all
the skeletons during training, while at test time we de-normalize
the output skeletons using the saved scaling factor and calculate the
error against the original ground truth. The final error values, which
are calculated as the average of all the bone errors, are plotted in
Figure 9. It can be seen that our network ES outperforms previous
methods in the task of bone lengths estimation.

Global Root Positions Reconstruction. In this experiment we evalu-
ate the reconstruction of the global root positions and compare it to
VNECT [Mehta et al. 2017b]. The evaluation was done using the test
set of Human3.6M. Since the scaling factor of the reconstructed root
position of VNECT is unknown, we avoid a quantitative comparison
in that case. In order to qualitatively evaluate the reconstruction we
visualize the positions of the root coordinate along time for some
motions, where the marker becomes darker when time progresses,
as shown in Figure 10. The root path is visualized from another point
of view (different than the camera’s perspective) to demonstrate
that our depth estimation is reliable (which can not be observed
from the camera perspective). More qualitative results can be found
in supplementary video.

Online Motion Reconstruction. In this experiment we demonstrate
the potential of our framework to be a core part of an online motion
reconstruction system. In order to conduct such an experiment,
we replaced our convolutions with casual convolutions, namely,
convolution kernels that consider only past frames, while the kernels
keep their original dimensions. The results in Table 1 show that
such a setup still enables to achieve good reconstruction. However,
note that the runtime during inference, in practice, also depends on
other factors, such as the 2D key-points extractor.

Rotation Representation. 3D rotations may be represented with Eu-
ler angles (3D) or unit quaternions (4D). Recently, Zhou et al. [2019]
proposed a new 6D representation for rotations, which might be
helpful for training deep neural networks due to the inherent dis-
continuities that exist in other representations. Since our framework
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Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. avg.(mm)
Mehta et al. [2017b] 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Pavlakos et al. [2017] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Martinez et al. [2017] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Yoshiyasu et al. [2018] 63.3 71.6 61.4 70.4 69.9 83.2 63.0 68.8 76.8 98.9 68.2 67.5 73.7 57.7 57.1 69.9

Fang et al. [2018] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Yang et al. [2018](+) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Hossain et al. [2018](†) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Pavlakos et al. [2018a](+) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Lee et al. [2018a](†) 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 47.5 68.4 45.6 55.8
Habibie et al. [2019] 46.1 51.3 46.8 51.0 55.9 43.9 48.8 65.8 81.6 52.2 59.7 51.1 40.8 54.8 45.2 53.4
Chen et al. [2019] 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7

Mehta et al. [2019](+) 50.2 61.9 58.3 58.2 68.8 74.6 54.1 61.5 76.8 91.7 63.4 58.5 48.3 65.3 53.2 63.6
Pavllo et al. [2019](†) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Single 1-D conv, gt-skeleton(†) 55.89 61.67 58.88 62.43 62.10 61.36 60.57 64.00 72.74 63.38 75.27 63.51 58.87 67.69 58.87 63.15
Ours, gt-skeleton(†) 43.61 49.39 46.60 50.15 49.82 49.08 48.29 51.72 60.46 51.10 62.99 51.23 46.59 55.41 46.59 50.87

Casual conv(real-time)(†) 51.85 57.63 54.84 58.39 58.06 57.32 56.53 59.96 68.70 59.34 71.23 59.47 54.83 63.65 54.83 59.11
Ours(†) 47.33 53.11 50.32 53.87 53.54 52.80 52.01 55.44 64.18 54.82 66.71 54.95 50.31 59.13 50.31 54.59

Table 1. Quantitative comparison to other joint position reconstruction methods using MPJPE on Human3.6M dataset. Legend: (†) multi-frames as an input,
(+) extra training data (Yang et al. [2018] use 2D annotations from the MPII dataset. Pavlakos et al. [2018a] use additional data from the Leeds Sports Pose
(LSP) dataset).

