
Eye: Program Visualizer for CS2
Aman Bansal

aman0456b@gmail.com
Indian Institute of Technology

Bombay

Preey Shah
preeyshah@gmail.com

Indian Institute of Technology
Bombay

Sahil Shah
sahilshah00199@gmail.com

Indian Institute of Technology
Bombay

ABSTRACT
In recent years, programming has witnessed a shift towards using
standard libraries as a black box. However, there has not been a
synchronous development of tools that can help demonstrate the
working of such libraries in general programs, which poses an im-
pediment to improved learning outcomes and makes debugging
exasperating. In this paper, we present a tool Eye , which is an in-
teractive visual interpreter that provides an intuitive representation
of code execution and commonly used data structures in the C++
STL library. Eye provides a comprehensive overview at each stage
during run time including the execution stack and the state of data
structures. The modular implementation allows for extension to
other languages and modification of the graphics as desired.

Eye opens up a gateway for CS2 students to more easily under-
stand myriads of programs that are available on online program-
ming websites, lowering the barrier towards self-learning of coding.
It expands the scope of visualizing data structures from standard
algorithms to general cases, benefiting both teachers as well as pro-
grammers who face issues in debugging. The interpreting nature
of Eye also provides space for a visualizer that can describe the exe-
cution and not only the current state. We also conduct experiments
to evaluate the efficacy of Eye for debugging and comprehending a
completely new code. Our findings show that it becomes faster and
less frustrating to debug certain problems using this tool, and also
makes understanding a new code a much more pleasant experience.

KEYWORDS
Program Visualization, CS2, Data Structures, Debug, Code Compre-
hension, Introductory Programming Education

1 INTRODUCTION
With the increasing popularity of Computer Science (CS), the num-
ber of students interested in a formal CS education is ever-growing
and thus is growing the need for CS instructors to move from a stan-
dard write-on-board teaching style to a more productive method-
ology. The advent of CoViD-19 and social distancing has globally
amplified this demand by disadvantaging the conventional methods.
Instructors now need to both effectively teach over video confer-
ence and empower students to continue learning on their own
without direct support from the instructor or the TAs. Satisfying
this demand requires access to tools that can facilitate self-learning
and allow students to further expand their skill set by making use
of existing programming resources (such as online programming
websites). Appropriate tools that would help understand standard
libraries and the relevant algorithms would go a long way in fur-
thering this goal.

In this paper, we restrict ourselves to the education of students
who satisfy the following criteria: (i) Have sufficient introductory

programming knowledge (‘CS1’ curriculum equivalent), (ii) Learn-
ing data structures and algorithms (‘CS2’ curriculum equivalent),
and (iii) Practicing programming problems to hone programming
skills. We refer to these students as beginners in the paper. We now
enumerate the specific difficulties that challenge these beginners:

(1) The primary challenge they face is understanding the work-
ing of the well-known data structures and learning the differ-
ent algorithms that manipulate them. While there are stan-
dard algorithms that demonstrate the usage of such struc-
tures, there is no tool that visualizes data structures in an
arbitrary program. Henceforth, we refer to this problem as
learning.

(2) The second challenge they face is that while practicing pro-
gramming problems, much to their dismay, an inordinate
amount of their time is spent debugging, which is a very
frustrating process [20, 21]. In fact, it is considered by many
as the most difficult part of learning programming [14].
Compile-time or run time errors have some helpful message
or stack trace which can be used intelligently to simplify
debugging [3, 11], but errors that cause the program to give
wrong results without obstructing it are much harder to find
and fix. This problem is accentuated for bugs resulting from
an incorrect understanding or usage of standard libraries
and their algorithms. We call these bugs logical bugs and we
refer to this problem as logical debugging.

(3) Moreover, the beginners would inevitably be unable to solve
some problems, engendering a need for explanatory solu-
tions. Most of the time, these solutions do not exist and the
most readily, sometimes the only, available option is to find
the working code of the problem setter (or someone else)
and understand it. This is markedly more pronounced for
problems on online programming websites. Here they face
their third challenge - understanding a completely new code.
We refer to this problem as code comprehension. Notably,
most of these problems require the usage of standard data
structures, whose solutions are written by other peers in
varying programming styles.

