
Smartphone-assisted Automatic Indoor Localization of
BLE-enabled Appliances Using BLE and GNSS Signals
Masayuki Fujiwara
Daikin Industries, Ltd.

Tomoya Nakatani
Graduate School of Information
Science and Technology, Osaka

University

Yiming Tian
Graduate School of Information
Science and Technology, Osaka

University

Joseph Korpela
Graduate School of Information
Science and Technology, Osaka

University

Takuya Maekawa
Graduate School of Information
Science and Technology, Osaka

University

Takahiro Hara
Graduate School of Information
Science and Technology, Osaka

University

ABSTRACT
Information about indoor locations of intelligent appliances is nec-
essary to provide smart services by collaboration across the ap-
pliances. This study proposes a method to automatically estimate
the indoor coordinates of Bluetooth Low Energy (BLE)-enabled
appliances with the help of unlabeled BLE and global navigation
satellite system (GNSS) data obtained from a smartphone in the
environment (e.g., a smartphone carried by a person working or
living in the environment). We analyze GNSS data to detect when
the smartphone is located near a window, and then estimate the
orientation of the outer wall into which that window is installed.
By combining the rough indoor positions of the smartphone with
the distances to each appliance estimated by BLE signals, we esti-
mate the absolute coordinates of the appliances. We have evaluated
the proposed method in real-world environments and achieved an
average error distance of about 3 meters.

CCS CONCEPTS
•Human-centered computing→Ubiquitous computing;Mo-
bile computing.

KEYWORDS
Context recognition, indoor positioning, BLE signal, GNSS
ACM Reference Format:
Masayuki Fujiwara, Tomoya Nakatani, Yiming Tian, Joseph Korpela, Takuya
Maekawa, and Takahiro Hara. 2020. Smartphone-assisted Automatic Indoor
Localization of BLE-enabled Appliances Using BLE and GNSS Signals. In The
7th ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation (BuildSys ’20), November 18–20, 2020, Virtual Event,
Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3408308.
3427981

1 INTRODUCTION
Many appliances, such as air conditioners, lights, displays, and re-
frigerators, can now be equipped with wireless modules, such as

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
BuildSys ’20, November 18–20, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8061-4/20/11. . . $15.00
https://doi.org/10.1145/3408308.3427981

Bluetooth Low Energy (BLE), enabling smarter services by allowing
collaboration across appliances. By setting the indoor coordinates
of each appliance in a floor map, we can provide smarter services
via the appliances [2, 6, 11, 15, 16, 24]. However, in locations where
many appliances are installed, manual setting of the indoor co-
ordinates for each of the appliances can be burdensome. In our
company, for example, it takes a few days for several employees
to manually set the indoor coordinates of the smart appliances
(associating network addresses of air conditioners with the coor-
dinates) in a medium-sized building, incurring substantial costs
related to sending the employees to each building. Because there
are numerous buildings with no information about the coordinates
of appliances all over the world, manual settings of the information
can incur astronomical costs.

Once the positions of air conditioners and sensor nodes (e.g.,
temperature, humidity, and CO2 sensors) in an office are given, for
example, we can achieve sub-room-level air quality maintenance in
the office by collaboration across the air conditioners. Even when an
air conditioner in the office does not work, the other air conditioners
can collaboratively work to maintain the temperature around the
broken air conditioner. Information about positions of the static
appliances can also be used to automatically construct an indoor
positioning infrastructure for a smartphone in the environment
based on the trilateration by leveraging the distance between the
smartphone and each appliance estimated by BLE.

In this study, we propose a new method for automatically esti-
mating the indoor coordinates of BLE-enabled appliances in the
coordinate system of a floor map. Here we leverage unlabeled BLE
and global navigation satellite system (GNSS) data that is auto-
matically obtained from a smartphone in that environment (e.g., a
smartphone carried by a person living or working in the environ-
ment). In brief, we detect when the smartphone is near a window
and then roughly estimate the smartphone’s position as being along
that window’s wall. In addition, we estimate appliance-to-appliance
distances and appliance-to-smartphone distances using BLE signal
strengths. We then estimate the indoor coordinates of the appli-
ances by fusing these information.

In detail, we employ GNSS data to detect when the smartphone
is located close to a window. This is done based on our assumption
that “signal strengths from GPS satellites are strongest at positions
close to a window.” We then estimate the orientation of the outer
wall into which that window is installed. This is done based on our

80

https://doi.org/10.1145/3408308.3427981
https://doi.org/10.1145/3408308.3427981
https://doi.org/10.1145/3408308.3427981
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3408308.3427981&domain=pdf&date_stamp=2020-11-18

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fujiwara et al.

assumption that “signal strengths from a GPS satellite at a particular
azimuth are strongest near the outer wall whose orientation aligns
with that azimuth” as shown in Fig. 1. In both cases, we conduct
supervised machine learning using an environment-independent
approach in which the labeled training data is collected in environ-
ments other than the environment of interest.

�����P

�
�
��
�P

��

��

��

��

��

�

6
LJ
Q
D
O�V
WUH
Q
J
WK
��G
E
�+
]
�

E}�Á]v�}Á

E
}
�Á
]v
�
}
Á

Figure 1: Aheatmap generated from signals observed froma
GPS satellite. Each gray circle indicates an observation point.
During data collection, the elevation angle of the satellite
changed from 26 to 29 degrees (above the horizon) while the
azimuth of the satellite changed from 49 to 59 degrees (rela-
tive to north).

Having detected that the smartphone is near a window and de-
termined the orientation of the nearest wall, we then estimate the
distances between each appliance and the smartphone’s position
using BLE signals. Finally, we compute the absolute coordinates
of the appliances by feeding the above estimated information into
an optimization solver. Specifically, we optimize the positions of
the appliances and the smartphone to best fit (i) the estimated
appliance-to-appliance distances and (ii) the estimated appliance-to-
smartphone distances, with the smartphone’s position constrained
to any point along the wall in the floor map that matches our de-
tected wall’s orientation. Note that, the number of parameters to
optimize in this problem is large, which makes it difficult to avoid
falling into a local minimum. Therefore, we initialize the optimiza-
tion parameters based on the estimated relative coordinates of the
appliances, which are close enough to the final results (absolute co-
ordinates) to allow conversion to the final results by simply shifting
and rotating the relative coordinates.
Contributions: (i) To the best of our knowledge, this is the first
method proposed for automatically estimating the indoor coordi-
nates of BLE-enabled appliances using unlabeled BLE and GNSS
data. Our idea of leveraging information about window-side and
window orientation acquired from GNSS signals is new. We design
a novel pipeline of processing and fusing multi-modal sensor data
as well as of optimization procedures that enables to avoid falling
into a local minimum. (ii) To our knowledge, this is the first study
for detecting when a smartphone is located close to a window as

well as estimating the orientation of the outer wall nearest to the
smartphone based on GNSS data.

