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ABSTRACT
Computational fluid dynamics (CFD) model has been widely used
for prototyping data centers. Evolving it to high-fidelity digital twin
is desirable for the management and operations of large-scale data
centers. Manually calibrating CFD model parameters to achieve
twin-class fidelity by specially trained domain expert is tedious
and labor-intensive. To reduce manual efforts, existing automatic
calibration approaches developed for various computational models
apply heuristics to search model configurations within an empir-
ically defined parameter bound. However, in the context of CFD,
each search step requires long-lasting CFD model’s iterated solving,
rendering these approaches impractical with increased model com-
plexity. This paper presents Kalibre, a knowledge-based neural sur-
rogate approach that performs CFD model calibration by iterating
four key steps of i) training a neural surrogate model based on CFD-
generated data, ii) finding the optimal parameters at the moment
through neural surrogate retraining based on sensor-measured data,
iii) configuring the found parameters back to the CFD model, and
iv) validating the CFD model using sensor-measured data as the
ground truth. Thus, the parameter search is offloaded to the neural
surrogate which is ultra-faster than CFD model’s iterated solving.
To speed up the convergence of Kalibre, we integrate prior knowl-
edge of the twinned data center’s thermophysics into the neural
surrogate design to improve its learning efficiency. With about
five hours computation on a 32-core processor, Kalibre achieves
mean absolute errors (MAEs) of 0.81°C and 0.75°C in calibrating
two CFD models for two production data halls hosting thousands
of servers each while requires fewer CFD solving processes than
existing baseline approaches.

CCS CONCEPTS
• Applied computing→ Data centers; • Computing method-
ologies→ Modeling methodologies; Neural networks.
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1 INTRODUCTION
To meet the ever increasing cloud computing and storage demands,
the scales of modern data centers have been continuously growing.
According to a white paper from Cisco [2], the number of hyper-
scale data centers will double from 338 at the end of 2016 to 628
by 2021. The data centers’ increases in size and complexity bring
substantial challenges to the effective and efficient management
of their supporting infrastructures for avoiding operational risks
and reducing energy costs. Currently, data center infrastructure
management (DCIM) system is a common tool that visualizes and
monitors the infrastructure status based on the measurements col-
lected from deployed sensors [32]. DCIM provides the operator
with useful and important information for proper responses in
case of abnormalities and failures. However, with the increases in
system scale and complexity, it is important to extend DCIM to
have accurate prediction capabilities. With such, the operator can
perform various what-if analyses, such as whether the increase of
certain temperature setpoints can improve the energy efficiency
without causing server overheating.

We consider digital twin for the desired capability extension.
Digital twin is a collection of integrated multi-physics, multi-scale,
and probabilistic modeling and simulation techniques for as-built
systems [25]. It aims to pursue high modeling accuracy for complex
systems based on data from various sources, including sensors,
prior models, and domain knowledge. The concept was early ap-
plied in the aerospace industry and is now attracting interest in
smart manufacturing [21], cyber-physical systems [4], and smart
city creation [17]. To build digital twins for data centers, various
elementary techniques from multiple disciplines have existed to
model the cyber-physical processes from the building level to the
chip level. In particular, the computational fluid dynamics (CFD)
modeling is a primary technique to characterize the thermodynam-
ics in data centers [22]. It has been adopted in the offline analysis
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Figure 1: Kalibre operates by iterating ① training a CFD sur-
rogate model, ② searching optimal parameters through sur-
rogate retraining, ③ configuring the found parameters back
to the CFD model, ④ validating the new configuration.

for energy cost reduction and risk management [23]. However, the
accuracy of the CFD models in general does not reach the digital
twin class for online operations. This is because the assumptions
or simplifications made in the prototyping phase may lead to result
distortions.

To evolve a CFD model into its digital twin form, it is important
to instrument the model with sufficiently complete configuration of
the physical infrastructure. A model with incomplete configuration
may diverge from the ground truth. For example, as reported in [26,
31], a manually constructed CFD model can yield temperature
prediction errors up to 5°C. Unfortunately, obtaining the complete
system configuration often faces substantial challenges due to 1)
the large number of parameters in the configuration and 2) the
labor-intensive and error-prone manual calibration process for
these parameters. For instance, each server in a data center may
have its own characteristics of the passing-through air flow rate
due to its internal fan control logic. However, such information
is often not available in the server hardware’s specification and
can only be empirically estimated or manually collected via in situ
measurement.

To achieve twin-class accuracy, automatic calibration of the
difficult-to-obtain system configuration parameters will be nec-
essary. However, this turns out to be a challenging task, due pri-
marily to the ultra-high computation overhead of executing the
CFD model to assess any candidate parameter configuration. The
existing heuristic approaches (e.g., evolution strategies, genetic al-
gorithms, simulated annealing, etc.) can be applied for automatic
CFD calibration [12, 24]. These approaches in general require many
search iterations, e.g., hundreds (cf. §5), to find good settings for the
system configuration parameters. In each iteration, a CFD model
solving is performed with the candidate configuration. When the
CFD is built for a large-scale data hall with fine meshing granularity,
the iterative search process incurs unacceptable computation times,
since a single CFD model solving is already an hours-long or even
days-long computing process of solving the Navier-Stokes formu-
lation [5] using the finite element method. As such, the existing
search-based approaches scale poorly with the size and granularity
of the CFD model.

To advance automatic calibration, we propose Kalibre, a neural
surrogate-assisted approach to calibrate data center CFD models
with increasing scales and complexities. Kalibre avoids directly

solving the CFD model for configuration search with the help of a
trainable neural net. Fig. 1 illustrates Kalibre’s workflow, in which
the surrogate model iteratively updates the system configuration
to minimize the CFD model’s prediction errors by four key steps.
① The "coarse" surrogate is trained to align with the "fine" CFD
model in the current system state locality by updating its internal
weights based on CFD-generated data. ② The trained surrogate
is re-optimized by updating the system configuration, which is
also a part of trainable variables of the neural net, to maximize the
consistency between the surrogate’s predictions and the ground-
truth sensor measurements. ③ The updated system configuration
is set back to the CFD model for refining. ④ The ground-truth
sensor measurements are used to validate the refined CFD model.
Therefore, Kalibre offloads the fine-grained parameter configuration
search to the surrogate. Vis-à-vis the existing heuristic approaches
that solve the CFD model every configuration search step, Kalibre
solves the CFD model much less frequently for merely providing
feedback to the surrogate.

