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ABSTRACT

With modern In-Vehicle Information Systems (IVISs) becoming
more capable and complex than ever, their evaluation becomes in-
creasingly difficult. The analysis of large amounts of user behavior
data can help to cope with this complexity and can support UX
experts in designing IVISs that serve customer needs and are safe
to operate while driving. We, therefore, propose a Multi-level User
Behavior Visualization Framework providing effective visualiza-
tions of user behavior data that is collected via telematics from
production vehicles. Our approach visualizes user behavior data
on three different levels: (1) The Task Level View aggregates event
sequence data generated through touchscreen interactions to vi-
sualize user flows. (2) The Flow Level View allows comparing the
individual flows based on a chosen metric. (3) The Sequence Level
View provides detailed insights into touch interactions, glance, and
driving behavior. Our case study proves that UX experts consider
our approach a useful addition to their design process.

CCS CONCEPTS

« Human-centered computing — Visualization systems and
tools; Systems and tools for interaction design; - Applied
computing — Transportation.
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1 INTRODUCTION

Modern IVISs are complex systems that offer a variety of features
ranging from driving-related to infotainment functions with in-
teraction options similar to those of smartphones and tablets. As
technology progresses, so do the demands toward IVIS, leading to
customers expecting the same range of features and usability they
are used to from their everyday digital devices. This makes it more
challenging than ever to design automotive interfaces that are safe
to use and still meet customer demands [13]. The introduction of
large touchscreens as the main control interface further complicates
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this issue. Touchscreen interactions demand more visual attention
than interfaces with tactile feedback [28]. They require users to
visually verify that a correct selection has been made, making it
necessary for drivers to take their eyes off the road. Since eyes-
off-road durations longer than two seconds are proven to increase
the crash risk [18], the evaluation of touchscreen-based IVISs also
becomes a safety-related aspect apart from developing a system
that satisfies the user needs in the best possible way. This added
complexity makes it even harder to evaluate IVISs, which is why
UX experts require support from data-driven methods [4].

The new generation of cars is more connected than ever and
generates large amounts of data that cannot be sufficiently analyzed
using traditional, mostly manual, approaches [1]. However, the
analysis and visualization of big interaction data can significantly
benefit user behavior evaluation [17, 38] and offers great potential
for the automotive domain [25]. Ebel et al. [4] state that, currently,
automotive interaction data is not used to its full potential. They
describe that experts need aggregations of the large amounts of
data and visualizations that allow deriving insights into user and
driving behavior.

We propose a Multi-level User Behavior Visualization Frame-
work for touch-based IVISs consisting of three different levels of
abstraction: (1) The task level that visualizes alternative interaction
flows for one task (e.g., starting navigation), (2) the flow level that
visualizes metrics of interest for the different interaction sequences
of one flow (e.g., using the keyboard vs. using POIs to start naviga-
tion), and (3) the sequence level that augments single interaction
sequences with contextual driving data such as speed or steering
angle. UX experts can use the visualizations to effectively gain in-
sights into user flows, their temporal differences, and the relation
between user interactions, glance behavior, and driving behavior.
This is not only valuable for current manual driving scenarios, but
also for future driving scenarios, since, for example, the system
could be used to evaluate the effect of secondary task engagement
on take-over performance [3, 6, 42] In contrast to most of the related
approaches, the data used in this work is collected and processed
by a telematics-based big data processing framework that allows
live data analysis on production vehicles. The presented visualiza-
tions were found very useful in an informal evaluation study with
4 automotive User Experience (UX) experts.

2 BACKGROUND

In this section, we discuss the current state-of-the-art in user be-
havior evaluation in the automotive industry and present different
approaches on how to visualize user interactions and event se-
quence data in particular. Additionally, we introduce definitions
that will be used throughout this work.
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2.1 User Behaviour Evaluation of
Touchscreen-based IVISs

