
Computer Science Student-Centered Instructional Continuum
Jane Waite

Queen Mary University of London, UK
Christine Liebe

Colorado School of Mines, USA

ABSTRACT
See conference copy for DOI and to reference.

The Computer-Science Student-Centered Instructional Contin-
uum (CS-SCIC) is a new framework to support PreK-12 instructors
in their lesson design. Educators are faced with choices when build-
ing lessons; there is a tension between direct instruction, construc-
tivism and constructionism and difficulty in providing differentiated
instruction. Theoretically aligned to Vygotsky’s zone of proximal
development, CS-SCIC places research-based instructional strate-
gies on a simple learning continuum. Teachers use the continuum
to discuss, review and design learning events. Used internationally,
initial qualitative feedback from teachers who attended pilot CS-SIC
workshops was emphatically positive. Future work includes more
feedback from academia and formal research, including pre and
post-professional development workshop surveys.

CCS CONCEPTS
• Social and professional topics→ K-12 education.

KEYWORDS
computer science education, differentiation, scaffolding, K-12

ACM Reference Format:
Jane Waite and Christine Liebe. 2021. Computer Science Student-Centered
Instructional Continuum. In Proceedings of Association for Computing Ma-
chinery. (SIGCSE ’21). ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION/PROBLEM
There is a lack of research on how to teach computer science in
schools but there is increasing suggestion from academic studies
that a blended approach should be used [6]. Current trends in CS
PreK-12 instruction tend to focus on either structured copy code
software offering immediate feedback (i.e. Code.org, programming
language apps, and IDE’s), or more unstructured tinkering, open
projects and inquiry-based learning. Tinkering (e.g. learning by do-
ing), or pure constructionist experimentation, is prized by some [3],
and evidenced as "natural" for precocious or savant students who
enjoy this approach outside of class [1]. More structured activities,
such as code reading tasks or Parson’s Problems, provide greater
scaffolding and are being increasingly portrayed as important in
computer science education [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 2021, Toronto, Canada
© 2021 Association for Computing Machinery.
ACM ISBN https://doi.org/?. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 CS-SCIC: A CONTINUUM OF
INSTRUCTIONAL STRATEGIES

Computer-Science Student-Centered Instructional Continuum (CS-
SCIC) provides a simple overview of instructional strategies along
a continuum of scaffolding, from most tightly controlled to most
loose; in doing this, it highlights opportunities on how to differenti-
ate instruction. CS-SCIC has six instructional approach categories
of: 1. Copy code: students are given step by step instructions to
follow e.g.copy an example program; 2. Targeted tasks: students are
given a short task e.g. fix buggy code, Parsons Problems; 3. Shared
coding: the teacher thinks aloud as they design and write code,
sometimes called demonstrating or live coding e.g. teacher models
how to write a program; 4. Project based: students are provided
with a project goal and create a solution e.g.create a quiz in Scratch;
5. Inquiry based: students consider a scenario or question and create
a solution e.g. explore a set of code commands and discover ways to
use them; 6. Tinkering: completely unstructured student-led explo-
ration e.g. explore a software. CS-SCIC’s more scaffolded activities
are likely to bridge a learner’s zone of proximal [5] through the task
itself, whereas at the other end of the continuum, in less scaffolded
tasks, any gap must be bridged independently by learners accessing
support from more knowledgeable others.

3 PREVIOUS WORK, PILOT RESULTS AND
FUTUREWORK

The continuum was created for professional development (PD) as
translational work from a literature review and since has reached
around 250 K-12 teachers in the United Kingdom, Ireland and Ger-
many [7, 8]. Educators have also used the continuum as a framework
to review teaching tools [2]. More recently, a 2 hour pilot study of
the impact of CS-SCIC on PD has commenced in the United States.
The majority (75%) of pilot teachers (n=8) reported they "absolutely"
improved their CS teacher knowledge and skills. In next steps, we
will obtain feedback from academic colleagues on the continuum,
pursue research to assess the impact of CS-SCIC, and are interested
to explore "localisation" across countries and educational phases.

REFERENCES
[1] Morgan G Ames. 2019. The charisma machine: The life, death, and legacy of One

Laptop per Child. Mit Press.
[2] Cheung Helena and Eleni Vasileiadou. 2018. Tangible Programming In Eyfs Ks1.