The implementation of Kalibre faces two challenges. First, the
design of the surrogate to capture the complex thermophysics en-
compassed in the CFD model is challenging. Second, the training
data for the neural surrogate is limited since generating such data
using the CFD model is compute-intensive. Piecemeal solutions to
address the above two challenges separately are contradictory, i.e.,
a deeper neural surrogate to well capture the complex thermody-
namics requires more CFD-generated training data. To address the
challenges, we design a neural surrogate architecture that integrates
the prior knowledge of the thermal relations among a number of
key variables in the twinned data hall. Compared with the vanilla
neural net that approximates the CFD model as a black box, the
introduction of the prior knowledge regulates the number of train-
able variables and significantly improves the learning efficiency on
small data.

We implement Kalibre and apply it to calibrate the CFDmodels of
two production data halls sized hundreds of square meters that host
thousands of servers, respectively. The CFD models calibrated by
Kalibre achieve mean absolute errors (MAEs) of 0.81°C and 0.75°C
in predicting the temperatures at tens of cold/hot aisle positions
in each hall, respectively. The calibration process takes about 5
hours on a 32-core virtual machine in the cloud. In contrast, the
heuristic configuration search and the vanilla neural net-based
surrogate approach achieve MAEs of around 1.5∼4°C with the same
computation time for calibration as Kalibre. We also invite a domain
expert to manually fine-calibrate the two CFD models, yielding
MAEs of 1.32°C and 1.1°C, which are higher than Kalibre’s MAEs by
63% and 46%, respectively. The absolute MAE reductions of 0.51°C
and 0.35°C achieved by Kalibre in comparison with the expert’s
manual calibration are significant in CFD modeling, due to the
sharply increased difficulty in improving accuracy when the errors
are already low (i.e., at around 1°C). The evaluation shows the
effectiveness of Kalibre in automatically calibrating CFD models
toward their digital twin forms.

Roadmap: The rest of this paper is structured as follows. §2
reviews related work. §3 formulates problem and overviews our
approach. §4 and §5 design and evaluate Kalibre, respectively. §6
discusses several issues and concludes this paper.
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2 RELATEDWORK
This section reviews the relevant studies in data center modeling,
surrogate-assisted optimization and knowledge-based neural nets.

Data center modeling: A variety of modeling techniques have
been proposed for thermal management in data centers. They can
be broadly categorized into law-based, data-driven, and hybrid mod-
els. The CFD models are representative law-based models, in that
they capture the thermodynamic laws followed by the physical
processes [22, 23, 26]. However, the CFD models are computation-
ally expensive due to their internal recursive execution. As the
mesh complexity increased for large-scale data centers, the CFD
models solving times may increase from hours to days, introducing
significant challenges for model calibration. An alternative is to
use black-box data-driven models to learn a thermal map in the
data center. For example, the Weatherman system [18] predicts the
steady-state temperatures of certain server blocks using a neural net
consisting of two hidden layers. In [33], a long short-term memory
(LSTM) network is designed for predicting server CPU temperature.
Although these data-driven models are fast and suitable for real-
time use, they often perform poorly in the cases that are not covered
by the training data. For instance, these models cannot well capture
the thermal processes in case of cooling system failures, because the
training data for such failure scenarios is generally lacking. Hybrid
methods of combining CFD models and data-driven models have
also been proposed. For instance, in [29], a psychrometric model
is jointly used with three multilayer perceptrons to predict steady
system state. In [10], the actual dataset is augmented with CFD-
generated data for rare scenarios; the augmented dataset is used to
train a linear regression model for temperature prediction. To en-
sure fidelity, the CFD model used in [10] is manually fine-calibrated
by a human expert. As such, the approach is only evaluated on a
small-size testbed and cannot scale well with the data center size.

Surrogate-assisted optimization: Surrogate-assisted optimiza-
tion [15] speeds up the parametric optimization of those compute-
intensive and non-differentiable models. It builds a lightweight
surrogate of the original model and then uses the surrogate to
guide the parameter search. This technique has been applied to
building energy [19], hydrological [6], and aerodynamic [11] model
optimization. The surrogate design is application-specific. For exam-
ple, low-fidelity law-based surrogate model is built for full-fledged
models in microwave engineering by aggressive space mapping [8].
Data-driven surrogate based on neural net is designed for high-
dimensional and nonlinear coplanar waveguide model [31]. Re-
sponse surface methodology based on radial basis function is stud-
ied for CFD model [20]. Among these studies, data-driven surro-
gates exhibit advantage in fast forwarding. However, the design of
surrogate-assisted optimization faces a general challenge in well
balancing the surrogate fidelity and the computation overhead of
generating training data for surrogate via executing the original
compute-intensive models. An effective approach to addressing the
challenge is to improve the learning efficiency of the data-driven
surrogate via its architectural design. Unfortunately, few studies are
dedicated to pursuing surrogate’s learning efficiency in the context
of data center CFD.

Knowledge-based neural nets: Knowledge-based modeling
incorporates empirical methods or first principles to improve model

Containment

Sensor
RackCold aisle 

IT load

Hot aisle 

CRAC

Row A Row B Row C Row D

Figure 2: The layout of a typical data hall. Sensors are in-
stalled at the cold and hot aisles for cooling evaluation. Sen-
sormeasurements aremostly affected by the nearbyCRACs.

generalization. For neural nets, the knowledge can be any extra
information about the modeled function beyond the function’s in-
puts/outputs used as training samples [7]. Several studies have
shown that the knowledge-based neural nets exhibit better extrapo-
lation capabilities while require fewer training data, compared with
vanilla neural nets. In [27], the neural net is trained by learning a
loss function capturing a physical constraint expressed in closed
form. This method is also applied in neural surrogate modeling for
fluid flows without using any simulator-generated data [28].