2 RELATEDWORK
2.1 Indoor positioning with RF signals
RF-based fingerprinting approach requires the construction of a
database consisting of RSSI vectors matched with indoor coordi-
nates [5, 12, 21], with a significant cost incurred for the site survey
needed to construct the database. Meanwhile, the trilateration ap-
proach uses the distance between a signal receiver (such as a smart-
phone) and a reference transmitter (such as a BLE tag) [22, 23, 25],
which also incurs a significant cost due to the site survey needed
to set the coordinates of reference transmitters. In contrast, this
study proposes a method for automatically estimating the indoor
positions of BLE-enabled appliances.

2.2 Distance estimation with RF signals
Because BLE (and Wi-Fi) signals are a type of electromagnetic
wave, the aforementioned trilateration studies take advantage of
the electromagnetic attenuation of the signals in order to estimate
the distance between the transmitter and the receiver based on
the signal strength. In contrast, Nakatani et al. [17] used machine
learning to estimate the distance between two signal receivers
(smartphones) based on the signals received from ambient Wi-Fi
access points (APs).

2.3 Indoor positioning with GPS
Several studies have investigated indoor positioning using GPS.
Kjærgaard et al. [10] investigated the positioning performance of a
dedicated GPS receiver and mobile phones in indoor environments.
While the positioning error of the dedicated receiver was below 10
meters, the error of GPS receivers embedded in mobile phones was
considerable higher. Ochiai et al. [3, 18] achieved indoor position-
ing using GPS signals based on a fingerprinting approach, which
required a site survey to be conducted in the target environment.
In contrast, we have developed environment-independent models
for window proximity detection and wall orientation classification
based on GPS signals.

3 APPLIANCE LOCALIZATION METHOD
3.1 Preliminaries
In this study, we assume each appliance is equipped with a BLE
module. We also assume that each appliance emits BLE advertising
signals as well as observes BLE signal information from the other
BLE appliances. In addition, we assume that a smartphone in the
environment of interest automatically collects unlabeled GNSS and
BLE signal information with a background process (e.g., a smart-
phone carried by a person living or working in the environment).
The GNSS data consists of the elevation angle, azimuth, and signal
strength of each visible satellite observed at about 1 Hz. Further-
more, we assume that rough information about the floor map of
the environment of interest (outer shape and orientation) is given.
In this study, we define the orientation of a wall to be the angle
(relative to north) of the line that runs perpendicular to the surface
of that wall. We then use the sensor data (BLE and GNSS data)

81

Smartphone-assisted Automatic Indoor Localization of BLE-enabled Appliances Using BLE and GNSS Signals BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

:LQGRZ�

SUR[LPLW\�

GHWHFWLRQ

:DOO�

RULHQWDWLRQ�

FODVVLILFDWLRQ

'LVWDQFH

HVWLPDWLRQ

"

"

3RVLWLRQ�

HVWLPDWLRQ

Figure 2: Overview of the proposed method

collected by the appliances and smartphone for a given period as
inputs to our method.

3.2 Overview
Fig. 2 shows an overview of the proposed method which consists
of the following procedures: (i) window proximity detection, (ii)
wall orientation classification, (iii) distance estimation, and (iv) po-
sition estimation. In the window proximity detection procedure,
we detect when the smartphone is located close to a window. In
the wall orientation classification procedure, we estimate the ori-
entation of the outer wall into which the window detected in the
previous procedure is installed. In the distance estimation proce-
dure, we estimate the appliance-to-appliance distances as well as
the appliance-to-smartphone distances. In the position estimation
procedure, we aggregate the above distance estimates and locate
the appliances by solving an optimization problem.

3.3 Window proximity detection
Although it is difficult to provide reliable positioning for a GPS
receiver (smartphone) in an indoor environment, the receiver can
still receive signals from a few GPS satellites when it is within close
proximity of a window. The proposed method leverages this fact
to perform window proximity detection, with (window proximity)
referring to an area within 𝑑𝑤-meters from a window. Because the
signals received from a GPS satellite depend on various factors
such as: the satellite’s elevation/azimuth, the indoor position of
the receiver, and the presence of surrounding buildings; we first
collect real-world data in various environments and then employ
supervised machine learning to detect when the smartphone is near
a window.

3.3.1 Preprocessing. Given a time window of GPS signals, we first
detect satellites with low elevation angles (i.e., average angle lower
than 𝑑𝑒𝑙 degrees) and remove them from the window, since such
satellites are more likely to include outlying signals caused by
surrounding buildings. We then smooth the time series of signal
strengths within the time window for each satellite by employing
a median filter.

3.3.2 Feature extraction. We extract the following features from
each preprocessed time window and concatenate the features to
construct a feature vector.
- Maximum signal strength: The strongest signal strength observed
from among the all satellites within the time window. Fig. 3 shows a
heat map generated by calculating this feature for each observation
point in an example environment, indicating that the values for
this feature seem to be strongest at points near outer walls.

��

��

��

��

��

�

6
LJ
Q
D
O�V
WUH
Q
J
WK
��G
E
�+
]
�

Figure 3: A heat map generated from feature values calcu-
lated for each observation point in an environment where
the strongest signal strength observed from among all the
satellites within a time window is used as the feature. Each
gray circle indicates an observation point.

Building

Strength: 27

Strength: 34 Strength: 31

Strength: 23

Strength: 26

Strength: 21

Strength: 9

Strength: 19

Strength: 15 Strength: 20

Building

Strength: 34

Strength: 26

Strength: 20

Strength: 19

Figure 4: Computing features for window proximity detec-
tion: grouping satellites and finding the maximum signal
strength.

- Median signal strength per orientation: As shown in Fig. 4, we first
group satellites within the time window based on their reported
azimuths, with satellites assigned to a group if their azimuth is
between 𝑜𝑖 − 45 and 𝑜𝑖 + 45 degrees, where 𝑜𝑖 is the orientation of
one of the walls in the environment. We then find the maximum
signal strength for each group and finally compute the median of
those four values and use it as a feature. We compute this feature
because in cases where a satellite is at low elevation and aligned
well with the nearest wall’s orientation, it is possible to receive
high signal strengths even when not within 𝑑𝑤-meters from the
window. In such cases, it is helpful to check the signal strengths
from orientations other than the maximum orientation, since they
tend to drop more quickly with increasing 𝑑𝑤 .
- Median signal strength for the maximum orientation: Just as with
median signal strength per orientation, we first group the satellites
within the time window based on their reported azimuths. How-
ever, in this case, we find the group that contains the satellite that
corresponds to the time window’s maximum signal strength and
then compute the median signal strength for the satellites within
that group. We include this feature since we expect the satellites
whose azimuth matches the nearest wall’s orientation to have the
most reliable signals.

