
ar
X

iv
:2

00
7.

01
11

6v
1

 [
cs

.C
R

]
 1

 J
ul

 2
02

0

A Method for Fast Computing the Algebraic Degree
of Boolean Functions

Valentin Bakoev

v.bakoev@ts.uni-vt.bg
“St. Cyril and St. Methodius" University

Veliko Tarnovo, Bulgaria

ABSTRACT

The algebraic degree of Boolean functions (or vectorial Boo-
lean functions) is an important cryptographic parameter that
should be computed by fast algorithms. They work in two
main ways: (1) by computing the algebraic normal form and
then searching the monomial of the highest degree in it, or
(2) by examination the algebraic properties of the true ta-
ble vector of a given function. We have already done four
basic steps in the study of the first way, and the second
one has been studied by other authors. Here we represent a
method for fast computing (the fastest way we know) the al-
gebraic degree of Boolean functions. It is a combination of
the most efficient components of these two ways and the
corresponding algorithms. The theoretical time complexi-
ties of the method are derived in each of the cases when
the Boolean function is represented in a byte-wise or in a
bitwise manner. They are of the same type Θ(n.2n) for a
Boolean function of n variables, but they have big differ-
ences between the constants in Θ-notation. The theoretical
and experimental results shown here demonstrate the ad-
vantages of the bitwise approach in computing the algebraic
degree—they are dozens of times faster than the byte-wise
approaches.

CCS CONCEPTS

• Security and privacy→ Software and application se-

curity; •Theoryof computation→Cryptographic prim-

itives; Design and analysis of algorithms; •Mathemat-

ics of computing→ Combinatorial algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7768-3/20/06. . . $15.00
https://doi.org/10.1145/3407982.3408005

KEYWORDS

Boolean function, algebraic normal form, algebraic degree,
weight-lexicographic order, bitwise algorithm, parity check

ACM Reference Format:

Valentin Bakoev. 2020. A Method for Fast Computing the Alge-
braic Degree of Boolean Functions. In International Conference on

Computer Systems and Technologies ’20 (CompSysTech ’20), June

19–20, 2020, Ruse, Bulgaria. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3407982.3408005

1 INTRODUCTION

The algebraic degree of Boolean function, or vectorial Boo-
lean function (called S-box), is an important cryptographic
parameter. It is used in the design of S-boxes for modern
block ciphers, pseudo-randomnumbers generators in stream
ciphers, hash functions, at the Reed-Muller codes, etc. [7–
9, 15]. When generating such functions, their cryptographic
parameters should be computed by fast algorithms. As faster
are these algorithms, more functions will be generated and
a better choice among them will be done. At first look, the
algorithms for computing the algebraic degree of Boolean
functions seem quite simple. Probably because of this, we
found only a few papers that consider such algorithms.
Let f be a Boolean function of n variables given by its

Truth Table vector TT (f). The algebraic degree of f can be
computed in two main ways. The first one computes the
Algebraic Normal Form (ANF) of f and selects the mono-
mial of the highest degree in it. The second way uses only
the TT (f), its weight, support, etc., their algebraic proper-
ties, and it does not need the ANF of f . The algorithms pro-
posed in [10] work in this way and use the property: the
algebraic degree of f is maximal iffTT (f) has an odd weight

(its proof is given in [7, 8, 10, 13]). Farther we refer to it
as OddWeight-MaxDeg property. It is satisfied for half of all
Boolean functions and it can be verified very easily and effi-
ciently. When the algorithms in [10] are compared with an
algorithm of the first type (i.e., based on ANF), some ques-
tions arise about the efficiency of algorithms used for com-
puting the ANF and thereafter the algebraic degree. How-
ever, we do not know better results concerning the second
approach.

http://arxiv.org/abs/2007.01116v1
https://doi.org/10.1145/3407982.3408005
https://doi.org/10.1145/3407982.3408005

CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria Valentin Bakoev

In [4] we represented our research on the first approach—
computing the algebraic degree of Boolean function by its
ANF. This paper is its natural continuations in two direc-
tions. The first one includes usage of theOddWeight-MaxDeg
property, and so it combines the two approaches for com-
puting the algebraic degree. The second one includes im-
provements outlined in the concluding section of [4]. In this
way, we obtain running times that are about 2 times better
than these in [4]. These results are represented in this ar-
ticle which is organized as follows. In Section 2, the basic
notions are given. In Section 3, the preliminary results con-
cerning the first way for computing the algebraic degree are
represented in short. The method we discuss here is repre-
sented in detail in Section 4. The experimental results from
numerous tests with algorithms of the method are shown in
Section 5. The last section contains some concluding notes.