This paper aims to develop a surrogate-assisted calibration ap-
proach for data center CFD models with high computational cost.
Wewill advance themethodology of designing surrogate to improve
its learning efficiency by incorporating first principles and prior
knowledge of the modeled data hall. Therefore, we can achieve high
calibration performance with much less CFD-generated training
data for the surrogate. In addition, to the best of our knowledge, we
are the first demonstrating the use of neural surrogate to calibrate
industry-grade CFD models for large-scale data halls.

3 PROBLEM FORMULATION AND
APPROACH OVERVIEW

In this section, we introduce the related background. Then, we
formulate the problem and present the overview of our approach.

3.1 Background
CFD model can estimate the temperature and air velocity distribu-
tions in a given space by solving a simplified form of the Navier-
Stokes equations [5]. For air-cooled data centers, CFD has been
widely used during the prototyping phase for thermal and air flow
analysis to avoid operational risks. To pursue higher efficiency of
the cooling systems while not compromise the thermal safety of
the computing and network equipment, it is desirable to improve
the accuracy of the CFD model toward the paradigm of digital twin
in the operational phase of data centers.

Fig. 2 illustrates the layout of a typical data hall, where racks
hosting servers are assigned into multiple rows that separate aisles.
These aisles alternate between cold and hot aisles. The computer
room air conditioning units (CRACs) supply cold air to the servers



BuildSys ’20, November 18–20, 2020, Virtual Event, Japan R. Wang, et al.

Figure 3: Server power con-
sumption distribution

Figure 4: CRAC setpoints
and fan speeds

Table 1: Summary of Notations.

Sym. Definition Sym. Definition

| | · | |2 ℓ2-norm e sensor one-hot vector
⊗ Element-wise product Tc setpoints vector
𝑙 CRAC count V fan speeds vector
𝑚 server count P powers vector
𝑛 sensor count α flow rates vector
𝛼l, 𝛼u 𝛼 lower and upper bound Ts measurements vector
L1 first loss function T̃s CFD results vector
L2 second loss function T̂s surrogate results vector
Wcs CRAC to sensor matrix Wss server to sensor matrix

through the cold aisles and draw hot air from the hot aisles. To
avoid air recirculation, containments are often implemented for
the hot aisles. To evaluate the thermal condition in a data hall, the
inlet and outlet temperatures of servers are often used as the key
thermal variables. Therefore, temperature sensors are deployed
in the cold and hot aisles to monitor such thermal variables. The
inlet temperatures are often required to be in the range of 15°C to
27°C [13]. The outlet temperatures characterize the heat generated
by the servers. Although the CFD model can predict the tempera-
ture at any location, we focus on the locations that are deployed
with temperature sensors and thus have ground-truth temperature
measurements for accuracy evaluation.

The servers in general have different characteristics in passing
the cooling air through them. The characteristic highly depends on
the server form factor and the control logics of the server’s internal
fans. Owing to the distinct characteristics, the servers will have
different passing-through air flow rates in cubic feet per minute
watt (cfm/W), where the cubic feet is for air volume, the minute is
for time, and the watt is for the server power. The collection of the
server air flow rates is part of the system configuration that greatly
affects the thermodynamics of the data hall. Therefore, to achieve
high CFD accuracy, the server air flow rates should be configured in
the CFD model. Unfortunately, they are often unknown and hard to
obtain. The manual in situ measurement using an air volume flow
rate meter for each server is extremely labor intensive, especially
for a large-scale data hall that hosts many types of servers. As a
result, the server air flow rates are often empirically estimated by
human expert. For a CFDmodel with many (e.g., thousands) servers,
the rough settings of the server air flow rates could significantly
downgrade the temperature prediction capability of the CFD model.
The low accuracy will impede the use of CFD model for the desired

Figure 5: Sensor measurements and raw CFD temperature
outputs at corresponding sensor locations.

fine-grained operational adjustment to pursue energy efficiency
without causing thermal risk.

In this paper, we focus on devising an automatic approach to
calibrate the server air flow rates configuration for data center CFD
models on a steady system state. The approach can be also extended
to include other parameters (e.g., by-pass air flow rates and recircu-
lated air flow rates) into calibration. The system state consists of
the following measurements: the setpoints and fan speeds of CRAC
units, server powers and the temperatures measured in the hot and
cold aisles. With the calibrated server air flow rates, the CFD model
will yield more accurate temperature distribution prediction.

3.2 Problem Formulation
To formulate the calibration problem, we first define the relevant
parameters in a data hall. Unless particularly specified, the notations
used in this paper are summarized in Table 1.We consider a data hall
hosting 𝑙 CRACs,𝑚 servers, and 𝑛 temperature sensors deployed
in the cold and hot aisles, respectively.

Definition 1 (Input). The input data for solving a CFD model is a
vector consisting of all modeling parameters. Formally, the input
x = (Tc,V,P,α), whereTc = (𝑇c1,𝑇c2, . . . ,𝑇c𝑙 ),V = (𝑉1,𝑉2, . . . ,𝑉𝑙 ),
P = (𝑃1, 𝑃2, . . . , 𝑃𝑚), and α = (𝛼1, 𝛼2, . . . , 𝛼𝑚) are the vectors of
CRAC setpoints, CRAC fan speeds, server powers, and server air
flow rates, respectively.

Definition 2 (Output). The output of CFD is a steady-state tem-
perature and air velocity distribution map. For CFD model cal-
ibration, we focus on a set of results within the map at the lo-
cations installed with temperature sensors, which is denoted by
T̃s = (𝑇s1,𝑇s2, . . . ,𝑇s𝑛).

Definition 3 (Measurement). The measurement is a vector of
real temperature values recorded by the physical sensors, which is
denoted by Ts = (𝑇s1,𝑇s2, . . . ,𝑇s𝑛).

Let | | · | |2 denote the ℓ2-norm of a vector. With the above defi-
nitions, the CFD model calibration aims to find the server air flow
rate configuration that minimizes the ℓ2-norm of the error vector
between the model output and the measurement:

α∗ ≜ argmin
α

| |T̃s (x) − Ts | |22, s.t. 𝛼l ≤ 𝛼𝑖 ≤ 𝛼u, 𝑖 = 1, . . . ,𝑚, (1)

where α∗ is the vector of calibrated air flow rates. Each element in
α∗ should be within an empirically estimated range [𝛼l, 𝛼u]. The
servers of the same type in general have the same air flow rate.



