
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 200(I Page 36

experiment with this implementation measures the size of dif-
ferences and the time taken to compute it.

The test subjects for this experiment include a collection of
small programs, a selection of medium programs, and one
"larger" program. Their sizes are in the hundreds, thousands,
and tens of thousands of lines, respectively. Presently data
for the first group has been collected.

These programs, which were obtained from Siemens Corpo-
rate Research, simulate small changes designed to be realistic
(neither too easy nor too difficult to detect).

Each programs has between 7 and 21 functions and ranges
from 145 to 514 non-blank lines of source code. Each program
has from 7 to 42 different versions.

Consecutive pairs of versions were used as the previously
tested program and the modified version of this program as
input into the implementation.

The table below reports the average, best case, and worst case
size reduction for each program over all its versions.

The initial da ta look promising. Most small programs are
single thought by their very nature. For such programs, dif-
ferences is expected to include most of modified.

Referring to the table below, the worst case reduction is 9%,
while the best is 95%. Over all the versions the average re-
duction was 26%.

For these short programs no measurable time was taken in
computing differences. With the exception of the program
replace, there is an upward trend in the average reduction
obtained as the program size increases. Further experiment
will reveal if this trend continues.

program number of percent size reduction

name versions size worst average best

calc 11 166 9% 15% 45%

print_t 1 7 513 38 39 39

print__t2 10 468 33 34 38

replace 32 514 11 12 19

schedulel 9 362 27 27 28

schedule2 9 280 19 33 95

tcas 40 145 17 24 27

AVERAGES 17 350 22 26 42

A Fully Capable Bidirectional
Debugger

B o b B o o t h e

U n i v e r s i t y o f S o u t h e r n M a i n e
P o r t l a n d , M a i n e

(boothe@cs.usm.maine.edu)

Introduct ion

The goal of this research project is to develop a bidirectional
program debugger with which one can move as easily back-
wards as current debuggers move forward. We believe this
will be a vastly more useful debugger. A programmer will be
able to s tar t at the manifestation of a bug and proceed back-
wards investigating how the program arrived at the incorrect
state, rather than the current and often tedious practice of
the user stepping and breakpointing monotonically forward
and then being forced to start over from the beginning if they
skip past a point of interest.

Our experimental debugger has been implemented to work
with C and C + + programs on Digi ta l /Compaq Alpha based
UNIX workstations.

T e c h n i q u e s

We have abandoned the traditional debugger implementation
technique of dynamically inserting t rap instructions at po-
tential stopping points in the program being debugged. In
its place we have developed a technique which uses a collec-
tion of embedded counter routines to track the progress of
the program and stop it precisely at the final target location.
While these embedded counters add some overhead (less than
a factor of 2), tl~ey allow us to efficiently move b~'kwards to
earlier points in the execution by re-executing the program
and stopping at earlier counter values.

The basic counters are the "step counter" and "call depth
counter." These are inserted at compile time when the pro-
gram is compiled for debugging. Calls to the step counter
are inserted at the traditional debugger stepping points: each
line starting a new statement. When the user inserts a break-
point, we dynamically replace the call to the step counter at
the breakpoint location with a call to the breakpoint counter.
The step counter and breakpoint counter allow us to locate
and stop at any: specified number of steps or breakpoints in
either the forward or reverse direction. More complex move-
ments such as "next" and "finish," and their backwards ana-
logues '~previous" and "before," use the call depth counter
along with specialized counter routines tha t replace the basic
step counter. Finally, we have implemented efficient "until"
and "back until" movements tha t proceed forward or back-
wards until a specified variable either changes or reaches a
desired value.

To provide efficient backwards movements in long running
programs, we create periodic checkpoints, so that re-execution
need only execute forward from the nearest preceding check-

5This research was partly supported by NSF grant CCR-9619456.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F340855.340867&domain=pdf&date_stamp=2000-01-01

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 37

point, and to provide deterministic re-execution, we provide
I/O logging to capture external inputs from the initial execu-
tion that we will replay later upon re-execution.

Future Directions
So far we have focused our efforts on solving the most chal-
lenging research problems of providing a full set of debugging
movement commands that operate efficiently in both the for-
ward and a backwards directions. We have tested this ex-
tensively and are exceptionally pleased with its performance,
but we have not yet unleashed it upon our students for gen-
eral use in debugging their programs. This is the ultimate
test: whether students find the backward movements help-
ful in more quickly locating the causes of bugs in their pro-
grams. We are currently working on user interface level issues
in preparation for this next level of evaluation.