2 BASIC NOTIONS

Here N and N+ = N\{0} are the set of natural numbers
and the set of positive natural numbers, correspondingly.
The set of all n-dimensional binary vectors is known as n-
dimensional Boolean cube and it is defined as {0, 1}n = {(x1,
x2, . . . , xn)| xi ∈ {0, 1},∀ i = 1, 2, . . . ,n}. So |{0, 1}n | =
|{0, 1}|n = 2n .
For an arbitrary vector α = (a1,a2, . . . ,an) ∈ {0, 1}n , the

natural number #α =
∑n

i=1 ai .2
n−i is called a serial number

of the vector α . So, the n-digit binary representation of #α
is a1a2 . . . an . A (Hamming) weight of α is the natural num-
ber wt(α), equal to the number of non-zero coordinates of
α , i.e., wt(α) =

∑n
i=1 ai . For any k ∈ N, k ≤ n, the set of

all n-dimensional binary vectors of weight k is called a k-
th layer of the n-dimensional Boolean cube. It is denoted
by Ln,k = {α | α ∈ {0, 1}n : wt(α) = k} and we have
|Ln,k | =

(n
k

)

, for k = 0, 1, . . . ,n. The family of all layers Ln =
{Ln,0, Ln,1, . . . , Ln,n} is a partition of the n-dimensional Boo-
lean cube into layers and so

∑n
k=0

(n
k

)

= 2n = |{0, 1}n |.
For arbitrary vectors α = (a1,a2, . . . ,an) and β = (b1,b2,

. . . ,bn) ∈ {0, 1}n , we say that “α precedes lexicographically

β" and denote it by α ≤ β , if α = β or if ∃k, 1 ≤ k ≤ n,
such that ak < bk and ai = bi , for all i < k . The relation
“≤" defines a total order in {0, 1}n , called lexicographic order.
The vectors of {0, 1}n are ordered lexicographically in the
sequence α0,α1, . . . α2n−1 if and only if the sequence of their
serial numbers is 0, 1, . . . , 2n − 1.
A Boolean function ofn variables is amapping f : {0, 1}n →

{0, 1}. So, if x1, x2, . . . , xn denote the variables of f , then f

maps any binary input x = (x1, x2, . . . , xn) ∈ {0, 1}n to a
single binary output y = f (x) ∈ {0, 1}. Any Boolean func-
tion f can be represented in a unique way by the vector
of its functional values, called a Truth Table vector and de-
noted by TT (f) = (f0, f1, . . . f2n−1), where fi = f (αi) and
αi is the i-th vector in the lexicographic order of {0, 1}n , for

i = 0, 1, . . . , 2n − 1. The set of all Boolean functions of n
variables is denoted by Bn and its size is |Bn | = 22

n

.
Another unique representation of the Boolean function

f ∈ Bn is the algebraic normal form (ANF) of f , which is a
multivariate polynomial

f (x1, x2, . . . , xn) =
⊕

γ ∈{0,1}n

a#γ x
γ
.

Here γ = (c1, c2, . . . , cn) ∈ {0, 1}n , the coefficient a#γ ∈

{0, 1}, and xγ means themonomialxc11 x
c2
2 . . . x

cn
n =

∏n
i=1 x

ci
i ,

where x0i = 1 and x1i = xi , for i = 1, 2, . . .n. A degree of the
monomial x = xc11 x

c2
2 . . . x

cn
n is the integer deд(x) = wt(γ)

which is the number of variables of the type x1i = xi . The al-
gebraic degree (or simply degree) of f is defined as deд(f) =
max{deд(xγ)| a#γ = 1}.

When f ∈ Bn and the TT (f) is given, the coefficients
a0,a1, . . . ,a2n−1 can be computed by a fast algorithm, called
anANF transform (ANFT)1. The ANFT is well studied, it is
derived in different ways by many authors, for example [7,
8, 12]. Its byte-wise implementation has a time-complexity
Θ(n.2n). The vector Af = (a0,a1, . . . ,a2n−1) ∈ {0, 1}n de-
notes the result obtained after the ANFT. When f ∈ Bn is
the constant zero function (i.e., TT (f) = (0, 0, . . . , 0)), its
ANF is Af = (0, 0, . . . , 0) and its algebraic degree is defined
as deд(f) = −∞. If f is the constant one function (TT (f) =
(1, 1, . . . , 1)), then Af = (1, 0, 0, . . . , 0) and deд(f) = 0.

