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ABSTRACT
Exploring compression is increasingly promising as trade-

off between computations and data movement. There are

two main reasons: First, the gap between processing speed

and I/O continues to grow, and technology trends indicate

a continuation of this. Second, performance is determined

by energy efficiency, and the overall power consumption

is dominated by the consumption of data movements. For

these reasons there is already a plethora of related works on

compression from various domains. Most recently, a couple

of accelerators have been introduced to offload compression

tasks from themain processor, for instance by AHA, Intel and

Microsoft. Yet, one lacks the understanding of the overhead

of compression when offloading tasks. In particular, such of-

floading is most beneficial for overlap with other tasks, if the

associated overhead on the main processor is negligible. This

work evaluates the integration costs compared to a solely

software-based solution consideringmultiple compression al-

gorithms. Among others, High Energy Physics data are used

as a prime example of big data sources. The results imply

that on average the zlib implementation on the accelerator

achieves a comparable compression ratio to zlib level 2
on a CPU, while having up to 17 times the throughput and

utilizing over 80 % less CPU resources. These results suggest

that, given the right orchestration of compression and data

movement tasks, the overhead of offloading compression is

limited but present. Considering that compression is only a

single task of a larger data processing pipeline, this overhead

cannot be neglected.
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1 INTRODUCTION
The current computational landscape is dominated by in-

creasingly costly data movements, both in terms of energy

and time, while computations continuously decrease in these

costs [10, 13]. Furthermore, the amount of data generated

and processed, preferably as fast and interactive as possible,

is growing dramatically. As a consequence, especially for big

data applications, it becomes more and more promising to

trade computations for communication in order to diminish

the implications of data movements. Overall run time bene-

fits should be possible, even though this might substantially

increase the amount of computations. Of particular interest

in this context is the recent introduction of dedicated acceler-

ators for compression tasks, including accelerators provided

by AHA [12], Intel QuickAssist [14] or Microsoft’s Project

Corsica [22].

Most published works about compression utilizing acceler-

ators are focusing on the compression performance, includ-

ing work on GPU [4], addressing SIMD in general [18, 25, 27],

and FPGAs [7, 9, 17, 24]. The common part of all these works

is the focus on improving compression performance, albeit

for various reasons. However, it is commonly neglected to

assess the additional integration costs for the entire system.

Only if the overhead of orchestrating compression tasks on
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accelerators and the associated data movements is as small

as possible, one can truly speak of an off-loaded task. Other-

wise, the host is not entirely free to perform other, hopefully

overlapping, tasks.

Thus, the present work will assess these integration costs

by evaluating the overhead associated with orchestrating

offloaded compression tasks, as well as assessing obtained

compression throughput and ratio by comparing it to well-

known general-purpose compression algorithms solely run

on the host. The data sets used are a representative set of

standard compression corpora, and additionally, as a prime

example of big data, High Energy Physics (HEP) data sets

from the European Organization of Nuclear Research (CERN)

are used. For these data sets the following will be assessed:

compression time, ratio, overhead and power consumption

of a compression accelerator.

In particular, this work makes following contributions:

(1) Proposing and implementing a well-defined, methodi-

cal, multi-threaded benchmark;

(2) Analyzing the performance of the accelerator in terms

of machine utilization, power consumption, through-

put and compression ratio;

(3) Comparing the achieved results to multiple software-

based, i.e. non-offloaded, compression algorithms.

Note that this work analyzes only compression and not de-

compression. Big data applications, like utilized at CERN,

often have I/O limitations and expectations, where a lowest

throughput threshold must be passed e.g. to fulfill real-time

requirements. Compression - compared to decompression -

is the throughput limiting task and as a result studied in this

work. Notably, for all selected algorithms the decompression

speed is at least the compression speed, if not significantly

higher.

As a result, this work will provide details for a better

understanding of the offloading costs for compression tasks.

The methodology allows in particular system designers to

identify deployment opportunities given existing compute

systems, data sources, and integration constraints.

2 RELATEDWORK
To diminish the implications on (network) data movements

and storage, massive utilization of compression can be found,

among others, in communities workingwith databases, graph

computations or computer graphics. For theses communities

a variety of works exists which addresses compression opti-

mizations by utilizing hardware-related features like SIMD

and GPGPUs[4, 18, 25, 27].

Moreover, a multitude of research has been conducted

to efficiently use Field Programmable Gate Array (FPGA)

technology, as they excel at integer computations. Works

here range from developing FPGA-specific compression al-

gorithms [9], over integrating the FPGA compression hard-

ware into existing systems [17, 24], to implementing well-

known compression algorithms, like gzip, and comparing

the achieved performance to other systems (CPU, GPGPU).