[Kanazawa et al. 2018] [Pavllo et al. 2019] [Mehta et al. 2017b] Ours [Kanazawa et al. 2018] [Pavllo et al. 2019] [Mehta et al. 2017b] Ours

Fig. 8. Our results on videos in the wild, compared to three other methods: (i) Kanazawa et al. [2018] (ii) Mehta et al. [2017b] (iii) Pavllo et al. [2019] + Dong et
al. [2017]. Please see the supplementary video, where it may be seen that our method recovers plausible global motions with smooth joint rotations.

is not limited to a specific representation, we conducted an experi-
ment that compares between these three representations. We found

that the 6D representation of Zhou et al. [2019] achieves the lowest
quantitative error (52.54), which is comparable to the error that is
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Methods Walk Jog
S1 S2 S3 S1 S2 S3

Pavlakos et al. [2017] 22.3 15.9 22.7 28.9 21.9 23.8
Pavlakos et al. [2018a] (+) 18.8 12.7 29.2 23.5 15.4 14.5
Lee et al. [2018a] 18.6 19.9 30.5 25.7 16.8 17.7
Pavllo et al. [2019] 13.9 10.2 46.6 20.9 13.1 13.8

Ours 15.3 11.7 33.7 19.8 14.5 16.1
Table 2. Quantitative comparison to other joint position reconstruction
methods using P-MPJPE on HumanEva-I. (+) extra training data.
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Fig. 9. Bone lengths estimation. The maximum, minimum and average bone
length errors calculated for Human3.6M test subjects.

VNECT [2017b] Ours GT

Fig. 10. Comparison of global root position reconstruction accuracy. The
estimated (VNECT [Mehta et al. 2017b] - left column, ours - middle column)
and the GT positions (right column), (X t

r , Y
t
r , Z

t
r ), were extracted form 3

motions in the test data (top to bottom): directions, walking and eating.

achieved by the unit quaternions (52.69), but much smaller than Eu-
ler angles (116.33). However, by qualitatively evaluating the results
shown in the supplementary video, it can be seen that in practice,
the results with the 6D representation, contain self-rotations and
minor global shaking (note that the visualization is done without

the global root position, which is irrelevant to the comparison). In
contrast, in the quaternion results this phenomenon is mitigated. For
the given structure of the network, it seems that the network is more
challenged in the production of stable results when the output ma-
trix is larger. Thus, we pick unit quaternions as our representation
through all the experiments.

5.2 Ablation Study
In this section we evaluate and demonstrate the effectiveness of
different components and losses in our framework.

Simulated Confidence Map and Augmentation. In this experiment
we compare between our results in two different setups: with and
without the simulated confidence map. In order to measure the re-
sults, we used the Human3.6M dataset, which additionally to the
motion files contains video frames of the motion captured actors.
The frames enable to simulate the full pipeline that consists of 2D
position extraction (instead of 2D projection), and to evaluate the
results against ground truth. We used 239 raw videos from the test
data, extracted the 2D joint positions using [Cao et al. 2018], evalu-
ated the 3D output against the GT and reported the results in Table 3.
It can be seen that although the confidence map consideration de-
grades the results over the clean data, it improves the results of the
2D joints extracted from videos. A qualitative comparison can be
found in the supplementary video. It can be observed that without
the simulated confidence map, training over clean projected data,
leads to minor shakes, which are caused by the noisy input extracted
from the video frames and don’t appear in the training data. In ad-
dition, we perform an experiment without any data augmentation
and one without the T-pose loss, and report the results in Table 3,
which demonstrate the contribution of each step.

Rotational Velocities Discriminator. Here we evaluate the quality
of the motion reconstruction without the LQ_GAN loss term, using
the CMU test dataset which contains joint rotations for every sample.
A qualitative comparison can be found in the supplementary video.
Although the rotations are temporally smooth due to the existence
of temporal convolution filters, it can be seen that the absence of the
discriminator in our framework might yield unnatural self rotations
(especially around the roll axis) and inconsistent rotation velocities.
Figure 11 demonstrates the distribution of the temporal differences
of the learned rotations in three different setups: without a discrim-
ina tor, with a discriminator applied to rotations represented in unit
quaternions and a discriminator applied to rotations represented
in Euler angles. In all of the last experiments, the network outputs
unit quaternions, while appropriate conversions are performed for
the Euler angles experiment. The diagram depicts the quantity of
the magnitude of the rotational velocity, per axis, in Euler angles
representation. It can be seen that the distribution of the velocities
become closer to the distribution of the original data with the atten-
dance of the discriminator, for both representations, even though
no direct loss is applied to the output rotations. In addition, Ta-
ble 3 shows that the quaternion-based discriminator quantitatively
performed better than the Euler angle experiments, and this is our
chosen representation for the rest of our experiments.
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Method Error (GT) Error (CPN FT)
Baseline 52.69 54.59
Baseline with augmentation 52.32 54.41
Baseline with discriminator (quaternions) 69.78 73.48
Baseline with discriminator (Euler) 70.23 74.14
Baseline without T-pose loss 55.08 57.81

Table 3. Ablation study. Various comparisons to demonstrate the effec-
tiveness of different components and losses in our framework against the
baseline. The second column depicts the error obtained by clean 2D inputs
(projections of the 3D data), while the values in the third column obtained
form inputs that were extracted from real video frames using fine-tuned
CPN detector.

Left foot Left Hand

Fig. 11. Distribution of the magnitude of the joint rotational velocity of
the left foot (left) and left hand (right) in our CMU test data: GT (red),
outputs without a discriminator (yellow), outputs with a discriminator
applied to rotations represented in unit quaternions (green) and outputs
with a discriminator applied to rotations represented in Euler angle (blue).

Foot Contact Loss. We performed an experiment where the net-
work doesn’t consider the foot contact prediction and foot contact
loss and show its results in the supplementary video. It can be seen
that when no explicit attention is given to foot contact, perceptually
disturbing foot skating can be easily observed. In particular in our
case, where FK is applied in a successive order from the root to
the end-effectors, the accumulated error makes the unstable feet
even more noticeable. The experiment results in a foot contact er-
ror of 64.01 vs. error of 52.34 with the foot contact loss, while the
error is calculated by the Euclidean distance between the output
and the GT foot positions only in frames where there is a contact
with the ground and averaged along time. Qualitative evaluation in
the supplementary video demonstrates that the prediction helps to
mitigate foot sliding artifacts. In addition, as visually demonstrated
in Figure 12 (for some arbitrary slot of motion from our test data),
our experiments show that there is a high correlation between the
accuracy of the predicted foot label (bottom) to the error of the foot
position (top). Despite the fact that the network doesn’t make use of
the predicted foot contact labels, high contact prediction accuracy
yields better accuracy for feet positions.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK
We introduce a holistic approach that learns to extract a com-
plete 3D human motion from monocular video, instead of inferring

Fig. 12. Foot contact label prediction is correlated with foot positional error.
Top: foot positional error, bottom: foot contact label prediction accuracy (0 -
correct, 1 - incorrect).

a sequence of human poses. Using standard skinning and post-
processing, similar to the ones applied to data that was captured in
a controlled environment, we can achieve even higher quality ani-
mations that can be used in various applications and game engines,
as can be seen at the end of our supplementary video. Specifically,
while previous works perform pose estimation, reconstructing only
3D joint positions, our deep neural network, MotioNet, is trained to
recover a single skeleton with a sequence of 3D joint rotations, and,
consequently, the joint positions, as well. In general, joint positions
do not fully capture human motions. Human poses defined by joint
positions alone may not satisfy the fixed bone length constraint.
Even with the use of IK, ambiguities and temporal discontinuities
can still occur. In contrast, a fixed skeleton with a temporal sequence
of designated joint rotations completely characterizes the motion;
it is a native representation for animation synthesis, as it often
composes the subspace of the character rig space.
A key advantage of our approach is that it does not require IK:

