2101.10087v1 [cs.CY] 15 Jan 2021

arxXiv

Automating Program Structure Classification

Will Crichton Georgia Gabriela Sampaio Pat Hanrahan
wcrichto@cs.stanford.edu gsamp@stanford.edu Stanford University
Stanford University Stanford University
ABSTRACT composition in functional languages showed that certain high-level

When students write programs, their program structure provides
insight into their learning process. However, analyzing program
structure by hand is time-consuming, and teachers need better tools
for computer-assisted exploration of student solutions. As a first
step towards an education-oriented program analysis toolkit, we
show how supervised machine learning methods can automatically
classify student programs into a predetermined set of high-level
structures. We evaluate two models on classifying student solutions
to the Rainfall problem: a nearest-neighbors classifier using syntax
tree edit distance and a recurrent neural network. We demonstrate
that these models can achieve 91% classification accuracy when
trained on 108 programs. We further explore the generality, trade-
offs, and failure cases of each model.

CCS CONCEPTS

« Social and professional topics — Computing education; «
Computing methodologies — Supervised learning by classifica-
tion.

KEYWORDS

Program classification, machine learning, neural networks

ACM Reference Format:

Will Crichton, Georgia Gabriela Sampaio, and Pat Hanrahan. 2021. Au-
tomating Program Structure Classification. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education (SIGCSE "21), March
13-20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3408877.3432358

1 INTRODUCTION

When a teacher creates a new programming assignment, they often
wonder: what different kinds of solutions did my students come
up with, and why? The strategies that students use, the way they
organize their code — this program structure can reveal what stu-
dents have (or haven’t) learned. Classifying the structure of student
solutions has been used to identify misconceptions [27], success pre-
dictors [25], and problem solving milestones [28]. Studies on plan
composition — how students combine code templates to solve pro-
gramming problems — have long used program structure to analyze
student problem solving. For example, Fisler’s 2014 study of plan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432358

program structures correlated with increased error rates [7].

However, analyzing program structure is a challenging, time
intensive work. In personal correspondence, Fisler estimated that
hand-coding program structure for her 2014 study took 1-2 minutes
per program. This estimate is consistent with Wu et al. who reported
that hand-labeling student misconceptions in Code.org programs
took an average of 2 minutes per program [27]. For CS1 courses
with hundreds of students, such a per-program cost is prohibitive,
motivating the use of automation to alleviate the burden of manual
inspection.

Our vision for the future is that automatic program structure
classification should be a tool in every CS teacher’s toolbox. This
analysis augments traditional forms of feedback (grades, office
hours, etc.) with a new channel for understanding how students
approach problems. With this tool, a teacher could explore the
structural variation in student programs, assisted by data-driven
technology to avoid a purely manual inspection process.

However such a tool does not exist today, so our goal is to lay
the foundations for its development. That goal starts with the ques-
tions: what technologies could be used, and how well do they work?
Ethical use of algorithms to analyze students requires a deep under-
standing of their accuracy and failure modes. Hence, in this paper,
we perform a thorough evaluation of multiple tools for classify-
ing student program structure. We address the following research
questions:

RQ1. How much training does this tool need to be accurate?
RQ2. How accurate is the tool on different languages?
RQ3. When and why does this tool make errors?

We answer these questions for a well-studied programming prob-
lem: Rainfall, a simple list-processing task. We evaluate two super-
vised machine learning methods, nearest-neighbors and recurrent
neural networks, on an existing dataset of student solutions to Rain-
fall in the OCaml and Pyret languages. We demonstrate that these
approaches can classify Rainfall program structures with up to 91%
accuracy when trained on 108 examples.

2 RELATED WORK

2.1 Program classification

Many kinds of high-level program analysis can be viewed as pro-
gram classification. Plagiarism detection systems like MOSS [4]
take a given student’s program, and classify other programs as
“plagiarized” or “different”. We do not consider this task as program
structure classification, as plagiarism systems predominantly com-
pare low-level syntax differences, e.g. whether two programs are
the same modulo renamed variables.