3 PRELIMINARY RESULTS

We shall represent in short our preliminary investigations
and results which are focused in 4 directions. They concern
only the first approach—computing deд(f) after computing
the vector Af of arbitrary f ∈ Bn given by its TT (f). By us-
ing bitwise data representation and bitwise operations, sev-
eral efficient algorithms for computing deд(f) were devel-
oped.

Bitwise Implementation of the ANFT

A comprehensive study of the bitwise implementation of
the ANFT is proposed in [2]. This version of the algorithm
uses 64-bit computer words and then its time complexity is
Θ((9n−2).2n−7), and the space complexity is Θ(2n−6). As we
noted above, the byte-wise version of the ANFT algorithm
has a time-complexity Θ(n.2n), i.e, of the same type. How-
ever, the experimental results show that the bitwise version
of the algorithm is about 25 times faster in comparison to the
byte-wise version (for Boolean functions of 5, 6, 8, 10, 12, 16
variables and at the parameters of the tests used in [2]). In

1In dependence of the area of consideration, the same algorithm is called
also (fast) Möbius Transform, Zhegalkin Transform, Positive polarity Reed-
Muller Transform, etc.

A Method for Fast Computing the Algebraic Degree of Boolean Functions CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria

[5], analogous research of the parallel bitwise implementa-
tion of the ANFT has been done and similar results have
been obtained for its efficiency.

Distribution of Boolean Functions According to their

Algebraic Degrees

The OddWeight-MaxDeg property is well known, as it was
noted above. But not so popular is the property “When n

tends to infinity, random Boolean functions have almost su-
rely algebraic degrees at least n − 1." [8, p. 49]. We con-
sider that the complete enumeration and distribution of all
f ∈ Bn ,n ∈ N+, according to their algebraic degrees is
very important for our research. Their study was done in [3].
Some of the main results in it concern the number d(n,k) of
all Boolean functions f ∈ Bn : deд(f) = k .

Theorem 1. For any integers n ≥ 0 and 0 ≤ k ≤ n, the

number

d(n,k) =

{

1, if k = 0;

(2(
n

k) − 1).2
∑

k−1
i=0 (

n

i), if 1 ≤ k ≤ n.

Corollary 1. The number d(n,n − 1) tends to
1

2
· |Bn |

when n → ∞.

The main conclusion from these assertions is: when n →

∞, almost all f ∈ Bn have an algebraic degree n or n − 1. It
and the OddWeight-MaxDeg property have crucial meaning
when creating our algorithms.

Weight-Lexicographic Order of the Vectors of {0, 1}n

The simplest algorithm for computing the algebraic degree
of an arbitrary f ∈ Bn is an Exhaustive Search (refered as
ES algorithm): when Af = (a0,a1, . . . ,a2n−1) is given, it
checks consecutively whether ai = 1, for i = 0, 1, . . . , 2n − 1.
The algorithm selects the vector of maximal weight among
all vectors αi ∈ {0, 1}n such that ai = 1. Since the ES algo-
rithm checks exhaustively all values in Af (corresponding
to the lexicographic order of the vectors of {0, 1}n), it per-
forms Θ(2n) checks. However, if we use an algorithm that
checks the values ofAf according to the vectors’ weights, it
will finish after the first check for the half of all f ∈ Bn , or
after no more than n checks for almost all of the remaining
Boolean functions—according to themain conclusion drawn
above. The main parts of faster ways for computing the al-
gebraic degree are proposed in [1] where two important or-
ders of the vectors of {0, 1}n are studied. So, the sequence of
layers Ln,0, Ln,1, . . . , Ln,n defines an order of the vectors of
{0, 1}n according to their weights. The corresponding rela-
tion R<wt

is defined as follows: for arbitrary α , β ∈ {0, 1}n ,
(α , β) ∈ R<wt

ifwt(α) < wt(β) or if α = β . Then we say that
"α precedes by weight β" and write also α <wt β . So, R<wt

is
a partial order in {0, 1}n and we call it (and the order deter-
mined by it) aWeight-Order (WO).