Due to the high impact of digital solutions on the in-car UX and the
trend toward large touchscreens, being the current de facto standard
control interface between driver and vehicle [12], the evaluation
of touchscreen-based IVIS gets increasingly important. A good UX
plays a major role for market success and is necessary to maintain
competitiveness which makes usability evaluation of IVISs a well-
researched topic in the recent past [8, 13, 14]. In contrast to the
interaction with a smartphone or tablet, the interaction with IVISs
is only a secondary task. Since driving, still, is the primary task, the
interaction with the touchscreen interface requires drivers to move
their focus from the road toward the touchscreen. This focus shift
has been shown to compromise safety and increase crash risk [36].
Therefore, it is not only necessary to create a usable interface but
also to assure that drivers are not overly distracted from the driving
task when interacting with IVISs. Assessing the driver’s workload
is still a challenging task and a variety of methods and data sources
like physiological data, eye-tracking but also kinematic data are
explored [15, 27, 32, 34, 39]. Multiple approaches tackle the task of
predicting task completion times [11, 16, 22, 35], as well as visual
demand [20, 28-30] to assess, already in early development stages,
how demanding the interaction with the in-vehicle touchscreen is.

However, most of the current approaches are based on question-
naires, explicit user observation, or performance-related measure-
ments recorded during lab experiments or small-scale naturalistic
driving studies. Additionally, most of the studies are designed to
answer a specific research question that does not have a direct
influence on the Original Equipment Manufacturers (OEMs) de-
velopment and evaluation of IVISs. Lamm and Wolff [19] describe
that user behavior evaluations based on implicit data, generated
from field usage, currently, do not play an important role in auto-
motive UX development. On the other hand, Ebel et al. [4] found
that automotive UX experts are in need of data-driven methods and
visualizations that benefit a holistic system understanding based
on data retrieved from production line vehicles. The authors argue
that experts need tool support to understand what features are
being used in which situations, how long it takes users to complete
certain tasks, and how the interactions with IVISs affect the driving
behavior. Whereas first approaches address the potentials of big
data analysis by incorporating telematics-powered evaluations [26]
they are still limited to naturalistic driving studies and especially
the potentials of analyzing user interaction data are not yet well
explored.

2.2 Event Sequence Analysis

Event sequence analysis is important for many domains ranging
from web and software development [23, 37] to transportation
[5, 24]. Event sequence data, being multiple series of timestamped
events, ranges from website logs describing how users navigate the
pages to energy flows showing how different types of energy are
distributed within a city. Regardless of the particular use case, the
main application is to compare different sequences of events (e.g.
Homescreen — Settings — Privacy and Security), their frequency
(e.g. 35% of users went from Settings to Privacy and Security), and
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the time intervals in between the events (e.g. it took them 5 seconds
on average).

One group of event sequence visualizations is known as Sankey
Diagrams [7, 31]. Sankey Diagrams focus on the visualization of
quantitative information of flows, their dependencies, and how they
split in different paths. Sankey Diagrams are directed graphs consist-
ing of nodes and links. Each node represents a state in a flow and has
weighted input and output links (except for source and sink nodes).
Links represent transitions from a source node to a target node.
The links’ weight represents the flow quantity, visualized as the
width of the respective link. Except for source nodes and sink nodes,
the sum of incoming links equals the sum of the outgoing links.
While being able to efficiently visualize flows between different
nodes, originally Sankey Diagrams do not take the temporal aspect
of the transitions into consideration. One approach that tackles the
processing of temporal event data is presented by Wongsuphasawat
et al. [41] and is called LifeFlow. The approach combines multiple
event sequences into a tree while preserving the temporal spacing
of events within a sequence. Whereas in LifeFlow multiple event
sequences are combined in a tree, OutFlow [40] combines them
into graphs, similar to Sankey diagrams. To represent the temporal
spacing between events the authors introduce an additional type of
edge whose width represents the duration of the transition. Sankey
Diagrams, LifeFlow, and Outflow, all focus on visualizing and analyz-
ing the different flows, their distribution and their temporal aspects
from one dataset. In contrast, the MatrixWave approach presented
by Zhao et al. aims to create a comparative analysis of multiple
event sequence datasets by replacing the edge connector of the
Sankey diagrams with transition matrices. Whereas the aforemen-
tioned approaches are solely focusing on visualizing event sequence
data, other approaches aim to provide an overall framework for
user behavior evaluation in a digital environment [2]. In addition,
commercial providers like UserTesting!, UserZoom? and alike offer
tools to analyze user sequences. However, to meet the requirements
of automotive UX experts, an approach has to be developed that
allows to analyze event sequences on the one hand and provides
direct insights into driving behavior and gaze behavior on the other

hand.

2.3 Definitions

To create a common understanding in the further course of this
work, the following definitions are introduced:

Task. A task is defined as an objective that a user must solve and
consists of a defined start and end. The start and end of a task can
further be defined by one or multiple conditions, being for example
certain Ul elements. A task can consist of multiple flows, meaning
that the progression on how a user went from the start to the end
is arbitrary. Example: “Starting in the map view: Start the navigation
to any destination.”

User Flow/Path. A user flow/path describes a linear series of
events performed by a user to complete a certain task. Example: Nav-
igateToButton_tap — OnScreenKeyboard_tap — List_tap — Start-
NavigationButton_tap

!https://www.usertesting.com
Zhttps://www.userzoom.com
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Figure 1: Architecture Overview

Sequence. A sequence is defined as a specific series of times-
tamped interactions performed by one user. Example: [(NavigateTo-
Button, tap, timestamp, session_id), (OnScreenKeyboard, timestamp,
session_id), (List, tap, timestamp, session_id), (StartNavigationButton,
tap, timestamp, session_id)]

Event. An event is a specific user interaction defined by the
triggered Ul element, the gesture type, and its timestamp. Example:
(NavigateToButton, tap, timestamp, session_id)

3 MULTI-LEVEL USER BEHAVIOR
VISUALIZATION

Our approach benefits a holistic user behavior evaluation of IVISs
by visualizing different levels of abstraction of user/system interac-
tion with the touchscreen interface. We have designed these three
different visualizations as each of them satisfies certain require-
ments of UX experts [4]. The Task Level View allows UX experts
to inspect how users navigate within the system, what the main
interaction flows are, and how they relate to each other. The Flow
Level View provides a quantitative comparison of different flows
based on a chosen metric. Finally, the Sequence Level View enables
UX experts to analyze certain sequences regarding the interrelation
between touch interactions, glance behavior, and driving parame-
ters.

The data used in this work is collected from production vehicles
without a specifically designed test environment or a defined group
of participants. This, in theory, enables the data to be collected from
every modern car in the fleet of our research partner, a leading
German OEM. The usage of natural user interaction data has three
main advantages compared to data retrieved from lab experiments:
(1) A large amount of data can be collected from the whole user base;
(2) No specific costs for controlled experiments are incurred; (3)
The context of use i.e. the driving situation is inherently contained
in the data.

In the following, the data collection and processing framework is
introduced followed by a detailed description of the aforementioned
visualizations.

3.1 Telematics Architecture

The data collection and processing is based on a feature-usage
logging mechanism for the telematics and infotainment system. It
enables Over-The-Air (OTA) data transfer to the Big Data Platform
where the data is processed and off-board data analytics are per-
formed to generate insights into user behavior with the IVISs. The

system architecture consists of three major parts: (1) the In-vehicle
Logging Mechanism, (2) the Big Data Platform, and (3) the User Be-
havior Evaluation Module itself. An overview of the system is given
in Figure 1.

The In-vehicle Logging Mechanism collects user interaction data
from the Human-Machine Interaction (HMI) interface and driving-
related data from the vehicle bus. At the beginning of a trip, each
car sends a request to the Big Data Platform, asking if a new con-
figuration file is available, and gets assigned a session ID. Since no
personal data is transmitted, the session ID is the only identifier
linking the datapoints of a trip. Afterward, data packages contain-
ing log files are sent to the Big Data Platform in regular intervals
until the ignition is switched off. The Big Data Platform receives,
processes, further anonymizes (e.g. altering the timestamps), and
stores the data in a data lake.

The User Behavior Evaluation Module, developed in the course
of this work, then accesses the user interaction data (event sequence
data) and the driving data stored in the datalake. The signals are
processed and the driving data is merged with the interaction data
using the session ID. Since this system is already available in the pro-
duction line vehicles of our research partner, it was not necessary
for us to add further instrumentation.

