
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 95

Evolutionary Design of Complex Software (EDCS) Demonstration Days 1999
Wayne Sticlolph, ed.

h t t p : / / w w w . i f . a f r l . a f . m i l / p r o g r a m s / e d c s / d e m o - d a y s - 9 9 / I n d e x - B y - T e c h n o l o g y . h t m l

Abstract
This report summarizes the Product/Technology demonstrations given at
Defense Advanced Research Projects Agency (DARPA) Evolutionary
Design of Complex Software (EDCS) Program Demonstration Days, held
28-29 June 1999 at the Sheraton National Hotel, Arlington, VA.

The Evolutionary Design of Complex Software (EDCS)
Program
Evolutionary Systems are those that are capable of accommodat-
ing change over an extended system lifetime with reduced risk
and cost/schedule impact. Most of our complex defense systems
depend on software for their successfifl operation and, by its very
nature, the software in those systems is the primary vehicle for
adapting systems to change.

The ultimate vision is to evolve software systems faster, better,
and cheaper -- through automated change. The EDCS Program is
providing for the development and experimental application of
leading-edge software technologies, which can achieve that vi-
sion, and enable significant improvements in military mission
effectiveness and information superiority. The goal is the capa-
bility to produce software intensive military systems that are
highly flexible and adaptable to meet changing requirements -
evolutionary systems.

Desert Storm clearly demonstrated the need for great flexibility in
the just-in-time use of superior technology that can be provided by
software. In the post cold war era, the exact nature of potential
threats is difficult to assess. Trends toward downsizing and
budget reduction place an increased burden on systems to last
longer and to adapt quickly to change - changes to mission,
changes to hardware/software and system configuration, changes
to operational elements, and changes in volume/types of data
processed.

Today's needs for flexibility and adaptability in military systems
transcend the conventional notions - we need dynamic flexibility
and dynamic adaptability. Systems must evolve and adapt during
development and deployment, and throughout their extended op-
erational life.

Phase I of the EDCS Program has some exciting demonstrations
available which illustrate how the emerging technologies it is
producing can apply to a number of military scenarios related to
evolving software for the warfighter, as well as to many commer-
cial applications.

Index of Demonstrations

• Acme and AcmeStudio
• Adaptation and Commitment Technology (ACT)
• Arabica - JavaBeans Composition Tool
• Architectural Analysis of Component-Based Systems
• ArchStudio - Architecture-Level Runtime Evolution
• Argo/UML - Object-Oriented Design Tool
• ARGUS-I: "ALl-Seeing" Architectural Analysis

• AverStar EWatch(tm)
• Capabilility Packages for Avionics Software (CPAS)
• CHIME - framework for immersive 3D collaborative virtual envi-

ronments
• Chimera - Open Hypormedia System
• CodeSuffer- Dependence Graphs and Program Slicing
• Colorado Distributed Software Engineering Technologies - Soffwarc

Dock, SRM, DVS, Siena, Architecture, Hypermedia/Databases
• Complex Event Processing (CEP)
• Composition of Multi-site Software (CHAIMS)
• COTS based Design Editor for User Specified Domains
• DAS-BOOT: Design-, Arch- and Spec-based approaches to OO

Testing
• Demeter/Adaptive Programming
• DoME - Domain Modeling Environment
• Endeavors - Open, Distributed, Extensible Workflow Support Envi-

ronment
• Esprit de Corps Suite of tools that support the MORALE legacy

soRware evolution method - ISVis, SIRRINE, VisEd, SAAMPad,
ACMEServer, REMORA, MORPH, SceniC View, Dowser

• Expectation-Driven Event Monitoring
• FLAVERS - Program Behavior/Property Verification System
• Formal Alternative Management Integrating Logical Inference and

Rationales (FAMILIAR)
• Incremental Constraint Engine
• INSERT - Incremental Software Evolution for Real-Time Systems
• Internet-Based Information Management Technology - Worklets,

Workgroup Cache, Xanth, TreatyMaker, JPernLite, TaskWeb
• Jakarta Tool Suite (JTS)
• Knowledge Depot - Project Awareness
• Little-JlL - Graphical Specification Language for Executable Proc-

esses
• Maude - ADL Interoperability
• MBASE - Model-Basod (Systems) Architecting and Software Engi-

neering
• MediaDoc: Automated Generation of Multimedia Explanatory Pres-

entations
• MetaH - Architecture Description Language
• Model Integrated Computing (MIC)
• ORBIT/VIRTUE - Collaboration and Visualization Support for

Complex Systems Evolution
• Oregon High Assurance Technology
• SAAGE - Software Architecture, Analysis, Generation, and Evolu-

tion
• Quest - Software Analysis and Testing
• Securely Wrapping COTS Products
• Siddhartha - Specification-Based Testing of Low-Testability Pro-

grams
• SoBelt: Structural and Behavioral Execution Instrumentation Tool
• Software Composition Workbench
• Specware - Specification and Design System
• TestTalk - Test Description Language
• UML/Analyzer - A System for Defining and Analyzing the Concep-

tual Integrity of UML Models
• WebDAV - Distributed Authoring/Versioning over the WWW
• Carnegie Mellon University (Composable Systems Group) - David

Garlan

http://crossmark.crossref.org/dialog/?doi=10.1145%2F340855.341046&domain=pdf&date_stamp=2000-01-01

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 96

Demonstration Summaries

Acme and AcmeStudio: http://www.cs.cmu.edu/~Compose/
As part of the Acme and ADL Toolkit projects, we have devel-
oped tools and libraries to support the integration of different
ADL technologies developed within the EDCS community. Our
ultimate goal is to lay the foundation necessary for assembling
integrated environments from the diverse set of independent tools
developed within the community. Our solution is to provide a
shared representation, the Acme language, guidance on transla-
tion to and from Acme, a library to support that effort, AcmeLib,
and finally, a customizable graphical editing and analysis envi-
ronment, AcmeStudio, through which tools may be accessed.

We will demonstrate some of the customizable features of Ac-
meStudio and show how this infrastructure can be adapted to dif-
ferent design domains and its analysis capabilities extended using
Acme and the AcmeLib class library to develop new tools and
integrate existing tools. We will also demonstrate how we used
the Armani language and its constraint-language extensions to
Acme as part of this effort.

Adaptation and Commitment Technology (ACT):
http ://www. cs. cmu. edu/~wls/acY
Carnegie Mellon University - William L. Scherlis

CMU will demonstrate a prototype program evolution tool for
Java. The tool uses source-level program analysis, annotation, and
manipulation techniques to support programmer-directed evolu-
tionary change with a high level of assurance. A principal focus is
on enabling structural changes, such as class-hierarchy reorgani-
zation, data representation change, code specialization, and other
manipulations to reorgamze code. These changes are typically
risky and costly for programmers to make, since they ordinarily
involve large numbers of detailed code-level operations distrib-
uted through the text of a program, and they can be hard to vali-
date.

The tool supports "99% pure" Java (with the remainder pending
resolution of outstanding language design issues in the Java
community). It embodies a growing number of techniques for
source-level program analysis, annotation, and manipulation. The
annotation system enables significant evolutionary changes to be
made even when only portions of a system are available for analy-
sis, as is the case for most distributed component-oriented systems
development, including most Java code.

Although the tool embodies a number of sophisticated program
analyses and manipulations and it assures correctness of the
changes it makes, the programmer interface is nonetheless
straightforward and intuitive -- many of the manipulations can be
carried out using simple drag-and-drop gestures.

When the programmer makes a gesture, the tool automatically
invokes appropriate manipulations and c+arries out supporting
analyses, possibly interacting with the programmer in the process.

The tool creates a detailed code-level design record that includes
details of the evolutionary steps. The design record enables flexi-
ble exploration of design alternatives, as well as providing an
audit trail for system assurance. We offer a hybrid approach to

assurance: If the analyses and manipulations triggered by a pro-
grammer gesture succeed, the tool will certify a change. If the
change is potentially unsafe, the tool can offer the option to
authorize the change nonetheless. These vouched-for changes can
then potentially be assured later using the tool or other tech-
niques, or, in the case of high assurance systems, they can be pro-
hibited by policy. The intent is to allow programmers to evolve
and assure code in a flexible manner.

The tool infrastructure has several important features, particularly
fine-grained versioning support for program evolution, flexible
persistence, visualization of code and related s t rm~es , and
(through the CSpace project) a number of collaborative features.
In our experiments, we have represented, for example, 10,000
versions of a 500,000 node system. The infrastructure itself is
langnage-independent. The overall intent of the infrastructure
design is to: (1) provide more effective retention in the design
record of "perishable" information ordinarily lost in traditional
software development, and (2) provide a pragmatic approach to
assurance, in which each evolutionary step is explicitly assured
either by programmer or by tool, but with minimal intrusion into
the interactive process, which may involve exploration of multiple
design alternatives.