A C o m p o s i t e Mode l Checking
Toolset for Ana lyz ing Software

Sys tems
Tevfik Bultan

University of California
S a n t a Barba ra , CA 93106

(bultan@cs.ucsb.edu)

Model checking has proved to be a successful technique for
verifying hardware systems. Given a transition system and
a temporal property, model checking procedures exhaustively
search the state space of the input transition system to find
out if it satisfies the given temporal property. Recently, model
checking has been used for analyzing software specifications
with encouraging results [CAB + 98]. The state-space of a soft-
ware specification can be explored using model checking pro-
cedures to verify or falsify (by generating counter-example
behaviors) its properties.

The success of model checking has been partially due to Bi-
nary Decision Diagrams (BDDs) - a data structure that can
encode boolean functions in a highly compact format. The
main idea in BDD based model checking is to represent sets
of system states and transitions as boolean formulas, and ma-
nipulate them efficiently using BDDs [McM93]. BDD data
structure supports the operations required for model check-
ing: intersection, union, complement, equivalence checking
and existential quantifier elimination (used to compute pre-
and post-conditions). This type of model checking is called
symbolic since the system states are represented implicitly by
BDDs during the state space search.

In recent years new symbolic representations have been pro-
posed. For example, HyTech, a symbolic model checker for
hybrid systems, encodes real domains using linear constraints
on reals [AHI-I96]. Recently, we proposed a model checker
for integer based systems, which uses Presburger arithmetic
(integer arithmetic without multiplication) constraints as its
underlying state representation [BGP97]. Using constraint
representations one can verify systems with infinite variable

domains (which is not possible using finite representations
such as BDDs).

Our goal in this project is to develop a toolset which com-
bines various symbolic representations in a single composite
model checker. In the composite model checking approach
each variable in the input system is mapped to a symbolic
representation type [BGL98]. (For example, boolean and enu-
merated variables can be mapped to BDD representation, and
integers can be mapped to Presburger constraint representa-
tion.) Then, each atomic event in the input system is con-
junctively partitioned where each conjunct specifies the effect
of the event on the variables mapped to a single symbolic rep-
resentation. Conjunctive partitioning of the atomic events al-
lows pre- and post-condition computations to distribute over
different symbolic representations.

We plan to structure the composite model checking toolset
using a layered class hierarchy. The lowest layer will con-
tain libraries for manipulating various symbolic representa-
tions such as BDDs and arithmetic constraints. We plan to
develop an API which will be shared by different symbolic rep-
resentations. At the next level of the hierarchy we will have
the composite-model library to handle operations over mixed-
type expressions (e.g., equivalence check, intersection, etc.); in
turn, these operations will invoke their relevant type-specific
counterparts in the lower level to help carry out the desired
effect. At the top level, the model checker will implement the
fixpoint computations using the composite-model library. We
already implemented a prototype toolset based on this struc-
ture which combines BDD and Presburger constraint repre-
sentations [BGL98]. We plan to expand our composite model
checker by adding other symbolic representations which will
allow us to encode variable types such as reals and queues. We
would also like to compare performances of different symbolic
representations.

We plan to investigate techniques for generating efficient sym-
bolic representations for software specifications. Particularly,
we would like to investigate automated or semi-automated
techniques for abstraction, partitioning, and compositional
analysis. Our goal is to use the composite model checking
toolset to investigate effectiveness of symbolic analysis tech-
niques in verification of software systems.

R e f e r e n c e s

[AHH96] R. Alur, T. A. Henzinger, and P. Ho. Automatic symbolic
verification of embedded systems. IEEE Transactions on
Software Engineering, 22(3):181- 201, 1996.

[BGL98] T. Bultan, R. GeTber, and C. League. Verifying systems with
integer constraints and boolean predicates: A composite ap-
proach. In Proceedings of the 1998 International Symposium
on Software Testing and Analysis, pages 113-123, 1998.

[BGP97] T. Bultan, R. Gerber, and W. Pugh. Symbolic model check-
ing of infinite state systems using Presburger arithmetic. In
O. Grumberg, editor, Proceedings of the 9th International
Conference on Computer Aided Verification, volume 1254 of
LNCS, pages 400-411. Springer, 1997.

[CAB+98] W. Chart, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. D. Reese. Model checking large software