Online. https://helloworld.raspberrypi.org/issues/5/pdf
[3] Seymour Papert. 1980. Mindstorms: children, computers, and powerful ideas Basic

Books. Inc. New York, NY (1980).
[4] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. 2013. Success in

introductory programming: What works? Commun. ACM 56, 8 (2013), 34–36.
[5] Lev S Vygotsky. 1978. Mind in society (M. Cole, V. John-Steiner, S. Scribner, & E.

Souberman, Eds.).
[6] Jane Waite. 2017. Pedagogy in teaching computer science in schools: A literature

review. London: Royal Society (2017).
[7] Jane Waite. 2018. A continuum of scaffolding: from copying code to tinkering.

Online. https://blogs.kcl.ac.uk/cser/2018/01/05/a-continuum-of-scaffolding/
[8] Jane Waite. 2018. Shared Coding, Tinkering And Other Techniques For Teaching

Programming. Online. https://helloworld.raspberrypi.org/issues/4/pdf

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://helloworld.raspberrypi.org/issues/5/pdf
https://blogs.kcl.ac.uk/cser/2018/01/05/a-continuum-of-scaffolding/
https://helloworld.raspberrypi.org/issues/4/pdf

SIGCSE ’21, March 2021, Toronto, Canada Jane Waite and Christine Liebe

Figure 1: Computer-Science Student-Centered Instructional
Continuum (CS-SCIC) used with PreK-12 US pilot teachers

Figure 2: Instructional activity cards used with PreK-12 US
pilot teachers

4 CONTEXT FOR REVIEWERS
Vygotsky’s Zone of Proximal Development (ZPD) is the "extra"
range of understanding which students can access through support
of a more knowledgeable other (MKO) [5]. The MKO could be a
person, such as the instructor, a peer (such as when pair program-
ming) or a group to collaborate with. Alternatively, the MKO can
be a tool, such as a book, software, or the task itself. In CS-SCIC,
more scaffolded tasks provide the MKO through the task itself; the
task has built in extra knowledge that the student needs. Whereas,
in less scaffolded tasks students will need independent skills to use
a wider range of MKO, such as finding things out on the internet.
CS-SCIC helps teachers identify those learning activities which will
require this extra mastery and flag the need to ensure students have
the necessary skills and MKO available for them to access.

In selecting what CS-SCIC categories (see Figure 1) to include
in lessons, teachers balance many factors, some teachers and their
students may need a great deal of support and may choose to focus
on more scaffolded tasks. Teachers and students ascribing to con-
structionism [3], desirous of a less-structured approach to learning,
may choose to focus on the less scaffolded. Those educators looking
to prepare students for CS professions may include activities with
peer MKO, in collaborative learning experiences [4].

To introduce the continuum to teachers, a simple collaborative
card sorting activity is used, this can be face to face or online.
Teachers are presented with a set of cards, each with a statement
describing a teaching scenario, such as shown in Figure 2. In pairs,
teachers order the cards from most scaffolded, where the task is
more tightly controlled, to the least scaffolded. In doing this, the

Figure 3: Example continuum graph of a sequence of teach-
ing activities

Figure 4: Original continuum of scaffolding used with PreK-
5 teachers in Europe

Figure 5: Instructional activity cards usedwith PreK-5 teach-
ers in Europe

teachers give more generic names to the activities, they discuss and
argue. Finally, the continuum is presented, see Figure 1 and teachers
are asked, where on the continuum their learning activities reside.
In some CPD, teachers have also been asked to plot over a sequence
of lessons, the classifications of approaches used, see Figure 3. Some
teachers noted, all they do is copy code, followed by a project, in
doing this they started to think about other approaches they might
use and how they provided the MKO in project activities.

Over time, the continuum itself has changed, initially it was
presented as shown in Figure 4 in the European PD but in the US
as Figure 1 to meet local focus on inquiry based learning. Similarly,
as shown in Figure 5 compared to Figure 2, the sorting cards have
been changed according to the context they have been used in.

It is important to note that the continuum does not prescribe one
activity or category better than another. Further work is needed to
compare each activity and sequences of categories.

	Abstract
	1 Introduction/Problem
	2 CS-SCIC: A continuum of instructional strategies
	3 Previous work, pilot results and future work
	References
	4 Context for Reviewers