The demonstration will show how a programmer can use the tool
to evolve an example of hard-wired ad hoc Java code into a reus-
able set of components with a more principled design, and this
configuration then subsequently specialized to a range of particu-
lar uses, with the tool assuring correctness throughout.

Arabica: http://www.ics, uci.edu/pub/edcs/
University of California, Irvine - Richard Taylor/David Redmiles

Arabica is a tool designed to guide developers in the composition
of JavaBeans into applications adhering to the Component-
Connector (C2) architectural style. The developer can use its vis-
ual interaction mechanisms to drag and drop beans into the main
palette to create applications in the C2 style. The tool provides an
interactive dialog that the developer uses to define the interface of
the bean component in the context of the C2 architecture within
which it is to be deployed. A Style Dialog provides guidance in
adhering to C2 style rules and constraints. Style rules are checked
and enforced as the beans are composed incrementally in the pal-
ette. A bean framework is also provided to aid designers in creat-
ing C2 compliant bean components from scratch. The tool runs
on all Java Platforms.

Architectural Analysis of Component-Based Systems:
http ://www. sdl. sri. com/
SRI International- Victoria Stavridou

SRI International has developed technology to support generatior
and analysis of abstract architectural descriptions, in a variety oJ
architecture description languages, from a complex, component.
based system implementation.fBy "component-based", we meat
that the implementation is constructed from instances of validatex
component and connector structures selected from a repository
and, perhaps, a comparatively small amount of additional code
written for the specific application.) The architecturaldescription~

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 97

are produced by successive applications of validated abstraction • UML
patterns, selected by the system analyst from a repository. • UML

Q UML The demonstration will show how this technology can be used to
produce architectural descriptions in Sadl, Acme, and (ultimately) • UML
other ADLs from the implemented system. It will also show how • UML
these descriptions are then analyzed using the ADLs' toolsets • UML
(e.g., PVS for demonstrating dependability properties of the Sadl
description, and AcmeStudio for visualizing the architecture
based on the Acme description).

ArchStudio: http://www.ics, uci. edu/pub/edcs/
University of California, Irvine - Richard Taylor/David Redmiles

ArchStudio is a tool suite that supports the design, analysis, im-
plementation, and runtime evolution of software systems at the
architecture-level.

ArchStudio's support for runtime evolution allows mission-critical
systems to be upgraded without shutting down and restarting
them, thereby avoiding costly downtimes. Our booth will show-
case the versatility of our approach and technology by demon-
strating dynamic changes to a logistics planning system for cargo
routing. Without exiting and restarting the system, we are able to
add more informative graphical depictions of the cargo routing
process and incorporate an intelligent planning component that
improves routing efficiency. Our technology has the promise of
significantly reducing the costs and risks associated with evolving
mission-critical systems.

ArgoAJML: hffp://www.ArgoUML com/
University of California, Irvine - Richard Taylor/David Redmiles

Argo/UML is an object-oriented design tool that helps designers
o n make better design decisions. This demo will focus

Argo/UML's cognitive support features:

Design Critics point out errors and incompleteness in the
design as the designer works,
Wizards help the designer correct identified problems,
Smart Checklists improve on the paper-based checklists used
by many organizations in design review meetings,
Navigational Perspectives present specialized views of the
design to support common design tasks,
The Broom Alignment tool helps designers make neat look-
ing diagrams without giving all responsibility to an automatic
layout algorithm,

• Selection-Action Buttons put toolbar buttons for common
actions directly around the selected diagram element leading
to much easier diagram construction,

• Designer-Expert Communication Channels help connect
people in the organization, and

• Design History shows which design changes caused or cured
each identified problem.

Argo/UML also provides many standard CASE tool features,
stores its data in standard XMI and PGML formats, and runs on
all Java platforms. The tool currently supports the following dia-
gram types:

State Diagrams
Use Case Diagrams
Activity Diagrams
Collaboration Diagrams
Sequence Diagrams (coming soon)
Component Diagrams (coming soon)

Argo/UML is an active open-source project with over 100 mem-
bers of its developers' mailing list and over 7000 registered users.
Active areas of development include additional cognitive support,
reverse engineering, enhanced XML support, and documentation
generation. For more information or to download ArgoUML or
take a visual tour, see h__ttp..'_/./_w_~v:..Ar..goUML.com/

ARGUS-k "All-Seeing"Architectural Analysis:
http : //www. ic s. uci. edu/~djr/edcs/Perp Test. html
Component-based software development relies fundamentally on
the quality of the components of which a system is composed and
there configuration, yet little technology exists for component-
based quality assurance. To predictably and reliably build com-
plex systems by composing components, components must be
analyzed not only independently but also in the context of their
connection to other components. Analysis should be coordinated,
therefore, at a higher level of abstraction - e.g., at the software
architecture level, where components, connectors, and their con-
figuration are better understood and intellectually tractable.

ARGUS-I is a comprehensive set of specification-based analysis
tools focusing on both the component and architecture levels.
ARGUS-I facilitates iterative and evolvable analysis during ar-
chitectural specification and implementation. Both structural and
behavioral analyses are accomplished by a synergistic combina-
tion of static and dynamic techniques. While static analysis can,
for instance, detect incompatibility between the data exchanged
between components and verify architectural adherence to design
heuristics and style rules, dynamic analysis may be required for
revealing defects in the dynamic component interaction and
communication behavior between components.

Component-level specification analyses statically verifies inter-
face consistency and the relationship to the statechart behavior
specification and dynamically evaluates component behavior
through statechart simulation. Architecture-level specification
analyses statically verifies structural and behavioral dependencies
among components and dynamically evaluates the architecture
configuration through architectural Simulation.

Component-level dynamic analysis is performed by testing com-
ponents to reveal inconsistencies between the implemented com-
ponent and its statechart specification. Dynamic architecatre
analysis is based on architecture debugging, monitoring, and dy-
namic conformance verification between specification and im-
plementation.

The current version of ARGUS-I works with software architec-
tures in the C2-style but augments the C2 architecture description
with component behavior specification described by Statecharts.

• UML Class Diagrams

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 98

Ewatch: http://www.averstar.com/edcs
AverStar - Bill Carlson/Chris Garrity /

AverStar is presenting EWatch, a practical analysis and debug-
ging tool for distributed, component-based software, with a par-
ticular emphasis on systems of components assembled
dynamically both before and after deployment. The heart of
EWatch is an extensible, event-driven framework that controls
and accepts diagnostic inputs from software probes attached to the
operational components. AverStar will be demonstrating the use
of EWatch to monitor, analyze and debug systems of heterogene-
ous CORBA and COM components, and an innovative configu-
ration control technology for managing the evolution of dynamic
networks of distributed objects.

CapabMity Packages for Avionics Software (CPAS):
http ://www. northrop, com/cpas/
Northrop Grumman - Carry Brannum

Northrop Grumman demonstrated an Integrated Avionics Soft-
ware Development Environment that supports evolutionary re-
quirements negotiation, implementation,+ system test, and
acceptance as part of last year's EDCS effort. That environment
incorporates both in-house and EDCS developed technologies for
software understanding, incremental test and certification, and
architecture-driven system design and composition, Our demon-
stration scenarios focused on the B-2 and included both develop-
ment and evolution of avionics software.

Northrop Grumman's 1999 Capability Packaging for Avionics
Software (CPAS) program demonstrates the application of EDCS
technology in the context of additional Northrop Grurnman de-
velopment programs. From these application exercises, we have
identified development activities that benefit from the application
of EDCS technology. These benefits include: (1) improved system
specifications, (2) reduction in verification and test efforts, and
(3) incremental validation of system updates. The CPAS99 dem-
onstration scenario will illustrate the process required for limiting
the impact of changes within incremental updates to new or
evolving avionics systems. Process guidelines in two broadly ap-
plicable areas will be highlighted.

1) Formal Static Analysis of Source Code
• Improved approach for software understanding based on on-

trol flow and data flow dependencies
• Impact assessment based on provable compartmentalization

of the affects of system changes
• Formal selection of optimal regression tests based on over-

lapping dependency and validation sets
2) Event-Based Modeling, Abstraction, Analysis, and Valida-

tion
• Modeling and analysis of system behavioral specifications

and architecture constraints
• Automated domain-specific abstraction of events from ob-

servable component interactions (bus messages, process acti-
vations, etc.)