3.2 Data Collection and Processing

The visualizations shown in this paper are based on data from
27,787 sessions generated by 493 individual test vehicles collected
through the introduced telematics logging system. The vehicles
are used for a diverse range of internal testing procedures of our
research partner. No special selection criteria were applied and
therefore all vehicles with the most recent telematic architecture
contributed to the data collection. The event sequence data consists
of timestamped events containing the name of the interactive UI
element that was triggered by the user and the type of gesture that
was detected. First, all event sequences that satisfy the start and
end condition (e.g. the respective Ul elements) of a task and do
not meet a task-specific termination criterion are extracted and are
assigned a Task ID. The termination criterion is intended to give
users the ability to customize the evaluations to meet their needs. It
can be defined as a set of specific Ul elements or a maximum time
limit #;,4x that applies to the interval between two interactions.
All sequences in which the termination criterion is met will be
cleansed. If, for example, it is defined that a maximum of 60 seconds
tmax = 60 may elapse between two events and otherwise the task
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Task Level View

is considered incomplete, all sequences in which this applies will
be cleansed. After sequence extraction, every sequence is assigned
a unique Sequence ID and all sequences that consist of the same
ordered list of events are assigned the same Flow ID. The driving
data used in this work (steering wheel angle and vehicle speed), is
extracted at a frequency of 5Hz and parsed to a human-readable
format. The glance data is continuously collected using a face-facing
camera located behind the steering wheel. The driver’s field of view
is divided into different regions of interest such that datapoint
consists of start and end time, and region ID of a glance. If the
region in the driver’s focus changes, a new datapoint is collected.
Since the data is processed in the vehicle no video data is transferred
at any time.

3.3 Task Level View

The Task Level View visualizes how users navigate within the sys-
tem to fulfill a certain task. Event sequence data, generated through
touchscreen interactions, is aggregated and visualized in form of an
adapted Sankey diagram. We decided to choose Sankey diagrams
as the basis for the Task Level View because of their popularity and
their efficient way to visualize multiple different flows and their
distribution. We address the main weakness of Sankey diagrams,
being that they do not encode temporal information by introducing
color-coded links. Being able to see the most frequent user flows
and their temporal attributes at one glance assists UX experts in
identifying unintended or unexpected user behavior. The individual
components and their visual encoding are shown in Figure 2.
Nodes. Each Node represents an event at a certain step in a task.
The nodes are visualized as rectangles whose height is proportional
to the event’s cardinality at a certain step in the task. The name
of the UI element and the gesture (annotated as _tap, _drag or
_other) used for an interaction are displayed next to the Node (see
Figure 2. The horizontal position indicates the step in the flow at
which the event happened. Thus, nodes that are vertically aligned
represent events at the same step in a task. In Figure 2, step s;
comprises three different events, whereas s;41 comprises only one
event, meaning that whatever users did in s, they all made the
same interaction (EventD_tap) in s;+1. Nodes that represent the same
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Figure 3: Example of Flow 1: NavigateToButton_tap —
OnScreenKeyboard_tap — List_tap — StartNavigationBut-
ton_tap

event at different steps are colored equally (compare EventD_tap
in Figure 2). When hovering over a node, the number of entities,
incoming, and outgoing links are displayed.

Links. Each link connects two nodes and therefore represents
a transition between two events. The link’s width is proportional
to the number of transitions between the source node and the
target node. The link color represents the average transition time
between two events. The time is normalized to [0,1] using min-max-
normalization, with higher values representing slower transitions.
The normalized values are mapped to a linear color scale from
green (0; short time) to red (1; long time). As displayed in Figure
reffig:SankeyAnnotations, the transition EventA_tab — EventD_tab
is the most prominent one moving from s; to sj+1 but also the
slowest. When hovering over alink, a description is given describing
in how many sequences (absolute and relative values) users went
from the source node to the target node and how much time it took
on average.

To create a visualization, the events that indicate the start and
the end of a task need to be defined. The optional parameter pyin
allows users to set a lower bound, such that only flows with a
relative frequency greater than py,;, are displayed. This filter in-
creases readability since Sankey diagrams are hard to read for a
large number of nodes [43]. Additionally, UX experts can define a
set of interactions that are represented as a single node even if they
occur multiple times in succession (e.g. keyboard taps).

Example. Figure 4 shows the Task Level View for a navigation
task that starts with opening the navigation app from the map
view on the Homescreen (NavigateToButton_tap) and ends with
confirming that the route guidance shall be started (StartNavigate-
Button_tap). Investigating the different flows, one can clearly see
that, whereas in most of the cases users directly started to use
the keyboard to enter their destination (62%), some users chose to
use the option to select a destination out of their previous desti-
nations (28%) or their pre-entered favorites (7%). After typing on
the keyboard (OnScreenKeyboard_tap) to enter the destination, the
majority of users directly chose an element out of the list of sug-
gested destinations presented by the system (List_tap). Afterward,
the majority then started the route guidance by accepting the pro-
posed route (StartNavigateButton_tap). An example of this flow and
how it looks like in the production vehicles IVIS is given in Figure
3. Apart from identifying the most popular flows, the Task Level
View also assists UX experts in finding unintended user behavior.
For example, after the first interaction (NavigateToButton_tap) the
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keyboard automatically opens and users can directly start typing.
However, roughly one percent of the users first clicked on the text
field and the started typing. This could lead to the hypothesis that
users did not anticipate that the text field is already pre-selected
and that they therefore tried to activate it by clicking on it.