Kalibre: Knowledge-based Neural Surrogate Model Calibration for Data Center Digital Twins BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

We now use an example in a real production data hall to illustrate
the discrepancy of an uncalibrated CFDmodel and the actual sensor
measurements. We first show a summary of the working conditions
of the data hall. Fig. 3 shows a sample distribution of the servers’
power consumption ratios at a time instant. We can see that most
servers are working at approximately 60% of its maximum power.
Fig. 4 is the CRAC setpoints and the corresponding fan speed ratios.
Fig. 5 shows the temperature values measured by a number of
sensors and uncalibrated CFD predictions on the locations of these
sensors. For the sensor measurements, the cold aisle temperatures
range from 20°C to 24°C, which are related to the CRAC setpoints
and fan speed ratios. The hot aisle temperatures range from 30°C to
36°C, which are affected by the generated heat from the servers. The
air flow rate of each server is empirically determined for the raw
CFD model. With these initial configurations, the CFD model has
temperature prediction errors from 2°C to 10°C. Such large errors
disqualify the raw CFD model as a data center digital twin.

3.3 Approach Overview
Due to the high computational cost of CFD model solving, directly
solving the optimization problem in Eq. (1) using search algorithms
will incur unacceptable computation overhead. To address this
issue, we design a surrogate model of the CFD model. Let T̂s ∈
R1×𝑛 denote the temperature output vector of the surrogate model.
Then, the problem in Eq. (1) is converted to a surrogate-assisted
optimization that can be solved by iterating four consecutive steps.
First, the surrogate model is trained to be locally aligned with the
CFD model by minimizing the discrepancy between the surrogate’s
and the CFD’s outputs:

W∗ ≜ argmin
W

| |T̃s (x) − T̂s (W, x) | |22, (2)

whereW is a set of trainable weights of the surrogate andW∗

is the result of the surrogate training. Second, with W∗, the surro-
gate is re-optimized through re-training such that the discrepancy
between the surrogate’s output and the measurement is minimized:

α∗ ≜ argmin
α

| |T̂s (W∗, x) − Ts | |22 . (3)

Third, the α∗ is configured into the CFD model. Finally, the
CFD is validated based on sensor measurements. If the surrogate
approaches to the CFD model, the α∗ after the convergence of the
four-step iterations will approach to the one given by Eq. (1).

As discussed in §1, to address the challenges of the surrogate’s
complexity versus the needed volume of CFD-generated training
data, we build a knowledge-based neural surrogate that can capture
the physical layout and thermal relations among a number of key
variables of the considered data hall. Specifically, we model a set of
facilites (i.e., CRACs, servers, and sensors) in the considered hall
as nodes and their connections as edges into a directed graph. The
direction of an edge characterizes the thermal causality between
the two end nodes of the edge. For example, an edge points from a
CRAC node to a sensor node, because the supply air temperature
of the CRAC affects the measured temperature of the sensor. The
normalized reciprocal spatial distance between any two facilities
will be used as the weight of the edge connecting the corresponding
two nodes in the graph. This modeling approach follows the fact

that the temperature measured by a sensor is mostly affected by
the facilities in its neighborhood [16].

4 CFD CALIBRATION VIA SURROGATE
In this section, we present the design of the knowledge-based neural
surrogate and Kalibre’s iterative four-step model calibration.

4.1 Knowledge-based Neural Surrogate
The neural surrogate aims to approximate the complex thermo-
physics encompassed in the CFD model. In particular, its efficient
training with a small amount of data generated from the CFDmodel
is desirable, since the data generation requires intensive compu-
tation. Fig. 6 shows the proposed neural surrogate architecture. It
consists of a cooling block and a heating block. The cooling block
models the impact of the CRACs on the temperatures at all sensor
locations; the heating block models the impact of the servers on
the temperatures at the hot aisle sensor locations. Thus, the sum of
the two blocks captures the effects from both CRACs and servers.
The input of the model consists of the free variables of the data
hall’s steady state at a time instant, including CRAC temperature
setpoints and fan speeds, and server powers. The server air flow
rates are designated as trainable variables of the neural surrogate
and initialized with rough estimates. Note that, as the neural sur-
rogate is differentiable, the server air flow rates can be updated
efficiently by backpropagation-based neural net training algorithms
for the purpose of calibration. The output of the neural surrogate
is a vector of 𝑛 predicted temperatures at the sensor locations. In
what follows, we present the designs of the cooling and heating
blocks of the neural surrogate to capture prior knowledge of the
thermal relations among the key variables. Lastly, we present the
settings of the constants used by the neural surrogates, which are
also based on the prior knowledge on the layout of the modeled
data hall.

4.1.1 Cooling block. This block models the impact of the CRAC
temperature setpoints Tc and fan speeds V on the temperatures at
all sensor locations. First, we encode the two free variables (i.e., Tc
and V) into a hidden-layer variable for the 𝑘th sensor as 𝑋 cold

𝑘
=∑𝑙

𝑖=1𝑇c𝑖 · 𝑐𝑖𝑘 , where 𝑇c𝑖 is the setpoint of the 𝑖th CRAC and 𝑐𝑖𝑘 is a
cooling coefficient characterizing the impact of the 𝑖th CRAC on the
𝑘th sensor. We design 𝑐𝑖𝑘 to be positively related to the CRAC fan
speed. Specifically, we use softmax activation to compute the cooling
coefficient matrix as 𝑐𝑖𝑘 = 𝑒𝑧𝑖𝑘∑𝑙

𝑎=1 𝑒
𝑧𝑎𝑘

, where 𝑧𝑖𝑘 is an intermediate

variable defined by 𝑧𝑖𝑘 = 𝑉𝑖 ·𝑊 cs
𝑖𝑘
,𝑉𝑖 is the fan speed of the 𝑖th CRAC,

and𝑊 𝑐𝑠
𝑖𝑘

is a weight characterizing the thermal impact of the 𝑖th

CRAC on the 𝑘th sensor. The CRAC-to-sensor matrixWcs ∈ R𝑛×𝑙
consisting of𝑊 𝑐𝑠

𝑖𝑘
for 𝑖 = 1, . . . , 𝑙 and 𝑘 = 1, . . . , 𝑛 is an adjacency

matrix. The weights in this matrix can be fixed or trainable. If they
are fixed, their settings are important and will be discussed in §4.1.3.
§5 will compare the performance of the neural surrogates withWcs

fixed or trainable. Lastly, we use a linear layer to project the hidden-
layer variable to temperature as𝑇 cold

𝑘
= 𝑎𝑘𝑋

cold
𝑘
+𝑏𝑘 , where 𝑎𝑘 and

𝑏𝑘 are two trainable weights.