• Validation of system behavior based on models (i.e. event
models of expected behavior)

1) A rapid communications-upgrade development for the B-2, to
be included in the Air Force Expeditionary Force Experiment
1999 (EFX 99) prototype demonstration, and

2) The development and evaluation of avionics software for new
aircraft.

Intemet-Based Information Management Technology:
http://www.psl.cs.co/umbia.edu/current.htm/
Columbia University, Dept. of Computer Science - Prof. Gall E.
Kaiser

Columbia University will demonstrate its Internet-based informa-
tion management technology for multi-organization collaborative
work. Applications are not limited to very large systems engi-
neering, e.g., open-source software and multiple (sub) contractor
projects, but also include decision support and distance learning.
The main components and toolkits include: Worklets, a mobile
agents approach to meta-workflow for dynamic reconfiguration
and knowledge propagation; Workgroup Cache, for zero-latency
knowledge propagation among dynamically organized groups
according to task,specific criteria; Xanth, an XML-based data
fusion service; Groupspace Controller, an object/event broker
featuring vetoable events and wraparound service activation;
TreatyMaker, a toolkit for rapidly constructing and dynamically
managing N-ary interoperable alliances among peer services and
systems; JPernLite, transaction management middleware sup-
porting plugin extended transaction models, e.g., for groupwork
and "what if' transactions; and TaskWeb, an open hypermedia
system for PDA's.

These and other technologies are integrated in CHIME, Columbia
Hypermedia IMersion Environment, a framework for generating
and managing MUD-like 3D virtual worlds for collaborative in-
formation understanding and interaction. Demo scenarios will
include software development and multi-agency emergency re-
sponse.

Chimera: http://www.ics.uci.edu/pub/edcs/
University of California, Irvine - Richard Taylor/David Redmiles

Hypermedia is an effective technology for helping manage the
myriad of heterogeneous artifacts, systems, and relationships,
which exist in large-scale software engineering projects. Chimera
is an open hypermedia system with explicit support for heteroge-
neity augmented by a deep integration with the WWW. Chimera
provides a set of flexible abstractions, which enable the integra-
tion of hypermedia services into familiar tools. Integration with
the WWW leverages the Web's robust support for distribution
within Chimera, enabling remote access to Chimera's hypermedia
information.

This demonstration will show Chimera operating on a number of
third party applications (Abobe Acrobat, Adobe FrameMaker,
Netscape, and Xemacs) which were integrated through different
methodologies. This demo will also feature Chimera's port to dif-
ferent operating systems (NT and Linux).

These two capabilities will be demonstrated in the context of:

ACM SIGSOFT

CodeSurfer:
http://www.grammatech.com/products/codesurfer/codesurfe
r_index.html
GrammaTech - Tim Teitelbaum

GrammaTech is commercializing ten years of DARPA/ITO-
sponsored research on dependence graphs and program slicing by
Reps and Horwitz at the University of Wisconsin, and will dem-
onstrate CodeSurfer, a software development, inspection, and
maintenance tool based on that technology.

CodeSurfer builds a dependence-graph program representation
and provides a GUI for exploring this web. The dependence graph
includes forward and backward links between each assignment
statement and possible uses of the values stored by that assign-
ment. Pointer analysis is used so that indirect loads and stores
through pointers are taken into account, as well as indirect func-
tion calls. Dataflow analysis is used so that links between unre-
lated assignments and uses are excluded. Operations that
highlight forward and backward slices show the impact of a given
statement on the rest of the program (forward slicing), and the
impact of the rest of a program on a given statement (backward
slicing). Operations that highlight paths between nodes in the
dependence graph (chops) show ways in which the program
points are interdependent (or independent).

CodeSurfer's scripting language (Scheme), which provides access
to the dependence-graph program representation and the Tk wid-
get set, is used for extensibility, for batch applications, and for
implementing research prototypes of future software engineer-
ing/re-engineering tools. CodeSurfer is currently limited to ANSI
C programs of less than 100K SLOC. GrammaTech is at work on
a DARPA/ITO SBIR to extend the technology to C++ and Java, to
make it scale up to bigger programs, and to explore its application
to hardware description languages. Northrop-Grumman is devel-
oping a Jovial version of CodeSurfer.

Distributed Software Engineering:
http ://www. cs. colorado, edu/users/serY
University of Colorado - Dennis Heimbigner/Alexander Wolf

The University of Colorado SERL project will demonstrate tech-
nologies focusing on four areas of distributed software engineer-
ing:

• Distributed configuration and deployment of systems:
[] The Software Dock is a distributed, agent-based frame-

work supporting software artifact deployment over a
wide-area network.

[] The Software Release Manager (SRM) supports one-
stop, web-based release and retrieval of interdependent
software systems.

[] The Distributed Versioning System (DVS) provides fed-
erated configuration management.

• Event Notification:
Siena is an Internet-scale distributed event notification
service allowing applications and people to send and re-
ceive notifications.

* Software Architecture:

Software Engineering Notes vol 25 no 1

[]

[]

January 2000 Page 99

Aladdin is a tool for analyzing inter-component depend-
encies in software architectures.
Menage is an architectural environment that adds the
configuration concepts of variability, optionality, and
evolution to architectural descriptions.

• Web-Based Hypermedia and Databases:
[] Chimera provides the infrastructure to enable hyperme-

dia linking of information between heterogeneous appli-
cations.

[] The Web Integration Tool (WIT) applies federated data-
base techniques to provide unified access to multiple
Web data sources.

Complex Event Processing (CEP):
http ://anna. stanford, edu/rapide#apide.html
Stanford University - David Luckham

The Stanford Rapide project will demonstrate applications of
Complex Event Processing (CEP) to commercial and DoD sys-
tems to address problems in the areas of:

• Intrusion detection and security: in particular, recognition of
sophisticated attempts to gain access to protected resources in
a system, or to attack the system to degrade its operational
capabilities.

• Enterprise monitoring and management: applications of CEP
to hierarchical monitoring of enterprise systems, performance
monitoring, testing of conformance to design and architecture
standards constraints, and usage policy constraints.

Composition of Muiti-site Software (CHAIMS): http://www-
rib.stanford, edu/CHAIMS/
Stanford University Computer Science Depamnent - Gio Wieder-
hold/Dorothea Beringer/Neal Sample/Laurence MeUoul

The CHAIMS project is developing a very high-level megapro-
gramming language to support composition of remote, heteroge-
neous software services. It is intended for applications as seen in
logistics, where information and analyses require interaction with
a variety of mostly independent and autonomous resources. As the
use of the Internet spreads we expect a wide variety of value-
added computational services to become available, complement-
ing the pure informational and data resources.

The CHAIMS language CLAM is on a higher level than tradi-
tional languages, yet takes into account emerging complexity is-
sues that arise when calling large, distributed services. The
traditional CALL-statement is split up into substatements: pre-
invocation setups, asynchronous invocation of services and ex-
traction of results, and termination of services. Having several
primitives also allows to add an additional primitive for pre-
invocation estimates, of the performance of a service - important
for choosing optimal services at run-time, scheduling the order of
invocations according to criteria like time or cost, and giving
more control to the user during the execution of the megaprogram
containing the composition. Similar objectives lead to a primitive
for monitoring ongoing invocations. Note that the CHA/MS
megaprogramming language only serves composition, not general
programming tasks. Focusing on the issues critical to system in-
tegration will allow a high level of capabilities to be attained

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 100

without conflicting with important facilities provided by compu-
tational services written in traditional programming languages.

The CHAIMS system consists of two parts. For the persons pro-
viding megamodules there have to be tools that support them in
wrapping legacy modules and presenting the necessary informa-
tion about available megamodules to the persons using them. For
the actual composition process, CHAIMS provides a compiler that
not only compiles the megaprogram written in CLAM but also
generates all the necessary client code for the access protocol
CPAM which is layered on top of various distribution protocols
like RMI, CORBA, DCE and DCOM, as appropriate to service
providers.

Our approach is different from what is found in the commercial
sector in that we try to address composition issues as they arise
when composing large, heterogeneous and distributed services.
Today, such composition is either not done at all (e.g. a person
responsible for logistics does such composition manually by
phoning various companies and entering the information manu-
ally into a spreadsheet) or it is done by hand coded systems that
do not allow the dynamic creation of new compositions. Yet
megamodules available for wrapping and integration are showing
up in increasing numbers on the internet. Using these sources in a
more automated and flexible way becomes now the challenge for
the DoD and many organizations that want to take advantage of
fast and flexible accesses to and composition of these services.