3.3.3 Detection. We create our training dataset by labeling feature
vectors that were collected in training environments. We label
feature vectors in the training dataset as “window-side” when they
were collected in an area within 𝑑𝑤-meters from a window, and
as “not” otherwise. (𝑑𝑤 = 0.5) We then use these labeled vectors to
train a binary classifier using the random forest algorithm [1] in

82

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fujiwara et al.

Building

Feature
extraction

Binary
orientation

classification

or

N
or

th
N

ot

Figure 5: Wall orientation classification. An example of bi-
nary classification between the “north” and “not.”

scikit-learn v. 0.21 with default settings. The resulting classifier can
then be used to classify feature vectors as “window-side” or “not”
when used in a testing environment.

3.4 Wall orientation classification
In the previous procedure, we detected when GPS signals were col-
lected within 𝑑𝑤-meters from a window. We next want to estimate
the orientation of the outer wall into which that window is installed.
This method is designed based on our assumption that when the
smartphone is located close to a window, the signals arriving from
satellites whose azimuth aligns with the orientation of that window
are stronger than those from other satellites. In this method, we
prepare a single binary classifier that can determine when the smart-
phone is located near a wall with some given orientation. Note that,
because we prepare only one classifier for orientation classification,
we extract a feature vector for each orientation in the environment
from each time window. For example, when an environment has
walls facing to the north, south, east, and west, we extract four
feature vectors from each time window which are fed into the clas-
sifier (Figure 5). We then perform one-vs-rest classification for each
feature vector and then aggregate the results to determine the final
result (i.e., estimated orientation). Using this design allows us to
train a single classifier for orientation classification, which can then
be used for every orientation in the environment.

3.4.1 Feature extraction. For each time window, we compute𝑚
feature vectors corresponding to the𝑚 orientations in our environ-
ment. The features computed are (i) the maximum signal strength
per orientation and (ii) the median signal strength per orientation,
with the values for each computed relative to a single orientation
of interest 𝑜𝑖 . For example, in an environment with four orienta-
tions: north, south, east, and west; four feature vectors would be
extracted per time window with one of those four composed of
features computed relative to north (𝑜𝑖 = 0) as follows:
- The maximum/median signal strength among satellites located
between 𝑜𝑖 − 90 and 𝑜𝑖 + 90 degrees, where 𝑜𝑖 corresponds to north,
i.e., 0 degrees.
- The maximum/median signal strength among satellites located
between (𝑜𝑖 − 90) − 90 and (𝑜𝑖 − 90) + 90 degrees, where (𝑜𝑖 − 90) is
a counterclockwise rotation of 90 degrees from 𝑜𝑖 , i.e., 270 degrees.
- The maximum/median signal strength among satellites located
between (𝑜𝑖 + 90) − 90 and (𝑜𝑖 + 90) + 90 degrees, where (𝑜𝑖 + 90)
is a clockwise rotation of 90 degrees from 𝑜𝑖 , i.e., 90 degrees.

- The maximum/median signal strength among satellites located
between (𝑜𝑖 +180) −90 and (𝑜𝑖 +180) +90 degrees, where (𝑜𝑖 +180)
is the orientation opposite of 𝑜𝑖 , i.e., 180 degrees.

We would then concatenate these eight values into a feature
vector that the classifier could use to determine if the nearest wall
has a northern orientation. We would also compute feature vectors
for east 𝑜𝑖 = 90, west 𝑜𝑖 = 270, and south 𝑜𝑖 = 180 in the same way.

3.4.2 Classification. Using the feature vectors extracted above, we
then train a random forest classifier using data collected in training
environments. When labeling the training data, the feature vectors
extracted for an orientation of interest 𝑜𝑖 are labeled as “true” when
they were collected within 𝑑𝑤-meters of the wall with orientation
𝑜𝑖 , and as “false” otherwise. When estimating the orientation for
a time window, we compute the class probability for “true” for
each orientation 𝑜𝑖 using the corresponding feature vector and then
select the orientation with the highest probability, which is the final
estimated orientation.

3.4.3 Detecting approximate smartphone positions. Using the pro-
cedures outlined above, we are able to identify when a smartphone
is close to a window along with the orientation of the wall into
which that window is installed. Using this information, we can now
detect when a smartphone’s position is located next to a wall of a
given orientation and can then consider its approximate position
at that moment to be at any point along the detected wall. After
collected several such approximate positions, we then rank the
positions based on their class probabilities and select from them
the top-𝑘 positions, which are used in the following procedures.

3.5 Distance estimation
Both appliance-to-appliance and appliance-to-smartphone distances
are estimated based on BLE signals using deep learning. When es-
timating appliance-to-appliance distances, the neural network is
trained using the BLE signals that each appliance receives from
the other appliances. When estimating appliance-to-smartphone
distances, the neural network is trained using the BLE signals that
the smartphone received from appliances.

3.5.1 Appliance-to-appliance distance estimation. Received signal
strength greatly depends on environmental factors such as the
number of obstacles (e.g., walls), the types of materials in the obsta-
cles, and the ambient temperature. Therefore, in order to achieve
environment-independent distance estimation, we train a neural
network that is used for distance estimation based on the approach
described in Nakatani et al. [17].

When estimating the distance between two appliances (appliance
A and appliance B), we start with a time window of BLE signals
composed of the signals received by both appliances from all other
appliances in the environment. We then create four vectors to repre-
sent each time window: the time series of signal strengths received
by appliance A from appliance B 𝑠𝐴,𝐵 , the time series of signal
strengths received by appliance B from appliance A 𝑠𝐵,𝐴 , a vector
composed of the average signal strengths received by appliance A
from all other appliances𝒘𝑨, and a vector composed of the average
signal strengths received by appliance B from all other appliances
𝒘𝑩 . In the case of𝒘𝑨 and𝒘𝑩 , the vectors are |A|-dimensional vec-
tors, where A is the set of all appliances in the environment, with

83

Smartphone-assisted Automatic Indoor Localization of BLE-enabled Appliances Using BLE and GNSS Signals BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

the value corresponding to the current appliance’s average signal
strength (i.e., appliance A or B) along with any missing values
replaced by the constant -100 dBm.

Using the four vectors described above, we then extract several
features to use as input for our neural network when estimating
the physical distance between appliance A and B. First, we compute
the average, maximum, and minimum of 𝑠𝐴,𝐵 and 𝑠𝐵,𝐴 , which are
directly influenced by the physical distance between the two appli-
ances along with any obstacles lying between them. We then we
compute the Chebyshev distance between𝒘𝑨 and𝒘𝑩 as follows:

max
𝑛∈A

|𝒘𝑨(𝑏𝑛) −𝒘𝑩 (𝑏𝑛) |, (1)

whereA is a set of all appliances in the environment and𝒘𝑨(𝑏𝑛) is
the strength of the signal observed by appliance A from the 𝑛-th ap-
pliance. Using the Chebyshev distance between these vectors gives
us an indirect measure of the distance between the two appliances
that is reported to be robust against environmental differences [17],
which is based on the idea that the Chebyshev distance between two
signal strength vectors is related to the physical distance between
the locations where the vectors were observed [17].

The neural network used for appliance-to-appliance distance
estimation is composed of four densely connected layers, along
with an output layer that outputs estimated distances. The densely
connected layers each consist of 32 nodes and use the ReLU activa-
tion function. He initialization [7] is used to initialize the network
weights, Adam [9] is used for optimization, dropout [19] is used for
regularization, and mean squared error is used as the loss function.
The network is trained using mini-batch training using a batch size
of ten, with batch normalization [8] applied. We used Keras v. 2.3.1
to implement the network.

3.5.2 Appliance-to-smartphone distance estimation. When estimat-
ing the distance between an appliance and a smartphone (appli-
ance A and smartphone S), we start with the time series of signal
strengths received by the smartphone from that appliance 𝑠𝑆,𝐴 . We
then extract two features from 𝑠𝑆,𝐴: the average and the variance.
These features are then used to train a neural network for distance
estimation, with all parameters for this network matching those
used during appliance-to-appliance distance estimation, except that
the dense layers each consist of only 16 nodes. Note that since
appliance-to-smartphone distances are only useful when we have
an approximate position for the smartphone, these distances are
only estimated when the smartphone is located at one of the top-𝑘
approximate positions described in Section 3.4.3.

3.6 Position estimation
Having estimated the distances between each of the appliances
along with distances between each of the appliances and the smart-
phone, we can finally estimate the absolute coordinates of the
appliances in the environment. As shown in Fig. 6, we first estimate
the relative coordinates of the appliances and then use those results
to estimate the absolute coordinates of the appliances.

3.6.1 Relative position estimation. Our method for estimating rela-
tive positions consists of two phases: (i) initialization and (ii) opti-
mization. In the initialization phase, we use a trilateration-based
method to estimate initial values for the relative coordinates of the

5HODWLYH�SRVLWLRQ�

HVWLPDWLRQ

$EVROXWH�SRVLWLRQ�

HVWLPDWLRQ

Appliance

Smartphone position

Figure 6: Procedures of position estimation.We estimate the
relative coordinates of the appliances and then use those re-
sults to estimate the absolute coordinates of the appliances
with the help of approximate smartphone positions.

appliances. In the optimization phase, we then optimize these initial
coordinate values based on the estimated appliance-to-appliance
distances.

[Initialization]: In this phase, we use the estimated appliance-to-
appliance distances to generate initial values for the relative coor-
dinates of the appliances based on trilateration. Fig. 7 shows the
procedures used during this phase. In procedure 1, we attempt to
find two appliances that are centrally located amongst all the ap-
pliances. By doing so, we hope to find two appliances that have
good reception of the other appliances’ signals. Since appliance-to-
appliance distances estimated from the signals greatly affect the
accuracy of trilateration, starting with such appliances can improve
the final performance of the initialization. We start with the aver-
age signal strength vectors computed for each appliance during
appliance-to-appliance distance estimation (e.g.,𝒘𝑨 for appliance
A and 𝒘𝑩 for appliance B) and average these vectors to give us a
vector representing the average signal strengths received from all
appliances𝒘𝒂𝒗𝒈 . We then find the appliance whose signal strength
vector is the most similar to 𝒘𝒂𝒗𝒈 , which we will refer to as the
1st appliance. We also find the appliance whose signal strength
vector is the second most similar to𝒘𝒂𝒗𝒈 , which we will refer to as
the 2nd appliance. These two appliances are then used as our two
centrally located appliances.

In procedure 2, we set the position of the 1st appliance as the
origin of the coordinate system. We then orient the axes so the 2nd
appliance is positioned on the positive x-axis, so that the coordinates
of the 2nd appliance are (𝑑 (𝑏1, 𝑏2), 0), where 𝑏1 and 𝑏2 indicate the
1st and 2nd appliances, respectively, and 𝑑 (𝑏1, 𝑏2) is the estimated
distance between the 1st and 2nd appliances based on BLE signals.

In procedure 3, we find the appliance that has the shortest av-
erage distance from the 1st and 2nd appliances and select it as the
3rd appliance. We use the shortest average distance here since we
assume that the accuracy of distance estimates is inversely propor-
tional to the distance [17]. We then determine the coordinates of
the 3rd appliance based on the intersection points of the circles
centered on the 1st and 2nd appliances with the radii of 𝑑 (𝑏1, 𝑏3)
and 𝑑 (𝑏2, 𝑏3), respectively.

In procedure 4, we iteratively determine the coordinates of the
remaining appliances. We first randomly select an appliance (the 𝑛-
th appliance) whose coordinates have not yet been determined. We

84

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fujiwara et al.

1st 2nd

(a) Procedures 1 & 2

1st 2ndd(b1,b2)

(b) Procedure 3

3rd

d(b1,b3)
d(b2,b3)

1st 2nd

(c) Procedure 4

3rd

x

y
y

y

x
x

n-th

Figure 7: Method for initializing coordinates during relative
position estimation. (a) Two centrally located appliances
(the 1st and 2nd appliances) are found and the coordinate
system is formed. (b) The coordinates of the 3rd appliance
are determined based on its distances from the 1st and 2nd
appliances. (c) The coordinates of the 𝑛-th appliance are de-
termined based on its distances from nearby appliances. In
this example, the nearby appliances are the 1st, 2nd, and 3rd
appliances. We select three intersection points (small blue
dots) that are located close to each other and calculate the
centroid of these intersection points as the coordinates for
the 𝑛-th appliance.

then select three appliances from the appliances whose coordinates
have already been determined that have the top-3 shortest distances
from that 𝑛-th appliance. We finally determine the coordinates of
the 𝑛-th appliance by using trilateration based on its distances from
those three appliances.

[Optimization]: In the second phase, we optimize the coordinates
of the appliances generated during the initialization phase to mini-
mize the distance errors between the appliance-to-appliance dis-
tances that are based on BLE signals and the appliance-to-appliance
distances that are based on the Euclidean distances between the
relative coordinates. In addition, when performing optimization, we
also take into account the confidence of each BLE-based appliance-
to-appliance distance. For example, assume that the BLE-based
appliance-to-appliance distance between the 𝑛-th and𝑚-th appli-
ances is 𝑑 (𝑏𝑛, 𝑏𝑚) and the Euclidean distance between the coor-
dinates of the 𝑛-th and𝑚-th appliances is 𝐸𝑢 (𝑝𝑛, 𝑝𝑚), where 𝑝𝑛
represents the coordinates of the 𝑛-th appliance. We would then
optimize 𝑝𝑛 and 𝑝𝑚 to minimize the error between 𝑑 (𝑏𝑛, 𝑏𝑚) and
𝐸𝑢 (𝑝𝑛, 𝑝𝑚) while taking into account the confidence of the BLE-
based distance estimate. Specifically, we minimize the following
objective function using the L-BFGS-B method [26]:∑

𝑛,𝑚∈A
𝑤𝑛,𝑚 (𝑑 (𝑏𝑛, 𝑏𝑚) − 𝐸𝑢 (𝑝𝑛, 𝑝𝑚))2 , (2)

where𝑤𝑛,𝑚 is the confidence of the BLE-based distance between
the 𝑛-th and𝑚-th appliances, which is inversely proportional to
the distance since the errors in distance estimates are expected to
increase as the distance increases.

3.6.2 Absolute position estimation. Having calculated the relative
coordinates of the appliances, we now combine the relative coordi-
nates with our approximate smartphone positions and appliance-
to-smartphone distances in order to transform the relative coordi-
nates into absolute coordinates. We do so by optimizing both the
appliance positions and the smartphone positions given several

Table 1: Experimental environments. Float shows float glass.
ALC stands for autoclaved lightweight aerated concrete.

Env. Size Floor # BLE Type Wall/Window

A 19.2m x 19.2m 1F 13 Office ALC/float
B 19.2m x 19.2m 2F 11 Office ALC/float
C 26.8m x 17.5m 7F 13 Office ALC/heat insulated
D 37.6m x 31.9m 3F 13 Conference Concrete/float
E 22.2m x 26.2m 3F 13 Multipurpose ALC/float

constraints, with the appliance positions initialized by shifting the
relative coordinates so that the centroid of the coordinates is in
the center of the environment and with the smartphone positions
initialized by randomly selecting a position along the wall from
within each of the top-𝑘 approximate positions selected in Section
3.4.3. The main constraints used during optimization are that the
appliance positions are constrained to be within the walls of the en-
vironment and that the smartphone positions are constrained to fall
on the wall that corresponds to their approximate position. When
optimizing the coordinates, we minimize the following objective
function: ∑

𝑛,𝑚∈A
𝑤𝑛,𝑚 (𝑑 (𝑏𝑛, 𝑏𝑚) − 𝐸𝑢 (𝑝𝑛, 𝑝𝑚))2 +∑

𝑛∈A,𝑖∈S
𝑤𝑛,𝑖 (𝑑 (𝑏𝑛, 𝑠𝑖) − 𝐸𝑢 (𝑝𝑛, 𝑝𝑖))2 ,

(3)

where S is the set of approximate smartphone positions detected
using GNSS signals, 𝑠𝑖 represents the 𝑖-th smartphone position, and
𝑝𝑖 represents the coordinates of the 𝑖-th smartphone position.

Optimization is done in two phases: a rough alignment phase and
a fine tuning phase. In the rough alignment phase, we minimize the
objective function by rotating and shifting the relative coordinates
of the appliances as well as by adjusting the smartphone positions.
This is done twice, with the relative coordinates of the appliances
flipped when initializing the second attempt and with the results
with the smallest error selected from the two attempts. In the fine
tuning phase, we minimize the objective function by adjusting both
the absolute coordinates of the appliances and the coordinates of
the smartphone positions using the results from the first phase as
our initial values.

4 EVALUATION
4.1 Data set
Our dataset consists of GNSS and BLE data collected in five different
environments (Table 1 and Fig. 8). Environments A and B are two
floors located in the same office building. This office building is
surrounded on three sides by tall buildings (located to the left, right,
and above in the figure). Environment C is also an office floor. The
windows in C are heat insulated with a metal film that interferes
with GNSS signals. The building is neighbored by a tall building
on one side (located to the right in the figure). Environment D is
located in a convention center and is much larger than the other
environments with taller windows than those found in the other
environments. Environment E is a multipurpose room. The outer
walls of E have metallic barriers installed, which also interfere with
GNSS signals. The building is neighbored closely on two sides with
tall buildings (located to the left and right in the figure).

85

Smartphone-assisted Automatic Indoor Localization of BLE-enabled Appliances Using BLE and GNSS Signals BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

(9

�P

(a) Environment A

(9

�P

(b) Environment B

�P

(c) Environment C

�P

(d) Environment D

�P

(e) Environment E

Figure 8: The five environments used during experiments
in this study. Blue dots show the locations of BLE-enabled
appliances. Purple dots show the locations of observation
points.

We installed BLE-enabled appliances (Raspberry Pi 3 with a BLE
module) in each environment as shown in Fig. 8. Each appliance
emits advertising messages at 10 Hz, and records messages from the
other appliances that consist of the BSSID, RSSI, and timestamp. We
also collected GNSS and BLE data frommultiple smartphonemodels
(Nexus 6P, Nexus 6, Nexus 5X, and Nexus 5) in each environment.
GNSS and BLE data were observed at each observation point for 1
minute as shown in Fig. 8. The GNSS data consists of the elevation
angle, azimuth, signal strength, and identifier of each visible satellite
observed at about 1 Hz. BLE data was collected from all appliances
continuously throughout the experiments (about 4 hours).

4.2 Evaluation methodology
The evaluation was conducted using “leave-one-environment-out”
cross validation. That is, we iterated through using each environ-
ment as the testing environment with the remaining environments
used as training environments. Because Environments A and B are
located in the same building, when testing on Environment A, we
do not use Environment B as a training environment, and vice versa.
Each of the models used in our method (distance estimation neu-
ral networks and random forests for window proximity detection
and window orientation classification) were trained separately on
data collected in the training environments from each smartphone
model (e.g., Nexus 6P) in order to allow for a comparison of the
results based on the model of smartphone.