For an arbitrary layer Ln,k = {α0,α1, . . . ,αm} of {0, 1}n ,
the sequence of serial numbers of the vectors of Ln,k is de-
fined as ln,k = #α0, #α1, . . . , #αm . If ln = ln,0, ln,1, . . . , ln,n
is the sequence of all serial numbers corresponding to the
vectors in the sequence of layers Ln,0, Ln,1, . . . , Ln,n , then
ln represents a WO of the vectors of {0, 1}n . We call ln a
WO sequence of {0, 1}n . One of all possible

∏n
k=0

(n
k

)

! WO
sequences deserves a special attention. It can be obtained by
two algorithms: the first one is similar to the known Bucket
sort algorithm [11], whereas the second algorithm is created
by using a special definition. In both ways, a total weight or-
der is obtained for the sequence ln , where the lexicographic
order is a second criterion for ordering the vectors of equal
weights. It is called a Weight-Lexicographic Order (WLO).

Table 1: WLO sequence ln , for n = 1, 2, 3, 4

n ln
1 0, 1
2 0, 1, 2, 3
3 0, 1, 2, 4, 3, 5, 6, 7
4 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15

Another way for representation of the vectors from the
layer Ln,k is by the characteristic vector mn,k of the layer

Ln,k , for k = 0, 1, . . . ,n. It is defined as follows: mn,k =

(c0, c1, . . . , c2n−1) ∈ {0, 1}2
n

, where:

ci =

{

0, if αi < Ln,k ,
1, if αi ∈ Ln,k ,

αi ∈ {0, 1}n , for i = 0, 1, . . . , 2n − 1.
The sequence of vectorsmn,k , for k = 0, 1, . . . ,n, can be

obtained by two algorithms again. The first one put units
in all bits ofmn,k whose coordinates are determined by the
members of ln,k , for k = 0, 1, . . . ,n,. The second algorithm
uses a special definition. These vectors are used as masks

(the notation m comes from mask) when the algebraic de-
gree is computed by a bitwise algorithm. It determinesdeд(f)
by computing the conjunction Af ∧ mn,k , for k = n,n −

1, . . . , 0, until Af ∧mn,k = 0. The first value of k such that
Af ∧mn,k > 0 means that deд(f) = k .

Fast Computing the Algebraic Degree of Boolean

Functions

In [4] we consider two approaches in computing the alge-
braic degree: a byte-wise and a bitwise. The first approach
includes ES algorithm and the so called Byte-wise WLO al-

gorithm. Let f ∈ Bn be given by the vector TT (f). Suppose
that ln = (i0, i1, . . . , i2n−1) which is a permutation of all inte-
gers between 0 and 2n−1, andAf = (a0,a1, . . . ,a2n−1) are al-
ready computed. The Byte-wise WLO algorithm checks the
values of Af by using the members of the sequence ln , from

CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria Valentin Bakoev

the last to the first one. So, for j = i2n−1, i2n−2, . . . , 2, 1, 0, it
checks consecutively the j-th coordinate ofAf , until it is= 0.
If all coordinates of Af are = 0, then f is the constant zero
function. Otherwise, if i j is the first coordinate of Af which
is = 1 and if i j is a member of the subsequence ln,k , then the
algorithm stops and returns k since k = deд(f). The time
complexity of this algorithm isO(2n) in the general case, al-
though the algorithm makes no more than n + 1 checks at
almost all f ∈ Bn , especially when n grows.
A representative of the bitwise approach is the Bitwise

WLO algorithm. We accept that it always uses masks. The
idea of how it works was just given above. When Af occu-
pies one computer word, the algorithm uses n+ 1 masks. So
it performs at most n + 1 steps and its time complexity is
O(n), which is of logarithmic type (n = log2 2

n) with re-
spect to the input size. When the size of computer word
is 64 = 26 bits and f is a function of n > 6 variables, Af

occupies s = 2n−6 computer words. So, mn,k will occupy s
computer words also and the computing Af ∧mn,k will be
done in s steps, for k = n,n − 1, . . . , 0. If on some of these
steps the conjunction between the corresponding computer
words of Af and mn,k is greater than zero, the algorithm
returns k and stops. So, the general time complexity of the
algorithm is O(n).O(s) = O(n.2n−6). For details, the reader
may refer to Example 1 in [4] which demonstrates how the
WLO algorithms work. In the following C/C++ code of the
BitwiseWLO algorithm, themasks are represented by a two-
dimensional array. The number of its rows is n_vars + 1

(where n_vars is the number of variables), and the num-
ber of columns is equal to the number of computer words
(n_cwords) used for the representation of Af .