A COTS-based Design Editor for User Specified Domains:
http://www.isi, edu/software-sciences/multi-gen/multi-
gen.html
University of Southern California Information Sciences Institute
(USC/ISI) - Bob Balzer

We've extended PowerPoint to enable user-defined semantics to
be applied to diagrams. As diagrams are created or modified, ex-
ternal analysis programs can monitor and react to those changes.
They can graphically annotate the diagram with errors, warnings,
analysis results, or data collected from an executing instance of
the diagram. They can also use the diagram changes as control
commands to be imposed on the executing instance.

Multiple graphical domains will be demonstrated.

DAS-BOO T: Design-, Architecture- and Specification-based
approaches to Object-Oriented Testing:
http ://www. ics. uci. edLV~djr/edcs/Perp Test. html
University of California, Irvine - Debra Richardson

DAS-BOOT is a prototype design - and specification-based test-
ing tool for object-oriented systems. The current prototype has
satisfied two early goals: (1) to define improved specification-
based coverage criteria suitable for testing object-oriented soft-
ware systems whose behavioral specification is modeled as a finite
state machine (FSM); and (2) to develop techniques for generat-
ing test drivers and test cases with little interaction required by
the human tester. To demonstrate these capabilities, DAS-BOOT
currently supports testing Java based upon UML statechart dia-
grams (a widely accepted notation for requirements/design speci-
fication).

DAS-BOOT takes as input (1) a Java class to be tested, (2) a
state-based specification of the class behavior using statecharts,
and (3) a test coverage criterion; from this it produces as output
test drivers embodying test oracles to automatically test the Java
class against the behavioral specification.

Specification-based test coverage criteria are meant to define what
to test based upon covering a model of the component under test.
These criteria can be used in two very distinct ways. First, they
can be used to test or simulate the model during the specification
phase and thereby detect defects early in the software lifecycle.
Second, the criteria can be used while testing the implementation
to ensure that the behavioral model is adequately covered, thereby
testing based upon what the component is required to do rather
than merely what it actually does (as is indicated by code-based
coverage criteria). DAS-BOOT supports FSM-based coverage
criteria intended to measure how well a finite state model of soft-
ware behavior has been covered, which can be used either to test
the model itseff or to test an implementation intended to reflect
the model.

Using these FSM-based test criteria in the specification phase to
test (or simulate) the model, is straight-forward, because the com-
ponents upon which test cases and/or coverage measures are
based are the same as the components being tested. On the other
hand, using criteria based on the FSM model to test the imple-
mentation requires that the test requirements, which are based on
the FSM model, be somehow associated with or mapped to the
implemented objects under test. DAS-BOOT assists the devel-
oper/tester in making such associations and automates the actual
testing process as much as possible by generating automated test
drivers for each test case that not only force required coverage but
also check to ensure that the implementation behaves according to
the model.

DAS-BOOT is integrated into ARGUS-I as the dynamic compo-
nent analysis tool.

Demeter~Adaptive Programming:
http : //www. ccs. ne u. ed u/re s e arch~demeter/
Northeastern University College of Computer Science - Karl J.
Lieberherr (lieber@ccs.neu.edu)

Demeter uses aspectual decompositions to control tangling in
designs and programs. The kinds of aspects we support are be-
havior, structure, navigation, synchronization, and distribution.
We have also developed (but not yet fully implemented) a compo-
nent model (Adaptive Plug-and-Play Components, AP&PCs) with
interfaces and connectors that can describe any aspect.

Demeter applies a widely used principle, called the Law of De-
meter, to normalize designs and programs for ease of evolution.
Demeter uses a special purpose language for object uavigation~
called traversal strategies, to easily follow the Law of Demetel
and to connect components.

Northeastern will demonstrate three tools: Demeter/Java, DJ and
the AP Library.

• Demeter/Java is a Java implementation of AP technology. It
is a powerful tool, but requires a high learning curve.

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 101

DJ is the tiny sister of Demeter/Java that trades expressive-
ness for ease of applying the concepts of AP.
The AP Library contains the (patented) core algorithms for
compiling adaptive programs. Both Demeter/Java and DJ are
clients of the AP Library. The AP Library is a part of the Ar-
chitecture Tool Kit.

We will also explain the concept of AP&PCs and how they are
useful for the design and implementation of complex systems.
AP&PCs are a tool for aspect-oriented design and programming.

DOME: http://www.htc.honeywell.com/projects/dssa/
Honeywell Technology Center- Steve Vestal

The Domain Modeling Environment (DOME) is a toolset for
building graphical modeling tools. DoME has been heavily influ-
enced by its use to build tools for ADLs (e.g. MetaH and Con-
trolH), and by its use to support multiple graphical ADLs within
the same environment. A variety of scripting, data exchange, and
prototyping capabilities are provided. DoME is a fairly mature
and robust toolset and has been applied on over a dozen programs
to create toolsets for several dozen graphical specification lan-
guages. DoME is available as "open source" software at
h..~.;/_/www ._h..t..c.._h_o ~ c_o_~..do.m_e.

Endeavors: http://www.ics.uci.edu/pub/edcs/
University of California, Irvine - Richard Taylor/David Redmiles

Endeavors is an open, distributed, extensible workflow support
environment. It improves coordination and management by al-
lowing flexible definition, modeling, and execution of workflow
applications. Endeavors combines a sophisticated process model-
ing language with features designed for easy customization by
both technical and non-technical users. Endeavors uses a layered
object model to provide for the object-oriented definition and
specification of process artifacts, activities, and resources. Be-
havior of process objects is specified through the use of handlers:
code invoked by the object in response to events received. Stored
locally or loaded from a remote source, handlers are loaded and
bound to objects at runtime, allowing them to be changed dy-
namically in the course of process execution. Handlers themselves
may reflexively access the state of the workflow through Endeav-
ors interfaces, allowing for analysis and optimization by compo-
nents of the process itself.

We will demonstrate process development using the Endeavors
graphical end-nser process description language. This language
features dynanism, which supports exception handling and evolu-
tion within the development, deployment, and evolution cycle.
Pre-built process component libraries and WWW integration
mechanisms will be used to illustrate important adoption issues in
workflow.

Esprit de Corps Suite: http://www.cc..qatech.edu/morale/
Georgia Institute of Technology - Spencer Rugaber

Georgia Tech will demonstrate the Esprit de Corps Suite of tools
that support the MORALE software evolution process. The tools
include:

• ISVis - A reverse engineering tool which allows an analyst to
extract an architecture by visualization of dynamic program
event traces.

• S I R R I N E - A design critiquing tool which suggests how to
reconfigure a software system based on an example of how it
fails to achieve a specified set of goals.

• VisEd - An interactive graphical editor and layout tool for
building and displaying architectural descriptions written in
the ACME interchange language.

• SAAMPad - A design rational capture and playback tool
which supports the Sottware Architectural Analysis Method
(SAAM) by providing automated capture and access of
SAAM sessions to aid in documentation and design rationale
understanding.

• ACMEServer - A server that manages access to ACME ar-
chitectural descriptions allowing multiple, distributed tools to
concurrently manipulate architectural information.

• REMORA - An environment for reconciling multiple repre-
sentations of architectures. REMORA has advanced match-
ing capabilities which automates combinations of
architectural descriptions.

• M O R P H - A user interface migration tool which supports the
migration of a character-oriented, legacy application interface
into a graPhic~ user interface. Currently MORPH supports
migration to tel and to the web with HTML forms.

• Scenic View - information systems which manages access
and evolution of mission-oriented requirements information
including scenarios and goal hierarchies.

• Dowser - Domain-oriented browsing of source code and
documentation.

Expectation-Driven Event Monitoring:
http://www.ics, uci. edu/pub/edcs/
University of California, Irvine - Richard Taylor/David Redmiles

Expectation-Driven Event Monitoring (EDEM) can be used to
shed light on how applications are used, to uncover mismatches
in actual versus expected use, and to increase user involvement in
the evolution of interactive systems. Software agents are deployed
over the Internet to collect usage information to help developers
make more informed design and effort allocation decisions. This
demo focuses on how agents perform in-coutext data abstraction,
selection, and reduction to allow meaningful information to be
collected on a potentially large and ongoing basis over the Inter-
net. Unlike traditional application instrumentation approaches,
EDEM's architecture allows data collection to evolve flexibly over
time without impacting application deployment or use.

