
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 71

dling both platforms), and are considering how to extend it
to the domain of synchronizing replicated information on the
Web.

Another recent project, dubbed TinkerType, concerns modu-
lar presentation of collections of type systems. The goal is to
construct a "map" of a large variety of existing type systems,
showing their family relations and the ways in which some
can be derived by incremental modification - "inheritance" -
from others. Over the past few months, we have developed a
formal language for describing fragments of type systems and
built a tool for assembling type systems (both TeX descrip-
tions of inference rules and running typecheckers) from their
constituent fragments. The first product of this project will
be a graduate-level textbook on type systems. In the longer
term, our ambition is to construct not just type systems but
also proofs of standard properties in an incremental manner.

Parallel and Dis tr ibuted Execut ion of
Constraint Programs

Enrico Pontel l i
New Mexico S ta t e Univers i ty

(epontell~cs. nmsu.edu)

I n t r o d u c t i o n The goal of this research project is to
study techniques and methodologies for execution of Con-
straint logic programs on parallel and distributed architec-
tures. These models will be applied to implicit and ex-
plicit parallelization of complex and irregular symbolic appli-
cations, such as those arising in Natural Language Process-
ing, Knowledge-based Systems, and Digital Libraries, and to
provide novel frameworks for advanced World-Wide Web pro-
gramming and coordination of software components.

R e s e a r c h D i r e c t i o n s
The activity in this project is articulated along the following
lines of research.

Parallel Constraint Logic Programming

This phase of the project focuses on the execution of logic and
constraint logic programs on shared memory architectures.
We have already developed technology for automatic detec-
tion of different forms of parallelism from logic programs and
designed and implemented efficient run-time execution mod-
els on shared memory architectures. Research is currently in
progress to extend compile-time analysis technology to cover
other forms of parallelism (e.g., or-parallelism) and to extend
the run-time models to the case of constraint solving.

Distributed Constraint Logic Programming

This phase of the project aims to design efficient models to
support the execution of logic programs on distributed mem-
ory architectures. The current line of research is focused

on revisiting the basic principle that has been proved suc-
cessful for shared memory execution of logic programs (e.g.,
bottommost-scheduling) and adapting them to non-shared
memory environments. A novel scheme has been developed,
called Stack Splitting, which allowed us to adapt shared-
memory or-parallel techniques to distributed memory ma-
chines with very promising results [GP99].

Application Frameworks

The ability to support execution of logic and constraint
programs on parallel and distributed architectures have
prompted us to consider some natural generalization of these
programming paradigms to suit the needs of some specific ap-
plication areas. Logic programming has been already success-
fully applied to support the development of software for the
World Wide Web. In this project we are currently studying
the use of distributed logic programming models to provide
a natural concurrent framework for Web programming [P00].
A concurrent logic-based framework (called WEB-KLIC) has
already been developed and is currently publicly distributed
as part of the ICOT Free Software Project. A relevant com-
ponent of this part of the project includes the design of con-
straint domains for representing HTML and XML documents.
Futhermore, various recent projects have rediscovered the po-
tential of logical rules and logical variables as tools to support
coordination of software components. We are currently ex-
ploring how to generalize the models used to support distrib-
uted execution of logic programs to provide a basic execution
engine for coordination of multi-language components.

C o n c l u d i n g remarks and f u t u r e w o r k

The research results achieved so far and the prototypes devel-
oped have already been applied to various real-life problems,
including:

• parallel execution of large natural language processing
applications--including a 35,000 lines Prolog applica-
tion performing automatic translation, which lead to
ahnost linear speedups up to 10 processors [PGWF98];

• parallel model checking [PG97];
• Web-based courseware engineering [PD99].

References

[GP99] G. Gupta, E. Pontelli. A Simple Technique for Implementing
Or-Parallelism o n D i s t r i b u t e d Machines. In Int. Conf. on
Logic Programming, MIT Press, 1999.

[P00] E. Pontelli. Concurrent Web Programming in CLP(WEB).
In. Int. Conf. of Computers and Systems Science, IEEE
Computer Society, 2000.

[PD99] E. Pontelli, K. Deopura. Concurrent Logic Programming
for Courseware Engineering o n t h e Web. In Int. Conference
on Practical Applications of Constraint and Logic Program-
ming, 1999.

[PG97] E. Pontelli, G. Gupta. Constraint-based specification and
verification of real-time systems. In Real-Time Systems
Syrup. IEEE Computer Society, 1997.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F340855.340992&domain=pdf&date_stamp=2000-01-01

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 72

[PGWF98] E. Pontelli et al. Natural Language Multiprocessing: a case
study. In National Conf. on Artifical Intelligence. AAAI,
1998.