Other prior works attempt to classify the kind of problem being
addressed in a program, or what algorithm is being used. Taherkhani

https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/3408877.3432358

1 let rec help (alon : float list)

2 match alon with 2
3 | [1->11] 3
4 | hd::tl -> 4
5 if hd = (-999.) then [] 5
6 else if hd >= 0. then hd :: (help tl) 6
7 else help tl : float list) 7
s let rec rainfall (alon : float list) = 8
9 match alon with 9
10 | [1 -> failwith "no proper rainfall amounts" i
11 | _ii_ > 1
12 (List.fold_right (+.) (help alon) 0.) /. 12
13 (float_of_int (List.length (help alon))

let rainfall (a :

let rec cut_list (a : int list) =

match a with

| [1->11

| hd::tl ->

if hd <> (-999) then hd :: (cut_list tl) else []

let non_neg (a : int list) =

List.filter (fun x -> x > 0) a
let average (a : int list) =

(List.fold_right (fun x -> fun _val -> x + _val) a 0) /
(List.length a)

int list) =

average (non_neg (cut_list a))

Figure 1: Two example “Clean First” OCaml programs. Even for the same high-level structure, student solutions exhibit a
significant diversity in syntactic and semantic variation such as the function decomposition strategies shown here.

and Malmi [21] classify sorting algorithms from source code using
decision-trees on hand-engineered problem-specific code features.
For example, their features included “whether or not the algorithm
implementation uses extra memory” and “whether from the two
nested loops used in the implementation of the algorithm, the outer
loop is incrementing and the inner decrementing.” Moving away
from hand-engineering program features, the software engineering
community has also applied deep learning techniques for similar
tasks. Mou et al. [18] defined a task of classifying which of 104
programming competition problems a program is attempting to
solve, and they apply a novel tree-based neural network for this
task. Bui et al. [6] introduce bilateral neural networks to solve the
same problem in a language-independent manner. In this work, we
focus on classifying how a student solved a problem, as opposed to
what problem they were solving.

Closer to our application domain, Ahmed and Sindhgatta et
al. [1] use program structure classification to suggest repairs to
students. Wu et al. [27] evaluate a recurrent neural network (RNN)
and multimodal variational autoencoder on classifying misconcep-
tions in Code.org programs. In their problem formulation, a student
can have one of 20 misconceptions about geometric concepts, and
the goal is to classify which misconceptions a student has from
their program. Malik and Wu et al. [17] introduce a method for
neural approximate parsing of probabilistic grammars, achieving
human-level accuracy on misconception classification. We adapt
their RNN model in Sections 4.2.

2.2 Program clustering and similarity

In a classification problem, a fixed set of categories is given up
front. The role of a model is to classify data into one of these prede-
termined categories. Clustering methods attempt to solve a more
challenging problem by simultaneously discovering the categories
and the mapping from data to category. In the education community,
prior work in program clustering has used classical heuristics such
as computing edit distance between abstract syntax trees [12] and
control-flow ASTs [11], or finding exact matches on canonicalized
source code [8], control-flow graphs [15], or simulation relations
[9]. Edit distance has also been applied to program repair [2] and
code clone detection [26].

We do not attempt to solve the problem of discovering program
categories. In practice, one of the major challenges for clustering-
based analyses is that the generated categories can range from
hard to interpret to nonsensical. In our problem setting, we assume
a teacher or CSE researcher has already identified categories of
interest, and wants to label them at scale on a dataset of programs.
However, we do use the notion of program distance via syntax-tree
edits for our nearest-neighbors classifier.

Recent work has also applied machine learning techniques to
learn program comparison metrics from data. Tufano et al. [23]
use a recursive autoencoder on identifiers, syntax trees, control
flow graphs, and bytecode to build a semantic embedding space
for programs, then use embedding space distance for clone detec-
tion. Raychev et al. used decision trees [19] and conditional random
fields [20] to learn associations between code fragments for predict-
ing the values and types of holes in programs. While these metrics
are likely more robust than tree edit distance, they are challeng-
ing to adapt for niche teaching languages like Pyret. For example,
Raychev et al. used 150,000 JavaScript files to learn an embedding
for JavaScript, and we strongly suspect we cannot find that much
Pyret code out in the world.