FLA VERS: http://!aser, cs. umass, edu/perptest/
University of Massachusetts at Amherst - Leon Osterweil/Lori A.
Clarke

We will demonstrate FLAVERS a flexible, powerful system for
automatically guaranteeing the absence, or detecting the presence,
of a wide range of user-specified properties or behaviors.
FLAVERS complements traditional testing approaches, which
only demonstrate the presence or absence of errors for the specific
test cases that have been executed. It also complements formal

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 102

verification methods, which employ more comprehensive analy-
sis, but require a great deal of expertise on the part of the user.
FLAVERS employs data flow analysis techniques that are effi-
cient and easy to use and are applicable to both sequential and
concurrent programs. With FLAVERS, users can specify a pro-
gram behavior that is of particular importance and then direct
FLAVERS to determine whether the behavior will occur on either
all, some, or none of the program's executions. For example,
FLAVERS can be used to verify safety conditions by demonstrat-
ing that a user-specified unsafe behavior cannot possibly occur.
Or, it can help with debugging by identifying situations where a
dangerous behavior can occur.

The FLAVERS demonstration will analyze programs written in
Ada and Java and will highlight a new, more powerful and easy-
to-use user interface. A key addition to this user interface is sup-
port for browsing paths along which errors can occur.

Formal Alternative Management Integrating Logical
Inference and Rationales (FAMILIAR):
http ://www. k e vol. com/KE I-6p. html
Knowledge Evolution/Synquiry Technologies - Dr. Sidney
Bailin/Dr. Dean Allemang

The FAMILIAR tool provides disciplined support for collabora-
tive problem solving such as planning or software design. Mem-
bers of a team use the FAMILIAR visualization modes to examine
past cases, construct new solutions, trade off alternatives, and
perform "what if' analyses. FAMILIAR includes formal analysis
functions that issue advice to help guide the construction and
evaluation of solutions.

FAMILIAR allows someone who is facing a complex planning
problem to organize the contingencies and alternative plans in a
systematic way. It supports reactive re-planning in the face of
unforeseen plan failures, by identifying opportunities to re-use
plan components (even from plans that were originally rejected).
This improves the survivability and fault-tolerance of the plans.

FAMILIAR models problems and their solutions in terms of
goals, alternatives, features, and components. Goals represent the
objectives of the current task. The alternatives hierarchy is a cate-
gorization of known solutions to known problem types. It is a
corporate memory of best practice, which may be consulted and
borrowed from when confronting new problems. Features are the
dimensions along which alternatives differ from each other. Be-
cause any complete solution design is a combination of many as-
pects, the feature hierarchy provides a way to compare and
contrast specific aspects of alternative solutions, and to perform
"what if' analyses by changing some aspects while keeping others
constant.

A solution may be composed of several components, reflecting a
decomposition of the problem into smaller, simpler ones (divide
and conquer). Of course, choices made concerning the solution to
a sub-problem will have an impact on the overall solution. For
example, the selection of a particular approach to solving part of
the problem may invalidate using certain approaches for other
parts. FAMILIAR maintains these dependencies, propagating
decisions so that the overall solution remains consistent, and in-

forming the user about the implications of choices nmde. These
implications go beyond a simple yes-no answer as to whether the
solution will work. They include tradeoffs indicating how well
different goals are met using different solution approaches, and
advice on how to fix problems that FAMILIAR has discovered.

FAMILIAR allows a problem-solving team to keep track of sev-
eral candidate solutions. As alternative solutions are composed,
FAMILIAR tracks the rationale for the parts of each ,solution. It
allows team members to evaluate the fault-tolerance of' each solu-
tion, and to make use of alternative components (either new com-
ponents or components of other candidate solutions) to address
possible failures in the current solution design. In particular,
FAMILIAR supports evolution by identifying those parts of the
solution that are affected by a change in specifications or operat-
ing environment.

FAMILIAR may be applied to a wide range of problem-solving
situations. It is particularly useful in situations that are both
multi- dimensional (many aspects to the problem) and multi-level
(must be decomposed into sub-problems). It is the only decision
support technology that manages the interactions between these
two sources of complexity on behalf of the decision-maker. As
such, it is particularly useful for software design and for planning
situations in which there is uncertain, incomplete, or rapidly
changing information.

Incremental Constraint Engine:
http : //www. htc. hone ywell, com/projects/dss a/
Honeywell Technology Center- Steve Vestal

The Incremental Constraint Engine provides efficient incremental
entry of certain classes of constraints, together with a rapid as-
sessment of feasibility and (in the case of unfeasibility) identifica-
tion of culprit constraint sets. We have a prototype integration of
this capability with DoME to support management of constraints
that span multiple models of a system.

Specific demonstrations may include:

• Army AMCOM has created a genetic or reference software
architecture for the missile domain. This architecture has
been captured in MetaH, and the MetaH toolset has been used
to analyze the schedulability of the system and produce real-
time executables for a variety of target hardware configura-
tions.

• With assistance from Boeing and the Comanche PO, we de-
veloped a preliminary MetaH specification for the Comanche
Mission Equipment Package avionics. This specification was
used to develop a system schedule and perform schedulability
analysis.

Related demonstrations may include:

• CMU/Lockheed-Martin have captured a version of their Sim-
plex architecture in MetaH.

• SEI has developed a translator between MetaH and ACME.
• University of Colorado is working to apply their impact

analysis to architectures specified in MetaH.

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page /03

Honeywell has developed a model of portions of the MetaH real-
time executive using the MCC/U Mass FLAVERS formal verifi-
cation toolset.

INSERT- Incremental Software Evolution for Real-Time
Systems:
http ://www. cs. cmu. edu/afs/cs, cmu. edu/Web/Groups/real-
time/insert/
Carnegie Mellon University, Sottware Engineering Institute and
Lockheed Martin Tactical Aircraft Systems - John Lehoczky

The INSERT technology package permits the easy and reliable
insertion of new or upgraded capabilities into mission critical
systems. This package creates a structured environment based
around innovative uses of advanced technologies including ana-
lytic redundancy, dynamic component binding, dependency
tracking, and data fusion integrity processes. The INSERT ap-
proach leads to reduced development and test time, reduced cost,
and a reduction of the technical risks involved with system evolu-
tion.

The EDCS-INSERT demonstration highlights the application of
these tools and capabilities within the context of an F-16 mission
system suite. We will be presenting a videotape of a capability
upgrade to the F-16 mission system. The demonstration takes
place in a ground-based simulation of the actual F-16.

The upgrade involves the insertion of an automated Air-to-
Ground weapon delivery capability. During execution of the new
capability, a sequence of different failure occurrences will be in-
jected; however, the INSERT architecture will be able to cope
with these failures and maintain stable system operation. This
capability promises to increase the effectiveness and survivability
of the aircraft.

The INSERT demonstration highlights the following:

• The INSERT approach is effective on DoE) scale problems.
The design properties are relevant and resource efficient.

• The architecture is cost effective. Adoption costs are small.
• The work has resulted in additional architectural approaches

that are applicable to a wide range of mission system do-
mains.

The On-Site Demonstrations of Major Components of the
INSERT Package include:

• Reliable Upgrade Environments: INSERT F-16
Autoguidance Applications

In addition to the videotape presentation, we are presenting live
demonstrations of INSERT capabilities in pure virtual simulation
environments. Two demonstration environments will be shown
based on an existing USAF/Lockheed Martin F-16 simulator. One
environment demonstrates an autopilot upgrade environment de-
signed and generated using Honeywell MetaH on Windows NT
4.0. The use of MetaH (an EDCS technology) supports cross-
platform environments and additional architectural analysis. The
other environment uses custom code on a Real Time Operating
System to provide similar capabilities. Pilot-Relief and automated
landing modes are demonstrated.

• Computer-aided Support Tools for Verification of INSERT
Switching Rules

INSERT switching rules provide protection against semantic
faults that could be introduced in the software upgrade process.
The performance of the switching rules over the entire range of
possible operating states can be verified using a new tool for mod-
eling and computer-aided verification of hybrid dynamic systems.
The capabilities of this tool will be illustrated for the INSERT F-
16 autopilot demonstration system. The demonstration includes
the building of the model of the hybrid system dynamics, the
evaluation of the results of verification queries, and the use of
automata approximations to the hybrid system dynamics.

• Semantic Dependency Analysis Tool
Application errors due to hidden side effects are addressed
through design-time analysis of a system model. By documenting
assumptions about semantic and time-sensitive characteristics of
components, the system model allows identification of violated
assumptions, inconsistent INSERT confgurafions, and the impact
of the proposed changes. The analysis tool is implemented on
ACME/ARMANI, an EDCS technology.