In order to evaluate the performance of the proposed method,
we prepared the following methods:
- Proposed: This is the proposed method.
- W/o initialize: This is based on Proposed, but it does not perform

the trilateration-based initialization during relative position esti-
mation.
- W/o weighting: This is based on Proposed, but it does not use the
confidence (weight) of distance estimates during the optimization
procedures.
- W/o two-phase: This is based on Proposed, but it does not perform
the full two-phase optimization process during absolute position
estimation. Specifically, this method does not perform the rough
alignment phase where the relative coordinates are rotated and
shifted. It only performs the second phase of fine tuning.
- W/o three: This is based on Proposed, but combines all three of
the above restrictions, i.e., no trilateration-based initialization, no
confidence values used during optimization, and only the fine tun-
ing phase used during the initialization process in absolute position
estimation.

We evaluated the above methods based on the mean absolute
error (MAE) of the position estimates for the appliances.

4.3 Results
4.3.1 Positioning accuracy of the proposed method. Fig. 9 shows the
MAEs for each of the five methods for each of the five environments
when using a Nexus 6P. In addition, Fig. 10 shows the estimated
positions of appliances for the proposed method compared to their
ground truth positions. Surprisingly, the proposed method achieved
a positioning error of only about 2-3 meters in multiple environ-
ments. We believe that an error of about 2-3 meters is close to the
lower bound of RSSI-based positioning methods, with this error
being similar to that of Wi-Fi-based fingerprinting methods [4, 14],
which require a site survey. In contrast, our method does not require
any labeled training data to be collected in the target environment.
Fig. 10 also illustrates how that the proposed method could accu-
rately estimate positions for each appliance while preserving their
relative positioning. However, the positioning errors for some of
the appliances, including some that were close to windows, were
poor. We believe that these larger errors during positioning are due
in part to the lower density of appliances in the areas surrounding
those appliances, which increases the distances used when position-
ing the appliances via BLE signals which in turn increases the errors
in the distance estimates (see Section 4.3.9 for more information).

The errors in Environment D are larger than the errors for other
environments because Environment D is much larger than the other
environments, which results in larger appliance-to-appliance dis-
tances being used during positioning. The errors in Environment C
(𝑘 = 5) are larger than in other environments because we were only
able to obtain smartphone positions for two opposite orientations,
i.e., the right and left sides in Fig. 8 (c), due to the heat insulated
windows that interfered with GPS reception. In such cases, we can
only align the relative coordinates based on one axis of orientation
(e.g., the east-west axis of orientation), making it impossible to
disambiguate between two versions of the coordinates that have
been flipped perpendicularly to that axis (e.g., with the north and
south halves flipped about the east-west axis). A possible solution
for this problem is to increase 𝑘 until we are able to find smart-
phone positions from perpendicular axes of orientation (e.g., east
and north orientations), however increasing 𝑘 has the drawback
of possibly including positions with lower confidence which could

86

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fujiwara et al.

���� ����

����

����

����

����
����

����

����
���

����

�����

���
����

���� ����

���

����

�����

����

����
���

����

����

����

����

����

����
���� ���

�

����

�����

�����

����

�

�

�

�

�

��

��

��

��

(QY��$ (QY��% (QY��&��N �� (QY��&��N ��� (QY��' (QY��($9*�

3
R
VL
WL
R
Q
LQ
J
�H
UU
R
U�
>P
@

3URSRVHG :�R�LQLWLDOL]H :�R�ZHLJKWLQJ :�R�WZR�SKDVH :�R�WKUHH

Figure 9: The MAEs for appliance positioning for each of the five methods when using a Nexus 6P. Averages based on these
values are calculated using 𝑘 = 5 for Environments A, B, D, and E; and using 𝑘 = 10 for Environment C.

(9

�
�

�

�

�

�

�

�

�

��

��

��

��

�
�

�

�

�

�
�

�
�

��

��

��

��

(a) Environment A

(9

�

� �

�

�

�

�

�

� ��

��

�

�

�

�

�

�

�

�

�

��

��

(b) Environment B
�

�

�

�

�

�

�

�

�

��

��

��

��

�

�

�

�

�

�

�

�

�

��

��

��

��

(c) Environment C
(𝑘 = 10)

� �
�

�

�

�

�

�

�

��

��

��

��

�

�

�

�

�
�

�

�

�

��

��

��

��

(d) Environment D

�

�

�

�

�

�

�

�

�

��

��

��

��

�

�

�

�

�

�

�

�

�

��

��

��

��

(e) Environment E

Figure 10: The positioning results for the proposed method
when using a Nexus 6P. The blue dots show ground truth po-
sitions while the purple dots show estimated positions. Esti-
mates can be matched to their ground truth positions using
the included identifiers (e.g, 11).

degrade the overall quality of the positioning results. Fig. 9 also
provides results where 𝑘 has been increased to remove the ambi-
guity in Environment C (𝑘 = 10), where we can see a significant
improvement.

Fig. 9 also shows the MAEs for W/o three. As shown in these
results, the MAE for W/o three is larger than that of Proposed by
about 5.1 meters on average. However, the error for W/o three in
Environment C is smaller than that for Proposed. This is because
the initial values used during the optimization process for absolute
positioning were already similar to the actual (relative) appliance
positions. However, the performance of W/o three is not stable.

4.3.2 Contribution of initialization during relative position estima-
tion. As shown in Fig. 9, the MAE of W/o initialize is larger than

0
2
4
6
8

10
12

Env. A Env. B Env. C
(k=5)

Env. C
(k=10)

Env. D Env. E AVG.Po
si

tio
ni

ng
 e

rr
or

 [m
]

Nexus 5 Nexus 5X Nexus 6 Nexus 6P

Figure 11: The MAEs for appliance positioning by Proposed
for each model of smartphone. Averages based on these val-
ues are calculated using 𝑘 = 5 for Environments A, B, D, and
E; and using 𝑘 = 10 for Environment C.

that of Proposed by about 1.7 meters on average, which may in-
dicate that the additional steps taken to initialize the positions to
avoid local minima during relative position optimization are needed
for larger environments.

4.3.3 Contribution of weighting during optimization. As shown in
Fig. 9, the MAE of W/o weighting is larger than that of Proposed by
about 3.4 meters on average. These results illustrate the importance
of considering the confidence of the distance estimates, since the er-
rors in the estimates increase with the actual distances (see Section
4.3.9 for details) and can greatly affect the positioning results.

4.3.4 Contribution of two-phase optimization during absolute posi-
tion estimation. Fig. 9 includes the MAEs for W/o two-phase. The
MAE for W/o two-phase is larger than that of Proposed by about
3.7 meters on average, indicating the importance of including the
rough alignment phase during initialization.

4.3.5 Results from different models of smartphones. Fig. 11 shows
the positioning results for Proposed for the four smartphones. As
shown in these results, Nexus 5, which is the oldest product, had
the largest average positioning error. This is due to the Nexus 5’s
poor reception of GPS signals, which is discussed in detail below.
However, overall the smartphones all performed similarly.