Our contributions toward mitigation of these problems are:

(1) We introduce Eye, an interactive pedagogical tool that vi-
sualizes a program’s execution as it runs. It demonstrates
properties and usage of data structures in a general environ-
ment, thereby helping in learning, logical debugging, and
code comprehension.

(2) We present two experiments, along with their methodology
and results, which analyze the efficacy of Eye for logical
debugging and code comprehension. The first experiment
measures the benefit of using Eye in debugging programs

ar
X

iv
:2

10
1.

12
08

9v
1 

 [
cs

.C
Y

] 
 2

8 
Ja

n 
20

21



Aman Bansal, Preey Shah, and Sahil Shah

Figure 1: Main Screen of Eye. (a) Explanation of code being executed. (b) Programwith code snippet being executed in red. The
names of data structure classes are kept intuitive for better understanding. (c) Variables in the execution stack, with a different
block for each scope. (d) Visualization of data structures like queue, stack, binary search tree, and array. (e) Interactive buttons
to allow the users to move back and forward.

of which the subjects have some high-level knowledge, in-
cluding the algorithm, the role of variables, and the loop
invariants. The second experiment measures the benefit of
using Eye in understanding a program on a high-level (such
as time complexity, loop invariants, and role of data struc-
tures) given the problem statement and the program.

We now specify some important properties and reason that they
are essential for widespread adoption of any visualization tool. All
these properties are satisfied by Eye.

P1 Completeness: It should support CS2-equivalent courses
by visualizing data structures classes (such as C++ STL). This
is required for covering the CS curriculum of beginners.

P2 Flexibility: It should provide flexibility to change the dis-
play (beyond CSS based changes) so that the instructor can
modify it without much trouble. This is needed because in-
structors would want to focus on different aspects of the
program in different lectures and would require changes like
zooming in on a data structure, adding animations, or using
some external display library of their choice. We believe that
the lack of this flexibility can drastically decrease adoption
among different universities. Allowing these changes but
with considerable modifications can also scare away instruc-
tors [25].

P3 Awareness: It should allow the addition of ‘program-aware’
features, including but not limited to explanatory text and
variable scoping. This is needed because these features can
significantly improve the understanding of the program.

Tools that are dependent on execution trace cannot demon-
strate such features.

P4 Accessibility: It should be able to run and display the vi-
sual elements in a web browser. This is for ensuring that
every user can use it from anywhere without any hassle of
installation or compatibility.

P5 Modularity: It should support multiple languages or be
modular enough to support new languages with minimal
back-end changes. This ensures that the tool is customizable
for different universities and instructors and requires that
the language-specific part be separate from the remaining
implementation.

P6 Interactivity: It should be interactive, allowing the begin-
ners to go back and forth as per their convenience. This is
required because interactive tools make the students learn
better than passive tools [26, 29].

We show how Eye satisfies these properties in Sections 3 and 4. In
Section 5, we present our results concerning the effect of Eye on
debugging and code comprehension.We then conclude in Section 6.

2 RELATEDWORK
2.1 Learning
The concept of using visualizations to avoid the drawbacks of on-
the-board teaching (see [19]) and improve the understanding of
algorithms is not new. Studies have shown that the amount of time
students spend on interactive visualization tools correlates with



Eye: Program Visualizer for CS2

their performance [9, 15]. Therefore, Eye, as a visual tool, has much
potential for improving learning.

In the past few decades, a large number of program visualization
tools have been created. Sorva [24] and Sorva et al. [25] give an
overview of many such tools. However, when scrutinized closely,
many of these lack our required properties. We give a comparison
with some of the prominent program visualization tools in Table 1.
We note that Jsvee (Table 1) provides only limited flexibility, which
is also discussed in Section 4.

Table 1: Comparison with Existing Visualization Tools

Tools P1 P2 P3 P4 P5 P6

Jeliot 3 [2] ✗ ✗ ✗ ✗ ✗ ✓
jGRASP [10] ✓ ✗ ✗ ✗ ✗ ✗

Jsvee [23] ✗ ✓ ✓ ✓ ✓ ✓
Python Tutor [9] ✗ ✗ ✗ ✓ ✓ ✓
UUhistle [28] ✗ ✗ ✓ ✗ ✗ ✓
ViLLE [22] ✗ ✗ ✓ ✗ ✓ ✓

Eye ✓ ✓ ✓ ✓ ✓ ✓

2.2 Logical Debugging
Ahmadzadeh et al. [1] have shown that debugging requires skills
distinct from general programming skills. Yet, these skills are not
explicitly taught by the instructors and the students have to learn
debugging techniques on their own [18]. The industry debuggers
do not help either as they are meant for professionals and tend to
be too difficult to use and understand by beginners. Furthermore,
most do not show the internals of a library. As a result, they might
not catch an incorrect update to a data structure until the program’s
end. We seek to cover this gap with our tool. In fact, we believe
that Eye can be a crucial stepping stone for beginners aiming to
use industry debuggers.