Intemet-Based Information Management Technology:
http : //www. psl. cs. col umb ia. edu/current, html
Columbia University, Dept. of Computer Science - Prof. Gall E.
Kaiser

Columbia University will demonstrate its Internet-based informa-
tion management technology for multi-organization collaborative
work. Applications are not limited to very large systems engi-
neering, e.g., open-source software and multiple (sub) contractor
projects, but also include decision support and distance learning.
The main components and toolkits include: Worklets, a mobile
agents approach to meta-workflow for dynamic reconfiguration
and knowledge propagation; Workgroup Cache, for zero-latency
knowledge propagation among dynamically organized groups
according to task-specific criteria; Xanth, an XML-based data
fusion service; Groupspace Controller, an object/event broker
featuring vetoable events and wraparound service activation;
TreatyMaker, a toolkit for rapidly constructing and dynamically
managing N-ary interoperable alliances among peer services and
systems;

JPernLite, transaction management middleware supporting plugin
extended transaction models, e.g., for groupwork and "what if'
transactions; and TaskWeb, an open hypermedia system for
PDA's.

These and other technologies are integrated in CHIME, Columbia
Hypermedia IMersion Environment, a framework for generating
and managing MUD-like 3D virtual worlds for collaborative in-
formation understanding and interaction. Demo scenarios will
include software development and multi-agency emergency re-
sponse.

Jakarta Tool Suite (JTS):
http ://www. cs. ute x as. edu/users/schwartz/proj, htm
University of Texas at Austin - Don Batory

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 104

The Jakarta Tool Suite (YrS) is a set of Java-based tools for de-
veloping product-line architectures, application generators, and
compilers for domain-specific languages.

JTS is being used in to develop the next generation of FSATS
(Fire Support Automated Test System) that has been developed by
the University of Texas Applied Research Laboratories. Unlike its
predecessor, the new system, FSATS99, is highly extensible: a
product-line of FSATS99 simulators can be assembled from com-
ponents using YrS. Building C2 simulators in this manner ap-
pears to have significantly simplified software development,
understanding, maintenance, and evolvability of the system. We
will demonstrate our current prototype of FSATS99, along with
other capabilities of Yrs.

Knowledge Depot: http://www.ics, uci. edu/pub/edcs/
University of California, Irvine - Richard Taylor/David Redrniles

Knowledge Depot supports Project Awareness by capturing
documents and communications relevant to a project and, based
on the interests people register with the system, redistributes
summaries of this information to interested people. This approach
allows a user to specify what kinds of information affects his or
her work and skim through summaries of this information to de-
termine if any. of the documents or communications have a poten-
tial impact upon their work. A user can not only be alerted when
there is a change in a component (or other aspect of a project) that
he or she depends upon, but can become aware of the fact that the
change is being discussed. Project awareness enables the person to
prepare for change, and to contribute to the discussion from the
perspective of how the change will affect that individual's work.

Little-JIL: http://laser, cs. umass, edu/perptest/
University of Massachusetts at Amherst - Leon Osterweil/Lori A.
Clarke

We will demonstrate Little-JIL, a graphical language for specify-
ing the execution of complex processes by teams of agents that
consist of both humans and machines. Little-JIL can be thought of
as a multi-agent coordination system, or as a process execution
system, that offers substantial enhancements over typical
workflow systems, especially in its powerful facilities for handling
exceptions, its comprehensive treatment of resources, and the
uniform way in which it treats humans and automated agents.
Little-JIL process specifications are hierarchical decompositions
of steps, where steps are guarded by prerequisites and postrequi-
sites, whose violates throw exceptions. Steps also incorporate data
flow specifications, as well as specifications of resource types that
are used as the basis for dynamic scheduling of resources.

The demonstration will show the use of the Visual-JIL graphical
editor for developing Little-JIL process descriptions, as well as
the Juliette environment for supporting execution of Little-JIL
processes on a distributed platform of workstations. As part of the
demonstration of Juliette we will focus on our resource manage-
ment system and our Grapevine agenda management generation
system. Example Little-JIL processes to be demonstrated will in-

elude processes for multi-user software design, multiagent nego-
tiation, and perpetual testing.

Maude:
http ://www-formal. stanford, edu/clt/ArpaA ctive/s ummary, html
SRI/Stanford University - Jose Meseguer/Carolyn Talcott

SRUStanford University will demonstrate formal interoperability
of ADLs using the Maude tool. Maude is a high-performance re-
flective language and system supporting both equational and re-
writing logic specification and programming for a wide range of
applications. Maode can be used to build executable formal mod-
els of system architectures very quickly, at dit~erent levels of ab-
straction and amenable to a wide range of static and runtime
analyses including model checking, symbolic simulation, moni-
toting, and theorem proving.

Model-Based (Systems) Architecting and Software
Engineering (MBASE): http://sunset, use. edu/
University of Southern California Center for Sottware Engineer.
ing (USC/CSE), The Aerospace Corp., and TRW - Bard
Boehm/Neno Medvidovic

MBASE is a set of guidelines that describe sottware engineerin~
techniques for the creation and integration of development model,,
for a software project. The models to be integrated extend beyonc
Product (development) models such as object oriented analysi,,
and design models and traditional requirements models, to in.
elude Process models such as lifecycle and risk models, Propert3
models such as cost and schedule, and most notably Success mod.
els such as business-case analysis and stakeholder win-win. Th~
approach used in MBASE ensures that a project's success, prod.
uct, process and property models are consistent and well inte.
grated. MBASE core model frameworks guide the project'~
convergence on a consistent and feasible set of models, and gnid~
the product's development or elahancement through an extensio,
to the original Spiral Model. MBASE is highly compatible wit
Rational's Unified Software Development Process, which ha
adopted the MBASE anchor point milestones (MBASE ha
adopted Rationa1's Inception/Elaboration/Constrnction/Transitiol
phase definitions for the activities between the milestones)
MBASE is trying to extend Rational-USDP'S architecture-centri¢
use case-driven process toward a process which is both architec
tare-and stakeholder-centric, and both use-case-and business
case-driven. MBASE provides a constructive approach and exten
sible framework of collaborative tools, enabling a system'
stakeholders to rapidly develop mutually satisfactory (win-win
software system solutions.

The tool framework includes the USC Center for Software Engi
neering's WinWin, COCOMO II, Architecture Attribute Analysi
Aid (A4), and Distributed Collaboration and Prioritization To(
(DCPT). It has been integrated with such other DARPA tools a
Rapide (Stanford), C2 (UCI), Scenic (Ga.Tech), MediaDQ
(USC-ISI), JWatch (Intermetrics), and Catalyst (MO); an Aer(
space Corp. trajectory simulation and visualization program; an
with such commercial tools as Rational Rose, CUSeeMe, and R~
alPlayer.

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 105

MBASE and its tools have been applied on over 50 digital library
projects at USC. Early adopters of MBASE capabilities include
the Air Force C2ISR Center, FAA, The Aerospace Corp., TRW,
Litton, and Xerox. The demonstration will show how these capa-
bilities can be applied to a DoD quick response mission requiting
not only rapid mobilization and deployment, but also rapid soft-
ware change coordination and implementation.

MediaDoc: Automated Generation of Multimedia
Explanatory Presentations
http ://www.isi. edu/isd/l-DOC/media-doc.html
University of Southern Califomiaflnformation Sciences Institute
(USC/ISI) - Lewis Johnson & Stacy Marsella

Many organizations face a constant problem of obtaining accu-
rate, relevant information about complex, evolving systems. We
see this with deployed hardware and software systems, for exam-
ple. Such systems often have long lifetimes, while staff turns over
frequently. New staff assigned to tasks such as maintenance and
upgrades have difficulty obtaining the information that they need
to perform their specific tasks. They waste time sifting through
irrelevant information in voluminous documents, and the infor-
mation that they find may be out of date. Tactical decision-makers
in the military face similar problems, but on compressed time
scales. Command staff members need to obtain focused views of
an involving tactical situation, and their jobs can be hampered if
the information that they receive is cluttered with irrelevant mate-
rial or is out of date.

The MediaDoc project addresses these problems through the
automated generation of focused multimedia presentations of
multidimensional information.

A user performing a particular task can pose queries about a sys-
tem; MediaDoc extracts information relevant to the query and the
task, and automatically generates presentations combining text
and graphics. Automated text extraction tools are also provided
that extract semantic information from relevant textual docu-
ments, so that this information can be integrated into the presen-
tations. We will demonstrate how these techniques may be
applied to a software engineering task and to crisis management
in a military relief operation.