3 DATASET

Our goal is to evaluate program structure classification methods
on programs and classes relevant to CSE researchers, i.e. classi-
fying strategies on student programs, not classifying the kind of
problem solved in LeetCode solutions. We chose to replicate the
hand-labeled program structures used in Fisler’s study of plan com-
position in functional solutions to the Rainfall problem [7]. In that
study, students were prompted with:

Design a program called rainfall that consumes a list
of numbers representing daily rainfall amounts as
entered by a user. The list may contain the number
-999 indicating the end of the data of interest. Produce
the average of the non-negative values in the list up to
the first -999 (if it shows up). There may be negative
numbers other than -999 in the list.

Fisler’s dataset contains student solutions from different introduc-
tory programming classes in three functional languages: OCaml,

Pyret, and Racket!. Across these languages, Fisler identified three
high-level structures (“Single Loop”, “Clean First”, and “Clean Mul-
tiple”) that accounted for a large majority of student solutions. Each
category indicates a different choice of when and how to filter the in-
put list for valid rainfall data. Single Loop fuses summing/counting
with filtering, Clean First filters the list then sums and counts the
clean data, and Clean Multiple separately filters in the summing
and counting logic. Figure 1 shows examples of two Clean First
OCaml programs, and Section 4 of Fisler’s paper contains further
discussion.

Overall, the dataset consists of 136 OCaml and 42 Pyret student
solutions to the Rainfall problem. The distribution of Clean First
/ Clean Multiple / Single Loop solutions is .44/.20/.36 in OCaml
and .47/.22/.31 in Pyret. Each solution’s structure has been hand-
labeled by a human expert (either Fisler or the current authors).
In Section 4, we describe the methods for automatically classify-
ing Rainfall program structures, and in Section 5 we evaluate the
methods on Fisler’s dataset.

4 METHODS
We selected which methods to evaluate based on several criteria:

o Generality: we prefer methods that could work with little cus-
tomization for many languages and problems. So we eliminated
any heuristic-based methods (e.g. as in Taherkhani and Malmi [21]),
and only considered methods that learn directly from data.

e Interpretability: machine learning methods often trade off in-
terpretability for predictive power. Neural networks are noted
for their high accuracy and black-box nature, so we wanted to
include classical machine learning methods as well.

e Supervision: as mentioned in Section 2.2, we only want to con-
sider methods that learn provided categories, not emergent ones
from the data. So we eliminate any unsupervised machine learn-
ing methods from consideration.

Given these criteria, we selected two methods: a nearest-neighbors
classifier, and a recurrent neural network. We will explain each in
greater detail:

4.1 Nearest-neighbors classifier

A nearest-neighbors classifier represents a baseline for supervised
program structure classification. It has a simple formulation, re-
quires no training algorithm, and makes interpretable decisions. To
explain, let’s set up the mathematical structure of the problem. The
input is a dataset D = {(p1,11),. .., (pn, In)} of n pairs of programs
p and labels I. For example, the two programs in Figure 1 both have
I = "Clean First".

Given a new program p’, a nearest-neighbors classifier finds the
most similar program p; from the training data, and assigns p’ the
label ;. Formally, given a distance function:

Dist : Program X Program — R
A nearest-neighbors classifier classifies a new program p’ as:

argmin Dist(p, p’)
pleD

!We exclude Racket from our analysis because Fisler’s Racket data were PDFs of
hand-written exam solutions, which we cannot automatically analyze like a text file.

Classification

Embedding

[0.1, 0.4, ..]

I'—’ RNN
[1.3, 6.8, ..]

Preprocessing

[Source code l

let rainfall = .. l

[Token strings l

[“LET”, “RAINFALL",..] ‘

.

Classifier

‘ “Clean First”

[Token numbers l

(1, 15, 10, .. |

Figure 2: RNN classifier architecture. Programs are con-
verted into integer sequences where each number uniquely
identifies a token. Each token is mapped to an embedding
vector, fed through the RNN to produce a hidden state vector.
At the end of the sequence, a classifier predicts the program
category from the hidden state.