Apart from visualizing certain user flows and their popularity,
the color-coding of the links allows conclusions to be drawn about
interaction times. Typing on the keyboard (OnScreenKeyboard_tap)
is by far the most time-consuming interaction in the presented task.
Since it is the only aggregated event consisting of multiple user
interactions this information may not be surprising. It nevertheless
shows that a large portion of the time on task can be attributed to
typing on the keyboard. Taking a closer look at the second step
of the task, one can observe that users need about 2.3 seconds to
choose a destination out of a list of pre-entered favorites (Favorites-
Button_tap) is, whereas they need roughly 3 seconds to choose a
destination out of a list containing all previous destinations (Pre-
viousDestinationsButton_tap). This difference could be attributed
to the fact that the favorites list is a structured list that tends to
have fewer entries than the chronologically sorted list of previous
destinations.

3.4 Flow Level View

Whereas the Task Level View provides an overview of the dif-
ferent flows and their proportion, other metrics like for example
the time on task of specific flows and how they compare are not
sufficiently visualized. The Flow Level View (Figure 5) addresses
this shortcoming by visualizing the distribution of a certain metric
(for the example we use the time on task) of all sequences that
belong to a flow (see Figure 5). By visualizing the time on task

as violin plots, two main insights can be generated. On the one
hand, multiple statistics (e.g. min/max, mean, interquartile range)
are visualized when hovering over the plot. UX experts can as-
sess the displayed metrics and compare them to target values or
industry guidelines [9, 33]. On the other hand, displaying the vi-
olin plots next to each other allows a visual comparison of the
individual flows. For example when comparing the distribution of
flow 1 (NavigateToButton_tap — OnScreenKeyboard_tap — List_tap
— StartNavigationButton_tap), flow 2 (NavigateToButton_tap —
PreviousDestinationsButton_tap — List_tap — StartNavigationBut-
ton_tap), and flow 3 (NavigateToButton_tap — FavoritesButton_tap
— List_tap — StartNavigationButton_tap) one can observe that the
time on task when using the keyboard is nearly double the time
needed compared to either using the favorite or previous destina-
tion options. Comparing the latter (flow 2 and flow 3), using the
favorites option is about two seconds faster than using the previous
destination option. Whereas this difference has already been iden-
tified in the example describing the Task Level View, the impact on
the whole task completion time can now be quantified.

3.5 Sequence Level View

An increased visual distraction from the driving task toward non-
driving-related tasks is associated with increased crash risk [10, 21].
Thus, insights into the interrelation of user interactions, glance
behavior, and driving behavior can yield valuable information for
UX experts regarding the safety assessment of touch-based IVISs.
Whereas the previous views visualize general trends, the proposed
Sequence Level View (see Figure 6) generates such insights by
making it easy to identify long off-road glances, demanding click
patterns, or other safety-critical driving behavior.
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The visualization consists of two main parts: The upper part
is an overlay of touchscreen interactions (blue dots) and the dri-
ver’s glances toward the center display (orange lines). Each dot
represents one interaction and each line indicates the duration of
a glance toward the display. The lower visualization, consisting
of two graphs, represents the driving-related data (vehicle speed
(green line) steering wheel angle (red line)). In Figure 6, three dif-
ferent sequences are visualized, emphasizing the importance to set
the evaluation of user flows in perspective to the context.