MetaH: http://www, htc. honeywell, corrdmetah.
Honeywell Technology Center - Steve Vestal

MetaH is an architecture description language and toolset for avi-
onics and other real-time applications. The toolset includes a
software/hardware binder, schedulability modeling and analysis,
reliability modeling and analysis, and partition impact modeling
and analysis. There is also an automated composition tool that
builds a real-time executable from an architectural specification
and a set of software components.

Model Integrated Computing (MIC):
http://www.isis, vanderbilt.edu/
Vanderbilt University/Institute for Software-Integrated Systems -
Gabor Karsai

The MIC Environment developed at Vanderbilt/ISIS will be dem-
onstrated through an application: the Integrated Test Information
System (ITIS). IT IS has been developed for and is lacing used by
Arnold Engineering Development Center (AEDC), Arnold AFB
in support of engine and airframe ground testing. The ITIS inte-
grates many facility-wide legacy data systems and databases, fa-
cilitates user-defined analysis of the information, and delivers
resulting information to a geographically distributed set of end-
use r s .

The MIC technology has been used on two levels:

• On the "recta" level, the concepts and semantics of the appli-
cation domain, and their mapping into the implementation
domain have been captured using the meta-level modeling
environment (which is just another instance of the MIC ar-
chitecture). This was followed by the synthesis of a domain-
specific modeling and program generation environment, and
the development of the run-time support system for the appli-
cation.

• On the "domain" level, end-users use the environment to de-
velop domain models that are then used in the synthesis of
the actual test-specific ISIS application.

The DARPA EDCS technology provides the support for meta-
level modeling of the domain, the generation/synthesis of the do-
main-specific environment, the infrastructure for the domain-
specific environment, and the generation technology for synthe-
sizing the application from domain models. The demonstration
also integrates other EDCS technologies. For instance, ACME
architecture models are generated, which then can be analyzed
using ACME tools.

The demonstration shows the meta-modeling environment, the
domain-modeling environment, and the generated application.
The demonstration also shows how a small-scale, but fully func-
tional ITIS system can be customized on the fly using the meta-
level technology.

To show cooperation with other DARPA programs and the dis-
semination of the technology, another demonstration shows how a
domain-specific modeling and analysis environment can be built
(and used), for Adaptive Computing Systems (ACSs). In ACSs,
dynamically configurable (and re-configurable) hardware and
software architectures are modeled, design alternatives analyzed
and are explored, and application hardware and software are
synthesized.

ORBIT/VIRTUE - Collaboration and Visualization Support for
Complex Systems Evolution:
http ://www. dstc. edu. au/wOrlds/
University of Illinois/University of Queensland - Daniel
Reed/Simon Kaplan

This demonstration illustrates the integration of desktop and vir-
tual environment collaboration systems and their application to
complex problems, such as software engineering, logistics and
data analysis. The Habanero and Orbit desktop systems support
extensible, varying intensity collaboration and tool sharing across
local and wide area networks and are coupled via shared controls
and streaming audio/video to the Virtue virtual environment for

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 106

high-modality data visualization, analysis, and manipulation. In
addition, mobile, handheld devices allow collaborators to partici-
pate as equals with those at desktop and virtual environment sta-
tions. The complete environment provides rich, varying-medality
support for complex collaborative work situations.

This year's demonstration will also demonstrate integration with
various planning and rationale capture toolsets to support com-
plex command and control activities such as disaster relief.

High Assurance Technologies:
http ://www. cs. uoregon, edu/~michal
University of Oregon, Dept. of Computer Science - Michal Young

The value of verifying high-level architectural designs is magni-
fied if one can also demonstrate consistency of the verified archi-
tectural model with the actual implementation, and do so without
imposing unreasonable constraints on designers. University of
Oregon will demonstrate an approach for verifying and main-
taining potentially complex relations between an architectural
design model and running code. Demonstrated capabilities will
include aids to recovering architectural design information, re-
structuring "as-built" system organization into a logical structure
more suitable for static verification, and supporting conformance
testing of implementations using test oracles derived directly from
verified architectural design models. Support for dynamic testing
extends beyond product delivery with low-impact "residual"
monitoring of test obligations.

Software Architecture, Analysis, Generation, and Evolution
(SAA GE): http://sunset, use. edu/
University of Southern California Center for Software Engineer-
ing CUSC/CSE), The Aerospace Corp., and TRW - Barry
Boehm/Neno Medvidovic

USC/CSE's Software Architecture, Analysis, Generation, and
Evolution (SAAGE) project focuses on consistent transfer of ar-
chitectural decisions into designs and implementations and ar-
chitecture-based evolution of large-scale systems. Major goals of
this work are:

• evolution flexibility and precision,
• simplicity and formality of architectural descriptions,
• architect's discretion in interpreting analysis results, and
• self-evolvable tool support.

To this end, USC/CSE provides an integrated toolset, composed
of in-house and third-party tools (DRADEL and RationalRose,
respectively). The integrated toolset enables:

• style-based application design and implementation,
• component-based architectural composition,
• architecture modeling and analysis,
• architecture-based software evolution,
• consistent refinement of architecture into design, and
• system generation.

Quest." http://www.mcc.com/projects/quest
Microelectronics and Computer Technology Corporation (MCC)
- Tim Harrison/Debra Richardson

MCC will be demonstrating version 4.0 of the Quest Toolset con-
sisting of a set of soRware analysis and testing tools integrated
within a common user interface. The tools allow the developer
and/or test engineer to statically analyze source code to discover
dependencies between program statements, modules, or systems,
and statically or dynamically verify the existence or absence of
specified program behaviors. Code dependence analysis is of par-
ticular value for code understanding, legacy system analysis, and
selective regression testing. Program behavior verification, static
or dynamic, is of extreme value for quality, reliability, and con-
formance assurance. The toolset is able to analyze both Ada and
C/C++ source code and programs. Capabilities beyond that of
version 3.0, demonstrated last year, are inter-procedural analysis,
improved performance, and improved usability of the toolset.

Securely Wrapping COTS Products:
http://www.isi.edu/software-sciences/multi-gen/multi-
gen.html
University of Southern California Information Sciences Institute
(USC/ISI) - Bob Balzer

We will demonstrate a WindowsNT based wrapper technology
that allows Commercial Off-The-Shelf (COTS) products to be
integrated with each other, extended to utilize externally supplied
capabilities, and restricted to operate within user defined security
policies. The demonstration will include incorporating encryp-
tion, a virtual file system, and resource limitations into a variety
of COTS products. It will also demonstrate safe execution envi-
ronments for safely using active content in web browsers and of-
fice products.

Sidclhartha - Automated Test Driver-Oracle Synthesis:
http ://www.ics. uCi. edu/~djr/edcs/Perp Test.htm/
University of California, Irvine - Debra Richardson

Software design decisions must balance a collection of functional
and non-functional software quality attributes (e.g., correctness,
efficiency, testability, and analyzability). The tacit assumption
made by purveyors of general-purpose software test tools is that
testability dominates software design decisions, which is unrea-
sonable for many application domains. This mindset engenders
the notion of software design for testability (DFT) and often re-
quires that the interfaces of units under test (UUTs) be fully pa-
rameterized to support complete control and observation of
behavior via programmatic invocations of the UUT. While such a
program design style supports testability, it is eschewed in several
important application domains (e.g., digital avionics and flight
controls) because it reduces run-time performance and the ability
to estimate run-time performance a priori.

This problem is usually solved by iterative, ad hoc, development
of domain-specific test development tools and languages. Such
tools and languages are "home-grown" within software develop-
ment organizations and support test development in a manner
that respects business-prioritized soitware quality attributes. Un-
fortunately, little guidance for developing such technology can be
found in the software engineering body of knowledge. Siddhartha
is a defined, disciplined, alternative technique for developing do-
main-specific teSt tools that fit within a software development

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 107

organization's business context and respect legacy languages,
design styles, and development processes. Siddhartha develops
domain-specific test automation support for transforming formal
test specifications (TestSpecs) into test driver-oracle procedures
(TDOPs), where a TDOP invokes not only the unit-under-test
(UUT) but also an embedded oracle that verifies whether the
tested UUT behavior agrees with the expected behavior expressed
in TestSpec. In using Siddhartha, a test engineer develops a do-
main-specific synthesizer to accept and generate formal test arti-
facts in formats, languages, and styles already in use in her
application domain. Thus, Siddhartha provides test development
automation support in application domains that cannot be well-
supported by general-purpose test development tools.