4.1.2 Heating block. This block models the impact of the servers
on the temperatures at the hot aisle sensor locations. We assume



BuildSys ’20, November 18–20, 2020, Virtual Event, Japan R. Wang, et al.

Wcs
1 2 3 … l

1
2
3

l

CRAC 
setpoints

CRAC fan speeds

…

Tc

V

softmax Tcold

Cooling 
coefficient 

matrix… …

n nodesl nodes n × l

…

2
3
4

m

1

…

P
2 3 4 m1 …

Cooling block (CRACs         Sensors) Heating block (Servers         Sensors)

Encoded by
 physical law … …

Wss

… …

n nodes n nodesm nodes

Server 
powers

Server air flow rates  
α

n nodes

∆T Ts

Tcold    e

Add

Output

…

n nodes
……

Hidden 
layer

Hidden 
layer

…

m nodes

Xcold Xhot

Tcold    (1- e)

Thot e

Figure 6: The architecture of the knowledge-based neural surrogate for temperature prediction. The structure consists of a
cooling block and a heating block. The weight between any two facilities is initialized using their normalized reciprocal spatial
distance. Two linear hidden layers are used to predict the cold aisle temperatures and temperature rises induced by servers.

that the energy dissipated from the servers in the forms of elec-
tromagnetic radiation and mechanical movements is negligible
compared with that dissipated in the form of heat. Thus, from [13],
the temperature increase caused by a server consuming 𝑃 watts at
its outlet can be modeled by 𝑃

𝑐p𝛼
, where 𝑐p is a heating constant

representing the heat capacity of air and 𝛼 is the server air flow
rate. Based on this first principle, we use server powers and air flow
rates to predict the server-induced temperature increase Δ𝑇𝑘 at the
𝑘th hot aisle sensor location. Specifically, Δ𝑇𝑘 = 𝑐𝑘𝑋

hot
𝑘
+𝑑𝑘 , where

𝑐𝑘 and 𝑑𝑘 are two trainable weights, and 𝑋hot
𝑘

is a hidden-layer

variable. The 𝑋hot
𝑘

is defined by 𝑋hot
𝑘

=
∑𝑚

𝑗=1
𝑃 𝑗

𝛼 𝑗
·𝑊 ss

𝑗𝑘
, where 𝑃 𝑗

is the 𝑗 th server power, 𝛼 𝑗 is the 𝑗 th server air flow rate, and𝑊 𝑠𝑠
𝑖 𝑗

is the weight characterizing the thermal impact of the 𝑗 th server
on the 𝑘th sensor. We define the server-to-sensor adjacency matrix
Wss consisting of𝑊 ss

𝑗𝑘
for 𝑗 = 1, . . . ,𝑚 and 𝑘 = 1, . . . , 𝑛. Similar to

Wcs, Wss can be fixed or trainable. For the former case, its setting
is discussed in §4.1.3. Note that the heating block outputs Δ𝑇𝑘 for
all sensor locations (denoted by ΔT); but only the outputs at hot
aisle sensor locations will be used when combing the results of the
cooling and heating blocks. This design simplifies the vectorized
implementation of the neural surrogate using TensorFlow (cf. §4.3).

4.1.3 Joining two blocks and adjacency matrices settings. With hot-
aisle containment and blanket, heat recirculation is negligible. Thus,
the temperatures at cold aisle sensor locations aremainly affected by
the CRACs; the temperatures at hot aisle sensor locations are jointly
affected by the CRACs and servers. To combine the outputs of the
cooling and heating blocks, we define a one-hot vector e ∈ {0, 1}𝑛 ,
where its element 𝑒𝑘 = 1 or 0 represents that the 𝑘th sensor location
is in hot or cold aisle, respectively. Therefore, the final output of
the neural surrogate, i.e., the temperatures at all sensor locations,
can be expressed by T̂s = Tcold ⊗ (1− e) +Tcold ⊗ e+ΔT ⊗ (1− e),
where ⊗ represents element-wise product, Tcold ⊗ (1− e) gives the
temperatures at the cold aisle sensor locations, and Tcold ⊗ e+ΔT⊗
(1 − e) gives the temperatures at the hot aisle sensor locations.

If Wcs and Wss are fixed, the weights of the neural surrogate
are W = {𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘 |𝑘 = 1, . . . , 𝑛}; otherwise, W additionally
include Wcs and Wss. We now discuss the settings of Wcs and

Wss if they are not trainable. Each of their elements represents the
thermal impact of a facility (CRAC or server) on a sensor location.
Since the thermal impact decreases with spatial distance, in this
paper, we set it to be a normalized reciprocal of the spatial distance
between the facility and the sensor location. When it is lower than
a threshold, it is forced to be zero, indicating that the corresponding
thermal impact is negligible. Thus, to set these two two matrices,
the layout of the data hall and the sensor locations will be needed,
which are available to the data center operator in general.

4.2 Four-step Iterations for CFD Calibration
Let 𝑇s𝑘 , 𝑇s𝑘 , 𝑇s𝑘 denote the surrogate-predicted temperature, CFD-
predicted temperature, and the measured temperature at the loca-
tion of the 𝑘th sensor, respectively. Algorithm 1 shows the pseu-
docode of the four-step iterations. We now explain it in detail.

① Neural surrogate training (Line 4-6): The training data is
generated by solving the CFD model with collected system input
(including CRAC temperature setpoints and fan speeds, server pow-
ers) and the initial α or calibrated α by step ③ of the previous
iterations to yield the predicted temperatures at sensor locations.
The detailed training data generation is described in §5.2.2. Note
that each element of α should be within [𝛼𝑙 , 𝛼𝑢 ]. The system input,
theα, and the predicted temperatures form a new training data sam-
ple that is added to the training dataset accumulated from the first
iteration. With the training dataset, the neural surrogate is updated
to minimize the errors between its predicted temperatures and
the CFD-predicted temperatures of the training samples. Thus, the
weights of the neural surrogate are updated using the gradient of the
least squares loss function of L1 = 1

𝑛

∑𝑛
𝑘=1 (𝑇s𝑘 (W, x) −𝑇s𝑘 (x))2.