both joint positions and joint rotations are learned from training
data of real human motions, rather than solved for. This leads to
a more natural human motion reconstruction, via the FK layer of
MotioNet. Furthermore, by inferring a single skeleton, MotioNet is
guaranteed to keep the bone lengths fixed along the entire motion
sequence. This provides a prior that facilitatesmotion reconstruction
in the presence of significant occlusion in the input video. Another
mechanismwe employ to address the occlusion challenge is to inject
random noise to the training input sequences and augment them
with confidence values whose distribution mimics that of confidence
values extracted by 2D pose estimation methods from videos in the
wild. The network is thus trained to cope with noise and occlusions,
akin to denoising autoencoders. Finally, since our system is trained
in the space of motions, the inherent smoothness of human motions
is learned from the data, achieving temporal coherence naturally.
By design, MotioNet only tracks the motion of a single human

character. The handling of multi-character motions, especially when
the characters undergo close interactions, is clearly challenging, and
we leave it for future work. Also, our current method may not ac-
curately recover the global positioning of the skeletons, e.g., when
there are significant camera movements. Another limitation is that
our network does not account for any physical constraints of the
human character or of the interactions between the character and
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the environment — the motion reconstruction is purely based on
analyzing and learning from visual cues, which could be billed as
an advantage as well. As a result, for example, there is no notion
of contact constraints in the system, thus the resulting motion may
suffer from foot sliding. This could potentially be solved by predict-
ing the foot contact conditions and using a loss function term that
evaluates the positional constraints as done by Lee et al. [2018b].

In other possible future works, we are interested in learning the
subspace of human motion from the videos, so that animators can
easily produce physically-plausible animations with little effort. We
are also interested in learning the differences between motion styles
from a large amount of video data that is currently publicly available.
A dataset with motion style annotations will be useful for creating
a generative model, where novel motion styles can be sampled.
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A NETWORK ARCHITECTURE
In this part we describe the layers of the components in our archi-
tecture (ES , EQ and D) and list them in Table 4.

In both ES and EQ there are three main parts: channel-expansion,
information-fusion and channel-shrink. In the expansion and shrink
parts, we use convolutional blocks, where the convolutions have
kernel size 1 and stride 1. In the information-fusion part, for EQ , we
apply three parallel convolutional blocks, where each has a different
kernel size, and then use adaptive average pooling to ensure that
the temporal length of the output sequence is equal to the input
one. For Es , we use sequential convolution blocks and then collapse
all the temporal information into a single vector with adaptive max
pooling.

Our discriminatorD is a linear component (similarly to Kanazawa et
al. [2018]), with an output value between 0 and 1, containing two
convolution layers and one fully connected layer.
In each convolution block, we use BatchNorm, LReLU, Dropout.

The kernel width and the stride are denoted by k and s , respec-
tively, and the number of input and output channels is given in the
rightmost column.

Name Layers k s in/out

EQ Conv + BatchNorm + LReLU + Dropout 1 1 34/2048
→ Conv + BatchNorm + LReLU + Dropout + Adap AP 5 3 2048/2048
→ Conv + BatchNorm + LReLU + Dropout + Adap AP 3 1 2048/2048
→ Conv + BatchNorm + LReLU + Dropout + Adap AP 1 1 2048/2048

Conv 1 1 1024/69

ES Conv + BatchNorm + LReLU + Dropout 1 1 34/2048
Conv + BatchNorm + LReLU + Dropout 5 1 2048/2048

↓ Conv + BatchNorm + LReLU + Dropout 3 1 2048/2048
Conv + BatchNorm + LReLU + Dropout 1 1 2048/2048
Adaptive MP - - -
Conv 1 1 2048/9

D Conv 1 1 4/16
↓ Conv 1 1 16/16

Linear − - 16/1

Table 4. MotioNet structure.→ denotes parallel convolutions while ↓ de-
notes sequential ones.
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