This method is interpretable in that the classifier can provide the
nearest training program p as a justification for its classification.
See Figure 5 for an example.

The key design decision is choosing a distance metric. One met-
ric that has been widely used for program similarity is tree edit
distance. When two programs are represented as their abstract syn-
tax tree (AST), the edit distance is the number of tree manipulation
operations needed to transform one tree into the other. For our
classifier, we use the canonical Zhang-Shasha method [29]. Nearest-
neighbors could, of course, be used with other distance metrics (e.g.
Euclidean distance in a learned embedding space). But for simplic-
ity in this paper, we will use “nearest-neighbors” to mean “with
Zhang-Shaha distance”

Similar to prior work [11], we do not compare syntax trees ver-
batim. Small syntactic differences like choice of variable name or
presence of type annotation do not usually impact the high-level
structure of a program. For both OCaml and Pyret, we use their
respective compilers to generate a raw AST, then erase variable
names, constant values, and type annotations before computing
edit distance.

4.2 Recurrent neural network

A downside to nearest-neighbors is that the distance metric is
susceptible to issues where programs may be syntactically similar
but structurally different (or vice versa, as in Figure 1). Neural
networks are a supervised learning method that automatically learn
program similarity features from the training data. In practice,
learned features can increase accuracy (with enough training data),
but decrease interpretability. We use a recurrent neural network
because our input programs do not have a fixed size,? unlike e.g.
convolutional neural networks for image classification.

2We cannot simply use a standard feed-forward neural network with a large input size,
since that presumes we know the maximum program size at training time. A student
could always produce a program larger than previously observed.

OCaml Pyret

1.04 1.04
0.8 ?% *é ’ ; i 0.8
> 0.6 > 0.6
9 9
e e
3 3)
g o]
< 0.4 < 0.4
0.24 0.21
I Nearest-neighbors
[Recurrent neural network
0.0 T T T T 0.0 T T T T
27 54 81 108 8 16 25 33

Training data Training data

Figure 3: Distribution of model accuracy for different sizes
of training and test sets and under each language. Each ex-
perimental condition is computed through 30 trials, so its
distribution is visualized as box plot.

We adapt a basic RNN architecture from Wu et al. [27] as shown
in Figure 2. Each token of the source program is mapped to a high-
dimensional vector of numbers (an “embedding”).>. The RNN is
initialized with a different high-dimensional vector of numbers (the
“hidden state”). Given a sequence of token embeddings, the RNN
iterates through each token and updates the hidden state with in-
formation from the embedding. At the end of the sequence, logistic
regression is used to classify the hidden state into a probability
distribution over the possible program structure categories.

Given the breakneck pace of research on neural networks, there
are inevitably countless variations on this architecture that could be
applied to our problem. We used the most basic possible recurrent
architecture over e.g. transformers [14, 24] or tree-LSTMs [22] to
reduce the number of confounding factors that influence accuracy.
We consider the specific choice of RNN cell (LSTM [10] vs. GRU [5]),
the number of layers within the RNN, and the embedding/hidden
vector sizes as hyperparameters.

To train the RNN model on labeled student data, we use gradient
descent with Adam [13] (@ = 0.001, 1 = 0.9, 2 = 0.999). We use
the model weights from the training iteration with highest accuracy
on a validation set as the version for evaluation. We use Bayesian
optimization [3] to select the best hyperparameters (LSTM cell, 3
layers, 512 embedding size, 128 hidden size).

5 EVALUATION

For each method, we answer the three research questions raised in
the introduction.

5.1 How much training does this tool need to
be accurate?

To estimate the accuracy of a particular method, we can partition
the Rainfall dataset into training data and testing data. The method
is trained on the training data with knowledge of their ground-
truth program structures. Then the method is evaluated on the

3Although a token is represented as a number, tokens are still categorical, not ordinal
data. For example, if let = 1, fun = 2, end = 10, the network shouldn’t learn that “let”
and “fun” are somehow more related than “end” by virtue of being assigned closer
identifiers.