As a result, the surrogate is trained to align with the CFD model.
At the end of this step,W is frozen.

② Surrogate-assisted calibration (Line 7-8): The surrogate is
re-optimized to minimize the errors between its predicted tempera-
tures and the measured temperatures by updating α. In this step, α
is set trainable. An empirical regularization term is added to penal-
ize the loss function if the temperature difference between the hot
and cold aisle, i.e., Δ𝑇 , is out of the empirical range [Δ𝑇l,Δ𝑇u]. The
penalty term is expressed using the rectified linear units (ReLU) as
ℎ(𝑇 ) = ∑𝑚

𝑗=1 (ReLU(Δ𝑇l − Δ𝑇 ) + ReLU(Δ𝑇 − Δ𝑇u)) × 𝑃 𝑗 , where 𝑃 𝑗
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Algorithm 1 Kalibre’s CFD model calibration procedure.
Input: Measurements collected from a data hall at a time instant,

including CRAC setpoints Tc, CRAC fan speed ratios V, server
powers P, and sensor measurements Ts. Initial server air flow
rates α. Cooling and heating coefficient matrixWcs andWss.

Output: Calibrated α.
1: Initialize each 𝛼 within [𝛼l, 𝛼u] and CFD error 𝜖 ;
2: Assign initial configurations to the surrogate graph G;
3: for 𝑖 = 1 : Max iteration do
4: Solve CFD model to obtain T̃s;
5: Aggregate CFD solving results as training data;
6: Train surrogate by performing gradient descent on L1;
7: Search α by performing differential evolution;
8: Search α by performing gradient descent on L2;
9: Configure α to the CFD model;
10: if 1

𝑛

∑𝑛
𝑖 |𝑇s𝑖 −𝑇s𝑖 | < 𝜖 then

11: 𝜖 ← 1
𝑛

∑𝑛
𝑖 |𝑇s𝑖 −𝑇s𝑖 |; α∗ ← α;

12: end if
13: end for
14: return Calibrated server air flow rate configurations α∗;

is the 𝑗 th server power. The term means that, if the server power is
higher, the penalty should be more significant. Thus, the second
loss function with regularization is L2 =

1
𝑛

∑𝑛
𝑘=1 (𝑇s𝑘 (α) −𝑇s𝑘 )

2 +
_
𝑛

∑𝑛
𝑘=1 ℎ(𝑇 ), where _ is a regularization coefficient. In our exper-

iments, we set Δ𝑇l and Δ𝑇u to be 5°C and 15°C, based on the data
center operator’s experience. To accelerate the re-optimization,
we implement a hybrid approach of combining differential evo-
lution algorithm with gradient backpropagation to minimize the
loss function L2. This hybrid approach has been shown effective
in accelerating neural net training [30]. We will also evaluate its
effectiveness for our specific problem in §5.2.2.

③ CFD configuration (Line 9): The updated α is configured
back to the CFD model. The refined CFD model is then used for
step ① of the next iteration.

④ CFD validation (Line 10-12): The CFD model’s accuracy is
validated against the ground-truth sensor measurements. Only
better α is recorded for final output candidate.

Through iterative optimization of the two loss functions L1 and
L2, the α will be calibrated to improve the CFD model’s accuracy.

4.3 Implementation of Kalibre
We implement Kalibre with Python 3.5 and Google TensorFlow
1.15.0, where the latter is a library widely used for building ma-
chine learning applications. When we use TensorFlow to build the
neural surrogate’s computational graph, the server air flow rates
α are set as a vector of trainable variables instead of a TensorFlow
placeholder. This allows us to control their updating by choosing to
freeze the gradients or not. We choose Adam [14] as the optimizer,
which is a method for efficient stochastic optimization that only
requires first-order gradients and little memory space. The CFD
model solving is performed by 6SigmaDCX [1], a commercial CFD
software package. The 6SigmaDCX can loadα from a configuration
file. During the four-step iterations, our Python program writes the

Table 2: CFD model solving time.

CPU cores 1 2 4 8 16 32

Solving time (h) 5.95 3.72 2.54 0.99 0.6 0.44

Table 3: Hyperparameter settings of Kalibre.

Hyperparameter Setting Hyperparameter Setting

[𝛼l, 𝛼u ] (cfm/W) [0.01, 3] [Δ𝑇l,Δ𝑇u ] (°C) [5, 15]
Augment batch size 16 Training epoch 150
Initial learning rate 0.1 Regularization term 1
Decay coefficient 0.8 Max search iteration 100
Population size 10 Crossover rate 0.6

candidate α to the file, invokes a 6SigmaDCX session to solve the
CFD model, and collects results by parsing 6SigmaDCX’s output.

5 PERFORMANCE EVALUATION
In this section, we apply Kalibre to calibrate the CFD models built
for two production data halls and present the evaluation results
against other baseline approaches.

5.1 Experiment Methodology and Settings
5.1.1 Data halls and CFD models. Our targets are two production
data halls (referred to as Hall A and Hall B) in operation for e-
commerce applications. Both of them are sized hundreds of square
meters that host thousands of servers, respectively (the details of the
two data halls are omitted here due to confidentiality requirement).
Their CFD models were built and meshed with 10 million grid cells
by a domain expert using 6SigmaDCX. The accuracy of these two
CFD models will be evaluated in §5.2.2. Here, we present their
compute overheads. Table 2 shows the compute times for solving
one of the CFD models when the number of used CPU cores varies.
Note that the 6SigmaDCX software package made available to
us supports parallel computing with up to 32 CPU cores on the
same computer. The evaluation shows that a single CFD model
solving takes up to several hours and the solving time decreases
with the number of used CPU cores. However, the model solving
speed (i.e., the reciprocal of the solving time) is sub-linear to the
number of used CPU cores. This suggests that the CFD computation
is not completely divisible and the communications among the
paralleled units matter. Thus, even if the 32-core limit is lifted, the
attempt to use more CPU cores across multiple computers may face
performance bottlenecks due to the cross-computer communication
overheads. With 32 CPU cores, the CFD model solving time is
about half an hour. This solving time still renders the heuristic
search-based model calibration approaches impractical, since they
generally need a large number of iterations (e.g., hundreds as shown
shortly). Note that GPU acceleration has been introduced to another
commercial CFD software package [3]. However, it brings 3.7x
acceleration only [3], which does not change the impracticality of
the heuristic search-based model calibration approaches.

5.1.2 Error metric and settings. We use mean absolute error (MAE)
to measure the errors of the CFD models in temperature prediction.
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Figure 7: MAEs of three neural surrogates trained with 5%,
15%, 30%, and 50% of samples in the training dataset.

Specifically, 𝑀𝐴𝐸 = 1
𝑁

∑𝑁
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |, where 𝑁 is the number of

deployed sensors, 𝑦𝑖 and 𝑦𝑖 are the 𝑖th sensor measurement and
the prediction made by the CFD, respectively. Table 3 shows the
hyperparameter settings of Kalibre. These settings include the em-
pirical bounds and the hyperparameters of the surrogate training
and differential evolution search. They are selected based on advice
from the domain expert or extensive experimental tests.

5.2 Evaluation Results
5.2.1 Performance of neural surrogates. As the neural surrogate’s
efficiency in learning from small data is a key merit, we conduct
experiments to investigate the impact of training data volume on
the accuracy of the neural surrogate. We consider three designs of
the neural surrogate: Kalibre’s neural surrogate with Wcs and Wss

fixed and trainable, respectively, and a vanilla neural surrogate. The
vanilla neural surrogate has three fully-connected layers consisting
of 518, 128, and 32 neurons. Before the experiments, we solve Hall
A’s CFD model to generate 213 training data samples. Each model
solving is based on anαwith each of its element sampled randomly
and uniformly from [𝛼l, 𝛼u]. Then, we divide the generated data
samples into training and test datasets following a 8:2 ratio. Fig. 7
shows theMAEsmeasured on the test dataset when the three neural
surrogates are trained using 5%, 15%, 30%, and 50% samples of the
training dataset. First, we compare Kalibre’s neural surrogates with
Wcs andWss fixed and trainable. We can see that for all amounts
of used training data, the neural surrogate withWcs andWss fixed
and initialized with spatial distance reciprocals outperforms the
others. This is because when the two adjacency matrices are given,
𝑎, 𝑏, 𝑐 and 𝑑 are the only parameter sets that we need to learn, i.e.
W={ 𝑎, 𝑏, 𝑐, 𝑑 } ∈ R4𝑛 . In contrast, the neural surrogate withWcs and
Wss trainable has (𝑙 ×𝑛 +𝑚×𝑛) more weights to be learned, which
require more training samples to avoid overfitting. Thus, in the rest
of this paper, we fix Wcs and Wss at their initial settings based on
spatial distance reciprocals. Second, we examine the results of the
vanilla neural surrogate. From Fig. 7, when 5% training samples
are used, the vanilla neural surrogate produces 2.11°C MAE, com-
pared with Kalibre neural surrogate’s 0.69°C MAE. Although the
vanilla neural surrogate’s MAE decreases with the amount of used
training data and eventually achieves comparable MAE as Kalibre’s
neural surrogate when 50% training samples are used, the results
clearly suggest that the vanilla neural surrogate has lower learning
efficiency on small data. This is consistent with our understanding
since the vanilla neural surrogate has thousands trainable weights
and thus needs more training data to avoid overfitting.
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Figure 8: Average loss and gradient over Kalibre’s iterations.
(a)-(b): with differential evolution; note that the 𝑦-axis scale
is not uniform. (c)-(d): without differential evolution.

5.2.2 Convergence and effectiveness of Kalibre. In this set of exper-
iments, we evaluate Kalibre’s convergence speed and the effective-
ness of its calibration. To initiate Kalibre’s four-step iterations, we
solve the CFD model to generate three training data samples by
setting each element of α to the upper and lower bounds, as well
as a mid point between the two bounds. To mitigate the initial over-
fitting, we augment the three-sample dataset by adding Gaussian
noises as in [9]. The augmented batch size for each sample is 16.
Thus, we have a total of 48 samples for the initial training process.
In each four-step iteration, a new training data sample will be gen-
erated by solving the CFD model configured with the α∗ found by
the neural surrogate. This new training data sample is aggregated
to the training dataset. In this set of experiment, Kalibre terminates
after ten iterations. As presented in §4.2, Kalibre adopts a hybrid
approach combining the gradient backpropagation widely used for
neural net training and the differential evolution to find α∗. In our
experiments, the gradient backpropagation is implemented by the
Adam optimizer. Fig. 8(a) and (b) show the average loss and gradient
over the four-step iterations. In the first iteration, the average loss
and gradient are very large, reaching around 105 and 180, respec-
tively. A closer examination shows that the regularization penalty
of the loss functionL2 is large in the very early iterations. However,
in the subsequent iterations, the average loss sharply decreases and
converges to zero in the tenth iteration. The average gradient also
approaches zero. For comparison, we adopt a baseline of using the
Adam optimizer only to find α∗. Figs. 9(c) and (d) show the results
of this baseline. We can see that the convergence is slow and the
average loss remains large (about 0.5× 105) after ten iterations. The
results show that the differential evolution effectively accelerates
the convergence of Kalibre.

Then, we show the effectiveness of themodel calibration. Figs. 9(a)
and 10(a) show the two halls’ thermal planes computed based on
the original CFD models presented in §5.1.1. We can see that the
temperature distribution is uneven in both the cold and hot aisles.
Figs. 9(c) and 10(c) shows the temperatures predicted by the two
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Uncalibrated Calibrated

(a) (b)

(c)

Figure 9: Hall A temperature distribution. (a) Thermal plane
produced by the original CFDmodel; (b) Thermal plane pro-
duced by the calibrated CFD model; (c) CFD-predicted and
ground-truth temperatures at the sensor locations.

halls’ original CFD models at the sensor locations and the ground-
truth values measured by the sensors. The original CFD models’
prediction errors are from 3°C to 6°C. Such large errors are due to
the inaccurate estimation of the server air flow rates. Figs. 9(b) and
10 (b) show the thermal planes computed based on the CFD mod-
els after ten calibration iterations of Kalibre. We can see that the
temperature distributions become more uniform, compared with
the results shown in Figs. 9(a) and Figs. 9(b). From Figs. 9(c) and
10(c), the temperatures predicted by the calibrated CFD models well
match the ground-truth values, with MAEs of 0.81°C and 0.75°C for
the two halls, respectively. The above results show the effectiveness
of Kalibre for large-scale data halls.

5.2.3 Comparison with baseline approaches. We compare Kalibre
with three baseline approaches discussed in §1:
Manual calibration involves extensive tuning of the server air
flow rates by a CFD expert with years of experience. Specifically, if
the CFD-predicted temperature at a sensor location is higher than
the ground-truth temperature, the expert empirically increases the
flow rates of nearby servers and vice versa.
Heuristic parameter search uses the covariance matrix adapta-
tion evolution strategy (CMA-ES) to search good α. It solves the
CFD model every search iteration. CMA-ES is a gradient-free nu-
merical optimization method. It applies the (1+1) strategy described
in [24] to generate one candidate solution per iteration. If the MAE
of the new offspring is smaller, it becomes the parent. The mutation
rate is set to 𝜎 = 5 and updated for each iteration by following the
1/5 successful evolution rule described in [24].
Vanilla neural surrogate uses the neural net presented in §5.1.1
that consists of three fully-connected layers. It also follows Kalibre’s
four-step iterations to perform the model calibration.

Table 4 shows the MAEs achieved by different approaches with
ten calibration iterations, as well as the lowest MAEs achieved
and the needed iterations. With ten calibration iterations, Kalibre
achieves lower MAEs compared with the baseline approaches for
both halls. After about 15 calibration iterations, Kalibre’s MAEs

Uncalibrated

(a) (b)

(c)

Calibrated

Figure 10: Hall B temperature distribution. (a) Thermal
plane produced by original CFD model; (b) Thermal plane
produced by calibrated CFD model; (c) CFD-predicted and
ground-truth temperatures at the sensor locations.

converge to 0.76°C and 0.59°C for the two halls. As shown in §5.1.1,
the vanilla neural surrogate requires more training data samples to
well represent the CFD model. Thus, with ten calibration iterations,
its calibrated CFDs still yield MAEs higher than manual calibration.
The heuristic parameter search cannot find good configurations
with the same CFD iteration times. Its MAEs saturate at high levels
of 3.49°C and 2.61°C even after 120 CFD model solving processes
for the two halls, respectively. Thus, we can see that the heuristic
parameter search and vanilla neural surrogate are inefficient to
find the optimal configuration under the same computation time.
Although the manual calibration reduces theMAE to 1.32°C to 1.1°C,
it is labor-intensive. In addition, its MAEs are higher than Kalibre’s.
The lower MAEs achieved by Kalibre further improves the fidelity
of the CFD results. If such results are used to guide data center
operations, the risks caused by the errors can be further reduced. In
sum, systematic approaches to improve the fidelity of data center
digital twin are always desirable.

5.2.4 Compute time. From the results in Table 4, Kalibre achieves
sub-1°C MAEs with 10 calibration iterations and the lowest MAEs
with about 15 calibration iterations. The compute time breakdown
of each iteration is as follows: about 200 seconds for surrogate train-
ing, about 100 seconds for configuration search, about 26 minutes
for CFD model solving with 32 CPU cores. Kalibre’s compute time
for calibrating a hall’s CFD is about 5 hours and 7.5 hours for 10 and
15 iterations, respectively. For vanilla neural net to reach similar
accuracy, it requires more iterations, resulting in 3x∼5x compute
time compared with Kalibre’s to generate enough data for training.

6 DISCUSSIONS AND CONCLUSION
We now discuss several worth-noting issues. First, the primary
purpose of the surrogate is to improve the efficiency of parameter
search. The surrogate does not provide a full-fledged approximation
of the CFD model. For instance, it does not model the temperatures
at the locations without sensors, which are modeled by the CFD
model in contrast. Thus, only the calibrated CFD model shall be
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Table 4: MAE achieved with 10 calibration iterations, as well
as the lowest MAE achieved and the needed iterations.

Approach MAE (°C) MAE (°C) Needed Auto?10 iters lowest iters

Hall A

Manual 1.32 N/A N/A ✕

Heuristic 4.75 3.49 127 ✓
Vanilla 1.44 1.09 50 ✓
Kalibre 0.81 0.76 14 ✓

Hall B

Manual 1.1 N/A N/A ✕

Heuristic 3.80 2.61 130 ✓
Vanilla 1.33 0.80 28 ✓
Kalibre 0.75 0.59 15 ✓

used as a digital twin for the run-time temperature evaluation in
improving energy efficiency and reducing operational risks. Second,
the surrogate architecture described in this paper is for data halls
with hot-aisle containment. Thus, heat recirculation is not consid-
ered. To address the data halls without hot-aisle containment, heat
recirculation and temperature mixing effects should be added to
the neural surrogate’s design. Third, this paper mainly focuses on
temperature prediction. For other types of prediction, Kalibre can
be extended to address their calibration problems with proper sur-
rogate designs. For instance, if air flow rate sensors are deployed,
Kalibre can be extended to calibrate the CFD for predicting air
velocity distribution.

In conclusion, this paper presents Kalibre, an automatic surrogate-
based approach to calibrate data center CFD models. The design of
Kalibre’s neural surrogate integrates prior knowledge including the
thermal relations among the key variables of the physical infras-
tructure. Thus, it reduces the demand on the amount of training
data generated by the compute-intensive CFD model solving. We
demonstrate its effectiveness on two CFD models built for two
production data halls that host thousands of servers. The CFD mod-
els calibrated by Kalibre achieve temperature prediction MAEs of
0.81°C and 0.75°C, respectively. Compared with manual calibration,
Kalibre’s improvement of up to 0.5°C is significant in CFD modeling
due to the sharply increased difficulty in improving accuracy when
the errors are already low (i.e., at around 1°C). Kalibre sheds lights
on the calibration of other compute-intensive models to pursue
high accuracy in approximating complex physical processes.
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