4.3.6 Accuracy of window proximity detection. Fig. 12 shows the
classification precision for the “window-side” class during window
proximity detection for different values of 𝑘 , with the precision for

87

Smartphone-assisted Automatic Indoor Localization of BLE-enabled Appliances Using BLE and GNSS Signals BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

0

20

40

60

80

Nexus 5 Nexus 5X Nexus 6 Nexus 6PC
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

k=5 k=7 k=10

Figure 12: The average clas-
sification precision across all
five environments for win-
dow proximity detection for
the “window-side” class for
eachmodel of smartphone for
different values of 𝑘 .

88
90
92
94
96
98

100

Nexus 5 Nexus 5X Nexus 6 Nexus 6PC
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

k=5 k=7 k=10

Figure 13: The average classifi-
cation accuracy across all five
environments for wall orien-
tation classification for each
model of smartphone for dif-
ferent values of 𝑘 . These re-
sults were calculated using
observation points that had
been correctly classified as
“wall-side.”

Table 2: The distance errors (MAE) for appliance-to-
appliance distance estimation in each environment.

Env. A B C D E
Distance error [m] 2.00 2.63 1.84 2.02 3.64

“window-side” shown here since the positions classified as “window-
side” are the ones used during the position estimation phase. As
shown in these results, the results for the Nexus 5 are poorer than
the results for the other models, which contributed to the Nexus
5’s poorer performance during indoor positioning. Furthermore,
the results for the other smartphones were also less than perfect.
When analyzing the results, we found that many of the erroneous
detections came from observation points about one meter away
from walls (compared to the 𝑑𝑤 = 0.5 used to define the “window-
side” class). However, the impact of these false positives on the
overall positioning performance is limited.

4.3.7 Accuracy of wall orientation classification. Fig. 13 shows the
classification accuracy for wall orientation classification for dif-
ferent values of 𝑘 . As shown in these results, the classification
performance was almost perfect. When 𝑘 increases, positions of
Nexus 6P located at corners in the environments were sometimes
classified incorrectly.

4.3.8 Accuracy of appliance-to-appliance distance estimation. Table
2 shows the MAE for appliance-to-appliance distance estimation in
each environment. Overall, we could achieve an average error of
about 2.4 meters across all environments. In the cases of Environ-
ments D and E, the higher estimation errors are due in part to the
larger actual distances between appliances in those environments.

4.3.9 Accuracy of appliance-to-smartphone distance estimation. Fig.
14 shows the MAEs for appliance-to-smartphone distance estima-
tion for the Nexus 5, 5X, 6, and 6P in each environment. Overall, we
can see that we could achieve an average error of about 2-3 meters
in these environments. Also note that the errors in Environments
D and E are larger than those in the other environments, which is

0

1

2

3

4

5

Env. A Env. B Env. C Env. D Env. E AVG.

D
is

ta
nc

e
er

ro
r

[m
]

Nexus 5 Nexus 5X Nexus 6 Nexus 6P

Figure 14: The MAEs for appliance-to-smartphone distance
estimation for the four smartphones in each environment.

likely due to the increased errors in distance estimates due to the
larger distances found in these environments.

4.4 Discussion
4.4.1 Device heterogeneity. Here we tested the use of product-
independent models, where we trained models for appliance-to-
smartphone distance estimation, window proximity detection, and
wall orientation classification using data from a Nexus 6P and tested
the models using data from the other smartphones. In order to cope
with differences in the BLE sensitivity of the devices, we also pre-
pared a linear regression model to convert the BLE signal strengths
collected by the testing devices (Nexus 5, 5X, or 6) into estimates of
the signal strengths that would have been collected by the training
device (Nexus 6P), based on the method described in [13]. Fig. 15
shows the appliance positioning errors for the testing devices when
we directly use their BLE data without adjusting their BLE signal
strengths using linear regression. Comparing these results to Fig.
11, we can see that in many cases the positioning errors for the
product-independent models are not very different from those of
the product-dependent models. Based on these results, it appears
that because the relative coordinates of the appliances are precisely
estimated in the relative position estimation phase, the small errors
introduced into the appliance-to-smartphone distance estimation
from differing BLE sensitivities did not substantially affect the final
appliance positioning results. Fig. 16 shows the appliance position-
ing errors for the testing devices when we incorporate the linear
regression model for adjusting BLE signal strengths, which im-
proved the appliance positioning errors of the product-independent
models by 0.2 meters on average.

4.4.2 Number of BLE-enabled appliances. In principle, when the
number of appliances in an environment decreases, the positioning
error increases because the amount of information used in the
optimization process decrease. However, when we reduced the
number of appliances from 11 to 5 in Environment B, the positioning
error did not change (2.72 vs. 2.73 m). When we drastically reduced
the number of appliances from 11 to 3, the the positioning error
increased from 2.72 to 5.30 m.

4.4.3 Materials of walls and windows. Because our method relies
on GNSS data, the indoor positioning performance degrades in
a building with heat insulated windows since the number of de-
tected window-side smartphone positions decreases. In addition,
we assume that we cannot receive GNSS signals at places far from
windows in a concrete building. However, GNSS signals can be

88

BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Fujiwara et al.

0.00
2.00
4.00
6.00
8.00

10.00

Env. A Env. B Env. C
(k=10)

Env. D Env. EPo
si

tio
ni

ng
 e

rr
or

 [m
]

Nexus 5 Nexus 5X Nexus 6

Figure 15: The appli-
ance positioning errors
when we use appliance-
to-smartphone distance
estimation models trained
on Nexus 6P data to esti-
mate appliance positions
for data collected by Nexus
5, 5X, and 6 smartphones
without using linear re-
gression to adjust BLE
signal strengths. The av-
erage positioning error is
4.57 meters.

0.00
2.00
4.00
6.00
8.00

10.00

Env. A Env. B Env. C
(k=10)

Env. D Env. EPo
si

tio
ni

ng
 e

rr
or

 [m
]

Nexus 5 Nexus 5X Nexus 6

Figure 16: The appli-
ance positioning errors
when we use appliance-
to-smartphone distance
estimation models trained
on Nexus 6P data to esti-
mate appliance positions
for data collected by Nexus
5, 5X, and 6 smartphones
when using linear regres-
sion to adjust BLE signal
strengths. The average
positioning error is 4.30
meters.

observed at such places in a wood building, making it impossible
to locate BLE-enabled appliances.

4.4.4 Limitations. A limitation of our experiment is that it relied
on unlabeled sensor data collected while the smartphone was sta-
tionary at each observation point. In addition, all the experimental
environments in this study are concrete buildings, which interfere
with GNSS signals.