The general opinion in relevant literature is that the use of a tool
for debugging is indeed beneficial. Sorva et al. [27] comment on
how such tools should be used and integrated with the conventional
teaching methods for better results. Lewis and Gregg [16] discuss
that introducing such tools earlier than later is even more beneficial.
One criticism of debugging tools is that they can help find a bug
but cannot help correct it. However, Fitzgerald et al. [5] report that
beginners face the most difficulty finding the bug and that once
found, fixing it does not take much effort.

We do not expect Eye to be a panacea, but these results are
prompting enough to expect that it can help in debugging. To our
surprise, a literary survey to find a paper mentioning the effec-
tiveness of such a tool for debugging purposes yielded no result.
Therefore to validate Eye’s potential, we devised and conducted
our own experiment (see Section 5).

2.3 Code Comprehension
This problem has been studied under the domain of algorithm visu-
alization (AV), which is different from program visualization (PV).
The goal of AV is to visually aid the learning of an algorithm and not
visualize a general program [4]. JSAV [12] is one such prominent

(a) The currently executing line is
highlighted and explained.

(b) The fourth element of the array is
highlighted as it is being accessed.

(c) The execution stack with scope separation as seen for
variable length. The empty region shows a scope where
no variable was declared.

(d) Currently active
function stack in a
different color.

Figure 2: Basic Design Features

AV library for data structures. Our code comprehension problem
differs from this by focusing on Eye, a PV tool.

This problem has also been studied indirectly in the debugging
literature with the motivation of analyzing difficulties in debugging
someone else’s code and Mccauley et al. [17] discuss this in their
comprehensive literary survey on debugging. Gould [7] argue that
students first spend time understanding the given code and only
then start finding bugs. This separation has been further corrob-
orated by other studies [1, 8]. Moreover, Katz and Anderson [13]
provide strong evidence that the skills needed to understand the
system are not necessarily connected to the skills needed to locate
the error. We have discussed the latter in the previous subsection.
Regarding the former, we could not find a result showcasing the
efficacy of a program visualization tool for code comprehension,
let alone with data structure libraries. Therefore, we devise and
conduct our own experiment (see Section 5).

3 DESIGN OVERVIEW
In this section, we describe the functionality provided by our tool,
including the essential elements that are common with different
tools and some additional features which we believe are integral for
our purpose. Figure 1 shows the window with some fundamental
elements on the canvas. The tool currently supports C++ with STL,
but thanks to the modular design (see Section 4), it can be easily
extended to support other languages like Java and Python. We now
enumerate some of the basic elements common among other tools
and detail howwe supplement them to make themmore descriptive.

• An execution stack that shows all the variables and their
current values. For clarity, data structures are shown out-
side the stack. We divide the stack into different sections to
represent different scopes, as shown in Figure 2(c). Showing
variables with different scopes in different sections of the
stack elucidates the concept of scoping and expedites the



Aman Bansal, Preey Shah, and Sahil Shah

(a) Stacks (b) Hash Table for integers with closed
addressing and separate chaining for
collision avoidance. The hash function
used is modulo 6.

(c) Queue

Figure 3: Data Structures

detection of bugs due to variable shadowing. Surprisingly,
this simple feature was missing from other tools we studied.

• A new execution stack as soon as a new function starts exe-
cuting. To make understanding easier, we color the currently
active frame with a different color, as shown in Figure 2(d).

• Besides displaying the source code with the current line
highlighted, we provide an explanatory line summarizing
the operation being executed (Figure 2(a)). It allows faster
debugging by avoiding having to look at the syntactically
dense code and reading the explanation instead for checking
the correctness .

Now we enumerate some advanced design features of our tool.