Clean First
o
o

True plan
Clean Multiple
u-

°

5.01

0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Clean First Clean Multiple Single Loop

Single Loop

Predicted plan

Figure 4: Distribution of row-normalized confusion matri-
ces for the RNN method in OCaml. The x-axis of each sub-
plot shows the probability P(Predicted plan | True plan), e.g.
the upper right plot shows the probability a program is clas-
sified as Single Loop given its true plan is Clean First. The
y-axis shows the number of times a confusion matrix had a
given probability across the 30 simulations. Kernel density
estimation is used to smooth the empirical probability dis-
tribution. The nearest-neighbors matrices look very similar,
and so are not shown.

testing data without knowing their ground-truth. For now, each
test prediction is either correct if the predicted category matches
the actual category, and incorrect otherwise. (Section 5.3 further
distinguishes between types of errors.) The accuracy of the model
is then the fraction of test programs with a correctly predicted
category.

Each train/test partition acts as a simulation of how the tool
would be used in practice. For example, if a teacher has 100 student
solutions, they could hand-label 30 of them with the correct pro-
gram structure, then train a model to predict the remaining 70. To
understand the “average” scenario, we can run this simulation mul-
tiple times on random partitions to find a distribution of accuracy.
Technically speaking, we use a Monte Carlo cross-validation.

To understand the relationship between accuracy and training
data, we fix different amounts of training data as the independent
variable, and measure the distribution of accuracy across 30 simu-
lations as the dependent variable. Figure 3 shows the distribution
for each method over both languages at each quartile of training
data. Some observations:

e The highest mean accuracy in OCaml is .91 + .04 for nearest-
neighbors and .89 + .05 for RNN models when training on 108
programs. For Pyret, the highest mean is .71 + .19 for nearest-
neighbors and .87 + .10 for RNN on 33 training programs.

o Nearest-neighbors achieves .85 + .04 mean accuracy for OCaml
with only 27 training programs.

e Nearest-neighbors outperforms RNN under every training set
size for OCaml, and the converse is true for Pyret.

For OCaml, relatively little training data is needed to achieve high
accuracy with nearest-neighbors, while at least 100 data points is
needed for RNN to achieve comparable accuracy. For Pyret, both
methods have uncomfortably high variance even with 33 training

1 let rec rainfall_helpl (alon : int list) = 1
2 match alon with 2
3 | [1->0 3
4 | (-999)::tl -> 0 4
5 | hd::tl -> hd + (rainfall_help1 tl) 5
¢ let rec rainfall_help2 (alon : int list) = 6
7 match alon with 7
8 | [1->0 8
9 | (-999)::t1 > @ 9
10 | hd::tl -> 1 + (rainfall_help2 tl) 10
n let rainfall (alon : int list) = 1
12 (float_of_int (rainfall_helpl1 alon)) /. 12
13 (float_of_int (rainfall_help2 alon)) 13

let rec positive 1st =
match lst with

[[1—>11]
| head::tail ->
(match head with
[(-999) —> []
| x when x > @ -> head :: (positive tail)
| x when x < @ -> positive tail)

let rec sum_list 1st =
match 1lst with

| [1->0
| head::tail -> head + (sum_list tail)

let rec rainfall 1lst =

(sum_list (positive 1lst)) / (List.length (positive 1lst))

Figure 5: The left program is a Clean Multiple solution that was misclassified by the nearest-neighbors classifier as Clean
First, being matched with the Clean First program in the training set on the right. The functions share significant syntactic
and structural similarity, e.g. two helper functions, similar style of match, and similar top-level usage. However, the helper
functions are critically used in very different ways, leading to an incorrect classifier prediction.

programs, suggesting that more training data is needed for high,
stable accuracy on Pyret programs with these methods.