4.4.5 Future work. As a part of our future work, we plan to include
sensor data that also contains non-stationary activities (e.g., walk-
ing) as noise. In this case, we can easily eliminate the data collected
during non-stationary activities by examining the smartphone’s
acceleration data, as was proposed in a prior study [20]. In addition,
we plan to locate BLE-enabled appliances with limited appliance-to-
smartphone distances because these information is obtained only
when the appliances emit BLE signals.

5 CONCLUSION
This study proposed a new method for automatically estimating
the indoor coordinates of BLE-enabled appliances. The proposed
method employs unlabeled data collected by a smartphone to es-
timate appliance positions without the need for a site survey. We
investigated the performance of the proposed method in five real-
world environments.

REFERENCES
[1] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[2] Jonghwa Choi, Dongkyoo Shin, and Dongil Shin. 2005. Research and implemen-

tation of the context-aware middleware for controlling home appliances. IEEE
Transactions on Consumer Electronics 51, 1 (2005), 301–306.

[3] Masahiro Fujii and Yoshiaki Mori. 2016. A study on indoor positioning systems
based on SkyPlotmask. In 2016 IEEE 5th Global Conference on Consumer Electronics.
IEEE, 1–2.

[4] Yanying Gu, Anthony Lo, and Ignas Niemegeers. 2009. A survey of indoor posi-
tioning systems for wireless personal networks. IEEE Communications Surveys &
Tutorials 11, 1 (2009), 13–32.

[5] Taisei Hayashi, Daisuke Taniuchi, Joseph Korpela, and Takuya Maekawa. 2017.
Spatio-temporal adaptive indoor positioning using an ensemble approach. Per-
vasive and Mobile Computing 41 (2017), 319–332.

[6] Mike Hazas, James Scott, and John Krumm. 2004. Location-aware computing
comes of age. Computer 37, 2 (2004), 95–97.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
CoRR abs/1502.01852 (2015). arXiv:1502.01852 http://arxiv.org/abs/1502.01852

[8] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. CoRR abs/1502.03167
(2015). arXiv:1502.03167 http://arxiv.org/abs/1502.03167

[9] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[10] Mikkel Baun Kjærgaard, Henrik Blunck, Torben Godsk, Thomas Toftkjær,
Dan Lund Christensen, and Kaj Grønbæk. 2010. Indoor positioning using GPS
revisited. In International conference on pervasive computing. Springer, 38–56.

[11] Quan Kong, Takuya Maekawa, Taiki Miyanishi, and Takayuki Suyama. 2016.
Selecting Home Appliances with Smart Glass Based on Contextual Information.
In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (Heidelberg, Germany) (UbiComp ’16). ACM, New York,
NY, USA, 97–108. https://doi.org/10.1145/2971648.2971651

[12] Anthony LaMarca, Yatin Chawathe, Sunny Consolvo, Jeffrey Hightower, Ian
Smith, James Scott, Timothy Sohn, James Howard, Jeff Hughes, Fred Potter,
et al. 2005. Place lab: Device positioning using radio beacons in the wild. In
International Conference on Pervasive Computing (Pervasive 2005). 116–133.

[13] Christos Laoudias, Demetrios Zeinalipour-Yazti, and Christos G Panayiotou. 2013.
Crowdsourced indoor localization for diverse devices through radiomap fusion.
In 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN).
1–7.

[14] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. 2007. Survey of wireless
indoor positioning techniques and systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews 37, 6 (2007), 1067–1080.

[15] Takuya Maekawa, Yutaka Yanagisawa, Yasushi Sakurai, Yasue Kishino, Koji
Kamei, and Takeshi Okadome. 2009. Web Searching for Daily Living. In SIGIR
2009. 27–34.

[16] Takuya Maekawa, Yutaka Yanagisawa, Yasushi Sakurai, Yasue Kishino, Koji
Kamei, and Takeshi Okadome. 2012. Context-aware Web search in ubiquitous
sensor environment. ACM Transactions on Internet Technology (ACM TOIT) 11, 3
(2012), 12:1–12:23.

[17] Tomoya Nakatani, Takuya Maekawa, Masumi Shirakawa, and Takahiro Hara.
2018. Estimating the Physical Distance Between Two Locations with Wi-Fi
Received Signal Strength Information Using Obstacle-aware Approach. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 130 (Sept. 2018),
26 pages. https://doi.org/10.1145/3264940

[18] Masayuki Ochiai, Masahiro Fujii, Atsushi Ito, YuWatanabe, and Hiroyuki Hatano.
2014. A study on indoor position estimation based on fingerprinting using
GPS signals. In 2014 International Conference on Indoor Positioning and Indoor
Navigation (IPIN). IEEE, 727–728.

[19] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[20] Masaya Tachikawa, Takuya Maekawa, and Yasuyuki Matsushita. 2016. Predicting
location semantics combining active and passive sensing with environment-
independent classifier. In UbiComp 2016. 220–231.

[21] Daisuke Taniuchi and Takuya Maekawa. 2014. Robust Wi-Fi based indoor posi-
tioning with ensemble learning. In IEEE 10th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob 2014). 592–597.

[22] Andreas Teuber, Bernd Eissfeller, and Thomas Pany. 2006. A two-stage fuzzy
logic approach for wireless LAN indoor positioning. In IEEE/ION Position Location
Navigation Symposium, Vol. 4. 730–738.

[23] Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthbert. 2013. Blue-
tooth positioning using RSSI and triangulation methods. In IEEE Consumer Com-
munications and Networking Conference (CCNC 2013). 837–842.

[24] Tatsuya Yamazaki. 2005. Ubiquitous home: real-life testbed for home context-
aware service. In First International Conference on Testbeds and Research Infras-
tructures for the DEvelopment of NeTworks and COMmunities. IEEE, 54–59.

[25] Junyang Zhou, KM-K Chu, and JK-Y Ng. 2005. Providing location services within
a radio cellular network using ellipse propagation model. In 19th International
Conference on Advanced Information Networking and Applications (AINA 2005),
Vol. 1. 559–564.

[26] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on Mathematical Software (TOMS) 23, 4 (1997), 550–560.

89

https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1145/2971648.2971651
https://doi.org/10.1145/3264940

	Abstract
	1 Introduction
	2 Related Work
	2.1 Indoor positioning with RF signals
	2.2 Distance estimation with RF signals
	2.3 Indoor positioning with GPS

	3 Appliance Localization Method
	3.1 Preliminaries
	3.2 Overview
	3.3 Window proximity detection
	3.4 Wall orientation classification
	3.5 Distance estimation
	3.6 Position estimation

	4 Evaluation
	4.1 Data set
	4.2 Evaluation methodology
	4.3 Results
	4.4 Discussion

	5 Conclusion
	References