• Multiple data structures (STL constructs in C++) such as
vector (array), map (binary search tree), stack, queue, deque,
and unordered_map (hash table) are supported (Figure 3).
This lets beginners better grasp the working of these data
structures and verify their state while debugging.

• Every access to these data structures is highlighted (includ-
ing arrays, as shown in Figures 1 and 2(b)). This speeds up the
debugging process as students can skip the code or explana-
tion and directly verify if all accesses (and assignments) are
occurring as expected. For example, indexing errors, which
are quite common among beginners, become noticeable due
to this feature. It also helps in code comprehension where
the student can quickly see which value was read from or
written onto a data structure.

• We carry this highlighting feature further to visually explain
what happens internally in each data structure on a function
call. For example, when an element is inserted or deleted in
a binary search tree (Figure 4). With this feature, we expect
appreciable improvement in understanding when learning
these data structures’ working for the first time.

(a) Root is being read. (b) Light Blue color signifies that the
node is being read.

(c) Blue signifies that the node is being
modified. Modifications include a change
in child pointers or a change in value.

(d) Red signifies node deletion.

Figure 4: Operations on Binary Search Tree (BST). (a), (b) and
(c) show the insertion of value 6 into the binary search tree.
(d) Deletion of node with value 6.

4 IMPLEMENTATION OVERVIEW
In this section, we give an overview of the implementation and
show how Eye satisfies all the requirements that we assert are
necessary for receiving wholesale traction.

The implementation is divided into three completely indepen-
dent modules. At a high-level, the role of these modules is summa-
rized in Figure 5. Before delving into these modules, we introduce
the intermediate representations shown in the figure.

Canonical Code Representation (CCR): It represents the source
code in a format that is language independent. It covers all the ba-
sic programming constructs usually taught in CS2, including data
structures. The primary benefit of introducing this representation
is that adding support for different languages requires changes only
in module 1, hence ensuring property P5 (Modularity). The obvi-
ous choice for such a representation is an abstract syntax tree (AST).

Canonical Graphics Representation (CGR): It is a representa-
tion of the information that module 3 needs to create the graphics.
The reason for creating this intermediate stage is to ensure prop-
erty P2 (Flexibility). Tools such as Jsvee [23] visualize the program
parallelly with its execution. This causes their visualization and
execution semantics to get coupled, making it difficult to change
the graphics. Although it is possible to keep the coupling relaxed,
it is natural to expect that an instructor would not be willing to
understand the library’s working to manipulate the visualization.
Another advantage is that an intermediate representation allows
peeking into future frames to decide the display. For instance, if a
data structure is not used in the next 50 frames, the instructor may
reasonably wish to hide it for some frames.



Eye: Program Visualizer for CS2

Source Code Module
#1

Canonical Code
Representation

Module
#2

Canonical Graphics
Representation

Module
#3

Display

Figure 5: Implementation Scheme

CGR is created in the standard JSON format and includes, among
other things, variables and the state of data structures. It may ap-
pear similar to an execution trace, but our framework allows us to
include significantly more information like the scope of variables
and array accesses such as in Figure 2(b).

Module 1: It converts the source code to an abstract syntax tree
and is implemented in python. We avoid using any external com-
piler as a black box because they impose extraneous restrictions
and are usually daunting to modify for future developments. The
lexical analysis and parsing of the code were done using rply li-
brary [6]. The AST is made up of pre-defined python classes for
every programming construct. Support for various C++ STL data
structure libraries was added, ensuring property P1 (Completeness).

Module 2: It converts the AST into a JSON object and is also im-
plemented in python. Every class in the AST implements an ‘exec’
function which emulates its execution and generates the informa-
tion required in CGR, including program-aware features, hence
ensuring property P3 (Awareness). To interpret and display data
structures, we define custom classes with member functions which
also create additional execution information. For example, ‘insert’
in a binary search tree can display each step of the algorithm if
required, as shown in Figure 4. Enthusiastic instructors can modify
these behaviors too, gaining more flexibility.

Currently, the whole CGR JSON object is returned in the end.
We can optionally pass it after every few line executions to reduce
display latency in case of long execution times or infinite loops.