5.2 How accurate is the tool on different
programming languages?

We have to carefully compare the results of Figure 3 between OCaml

and Pyret due to the difference in dataset size. By comparing e.g.

the 27-size OCaml condition vs. the 25-size Pyret condition, we can

get close to a fair comparison. Observations:

o Nearest-neighbors gets .85 + .04 mean accuracy for OCaml, and
.67 £ .08 mean accuracy for Pyret.

e RNN gets .79 + .04 mean accuracy for OCaml, and .79 + .08 mean
accuracy for Pyret.

For small amounts of data, the RNN performs consistently with
about 79% accuracy in both cases. In OCaml, nearest-neighbors
outperforms the RNN with 85% accuracy, but is substantially worse
for Pyret with 67% accuracy. This difference suggests that the RNN
is more stably language-independent, while nearest-neighbors’ per-
formance is language-dependent.

For nearest-neighbors, the performance gap between the two
languages is possibly explained by AST size. While the average
program length in tokens is 116 for OCaml vs. 127 for Pyret, the
average program size in number of AST nodes is 50 for OCaml and
196 for Pyret. Hence, the token-based RNN sees programs of much
similar size than the node-based nearest-neighbors classifier. This
difference is likely an artifact of the implementation of ASTs in the
respective compilers. Further work in simplifying the AST could
potentially improve nearest-neighbors performance.

5.3 When and why does this tool make errors?

First, to understand statistically when errors are most likely occur,
we ran 30 simulations of both models for the OCaml dataset in
a 70/30 train/test split. Rather than evaluating accuracy (is the
prediction correct or not?), we consider the more granular statistic
of a confusion matrix: for each category, how often is it classified
as a different category? Each simulation generates one confusion

matrix, which we summarize as a distribution over matrices in
Figure 4.

The plot shows that true Clean First programs are misclassified
less often than the other two classes. Clean Multiple has a greater
misclassification rate, being most frequently confused with Clean
First. And Single Loop is almost exclusively misclassified as Clean
Multiple, a somewhat confusing asymmetry given Clean Multi-
ple is rarely misclassified as Single Loop. These observations are
consistent between both nearest-neighbors and RNN.

Next, to understand the interpretability of these errors, we will
answer a particular “why” question: why is Clean Multiple often
misclassified as Clean First? Starting with nearest-neighbors: recall
that programs are classified by their edit-distance to the nearest
program in the training set. Given an incorrectly classified program,
we can look at the closest training program to understand why the
error occured.

Figure 5 shows a representative example of a Clean Multiple
program misclassified as Clean First by nearest-neighbors. The two
programs shared many syntactic features (multiple helper func-
tions, use of standard library functions, similar matching structure),
but were subtly distinct in how these pieces of code were used.
Through manual inspection, we found most of the errors from
nearest-neighbors were caused by such incidental syntactic simi-
larities.

As with many neural-network approaches, the RNN provides
no immediately human-interpretable ways to understand its pre-
dictions. However, research in interpretable machine learning has
produced methods of visualizing the internal representations of
objects within a neural network. Once a program has been fed
to the RNN, it generates a "hidden state" vector of numbers. Us-
ing the t-SNE method [16], we can project that high-dimensional
representation to a 2D plane as shown in Figure 6.

Given a particular random 70/30 split on the OCaml dataset, we
generated a t-SNE diagram by projecting the 92 training programs
onto a 2-D scatterplot, shown in blue. Then we add the 6 incorrectly
classified test programs, shown in orange. Each point’s shape indi-
cates its actual category. The t-SNE diagram reveals that roughly

Nearest-neighbors

RNN

How much training does this tool | Few programs for small ASTs, many for | More than nearest-neighbors to reach peak

need to be accurate? large ASTs

accuracy

How accurate is the tool on differ- | Worse as AST size increases

ent programming languages?

Consistent across languages

When and why does this tool make | Confuses syntactically similar and seman- | Learns an embedding space that doesn’t

errors?

tically different programs

separate categories well enough

Table 1: Summary of answers to each research question for each method.

