
ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 106 

high-modality data visualization, analysis, and manipulation. In 
addition, mobile, handheld devices allow collaborators to partici- 
pate as equals with those at desktop and virtual environment sta- 
tions. The complete environment provides rich, varying-medality 
support for complex collaborative work situations. 

This year's demonstration will also demonstrate integration with 
various planning and rationale capture toolsets to support com- 
plex command and control activities such as disaster relief. 

High Assurance Technologies: 
http ://www. cs. uoregon, edu/~michal 
University of Oregon, Dept. of Computer Science - Michal Young 

The value of verifying high-level architectural designs is magni- 
fied if one can also demonstrate consistency of the verified archi- 
tectural model with the actual implementation, and do so without 
imposing unreasonable constraints on designers. University of 
Oregon will demonstrate an approach for verifying and main- 
taining potentially complex relations between an architectural 
design model and running code. Demonstrated capabilities will 
include aids to recovering architectural design information, re- 
structuring "as-built" system organization into a logical structure 
more suitable for static verification, and supporting conformance 
testing of implementations using test oracles derived directly from 
verified architectural design models. Support for dynamic testing 
extends beyond product delivery with low-impact "residual" 
monitoring of test obligations. 

Software Architecture, Analysis, Generation, and Evolution 
(SAA GE): http://sunset, use. edu/ 
University of Southern California Center for Software Engineer- 
ing CUSC/CSE), The Aerospace Corp., and TRW - Barry 
Boehm/Neno Medvidovic 

USC/CSE's Software Architecture, Analysis, Generation, and 
Evolution (SAAGE) project focuses on consistent transfer of ar- 
chitectural decisions into designs and implementations and ar- 
chitecture-based evolution of large-scale systems. Major goals of 
this work are: 

• evolution flexibility and precision, 
• simplicity and formality of architectural descriptions, 
• architect's discretion in interpreting analysis results, and 
• self-evolvable tool support. 

To this end, USC/CSE provides an integrated toolset, composed 
of in-house and third-party tools (DRADEL and RationalRose, 
respectively). The integrated toolset enables: 

• style-based application design and implementation, 
• component-based architectural composition, 
• architecture modeling and analysis, 
• architecture-based software evolution, 
• consistent refinement of architecture into design, and 
• system generation. 

Quest." http://www.mcc.com/projects/quest 
Microelectronics and Computer Technology Corporation (MCC) 
- Tim Harrison/Debra Richardson 

MCC will be demonstrating version 4.0 of the Quest Toolset con- 
sisting of a set of soRware analysis and testing tools integrated 
within a common user interface. The tools allow the developer 
and/or test engineer to statically analyze source code to discover 
dependencies between program statements, modules, or systems, 
and statically or dynamically verify the existence or absence of 
specified program behaviors. Code dependence analysis is of par- 
ticular value for code understanding, legacy system analysis, and 
selective regression testing. Program behavior verification, static 
or dynamic, is of extreme value for quality, reliability, and con- 
formance assurance. The toolset is able to analyze both Ada and 
C/C++ source code and programs. Capabilities beyond that of 
version 3.0, demonstrated last year, are inter-procedural analysis, 
improved performance, and improved usability of the toolset. 

Securely Wrapping COTS Products: 
http://www.isi.edu/software-sciences/multi-gen/multi- 
gen.html 
University of Southern California Information Sciences Institute 
(USC/ISI) - Bob Balzer 

We will demonstrate a WindowsNT based wrapper technology 
that allows Commercial Off-The-Shelf (COTS) products to be 
integrated with each other, extended to utilize externally supplied 
capabilities, and restricted to operate within user defined security 
policies. The demonstration will include incorporating encryp- 
tion, a virtual file system, and resource limitations into a variety 
of COTS products. It will also demonstrate safe execution envi- 
ronments for safely using active content in web browsers and of- 
fice products. 

Sidclhartha - Automated Test Driver-Oracle Synthesis: 
http ://www.ics. uCi. edu/~djr/edcs/Perp Test.htm/ 
University of California, Irvine - Debra Richardson 

Software design decisions must balance a collection of functional 
and non-functional software quality attributes (e.g., correctness, 
efficiency, testability, and analyzability). The tacit assumption 
made by purveyors of general-purpose software test tools is that 
testability dominates software design decisions, which is unrea- 
sonable for many application domains. This mindset engenders 
the notion of software design for testability (DFT) and often re- 
quires that the interfaces of units under test (UUTs) be fully pa- 
rameterized to support complete control and observation of 
behavior via programmatic invocations of the UUT. While such a 
program design style supports testability, it is eschewed in several 
important application domains (e.g., digital avionics and flight 
controls) because it reduces run-time performance and the ability 
to estimate run-time performance a priori. 