Module 3: It converts the CGR into an actual visual display. It
is implemented using HTML5, CSS, and JavaScript and can run
on supported web browsers, ensuring property P4 (Accessibility).
Buttons are present to go to the next or previous frame, ensuring
property P6 (Interactivity). Visualization can also be produced lo-
cally via graphics.py, a basic graphic library of python [30]. The
current graphics can easily be further modified since our modular
implementation allows the users great flexibility for this purpose.
They can pick colors, add animations, and even use external libraries
to help them build appealing graphics.

5 EXPERIMENTAL RESULTS
We design two experiments to measure the efficacy of Eye in de-
bugging and code comprehension. We try to answer the following
research questions (RQ) via our experiments:

RQ1(a): Does using Eye for debugging data structures based pro-
grams accelerate the debugging process?
RQ1(b): Does using Eye for debugging data structures based pro-
grams reduce frustration usually seen in debugging process?

RQ2(a): Does using Eye for understanding a new code improve the
code comprehension in a fixed amount of time?
RQ2(b): Does using Eye for understanding a new code lead to bet-
ter productivity in terms of time?

We contacted around 60 senior computer science undergrad-
uates from our university, out of which 20 agreed to participate.
Before proceeding with the experiments, they were given a small
demonstration and were asked to familiarize themselves with the
tool. The subjects ran the tool locally and not on the browser. Each
subject participated in two experiments for answering RQ1(a) and
RQ2(a), and an anonymous survey to answer RQ1(b) and RQ2(b).

Due to social distancing, the experiments were conducted online
using video conferencing software. On average, each subject took
around one hour to complete the experiment. All the experiment
material, including videos of some subjects taking the experiment,
can be produced upon request.

5.1 Experiment 1
We conducted the experiment as follows:

(1) Subjects were given two problem statements (Prob1 and
Prob2) with buggy implementations of their solutions. The
problems were based on data structures like stack and queue,
and involved algorithms taught as part of CS2 curriculum
(and hence were known to subjects). There was exactly one
logical bug in both the implementations, and the subjects
were asked to fix them. The time taken by the subjects to
debug each program was recorded.

(2) The experiment was counterbalanced with respect to tool
usage. Half of the subjects did Prob1with Eye and Prob2 with-
out (Group 1), and the other half did the opposite (Group 2).
Subjects were assigned to these groups randomly. The prob-
lems were always given in the same order. Subjects using
Eye were disallowed to edit or even see the code in any other
application to ensure that they use Eye to debug.

(3) In a few cases, subjects could not debug the problem and
gave up. The time for such subjects was then set to a default
value larger than the time taken by any successful subject.

(4) Running the tool locally required a library installation that
three people refused to do. Such subjects were allowed to
debug both problems without Eye. To somewhat offset the in-
crease in number of without Eye measurements, one subject
was asked to solve both the problems with Eye.

Group 1 had an average debug time of 1071.25 seconds for Prob1
and 1022.90 seconds for Prob2 while Group 2 had an average debug
time of 778.75 seconds for Prob1 and 518.6 seconds for Prob2. Due
to random allocation, Group 1 had subjects with better debugging
skills than Group 2 on average which is ratified by the average times
of two groups - Group 1 took far more time that Group 2 for each



Aman Bansal, Preey Shah, and Sahil Shah

of the questions. To account for biases introduced by difference
in debugging skills, we calculate the percentage of total debug
time the subjects spent on the Prob1 (or equivalently Prob2). We
consider these percentages to be random variables and test against
the null hypothesis that the variables have the same mean for the
two groups. We had to eliminate the four subjects who did not have
alternating tool usage for the two problems. The average values
for this measure is shown in Table 2. The 𝑝-value for our data is
0.0578. These results show that Eye improves debug time.

5.2 Experiment 2
We conducted the experiment as follows:

(1) Subjects were divided into two equal-sized groups, randomly
and independent of the previous experiment. One group used
Eye for the experiment while the other had no restrictions.

(2) Both the groups were given a problem statement and a cor-
rect implementation of its solution. The solution was based
on the deque data structure of C++ STL and involved an
algorithm new to the subjects.

(3) The subjects were first given 6 minutes to see the visual-
ization (or go through the code) and try to understand how
the algorithm is working. They were then given a link to a
Google form which contained various questions. They were
given 10 minutes to answer the quiz and were allowed to go
back to the visualizer or the code during the quiz.

We use the quiz score as a proxy for understanding. Our null
hypothesis for RQ2(a) was that there would be no considerable
difference in the scores of the two groups. We report the average
percentage score for each group in Table 2. Although the group with
Eye performed better, the difference was not statistically significant
(𝑝 = 0.446). Nonetheless, given the biases against Eye (Section 5.4)
and the subjects’ overwhelmingly positive opinion (Section 5.3),
we can reasonably expect that consistent use of Eye will show
positive results. On a hopeful note, Levy et al. [15] have shown that
performance improvements do manifest when the students become
conversant with a tool.

5.3 Anonymous Survey
After the subjects had completed both the experiments, we asked
them to fill an anonymous survey which contained two questions
corresponding to RQ1(b) and RQ2(b). The subjects were advised
that this survey is for estimating the benefits of the tool so they
should not bias their answer based on their particular experience in
the experiment. The questions and their responses were as follows:
Q1(b) Question: Assuming same time spent on debugging with

Eye and without Eye, how much do you think debugging
with Eye can help in reducing frustration?
Options: Ranging from 0% to 100%.
Response: Eye reduces frustration by 61.43% on average.
Conclusion: A visualizer for libraries makes debugging re-
markably less frustrating, thereby holding on a student’s
interest in programming for a longer time and raising enthu-
siasm for self-learning.

Q2(b) Question: Assuming a time bound on your practice sessions
and assuming you only want to understand someone else’s
submission of every problem you practice, how much can

Table 2: Summary of the results of both experiments: With
Eye, there is a reduction in the average fraction of time taken
to debug and an increment in average score, showing im-
provements in both use cases.

Exp1 (Avg % time) Exp2 (Avg % score)
Prob1 Prob2

Without Eye 58.3 51.4 59.2
With Eye 48.6 41.7 60.6
𝑝-value 0.0578 0.446

Eye improve your productivity (number of problems solved)?
Options: Ranging from same to double productivity.
Response: Eye can increase the number of problems solved
by a factor of roughly 1.56 on average.
Conclusion: It demonstrates that students consider Eye use-
ful for code comprehension in that it allows faster under-
standing of someone else’s code, greatly improving the utility
of online programming websites.

5.4 Experimental Biases
• Subjects were disallowed to use regular debugging tech-
niques with Eye. This potentially hampered their ability and
added a bias against Eye.

• Informal discussion with subjects after the experiment con-
firmed our suspicion of familiarity bias against Eye. Many
students primarily focused on the code (Figure 2(a)). Features
like access highlighting (Figure 2(b)) were intended to reduce
dependence on code-reading but were largely ignored.

6 CONCLUSION
Data Structure libraries are widely used in schools, universities
and industries for programming. Visualization for such libraries
is the need of the hour. In this paper, we presented a tool Eye,
that offered a visual display of inner working of such libraries,
thereby helping in learning, debugging and code comprehension.
The efficacy of the tool was also tested through an assessment
that showed encouraging results with the positive responses to the
survey reinforcing its utility in practice. Its design and functionality
satisfy the properties that are required for widespread traction.

We believe that Eye will be extremely useful in universities and
online courses for teaching purposes, and tweaks can be easily
made to suit each course’s requirements. We plan to do a formal
study to evaluate its efficacy in teaching when schools reopen and
classes start. In addition, extensive deployment on online program-
ming websites can be done through integration with their IDEs
(Integrated Development Environment) which requires a change
in the display module. Visualizations for more data structures and
libraries in languages like Python and Java will lead to a greater
adoption and expand its use cases to students learning other pro-
gramming languages as well.

REFERENCES
[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. An Analysis of

Patterns of Debugging among Novice Computer Science Students. SIGCSE Bull.



Eye: Program Visualizer for CS2

37, 3 (June 2005), 84–88. https://doi.org/10.1145/1151954.1067472
[2] Mordechai Ben-Ari, Roman Bednarik, Ronit Levy, Gil Ebel, Andrés Moreno, Niko

Myller, and Erkki Sutinen. 2011. A decade of research and development on
program animation: The Jeliot experience. J. Vis. Lang. Comput. 22 (10 2011),
375–384. https://doi.org/10.1016/j.jvlc.2011.04.004