Dataset
"n§ u, ® Train
10 4 u Test
[] True label

ny ® Clean First
Clean Multiple
5 x' % x m Single Loop

2.3

-
*
°

L

t-SNE X2
x
°

-12 -10 -8 -6 -4 -2 0 2 4
t-SNE X1

Figure 6: A scatter plot of the t-SNE projection of hidden
state vectors for OCaml programs. Blue is training data, and
orange is incorrectly classified test data.

three clusters emerge, one for each category: squares in the top-left
(Single Loop), crosses in the middle (Clean Multiple), and circles in
the bottom-right (Clean First). When a program is misclassified, its
embedding is closer to the cluster of another category than its own.
For the question of Clean Multiple vs. Clean First: the t-SNE dia-
gram shows that the RNN embedding space learns to position Clean
Multiple programs between Clean First and Single Loop. Hence,
why Clean Multiple is disproportionately misclassified as one or
the other, and why Single Loop is rarely misclassified as Clean First.
Additionally, the one misclassified Clean Multiple program (the
orange cross in Figure 6) is closer to Clean First training points
than to Clean Multiple training points, a likely explanation for its
misclassification. In sum, the RNN is not learning an embedding
space that keeps programs of each category sufficiently far apart.

6 DISCUSSION

We summarize the answers to our research questions in Table 1.
Overall, we have found that these methods have the potential to
classify functional Rainfall programs with relatively high accuracy
(90%+) without huge amounts of training data. The methods work
across languages and have varying levels of interpretability.

6.1 Threats to validity

While we hope that these methods can be used by teachers for
their own programming problems, this study’s conclusions may
not generalize beyond problems like Rainfall. For example:

e Problem complexity: Rainfall is a simple problem, whose solu-
tions in OCaml and Pyret are 10-20 lines. Methods like nearest-
neighbors may not scale to more complex problems.

e Language/paradigm: the dataset’s programming languages were
both functional. These methods may not perform as well on Java,
Python, or other more standard CS1 languages.

e Number of categories: with more program structures, more
data is needed to distinguish between them.

As more datasets become available with CSE-relevant program clas-
sification tasks, we hope that these concerns can be addressed in
future work. Additionally, as more powerful machine learning meth-
ods are developed, they can be applied to overcome the limitations
of the methods evaluated here.

6.2 Applications to CS education

Thus far, program classification tools have primarily been the do-
main of CS education researchers with machine learning expertise.
We hope that tools with Uls designed for ease-of-use and trans-
parency/debuggability will make this technology accessible to all
CS educators. For starters, all code from this project is free and
open-source at https://github.com/willcrichton/autoplan. We have
developed a simple Python API to simplify data preprocessing
and model training specifically for program classification of Pyret,
OCaml, Java and Python programs.

The bigger question is: how would teachers use such a tool?
We expect that teachers could use program classification to gain
visibility into the strategies used by students without needing to
read every program. The average workflow might look like this:

(1) A teacher notices in office hours that some students are writing
their solutions a particular way, e.g. performing multiple vali-
dation checks up front vs. performing them lazily throughout
the program (such as Clean First vs. Clean Multiple).

(2) After collecting assignment solutions, the teacher finds a few
examples of solutions that do and don’t match this pattern.

(3) The teacher trains a classification model on the examples, and
uses it to find more similar programs to label.

(4) The teacher repeats this workflow until they are confident that
the model is accurate for their dataset based on cross-validation
simulations like those in this paper.

(5) They run the model on the entire solution dataset, revealing
that 1/3 of the class is using the lazy validation strategy.

(6) The teacher prefers students to validate eagerly, and so updates
their teaching materials to cover this issue in class.

We hope that this study can contribute toward the foundational
knowledge needed to make this process possible.

https://github.com/willcrichton/autoplan

7

ACKNOWLEDGEMENTS

We are deeply grateful to Kathi Fisler for providing us access to the
Rainfall dataset.

REFERENCES

(1]

(2]

(3]

(4]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17

(18]

Umair Z. Ahmed, Renuka Sindhgatta, Nisheeth Srivastava, and Amey Karkare.
2019. Targeted Example Generation for Compilation Errors. In Proceedings of the
34th IEEE/ACM International Conference on Automated Software Engineering.
Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1-27.

James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms. In
Proceedings of the 12th Python in science conference, Vol. 13. Citeseer, 20.