In Figure 6a a specific sequence of Flow 8 is visualized. One can
observe that it took the driver five long glances (¢ > 2s) and three
short glances (¢t < 25s) to fulfill a task of 14 interactions whereas
10 of the interactions are keyboard interactions. Additionally, we
can observe that the vehicle speed decreased after starting to type
on the display and increased again at the end of the sequence. The
change in the steering wheel angle is generally low, however, one
can detect a small drift during the first intense typing interaction
and a small correction after the second long glance. Whereas the
first sequence took around 20 seconds for completion, the sequence
using the previous destination option only took roughly six seconds,
requiring four glances and four interactions. The vehicle speed did
only slightly decrease during the interaction. In contrast to the two
above sequences, the sequence displayed in Figure 6c consists of 30
touch interactions (25 keyboard interactions) but only two glances.
During normal driving, taking the eyes off the road for such a long
period of time would be considered highly safety-critical. However,
considering the vehicle speed and the steering wheel angle, one
can conclude that the driver pulled over to the right and stopped
the car before starting to interact with the HMI. Therefore, this is
not considered critical behavior and shows that certain statistical
outliers need to be assessed individually.

4 INFORMAL EVALUATION

To assess the usefulness of the proposed approach and to answer
the question of whether the visualizations are suited to generate
knowledge from large amounts of event sequence data, we con-
ducted a user study. The goal of the study was to understand how
participants interact with the presented visualizations when try-
ing to answer questions regarding user behavior. Therefore, we
recruited four automotive UX experts (P1-P4, one UX Researcher,
and three UX Designers with 3, 9, 4, and 18 years of working ex-
perience respectively) from our research partner. Two participants
were directly involved in the design and development of the HMI
analyzed in this study. The examples presented in the previous sec-
tions were sent to the participants as an interactive web page and a
document containing further information regarding the presented
interface was provided. Due to the ongoing Covid-19 pandemic, we
conducted the interviews remotely using Zoom. During the study,
the participants were asked to share their screen and the interviews
were recorded using the built-in audio and video recorder. Each
interview comprised an introduction (20 minutes), an interactive
part (30 minutes), and a discussion (10 minutes). During the intro-
duction, we presented the objective of the presented system, the
telematics framework, the exemplary task (screenshots and the re-
spective Ul elements), and demonstrated the features of the system.
We asked the participants to explore the different visualizations and
to ask questions in case some explanations were unclear. During
the interactive part, the participants were asked to answer a list
of seven distinct study questions (see Table 1). The questions are
inspired by the needs and potentials identified in [4] and aim to test
if the visualizations are suited to generate the anticipated insights.

After interacting with the visualizations to answer the study
questions, the participants were given another 10 minutes to explore
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Figure 6: Sequence Level View

the visualizations to find any behavioral patterns that might indicate
usability issues. After the interactive part, we initiated a discussion
regarding the different visualizations and how the participants
might integrate them into their design process. After the interview,
the participants were asked to answer a survey with 8 questions
addressing the usefulness of the system and its potentials with
regard to their workflow. The questions demanded answers on a
7-point Likert scale ranging from strongly disagree (1) to strongly
agree (7).3

4.1 Generated User Behavior Insights

In the following, we assess whether the visualizations are suited to
answer the study questions (see Table 1).

3Questions and results are given here: https://doi.org/10.6084/m9.figshare.14915550

Task Level View. All four participants answered the questions
regarding the Task Level View (SQ1-SQ3) without additional sup-
port. They compared the respective links and nodes to answer SQ1
and SQ2 and interpreted the color coding as intended to find the
most time-consuming interaction (SQ3). Also, P1 and P2 were par-
ticularly interested in flow 4: “I can easily see that most people use
our system as intended and I'm not overly concerned with flows
that only occur very few times. But seeing 5 percent using the drag
gesture on a keyboard [...] I would like to get into more detail” (P1).
Interestingly, during the interviews, we observed that the partici-
pants used the Task Level View as a kind of reference. Often when
an anomaly or a pattern of interest was detected in one of the other
views, participants invoked the Task Level View to verify what role
the flow or the specific interaction plays in the overall context of
the task.
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Table 1: Study Questions and Objectives.

# View Level Question

Objective

SQ1  Task Which path do most users take to start the navigation?

SQ2  Task Do users prefer the favorites or previous destination option?
SQ3  Task Which interaction is the most time-consuming?

SQ4  Flow What is the fastest way to start the navigation?

SQ5  Flow Which flows are interesting to compare and why?

SQ6  Sequence

SQ7  Sequence How do you interpret the driving situation?

Can you observe any safety-critical behavior?

Traverse graph and interpret link width
Interpret node height

Interpret link color

Interpret metrics shown as hovering elements
Compare distributions to find distinctive features
Interpret glance duration and click behavior
Interpret driving parameters

Flow Level View. Compared to the Task Level View, only two
participants (P1 and P3) answered SQ4 without any further informa-
tion. They quickly decided to base their answer on the median time
on task and therefore identified flow 3 to be the fastest way to start
the navigation. Whereas P1 and P3 were familiar with boxplots and
violin plots, this kind of visualization was unknown for P2 and P4.
P4 stated that “The] would need to get more familiar with this kind
of statistics”. They, therefore, needed some additional assistance,
but then solved SQ4 in similar a manner as P1 and P3 did. P1 adds
that: “Interpreting this visualization gets easier the more often one
uses it in the daily work”. When asked to compare flows that might
yield interesting insights, P1 argued that the distribution of the
time on task could be used as a complexity measure that a more
widespread distribution could indicate a more complex flow. There-
fore, the interviewee compared flow 1 and flow 6, with the only
difference being that in flow 6 people clicked in the text field before
they started typing. Based on the more widespread distribution
of flow 6, P1 argued that “some people seem to have difficulties in
understanding that the text field is already activated and that there
is no need to tap on it. This seems to lead to longer interaction times”.

Sequence Level View. Working with the three different exam-
ples of the Sequence Level View (SQ6 and SQ7) all participants were
able to derive certain hypotheses regarding driver distraction based
on the glance and driving behavior. All participants found that the
glances in Figure 6a are critically long. Regarding the long glance
without any interaction after typing on the keyboard, P4 states
that it “[...] might be due to a slow internet connection or because
the intended destination was not in the list of suggestions”. Based on
the vehicle speed and the steering wheel angle participants con-
cluded that the person was distracted by the interaction and the
long glances. P1 explains that “[dJuring the keyboard interaction,
there is an increasing deviation in the steering angle and a correc-
tion at the end of the interaction, even though it may be small in
absolute terms”. In contrast to Figure 6a, the glances in Figure 6b
were considered not critical by all participants. P1 remarks “[t]hat’s
one glance per interaction, just like we want it to be” and further ex-
plains that one cannot attribute the deviation of the steering angle
to the interaction with the HU. P3 was particularly interested in
why people are in need to focus on the head unit after interacting
with it and suspects that users want to have visual feedback on
their interaction. Regarding the sequence visualized in Figure 6c
all participants quickly identified that the driver pulled over to the
right and then started engaging with the display. Therefore, they
considered this behavior as not safety-critical.

4.2 Benefits and Use Cases

In general, participants agree, that the presented visualizations
would benefit multiple use cases in the UX design process. Partici-
pants’ statements describe that the three visualizations have great
value for efficiently visualizing large amounts of interaction data
and that they currently miss such possibilities in their daily work.
P3 concludes that “[a]ll the information that brings you closer to
the context of the user while you are sitting in the office behind your
screen is extremely valuable”.

Task Level View. The Task Level View is considered very useful
by all participants. They, in particular, appreciated the simple and
intuitive representation of user flows. This is also shown insofar as
they had no problems answering Study Questions SQ1-SQ3. P3 was
especially interested in flows that can be considered conspicuous
because “[yJou can find issues where nobody would even think of doing
a qualitative study because you did not even think of this behavior. But
if 5% of all people behave that way there must be a reason for it and it
should be further investigated”. P3 further added that “[...] there could
be so many feature improvements based on the issues detected using
this view”. Similarly, P2 adds that “[they] currently have a collection
of questions from different UX designers within the company that
could, probably, be answered with this kind of visualization”. The
interviewee further describes that a data-driven platform similar to
the proposed one could have great benefit not only for UX experts
but also for management and product development.

Flow Level View. In general, the participants agree that the
Flow Level View is helpful in the design process. P1 states that
“[b]eing able to see statistics like the median and the distribution of the
sequences makes this visualization valuable when comparing different
flows”. P4 argues that it would also be interesting to see how these
graphs change over time when people get more familiar with the
system: “How do these graphs look like for novice users and how do
they look like for experts users?”. Furthermore, P1 adds that this
would benefit the assessment of intuitiveness and learnability. P3
states that the distribution of sequences over the time on task is
from particular interest because “[...] if a lot of users are at the far
end of the distribution it would mean that a lot of them might have
problems with this flow and I would be interested in why it takes them
such a long time to complete the task”. P1 further elaborates that it
would be helpful to see specific sequences for identified outliers
since the time on task alone indicates critical behavior.