Listing 1: Bitwise WLO algorithm

typedef unsigned long long u l l ;

int max_deg_by_masks (u l l A_f []) {

for (int row= n_var s ; row >= 0 ; row−−) {

for (int c o l = 0 ; c o l < n_cwords ; c o l ++) {

i f (A_f [c o l] & masks [row] [c o l])

return row ; / / t h e l a y e r ' s number

} / / which i s = deg (f)

}

return −1; / / when f i s t h e 0− c o n s t a n t

}

Numerous tests have been conducted to compare the effi-
ciency of algorithms considered. A test file of 108 randomly
generated unsigned integers (in 64-bit computer words) has
been used as input, i.e., as TT (f)-s. Depending on the num-
ber of variables n, the serial function to be tested is formed
by reading s consecutive integers from the file and so 108/s
such functions are tested. The algebraic degrees of Boolean
functions of n = 5, 6, 8, 10, 12 and 16 variables have been
computed after computing theAf of the corresponding func-
tions. The experimental results show that the Bitwise WLO

algorithm is 20 and more times faster than the Byte-wise al-
gorithms. The conclusions after these results were used for
extensions and improvements of the algorithms, as well as
the tests’ parameters.

4 A METHOD FOR FAST COMPUTING THE

ALGEBRAIC DEGREE

The continuation of our research involves the OddWeight-
MaxDeg property. When f ∈ Bn , the weight of TT (f) can
be computed efficiently. Sincewt(TT (f)) is odd for half f ∈

Bn , they all have an algebraic degree = n. So this property is
part of the algorithms proposed in [10] which represent the
second way of computing the algebraic degree. But using
the same algorithms for the remaining half f ∈ Bn is not
efficient enough—this conclusion follows from the analysis
of the numerical results (in Sect. 4 of [10]) and after compar-
ing them with the results from [4]. That is why for this half
of Boolean functions we will use the first way of comput-
ing the algebraic degree and thus we combine both ways. In
addition, and as we have shown in Section 3, the first way
includes several algorithms of different types, their mathe-
matical bases are also different [1–4]. These are the reasons
to talk about a method that integrates these algorithms in-
stead of just talking about algorithms.
The usage ofOddWeight-MaxDeg property in ourmethod

means efficient computing of wt(TT (f)). Such algorithms
are considered in [14]. When f ∈ Bn is represented by its
TT (f) in a byte-wise manner, the computing of its weight
needs Θ(2n) operations. When TT (f) is represented in s =
2n−6 computer words (of 64 bits), wt(TT (f)) can be com-
puted efficiently by Θ(6.2n−6) operations (as it is shown in
[14]), or by Θ(4.2n−6) operations if a look-up table2 of size
216 is used. However, the exact value of the weight is not
necessary, it is only important to know whether it is an odd
number or not. This can be achieved by an algorithm that
computes a Parity Check (PC) ofTT (f). We developed such
an algorithm, referred to as a bitwise PC algorithm. Its in-
put is the vectorTT (f) represented by the array TT_fof s un-
signed 64-bit integers (n_cwords represents s again). Here
is its C/C++ code.

Listing 2: Bitwise PC algorithm

int p a r i t y _ c h e c k (u l l TT_f []) {

int sum= TT_f [0] ;

for (int i = 1 ; i < n_cwords ; i ++) {

sum ^= TT_f [i] ;

}

for (int i = 3 2 ; i > 0 ; i >>= 1) {

sum ^= (sum >> i) ;

}

return (sum & 1) ; / / 1 i f wt (TT (f)) i s odd

2An array w where the weight of integer i is precomputed and stored in
w [i], for i = 0, 1, . . . , 65535, as it is shown in [1, 6].

A Method for Fast Computing the Algebraic Degree of Boolean Functions CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria

}

Firstly, the bitwise PC algorithm performs bitwise XORs
(sums modulo 2) between all elements of the array TT_f and
stores the result in the variable sum. Thus, the leftmost bit of
sum is a result of sum modulo 2 between the leftmost bits of
all elements of TT_f, the second bit of sum is a result of sum
modulo 2 between the second bits of all elements of TT_f,
etc. So, after s − 1 bitwise XORs, the bits of sum contain the
result of all XORs between the corresponding bits of the el-
ements of TT_f. Secondly (by the second cycle), the bitwise
PC algorithm continues with summodulo 2 between the left
and right half of sum, i.e., sum ^= (sum >> 32). Let the bits
of sum be numbered by 0, 1, . . . , 63, from left to the right.
Thus the right half of sum contains the result of all XORs
so far, as it is obtained by XORs between the corresponding
bits—these with numbers: 0 and 32; 1 and 33; etc., 31 and 63
where the bits of bold numbers contain the result. The next
step is sum ^= (sum >> 16) because we are interested in
the result between the corresponding bits in the the right-
most 2 (i.e., third and fourth) quarters of sum—these with
numbers: 32 and 48; 33 and 49; etc., 47 and 63. Analogously,
the PC algorithm continues with sum ^= (sum >> 8), etc.,
sum ^= (sum >> 1). After the last XOR the rightmost
bit of sum is the parity check bit—its value is 1 if TT (f)
has an odd weight, otherwise it is 0. So, the PC algorithm
executes 6 additional steps and its total time complexity is
Θ(s − 1 + 6) = Θ(2n−6). Thus, it should be faster than the
algorithms for computing the weight of TT (f) and the ex-
perimental results confirm this theoretical conclusion. We
note the correctness of the PC algorithm follows from the
associative property of the XOR operation, the appropriate
choice of pairs of bits that should be XOR-ed and where (in
which bits) the result is stored. The correctness can be rig-
orously proven by using these arguments.
Let f ∈ Bn is represented by its TT (f) in a bitwiseman-

ner. In this case, the method for fast computing the alge-
braic degree of f works as follows.
Step 1. Use the PC algorithm to compute the PC bit ofTT (f).
If its value is 1, then return n (= deд(f)) and stop.
Step 2. Use the bitwise ANFT algorithm and compute Af .
Step 3. Use the Bitwise WLO algorithm to compute deд(f).
In [4] we outlined a new idea for another bitwise algo-

rithm—to check the bits of Af according to the WLO se-
quence. So it will be analogous to the byte-wise WLO al-
gorithm and it will have the same time complexity O(2n).
We first ignored this idea, since the time complexity of the
bitwise WLO algorithm is O(n.2n−6) and n.2n−6 < 2n when
6 ≤ n < 64. But after that, we realized that for almost 100%
of all f ∈ Bn , the bitwise WLO algorithm performsO(2n−6)
checks, whereas the byte-wise WLO algorithm (as well as

the new bitwise algorithm) performs O(n) checks. In addi-
tion, checking the serial bit of Af in accordance with the
WLO sequence requires a maximum of 5 operations. So, the
new bitwise algorithm will have a small constant hidden in
the O-notation. We call it Check Bits in WLO algorithm, or
shortly CB WLO algorithm. Obviously, the bitwise WLO
algorithm will be faster than the CB WLO algorithm for a
small n (say n ≤ 8), but for n = 16 it will perform much
more operations than the CB WLO algorithm. Thus, the CB
WLO algorithm can be used instead of the Bitwise WLO al-
gorithm in Step 3 of the method discussed. The results of
such a replacement can be seen in the next section.
The total time complexity of the method is a sum of the

time complexities of the algorithms in its steps—for the bit-
wise version in the general case we have: Θ(2n−6)+Θ((9n −
2).2n−7) +O(2n) = Θ(n.2n).
When f ∈ Bn is represented by its TT (f) in a byte-wise

manner, the method works with corresponding byte-wise
algorithms.
Step 1. Use a byte-wise algorithm that computeswt(TT (f)).
If it is an odd number, then return n and stop.
Step 2. Use the byte-wise ANFT algorithm and computeAf .
Step3. Use the byte-wiseWLOalgorithm to computedeд(f).
In this case, the total time complexity of the method is:

Θ(2n) + Θ(n.2n) + O(2n) = Θ(n.2n). So, in both cases we
obtained time complexities of the same type. The differences
between them are in the constants hidden in theΘ-notation.

5 EXPERIMENTAL RESULTS

We have conducted a lot of tests to verify and understand
what these theoretical time complexities mean in practice.
To obtain more precise results in comparison with these
in [4], we have done some essential changes in the tests’
parameters, methodology of testing, etc. So, we used the
largest test file (of size ≈ 14 GB) which contains 109 ran-
domly generated unsigned integers, each in a single 64-bit
computerword. The file was checked for representativeness,
as shown in [3]. Other important tests’ parameters are:

(1) Hardware parameters: Intel Pentium CPU G4400, 3.3
GHz; the RAM was enlarged to 16 GB, so that the
whole test file can be read and located in it.

(2) Software parameters: Windows 10 OS and MVS Ex-
press 2015 for Windows Desktop. The algorithms are
written in C++, in a single program which is built in
Release mode as 64-bit console application (when the
program is built as 32-bit console application, it runs
slower).

(3) Methodology of testing: all tests were executed 5 times,
on the same computer, under the same conditions, and
without an Internet connection. The smallest and the
biggest running time are ignored, and the remaining 3

CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria Valentin Bakoev

running times are taken on average. All results were
checked for coincidence. The time for conversion to
byte-wise representation is excluded from all running
times in the following tables.

Improvements in the testing methodology have resulted
in better and more reliable results. For example, the maxi-
mum difference between the three test results and their av-
erage is less than 0.01% (in the 72 basic tests and 54 inter-
mediate tests). There are only 5 exceptions—for 5 tests this
value is less than 0.4%.

A scheme of the computations and used algorithms in the
two versions of the method is shown in Fig. 1. If we compare
it with the corresponding Figure 1 in [4] we will notice the
evolution and improvements we discuss here. When Boo-
lean functions (BFs) of 6 and more variables are tested, 2n−6

consecutive integers are taken from the dynamic array and
so they form the serial Boolean function. The results from
the tests are shown in Table 2 and Table 3 so that the byte-
wise and bitwise versions can be easily compared. On the
other hand, two more cases are tested and shown in the
tables: (1) when PC (or computing the weight) is not per-
formed and (2) when it is performed before the execution
of the remaining algorithms. In this way, we can compare
the running times when the algebraic degree is computed
by the algorithms from [4] and when it is computed by the
method under consideration.

6 CONCLUSIONS

Here we represented and discussed a method for fast com-
puting the algebraic degree of Boolean functions and its byte-
wise and bitwise versions. For each of them, we derived its
total time complexity. The experimental results confirmed
the theoretical conclusions—the bitwise version of the me-
thod (or algorithms) is dozens of times faster than the corre-
sponding byte-wise version, especially when n grows. Some
other conclusions are:

• The total running time only of ANFT + ES algorithms
grows simultaneously with the growth of n. But this
is not true for the total running times of the remain-
ing byte-wise algorithms, they have local minimums
when n = 10. For all bitwise algorithms, the growth of
n does not correspond to the growth of their total run-
ning times—there are local minimums when n = 10,
for ANFT +WLO algorithms, and when n = 12, for all
remaining algorithms. These interesting facts need to
be analyzed and explained.

• There are intermediate experimental results which are
not shown in the tables. For example, the conversion
from byte-wise to a bitwise representation ofTT (f) is
a very expensive operation, its running time is more
than 2 times higher than the total running time of PC

Figure 1: Scheme of performance of the tests

+ ANFT + WLO (byte-wise) algorithms. That is why
the byte-wise version of the method should be used
when the Boolean functions are represented in a byte-
wise manner at the input—for example, when they are
generated by such algorithms.

Probably some improvements to the algorithms in theme-
thod will be achieved by the processor instructions for sim-
ulating 128-bit, 256-bit or more bit arithmetic. Such experi-
ments are forthcoming.

ACKNOWLEDGMENT

This work was partially supported by the Research Fund of
the University of Veliko Tarnovo (Bulgaria) under contract
No FSD-31-299-05/05.05.2020.

REFERENCES

[1] Bakoev V., Some Problems and Algorithms Related to the Weight
Order Relation on the n-dimensional Boolean Cube. [v. 3] 2020.
https://arxiv.org/abs/1811.04421

[2] Bakoev V., Fast Bitwise Implementation of theAlgebraic Normal Form
Transform, Serdica Journal of Computing, 11 (1), 45–57 (2017)

A Method for Fast Computing the Algebraic Degree of Boolean Functions CompSysTech ’20, June 19–20, 2020, Ruse, Bulgaria

Table 2: Experimental results for the byte-wise algorithms

Byte-wise Pure running time in seconds for Boolean functions of:
implementation 6 vars, 7 vars, 8 vars, 10 vars, 11 vars, 12 vars, 14 vars, 15 vars 16 vars,

of: 109 BFs 109/2 BFs 109/4 BFs 109/24 BFs 109/25 BFs 109/26 BFs 109/28 BFs 109/29 BFs 976 562 BFs

ANFT+ES 343.278 350.640 355.627 355.744 370.639 397.470 402.885 400.680 406.506
ANFT+WLO 158.571 142.279 141.791 123.915 124.867 142.886 149.825 146.783 149.816
PC+ANFT+ES 180.389 183.237 184.748 174.291 190.840 209.423 199.476 197.720 206.412