[3] Benjamin Cosman, Madeline Endres, Georgios Sakkas, Leon Medvinsky, Yao-
Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley Weimer. 2020. PABLO:
Helping Novices Debug Python Code Through Data-Driven Fault Localization. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY, USA, 1047–1053. https://doi.org/10.1145/3328778.3366860

[4] Stephan Diehl. 2005. Software visualization. In 27th International Conference on
Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, Gruia-
Catalin Roman, William G. Griswold, and Bashar Nuseibeh (Eds.). Association for
Computing Machinery, New York, NY, USA, 718–719. https://doi.org/10.1145/
1062455.1062634

[5] Sue Fitzgerald, Gary Lewandowski, Renée McCauley, Laurie Murphy, Beth
Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing
and flailing, a multi-institutional study of novice debuggers. Computer Sci-
ence Education 18, 2 (2008), 93–116. https://doi.org/10.1080/08993400802114508
arXiv:https://doi.org/10.1080/08993400802114508

[6] Alex Gaynor. 2019. RPLY. https://pypi.org/project/rply/
[7] J. A. Gould. 1975. Some Psychological Evidence on How People Debug Computer

Programs. Int. J. Man Mach. Stud. 7 (1975), 151–170.
[8] John D. Gould and Paul Drongowski. 1974. An Exploratory Study of Computer

Program Debugging. Human Factors 16, 3 (1974), 258–277. https://doi.org/10.
1177/001872087401600308 arXiv:https://doi.org/10.1177/001872087401600308

[9] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program
Visualization for Cs Education. In Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).
Association for Computing Machinery, New York, NY, USA, 579–584. https:
//doi.org/10.1145/2445196.2445368

[10] T. Dean Hendrix, James H. Cross, and Larry A. Barowski. 2004. An Extensible
Framework for Providing Dynamic Data Structure Visualizations in a Lightweight
IDE. SIGCSE Bull. 36, 1 (March 2004), 387–391. https://doi.org/10.1145/1028174.
971433

[11] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Iden-
tifying and Correcting Java Programming Errors for Introductory Computer
Science Students. SIGCSE Bull. 35, 1 (Jan. 2003), 153–156. https://doi.org/10.
1145/792548.611956

[12] Ville Karavirta and Clifford Shaffer. 2015. Creating Engaging Online Learning
Material with the JSAV JavaScript Algorithm Visualization Library. IEEE Trans-
actions on Learning Technologies 9 (10 2015), 1–1. https://doi.org/10.1109/TLT.
2015.2490673

[13] Irvin R. Katz and John R. Anderson. 1987. Debugging: An Anal-
ysis of Bug-Location Strategies. Human–Computer Interaction
3, 4 (1987), 351–399. https://doi.org/10.1207/s15327051hci0304_2
arXiv:https://www.tandfonline.com/doi/pdf/10.1207/s15327051hci0304_2

[14] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (Caparica,
Portugal) (ITiCSE ’05). Association for Computing Machinery, New York, NY,
USA, 14–18. https://doi.org/10.1145/1067445.1067453

[15] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A. Uronen. 2003. The
Jeliot 2000 Program Animation System. Comput. Educ. 40, 1 (Jan. 2003), 1–15.
https://doi.org/10.1016/S0360-1315(02)00076-3

[16] Colleen M. Lewis and Chris Gregg. 2016. How Do You Teach Debugging? Re-
sources and Strategies for Better Student Debugging (Abstract Only). In Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education
(Memphis, Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery,
New York, NY, USA, 706. https://doi.org/10.1145/2839509.2850473

[17] Renée Mccauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: A review of the literature
from an educational perspective. Computer Science Education 18 (06 2008). https:
//doi.org/10.1080/08993400802114581

[18] Tilman Michaeli and Ralf Romeike. 2019. Current Status and Perspectives of
Debugging in the K12 Classroom: A Qualitative Study. In 2019 IEEE Global Engi-
neering Education Conference (EDUCON). IEEE, New York, NY, USA, 1030–1038.
https://doi.org/10.1109/EDUCON.2019.8725282

[19] Michael C. Orsega, Bradley T. Vander Zanden, and Christopher H. Skinner. 2012.
Experiments with Algorithm Visualization Tool Development. In Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education (Raleigh,
North Carolina, USA) (SIGCSE ’12). Association for Computing Machinery, New
York, NY, USA, 559–564. https://doi.org/10.1145/2157136.2157296