Sequence Level View. All participants consider the Sequence
Level View very helpful and argue that it plays an important role,
especially in combination with the other visualizations. Whereas
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“It seems to be way faster to use the

“We've deployed our new navigation
features one week ago. Let’s take a look
how people are using it! First, I'll open
the Task Level View to get a general

overview.” .

- “Ok, there is a clear tendency toward
the main flows drivers are using. Typing
on the keyboard seems to be pretty
slow. Let’s use the Flow Level View to
compare the statistics for some of those
alternative Flows.“

favorite destinations opinion. I wonder
how the interaction and gaze behavior
differs between those two options. Let’s
pick some example sequences for this
flows and give it a go.”

“Interesting, it seems like the glance
behavior differs a lot between the different
sequences... Let’s go back to the Sequence
Level View, but take a look at the glance
statistics this time.”

el

Figure 7: Exemplary Usage Scenario

the other views present higher-level aggregated statistics, the vi-
sualization of specific sequences was helpful to develop a more
precise understanding of how the interactions in the vehicle take
place. The additionally given information and especially the glance
behavior data was considered very useful because “fo]ne can derive
important information regarding the context to set the interaction
into perspective” (P4). Additionally, P3 emphasizes the importance
regarding safety assessments because “it might be better to prioritize
something slower but with fewer glances”. P1 and P4 both explain
that in order to get insights into glance behavior they, until now,
had to set up specific lab studies.

5 CONCLUSIONS

This paper presents a Multi-Level User Behavior Analysis Frame-
work providing insights into driver system interactions with IVISs
on three levels of granularity. The proposed approach consists of a
telematics-based data logging and processing system, allowing live
data collection from production vehicles. The presented visualiza-
tions are based on event sequence data, driving data, and glance
behavior data. As a whole they enable UX experts to quickly iden-
tify potential problems, quantify them, and examine their influence
on glance or driving behavior using representative examples. An
example that visualizes how the different views support each other
and how UX experts may use them is given in Figure 7.

The conducted user study shows that the presented visualiza-
tions help UX experts in designing IVISs, assisting them in finding
usability issues and unexpected user behavior. They report that
they would use performance data more often if such visualizations
would be available and argue that the generated insights would
benefit the feature and requirements elicitation process. The Task
Level View was considered the most helpful, closely followed by
the Sequence Level View, followed by the Flow Level View. This
coincides with the observations made during the evaluation study.
During the study, participants switched between the different views
depending on the type of information they were interested in. This
consolidates our assumption that the different views support each
other in a meaningful way and that different levels of detail are
necessary to generate the best possible insights into driver IVIS
interaction.

Our results show that visualizing large amounts of automotive in-
teraction data using the proposed three visualizations is promising.
However, we also identified points for improvement. One common
suggestion is the mapping between user interactions and actual
screens. This helps to interpret the visualizations without the need
to know the names of the UI elements. Additionally, participants
suggested making the visualizations visually more pleasing and
proposed adding a dashboard-like overview of general statistics.
This being a first exploratory approach, we only evaluated if partic-
ipants interacted as intended and if they were able to generate the
anticipated insights. For future iterations, it would be interesting
to assess effectiveness and efficiency and compare multiple alterna-
tives. Additionally, future evaluations should include participants
outside of our research partner’s organization. None of our partici-
pants were affected by color vision deficiency, however, we have
been advised to use a colorblind-friendly palette in future versions.

Even if they do not directly influence the contribution of this
work, ethical aspects of data collection, data security, and privacy
are particularly important in the broader scope of this work. As
of now, only company-internal testing vehicles contribute to the
data collection. However, for future use cases, it is conceivable that
customers contribute to the data collection and receive benefits such
as earlier access to new features as compensation. The consent for
data collection is given actively using the so-called “opt-in” standard.
Therefore, users have full control over the decision whether or
not to share their data to contribute to product improvement. As
already mentioned, the data is completely anonymized, making
it impossible to draw conclusions about individual users or their
behavior.

By addressing various needs of automotive UX experts [4] the
proposed approach is a first step toward better integration of quan-
titative user behavior data in automotive UX development. We
envision the presented approach to be integrated into an overarch-
ing analysis platform allowing UX experts to freely explore large
amounts of live data, collected from production or test vehicles to
generate instant insights into in-car user behavior.
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