For example, some work explored CPUs, FPGAs, and CPU-

FPGA co-design for LZ77 accelerations [7], while other ana-

lyzed the hardware acceleration capabilities of the IBM Pow-

erEN processor for zlib [16]. Regarding FPGAs, Abdelfattah

et al. [1] and Qiao et al. [21] implemented their own deflate

version on an FPGA.

However, the large majority of those works focuses on

the compression performance in terms of throughput and

compression ratio, but not the resulting integration costs for

the entire system. Overall, little to no published work can be

found covering the topic of system integration costs in the

context of compression accelerators.

3 METHODOLOGY AND BENCHMARK
LAYOUT

3.1 Server and Input Data
The server selectedwas an Intel Xeon E5-2630 v4. The server’s

technical specifications are listed in Table 1.

For the input data four standard compression corpora and

three HEP data sets were selected. To be representative for

big data, compression corpora with at least 200 MB were

preferred:

• enwik9[20] consists of about 1 GB of EnglishWikipedia

from 2006

• proteins.200MB[8] consists protein data of the Pizza

& Chili corpus

• silesia corpus[2] consists of multiple different files,

summing up to 203MB, which were tarred into a single

file

• calgary corpus[2] is one of the most famous compres-

sion corpora. Tarred into a single file, it only sums

up to 3.1 MB. Therefore, it was copied multiple times

to reach the 150 MB to conform with the benchmark

requirements

The HEP data came from three different CERN experi-

ments (ATLAS [4.1 GB], ALICE [1 GB] and LHCb [4.9 GB]).

At CERN, particles are accelerated in a vacuum very close

to the speed of light. They are then collided and analyzed by

the experiments. The data created consists of geographical

locations where particles were registered. Due to the nature

of quantum mechanics this process is close to a random

number generator. A high compression ratio can therefore

not be expected. All data sets contain uncompressed data
1
,

1
Parts of the detectors perform already some compression, e.g. similar to

the representation of sparse matrices in coordinate format. When talking
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Table 1: Technical specifications of the server used for
this study

Xeon

Architecture Intel

Platform x86_64

CPU Type E5-2630 v4 @ 2.20GHz

TDP (per socket) 105 W

Virtual Cores 40

Threads per Real Core 2

Real Cores per Socket 10

Sockets 2

NUMA Nodes 2

RAM (GB) 64

Memory Type DDR4

RAM Frequency (GHz) 2133

Memory Channels 4

Max. Mem Bandwidth (GB/s) 68

Operating System CentOS 7

Kernel 3.10.0-957.1.3.el7.x86_64

even though in their normal setup some type of compression

might already be employed.

3.2 Compression Algorithms
The selection of general-purpose compression algorithms

was based on the requirement to be lossless and their us-

age in related works and general popularity, including re-

cent developments. Many of those algorithms allow tuning

the performance for compression ratio
2
or throughput

3
by

setting the compression level. Generally speaking, a higher

compression level refers to a higher compression ratio, but

also a longer computation time. For this study, compression

algorithms run solely on CPU are called software-based (sw-

based). For them, a pre-study was done to select compression

levels where significant changes in either compression ratio

or throughput occurred (see Figure 1).

3.2.1 Bzip2. Bzip2[15] combines the Burrows-Wheeler algo-

rithm with a Move-To-Front transform and Huffman coding.

It offers nine different levels to change the block size between

100 kB and 900 kB. There is no option to change the com-

pression function being utilized. For this study the largest

block size (level 9) was chosen.

3.2.2 Lz4. Lz4[19] is an algorithm based on LZ77. The sub-

type Lz4_HC offers 13 levels to increase the compression

about uncompressed data, it refers to any form of compression applied after

retrieving the data from the detectors.

2
compression ratio = (uncompressed data) / (compressed data)

3
throughput = (uncompressed data) / (run time)
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Figure 1: Pre-study to evaluate the compression algo-
rithms. The throughput is of a single thread for the
data sets ALICE and LHCb. The selected algorithms
and there compression levels are circled in red.

ratio. For this study Lz4_HC level 1 was selected. It has a
low compression ratio, but a high throughput. For the rest

of this study Lz4_HC is referred to as lz4.

3.2.3 Snappy. Snappy[11] is an algorithm based on LZ77.

It was developed at Google with the goal to have a short

computation time. Snappy has no tuning parameters.

3.2.4 Xz. