
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 34

Efficient Formal M e t h o d s for the
Synthes i s of Concurrent Programs 2

Pau l C. At t i c a

M I T L a b o r a t o r y for C o m p u t e r Science
Cambr idge , M A

(attie@theory.lcs.mit.edu)

Introduction and b a c k g r o u n d

The objective of this research is to produce useful, low-cost
methods for developing correct concurrent programs from for-
mal specifications. In particular, we address the design and
verification of the synchronization and communication por-
tions of such programs. Often, this portion can be imple-
mented using a fixed, finite amount of synchronization related
data, i.e., it is "finite-state." Nevertheless, even when each
program component contains only one bit of synchronization
related data, the number of possible global synchronization
states for K components is about 2 K, in general. Because
of this "state-explosion" phenomenon, the manual verifica-
tion of large concurrent programs typically requires lengthy,
and therefore error-prone, proofs. Using a theorem prover
increases reliability, but requires extensive formal labor to
axiomatize and solve verification problems. Automatic veri-
fication methods (such as reachability analysis and temporal
logic model checking) use state-space exploration to decide
if a program satisfies its specification, and are therefore also
subject to state-explosion. To date, proposed techniques for
ameliorating state-explosion either require significant manual
labor, or work well only when the program is highly symmet-
ric and regular (e.g., many functionally similar components
connected in similar ways).

To overcome these drawbacks, we advocate the synthesis

of programs f rom specifications. This approach performs
the refinement from specifications to programs automatically.
Thus, the amount of formal labor is reduced to writing a
formal specification and applying the appropriate synthesis
step at each stage of the derivation. While nontrivial, writing
a formal specification is necessary in any methodology that
guarantees correctness.

O u r approach
Previous synthesis methods relied on some form of exhaustive
search of the program's state-space. Hence, state-explosion
has been a major obstacle to the application of synthesis to
problems of realistic size. Our approach avoids exhaustive
state-space search (and its exponential complexity) by ana-
lyzing interactions among every pair of component processes
in the program separately, rather than looking at all processes
at once. For every pair of directly interacting processes, we
represent their interaction explicitly and separately from all
the other interactions in the program. We start with a spec-
ification which describes all the pairwise interactions and we

2This work has been supported by NSF CAREER Grant CCR-
9702616 and AFOSR Grant F49620-96-1-0221.

3On leave from the School of Computer Science, Florida International
University.

automatically synthesize a "pair-program" for each such in-
teraction. We then "compose" the pair-programs together to
produce the final large program. The final step refines this
program (which uses shared memory) to a message passing
model. To date, we have developed:

• A method for synthesizing fault-tolerant pair-programs
[AAE98].

• An efficient method for composing pair-programs into a
large (shared memory) program [AEg8, Att99a]. This
method allows all of the pair-programs to be different.

• A methodology for refining liveness properties [Att99b].
This forms the basis for refining the large shared memory
program into a distributed program, which is a next step
of our research.

Our approach has synthesized programs for resource con-
tention problems isuch as K-process mutual excluskm and K-
process dining philosophers, for arbitrary K > 2 [AE98], and
also two-phase commit [Att99a].

C o n c l u d i n g r e m a r k s a n d f u t u r e w o r k

We aim to develop a methodology that can synthesize realistic
concurrent programs. Our future work will increase the scope
of applicability of our method, and will address non-functional
properties such as fault-tolerance, performance, and distribu-
tion.

R e f e r e n c e s

[AAE98] A. Arora, P. C. Attic, and E. A. Emerson. Synthesis of fault.-
tolerant concurrent programs. In 7th Annual A CM Symposium
on the Principles of Distributed Computing, pages 173 - 182,
June 1998.

[AE98] P.C. Attic and E. A. Emerson. Synthesis of concurrent systems
with many similar processes. ACM TOPLAS, 20(1):51-115,
January 1998.

[Att99a] P.C. AttiC. Synthesis of large concurrent programs via pairwise
composition. In CONCUR '99: lOth International Conference
on Concurrency Theory, number 1664 in LNCS. Springer-
Verlag, August 1999.

[Att99b] P. C. Attic. Liveness-preserving simulation relations. In 18th
Annual ACM Symposium on the Principles of Distributed
Computing, pages 63 - 72, May 1999.

Relat ional Programs'
Fa rokh B. B a s t a n i

Univers i ty of Texas a t Dal las
Richardson , T X 77083

(bast ani@utdallas.edu)

Motivation
Computers are being used to automate critical services, in-
cluding manufacturing systems, transportation, etc. The soft-
ware for these systems is becoming very complex due to their
growing sophistication. For these critical applications, it is

apart of this work has been supported by NSF grant CCR-9803993
and CCI:b.9900922.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F340855.340865&domain=pdf&date_stamp=2000-01-01