A M o d e l and a Tool for Change
Propagat ion in Software

Vficlav Raj l ich
W a y n e S t a t e Univers i ty

Det ro i t , MI 48202
(raj lich~cs.wayne.edu)

The goal of this research is to make software changes easier,
safer, and less expensive. Please note that software change-
ability is one of the essential properties of software and in-
volves all software technologies. It is the core of software
evolution [7].

One of the proposed solutions is to anticipate changes and
structure the software in such a way that the changes will be
localized inside software components. However, more recent
case studies reported that only about 70% of the require-
ments were predicted in advance and the remaining require-
ments were discovered during development. Massive changes
triggered by company mergers, introduction of Euro, etc.,
could not be predicted even a few years ago. Therefore it is
likely that all software will be exposed to many unanticipated
changes during its lifetime, and the support for unanticipated
changes is an important research goal.

The process of change is divided into the following phases:

• Change request
• Change design, including program comprehension, feature

location, and change impact analysis
• Change implementation, including restructuring for change

and change propagation
• Change verification
• Record knowledge gained during the change

Under this NSF program, several phases have been addressed,
see the rest of this report and also [5]. Models and tools
of change propagation The change starts when the program-
mer changes a component of the software. After the change,
the component may no longer fit with the rest of the soft-
ware, because it no longer properly interacts with the other
components. In order to reintroduce the consistency into
the software, the programmer must keep track of inconsis-
tencies and the locations of the secondary changes. The sec-
ondary changes, however, may introduce new inconsistencies,
etc. The process of change propagation continues until all
inconsistencies are removed. A formal model of change prop-
agation was developed and published in [5]. It is based on
static analysis of the program that produces evolving interac-
tion graphs (eigs). It deals with scenarios and strategies used
for change propagation. Examples are strict or random, and
final or nonfinal strategies. A tool "Ripples" that supports
change propagation was also implemented.

Restructuring for change
The purpose of restructuring is to bring together parts of
program affected by the change. It is well known that the
delocalization of the change, i.e. the number of components
that need to be visited during the change, increases the risk
and difficulty of the change.

We developed several tools and scenarios that allow the pro-
grammer to restructure the code, without changing its func-
tionality. In [1], we deal with misplaced code, i.e. code that
appears in wrong classes. In [2], we deal with unnecessary
duplication of the code, i.e. code clones. In [3], we deal with
encapsulation of imperative code into classes. All three pa-
pers report case studies that validate the approach.

The tools that we implemented expulse the code from classes,
insert the code into classes, and do several additional restruc-
turing operations. The restructuring scenarios blend tool ac-
tions with programmer interventions.

Recording p r o g r a m c o m p r e h e n s i o n i n w w w

The program comprehension is a prerequisite for program
changes and it is a valuable commodity, as more than one half
of the software maintenance and evolution work is spent in
comprehension. Very often the comprehension is not recorded
and resides entirely in the programming team. Since a small
project team cannot afford redundancy, each part is compre-
hended ("owned") by one specific programmer. In that situa-
tion, an assignment of personnel to tasks becomes a problem.
A resignation of a key programmer can have serious conse-
quences because the comprehension - half of the work he/she
has done - leaves also.

In order to address this issue, we developed Partitioned An-
notations of Software (PAS) i.e. hypertext annotations based
on world wide web. PAS are a universal programmer note-
book that is used to record program comprehension and were
inspired by theories of program comprehension. They can be
browsed by a standard web browser.

We also developed an incremental and opportunistic redocu-
mentation process that records comprehension gained during
the changes. Description of PAS technology and an industrial
case study is in [4].

References
[1] R. Fanta, V. Rajhch, Reengineering an Object Oriented Code, In

Proc. IEEE Int. Conf. On Software Maintenance, 1998, 238-
246.

[2] R. Fanta, V. Rajlich, Removing Clones from the Code, Journal of
Software Maintenance, 1999, 223-243.

[3] R. Fanta, V. Rajlich, Restructuring legacy C code into C + + , In
Proc. IEEE Int. Conf. On Software Maintenace, .1999, 77-85.

[4] V. Rajlich, Srikant V., Using Web for Software Annotations, Inter-
national Journal of Software Engineering and Knowledge Engi-
neering, Vol. 9 (1999), 55-72.

[5] V. Rajlich, Software Change and Evolution, In J. Pavelka, G. Tel,
M. Bartosek, editors, SOFSEM'99, Lecture Notes in Computer
Science LNCS I 7~5, Springer Verlag, 1999, 186-199.

[6] V. Rajlich, Modeling Software Evolution by Evolving Interoperation
Graphs, ta be published in Annals of Software Engineering, Vol.
9, 2000, also http://www.cs.wayne.edu/Nvtr/eig.pdf

[7] K. Bennett, V. Rajlich, A new perspective on software evolution:
The staged model, submitted.