PC+ANFT+WLO 83.969 75.004 70.456 45.610 47.086 65.336 71.970 71.052 76.902

Table 3: Experimental results for the bitwise algorithms

Bitwise Pure running time in seconds for Boolean functions of:
implementation 6 vars, 7 vars, 8 vars, 10 vars, 11 vars, 12 vars, 14 vars, 15 vars 16 vars,

of: 109 BFs 109/2 BFs 109/4 BFs 109/24 BFs 109/25 BFs 109/26 BFs 109/28 BFs 109/29 BFs 976 562 BFs

ANFT+WLO 10.954 7.916 6.852 6.301 6.327 6.393 6.928 6.940 6.596
ANFT+CB WLO 16.632 10.928 8.197 5.896 5.667 5.662 6.016 6.145 6.161
PC+ANFT+WLO 10.373 7.094 5.184 4.096 3.673 3.493 3.623 3.671 3.668

PC+ANFT+CB WLO 16.005 9.891 6.520 4.124 3.616 3.402 3.507 3.559 3.563

[3] Bakoev V., Distribution of the Boolean Functions According to their
Algebraic Degrees, Serdica Journal of Computing, 13 (1-2), 17–26
(2019)

[4] Bakoev V., Fast Computing the Algebraic Degree of Boolean Func-
tions, In: ĆirićM., DrosteM., Pin J.-É. (eds) Algebraic Informatics. CAI
2019. Lecture Notes in Computer Science, Vol. 11545 LNCS, pp. 50–63.
Springer Verlag. https://doi.org/10.1007/978-3-030-21363-3_5.

[5] Bikov D., and I. Bouyukliev, Parallel Fast Möbius (Reed-Muller) Trans-
form and its Implementation with CUDA on GPUs. In: PASCO 2017,
Proc. of the Intern.Workshop on Parallel Symbolic Computation, July
23–24 (2017), pp. 5:1-5:6, Kaiserslautern, Germany

[6] Bouyukliev I. and V. Bakoev, Efficient Computing of Some Vector Op-
erations over GF(3) and GF(4), Serdica Journal of Computing, 2 (2),
137–144 (2008)

[7] Canteaut A., Lecture notes on Cryptographic Boolean Functions. In-
ria, Paris, France (2016)

[8] Carlet C., Boolean Functions for Cryptography and Error Correcting
Codes. In: Crama Y., P. L. Hammer (Eds.), Boolean Models and Meth-
ods in Mathematics, Computer Science, and Engineering. Cambridge

Univ. Press, pp. 257–397 (2010)
[9] Carlet C., Vectorial Boolean Functions for Cryptography. In: Crama Y.,

P. L. Hammer (Eds.), Boolean Models and Methods in Mathematics,
Computer Science, and Engineering. Cambridge Univ. Press, pp. 398–
469 (2010)

[10] Climent J.-J., F. García, and V. Requena, The degree of a Boolean func-
tion and some algebraic properties of its support. In: Data Manage-
ment and Security, WIT Press, pp. 25–36 (2013)

[11] Cormen T., Ch. Leiserson, R. Rivest, and Cl. Stein, Introduction to Al-

gorithms, Third Edition, 2009, The MIT Press.
[12] Joux A., Algorithmic Cryptanalysis. Chapman & Hall/CRC Cryptog-

raphy and Network Security (2012).
[13] MacWilliams F.J., and N.J.A. Sloane, The Theory of Error-Correcting

Codes. Amsterdam: North-Holland, 1978.
[14] Reingold E., J. Nievergelt, and N. Deo, Combinatorial algorithms, The-

ory and practice, Prentice-Hall, New Jersey, 1977.
[15] Çalik Ç., Computing Cryptographic Properties of Boolean Functions

from the Algebraic Normal Form Representation, Ph.D. Thesis, Middle
East Technical University, Ankara, Turkey, 2013.

	Abstract
	1 Introduction
	2 Basic Notions
	3 Preliminary Results
	Bitwise Implementation of the ANFT
	Distribution of Boolean Functions According to their Algebraic Degrees
	Weight-Lexicographic Order of the Vectors of {0,1}n
	Fast Computing the Algebraic Degree of Boolean Functions

	4 A Method for Fast Computing the Algebraic Degree
	5 Experimental Results
	6 Conclusions
	References