[20] D. N. Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons.
1986. Conditions of Learning in Novice Programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55. https://doi.org/10.2190/GUJT-JCBJ-Q6QU-
Q9PL arXiv:https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL

[21] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
2017. Studying the Advancement in Debugging Practice of Professional Software
Developers. Software Quality Journal 25, 1 (March 2017), 83–110. https://doi.
org/10.1007/s11219-015-9294-2

[22] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. 2007. VILLE:
A Language-Independent Program Visualization Tool. In Proceedings of the Sev-
enth Baltic Sea Conference on Computing Education Research - Volume 88 (Koli
National Park, Finland) (Koli Calling ’07). Australian Computer Society, Inc., AUS,
151–159.

[23] Teemu Sirkia. 2016. Jsvee & Kelmu: Creating and Tailoring Program Anima-
tions for Computing Education. In 2016 IEEE Working Conference on Software
Visualization (VISSOFT) (Raleigh, NC, USA). IEEE, New York, NY, USA, 36–45.
https://doi.org/10.1109/VISSOFT.2016.24

[24] Juha Sorva. 2012. Visual program simulation in introductory programming educa-
tion; Visuaalinen ohjelmasimulaatio ohjelmoinnin alkeisopetuksessa. G4 Mono-
grafiaväitöskirja. Aalto University. http://urn.fi/URN:ISBN:978-952-60-4626-6

[25] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM Trans.
Comput. Educ. 13, 4, Article 15 (Nov. 2013), 64 pages. https://doi.org/10.1145/
2490822

[26] Juha Sorva, Jan Lönnberg, and Lauri Malmi. 2013. Students’ ways
of experiencing visual program simulation. Computer Science Educa-
tion 23, 3 (2013), 207–238. https://doi.org/10.1080/08993408.2013.807962
arXiv:https://doi.org/10.1080/08993408.2013.807962

[27] Juha Sorva, Jan Lönnberg, and Lauri Malmi. 2013. Students’ ways
of experiencing visual program simulation. Computer Science Educa-
tion 23, 3 (2013), 207–238. https://doi.org/10.1080/08993408.2013.807962
arXiv:https://doi.org/10.1080/08993408.2013.807962

[28] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: A Software Tool for Visual Program
Simulation. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (Koli, Finland) (Koli Calling ’10). Association for
Computing Machinery, New York, NY, USA, 49–54. https://doi.org/10.1145/
1930464.1930471

[29] Andrew S. Tanenbaum. 2007. Modern Operating Systems (3rd ed.). Prentice Hall
Press, USA.

[30] John Zelle. 2010. Python Programming: An Introduction to Computer Science 2nd
Edition. Franklin, Beedle & Associates Inc., USA.

https://doi.org/10.1145/1151954.1067472
https://doi.org/10.1016/j.jvlc.2011.04.004
https://doi.org/10.1145/3328778.3366860
https://doi.org/10.1145/1062455.1062634
https://doi.org/10.1145/1062455.1062634
https://doi.org/10.1080/08993400802114508
https://arxiv.org/abs/https://doi.org/10.1080/08993400802114508
https://pypi.org/project/rply/
https://doi.org/10.1177/001872087401600308
https://doi.org/10.1177/001872087401600308
https://arxiv.org/abs/https://doi.org/10.1177/001872087401600308
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/1028174.971433
https://doi.org/10.1145/1028174.971433
https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/792548.611956
https://doi.org/10.1109/TLT.2015.2490673
https://doi.org/10.1109/TLT.2015.2490673
https://doi.org/10.1207/s15327051hci0304_2
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1207/s15327051hci0304_2
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1016/S0360-1315(02)00076-3
https://doi.org/10.1145/2839509.2850473
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1109/EDUCON.2019.8725282
https://doi.org/10.1145/2157136.2157296
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://arxiv.org/abs/https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1109/VISSOFT.2016.24
http://urn.fi/URN:ISBN:978-952-60-4626-6
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1080/08993408.2013.807962
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2013.807962
https://doi.org/10.1080/08993408.2013.807962
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2013.807962
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/1930464.1930471

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning
	2.2 Logical Debugging
	2.3 Code Comprehension

	3 Design Overview
	4 Implementation Overview
	5 Experimental Results
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 Anonymous Survey
	5.4 Experimental Biases

	6 Conclusion
	References