Siddhartha has been applied to produce two domain-specific test
synthesizers to date: Siddhartha-SCR(SCR*log, Ada) and
Siddhartha-regression(Ada, Ada). Siddhartha has been validated
against a significant, real-world example: the Ada operational
flight program (OFP) for research flight control system (RFCS) of
the production support flight control computer (PSFCC) used on
the F/A-18B Hornet system research aircraft (SRA) operated by
NASA Dryden Flight Research Center (DFRC).

SoBelt: Structural and Behavioral Execution Instrumentation
Tool: http://www.ics.uci.edu/~djr/edcs/Perp Test.html
University of California, Irvine - Debra Richardson

SoBeR supports development and assurance of quality software
through automated specification-based testing. SoBelt supports
software testers with the following capabilities:

• persistent test artifact development and maintenance;
• fully automated testing, including monitored test execution;

formal, automated test result checking via specification-based
test oracles;

• functional and structural test adequacy definition and meas-
urement.

The tester provides SoBeR with the component-under-test (CUT)
and corresponding component specification (CS) along with a
persistent test suite (TS) and SOBEIT does all the rest: the In-
strumentor takes a representation mapping relating events in CS
to occurrences in CUT and instnunents the CUT to collect event
traces; the instrumented CUT is automatically executed on all test
cases specified in TS; the test executions are monitored to collect
the required event traces; an FSA representation of the specifica-
tion CS is interpreted on the event traces, thus serving to compare
the test execution results to the specification; pass/fail results are
reported.

SoBeR is written in Tcl/Tk, although it integrates components
written in a variety of languages. The Instrumentor currently
works for Ada83, although instrumentation can be done manu-
ally. The OracleGenerator currently works for GIL, but FSAs can
be provided directly via an FSA Editor. The rest of SoBeR is lan-
guage independent. SoBelt is a scaled-down version of
ROSATEA's TAOS environment serving to prototype structural
and behavioral instrumentation capabilities.

Software Composition Workbench:
http ://www. csee. wvu. edu/~re solve/scw/
West Virginia University- Murali Sitaraman/Steven Atkinson

The central objective of the software composition workbench is to
enable reliable component-based software engineering. The work-
bench provides a framework for construction of systems based on
reusable components, and formal and modular demonstration of
correctness. Typical components are parameterized, object-based,
and are characterized by formal behavioral specifications and
alternative performance-flexible implementations. The workbench
enforces a rigorous discipline for component and subsystem con-
struction. Salient features of the workbench include:

• A conceptual model of software construction
• Use of wizards for valid and syntax-free composition of com-

ponents
• Formal and modular reasoning of component correctness

using mathematical specifications, and theorem proving
• Run-time interface violation detection through generated

wrapper components
• Code generation in alternative programming languages such

as Ada and Java

The workbench is based on the RESOLVE framework, discipline,
and notation. For related details and publications, visit our Reus-
able Software Research Groups (RSRG): RSRG at The Ohio State
University and RSRG at West Virginia University.

Specware:
http : //www. kestrel, edu/H TM IJproto type s/specware, html
Kestrel Institute - Jim McDonald

Kestrel will demonstrate a variety of uses of EDCS technology in
the Speeware specification and design system.

We will describe our technology and explain the potential benefits
to real-world applications: correctness, security and dramatically
enhanced productivity.

In particular, we will show rapid automated derivations from
specifications of several provably correct programs-for example,
various schedulers and a Java byte-code verifier. These are sub-
stantial programs containing several thousand lines of Common
Lisp or C++ code.

We will show how new versions of those programs can be rapidly
generated after modifications to the functional specifications. For
example, we will modify a scheduling specification to include
additional constraints and then quickly generate a new applica-
tion meeting those constraints.

We will also show how new implementations of each version can
be rapidly generated after modifications to the implementation
specifications. For example, we will respecify the implementation
of some data structure from one format to another, rapidly resyn-
thesize the overall application, and show how performance is af-
fected. We will demonstrate applications developed in Specware
by teams at Boeing, Motorola, and elsewhere.

ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 108

TestTalk: Software Test Description Language:
http : /iwww. ics. uci. edu/~djrledcs/Perp Test. html
University of California, Irvine - Debra Richardson

Software tests are valuable intellectual assets, especially in long-
lived, multi-version, multi-platform commercial soRware. The
highly-publicized Y2K software problem provides a very good
sense of the problems that arise in such a domain as well as how
long software tests should last. Software tests represent significant
investment. Test developers are generally on their own to deter-
mine how to write better automated software tests. This leads to a
number of problems, including: (1) Understandability: test cases
and test oracles are typically buried in test code and hence diffi-
cult to rediscover; (2) Maintainability: automated tests are ex-
tremely sensitive to changes in the implementation. Both
problems lead to difficulty in adjusting a legacy automated test
because of the arbitrary nature of the current practice of test code
development.

TestTalk is a software test description language designed for
specifying test cases and test oracles in a manner natural to the
software testing process rather than the programming or devel-
opment process. TestTalk helps testers focus on requirements and
design aspects of software tests rather than the implementation
details of test execution. By enabling practitioners to separate
concerns between software test description and test execution,
TestTalk provides the means for creating software tests that are
readable, maintainable, and portable, yet executable.

The ultimate goal for TestTalk is to support the following maxim:
"Write Once, Test by Anyone, Anytime, Anywhere, with Any-
thing". By "write once", we mean that test descriptions only have
to be written once but cart be used perpetually. New transforma-
tion rules evolve old tests to account for various changes. By "test
by anyone", we mean that TestTalk descriptions are so easy to
understand that a tester can easily take over tests written by other
testers or developers. By "anytime", we mean that TestTalk tests
survive over time through application evolution and revisions. By
"anywhere", we mean that TestTalk tests can be transported to
another platform or operating system without modification. By
"with anything", we mean that switching the test automation en-
vironment does not nullify TestTalk tests.

We are building a toolset to support the TestTalk language. The
current toolset consists of a prototype parser and translator, which
recognizes test descriptions and transformation rules (both ex-
pressed in what we consider the core language). The TestTalk
toolset produces automated test programs for the application-
under-test for a specific platform and test automation tool by us-
ing the transformation rules in the translation of the test descrip-
tions.

UML/Ana/yzer - A System for Defining and Analyzing the
Conceptual Integrity of UML Models: http:llsunset.usc.edu/
University of Southern California, Center for Software Engineer-
ing (USC/CSE) - Alexander Egyed

Software development is about modeling a real problem, solving
the model problem, and interpreting the model solution in the real
world. In doing so, a major emphasis is placed on mismatch

identification and reconciliation within and among system views
(such as diagrams). UML/Analyzer describes and identifies
causes of architectural and design mismatches across UML views
as well as outside views represented in UML (e.g., C2 style ar-
chitectures).

* It is integrated with Rational Rose (market leader for OO
modeling)

. It implements a generic view integration framework
• It incorporates UML's Object Constraint Language (OCL)

UML/Analyzer supports the definition of mismatch rules and
model constraints. It also defines what information can bc ex-
changed and how it can be exchanged. With that, architects can
identify and resolve inconsistencies between views automatically:

• Mapping: Identifies related pieces of information and thereby
describes what information is overlapping and can be ex-
changed.

• Transformation: Extracts and converts model elements of
views in such a manner that they can be interpreted and used
by other views (how to exchange information).

• Differentiation: Traverses the model to identify (potential)
mismatches within its elements. Mismatch identification
rules can frequently be complemented by mismatch resolution
rules.

UML/Analyzer is integrated with Rational Rose and is used to
create and modify views (synthesis). Rational Rose models are
converted through an automated process into UML-A where they
are analyzed via UML/Analyzer. Model constraints and mismatch
rules are verified via a parser component. The conceptual integ-
rity of the model is then validated through the model checker
component. The model checker makes use of mapping, transfor-
mation, and differentiation. Generated modeling information as
well as identified model mismatches can be fed back into Rational
Rose for visualization.

• UML/Analyzcr identifies inconsistencies and incomplete-
nesses,

• Model currently supports class, object, sequent, collabora-
tion, state, and various architectural diagrams (e.g., layered
and C2)

* Model constraints, mismatch rules, and transformation rules
can be modified without programming.

WebDA V: http://www.ics.uci.edulpub/edcs/
University of California, Irvine - Richard Taylor/David Redmiles

WebDAV is an extension of HTTP that provides a standard infra-
structure for asynchronous collaborative authoring of a wide vari-
ety of content across the Internet. WebDAV has been approved by
the IETF and is being actively developed by a number of Software
vendors, including Microsoft, IBM, Xerox, Novell, DataChannel,
and CyberTeams. This demo will feature a WebDAV diem
(WebDAV Explorer) which will show how the WebDAV protocol
facilitates collaborative use of distributed files.