Kevin W Bowyer and Lawrence O Hall. 1999. Experience using "MOSS" to detect
cheating on programming assignments. In FIE’99 Frontiers in Education. 29th
Annual Frontiers in Education Conference. Designing the Future of Science and
Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011, Vol. 3.
IEEE, 13B3-18.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio.
2014. On the Properties of Neural Machine Translation: Encoder-Decoder Ap-
proaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. Association for Computational Linguistics,
Doha, Qatar, 103-111. https://doi.org/10.3115/v1/W14-4012

Bui Nghi DQ, Yijun Yu, and Lingxiao Jiang. 2019. Bilateral Dependency Neural
Networks for Cross-Language Algorithm Classification. In 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 422-433.

Kathi Fisler. 2014. The recurring rainfall problem. In Proceedings of the tenth
annual conference on International Computing Education Research. ACM, 35-42.
Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip] Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22,2(2015), 7.

Sumit Gulwani, Ivan Radi¢ek, and Florian Zuleger. 2018. Automated Clustering
and Program Repair for Introductory Programming Assignments. SIGPLAN Not.
(2018).

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco. 2016.
Control-flow-only abstract syntax trees for analyzing students’ programming
progress. In Proceedings of the 2016 ACM Conference on International Computing
Education Research. ACM, 63-72.

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas. 2013. Syntactic
and functional variability of a million code submissions in a machine learning
mooc. In AIED 2013 Workshops Proceedings Volume, Vol. 25.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised Translation of Programming Languages. arXiv preprint
arXiv:2006.03511 (2020).

Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, and Se-Young Yu.
2013. On the differences between correct student solutions. In Proceedings of the
18th ACM conference on Innovation and technology in computer science education.
ACM, 177-182.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579-2605.

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, John Mitchell, Noah Good-
man, and Chris Piech. 2019. Generative Grading: Neural Approximate Parsing
for Automated Student Feedback. arXiv preprint arXiv:1905.09916 (2019).

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural
networks over tree structures for programming language processing. In Thirtieth
AAAI Conference on Artificial Intelligence.

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic model for
code with decision trees. In ACM SIGPLAN Notices, Vol. 51. ACM, 731-747.
Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from big code. In ACM SIGPLAN Notices, Vol. 50. ACM, 111-124.
Ahmad Taherkhani and Lauri Malmi. 2013. Beacon-and schema-based method
for recognizing algorithms from students’ source code. Journal of Educational
Data Mining 5, 2 (2013), 69-101.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational Linguistics,

[23

[24

[25

[27

[28

[29

Beijing, China, 1556-1566. https://doi.org/10.3115/v1/P15-1150

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Deep learning similarities from different
representations of source code. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR). IEEE, 542-553.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Lisa Wang, Angela Sy, Larry Liu, and Chris Piech. 2017. Learning to Represent
Student Knowledge on Programming Exercises Using Deep Learning.. In EDM.
Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
2018. CCAligner: a token based large-gap clone detector. In Proceedings of the
40th International Conference on Software Engineering. ACM, 1066-1077.

Mike Wu, Milan Mosse, Noah Goodman, and Chris Piech. 2019. Zero shot learning
for code education: Rubric sampling with deep learning inference. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 782-790.

Lisa Yan, Nick McKeown, and Chris Piech. 2019. The PyramidSnapshot Challenge:
Understanding student process from visual output of programs. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education. ACM,
119-125.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing
distance between trees and related problems. SIAM journal on computing 18, 6
(1989), 1245-1262.

https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/P15-1150

	Abstract
	1 Introduction
	2 Related Work
	2.1 Program classification
	2.2 Program clustering and similarity

	3 Dataset
	4 Methods
	4.1 Nearest-neighbors classifier
	4.2 Recurrent neural network

	5 Evaluation
	5.1 How much training does this tool need to be accurate?
	5.2 How accurate is the tool on different programming languages?
	5.3 When and why does this tool make errors?

	6 Discussion
	6.1 Threats to validity
	6.2 Applications to CS education

	7 Acknowledgements
	References