This problem is usually solved by iterative, ad hoc, development 
of domain-specific test development tools and languages. Such 
tools and languages are "home-grown" within software develop- 
ment organizations and support test development in a manner 
that respects business-prioritized soitware quality attributes. Un- 
fortunately, little guidance for developing such technology can be 
found in the software engineering body of knowledge. Siddhartha 
is a defined, disciplined, alternative technique for developing do- 
main-specific teSt tools that fit within a software development 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F340855.341130&domain=pdf&date_stamp=2000-01-01


ACM SIGSOFT Software Engineering Notes vol 25 no 1 January 2000 Page 107 

organization's business context and respect legacy languages, 
design styles, and development processes. Siddhartha develops 
domain-specific test automation support for transforming formal 
test specifications (TestSpecs) into test driver-oracle procedures 
(TDOPs), where a TDOP invokes not only the unit-under-test 
(UUT) but also an embedded oracle that verifies whether the 
tested UUT behavior agrees with the expected behavior expressed 
in TestSpec. In using Siddhartha, a test engineer develops a do- 
main-specific synthesizer to accept and generate formal test arti- 
facts in formats, languages, and styles already in use in her 
application domain. Thus, Siddhartha provides test development 
automation support in application domains that cannot be well- 
supported by general-purpose test development tools. 

Siddhartha has been applied to produce two domain-specific test 
synthesizers to date: Siddhartha-SCR(SCR*log, Ada) and 
Siddhartha-regression(Ada, Ada). Siddhartha has been validated 
against a significant, real-world example: the Ada operational 
flight program (OFP) for research flight control system (RFCS) of 
the production support flight control computer (PSFCC) used on 
the F/A-18B Hornet system research aircraft (SRA) operated by 
NASA Dryden Flight Research Center (DFRC). 

SoBelt: Structural and Behavioral Execution Instrumentation 
Tool: http://www.ics.uci.edu/~djr/edcs/Perp Test.html 
University of California, Irvine - Debra Richardson 

SoBeR supports development and assurance of quality software 
through automated specification-based testing. SoBelt supports 
software testers with the following capabilities: 

• persistent test artifact development and maintenance; 
• fully automated testing, including monitored test execution; 

formal, automated test result checking via specification-based 
test oracles; 

• functional and structural test adequacy definition and meas- 
urement. 

The tester provides SoBeR with the component-under-test (CUT) 
and corresponding component specification (CS) along with a 
persistent test suite (TS) and SOBEIT does all the rest: the In- 
strumentor takes a representation mapping relating events in CS 
to occurrences in CUT and instnunents the CUT to collect event 
traces; the instrumented CUT is automatically executed on all test 
cases specified in TS; the test executions are monitored to collect 
the required event traces; an FSA representation of the specifica- 
tion CS is interpreted on the event traces, thus serving to compare 
the test execution results to the specification; pass/fail results are 
reported. 

SoBeR is written in Tcl/Tk, although it integrates components 
written in a variety of languages. The Instrumentor currently 
works for Ada83, although instrumentation can be done manu- 
ally. The OracleGenerator currently works for GIL, but FSAs can 
be provided directly via an FSA Editor. The rest of SoBeR is lan- 
guage independent. SoBelt is a scaled-down version of 
ROSATEA's TAOS environment serving to prototype structural 
and behavioral instrumentation capabilities. 

Software Composition Workbench: 
http ://www. csee. wvu. edu/~re solve/scw/ 
West Virginia University- Murali Sitaraman/Steven Atkinson 

The central objective of the software composition workbench is to 
enable reliable component-based software engineering. The work- 
bench provides a framework for construction of systems based on 
reusable components, and formal and modular demonstration of 
correctness. Typical components are parameterized, object-based, 
and are characterized by formal behavioral specifications and 
alternative performance-flexible implementations. The workbench 
enforces a rigorous discipline for component and subsystem con- 
struction. Salient features of the workbench include: 

• A conceptual model of software construction 
• Use of wizards for valid and syntax-free composition of com- 

ponents 
• Formal and modular reasoning of component correctness 

using mathematical specifications, and theorem proving 
• Run-time interface violation detection through generated 

wrapper components 
• Code generation in alternative programming languages such 

as Ada and Java 

The workbench is based on the RESOLVE framework, discipline, 
and notation. For related details and publications, visit our Reus- 
able Software Research Groups (RSRG): RSRG at The Ohio State 
University and RSRG at West Virginia University. 

Specware: 
http : //www. kestrel, edu/H TM IJproto type s/specware, html 
Kestrel Institute - Jim McDonald 

Kestrel will demonstrate a variety of uses of EDCS technology in 
the Speeware specification and design system. 

We will describe our technology and explain the potential benefits 
to real-world applications: correctness, security and dramatically 
enhanced productivity. 

In particular, we will show rapid automated derivations from 
specifications of several provably correct programs-for example, 
various schedulers and a Java byte-code verifier. These are sub- 
stantial programs containing several thousand lines of Common 
Lisp or C++ code. 

We will show how new versions of those programs can be rapidly 
generated after modifications to the functional specifications. For 
example, we will modify a scheduling specification to include 
additional constraints and then quickly generate a new applica- 
tion meeting those constraints. 

We will also show how new implementations of each version can 
be rapidly generated after modifications to the implementation 
specifications. For example, we will respecify the implementation 
of some data structure from one format to another, rapidly resyn- 
thesize the overall application, and show how performance is af- 
fected. We will demonstrate applications developed in Specware 
by teams at Boeing, Motorola, and elsewhere. 


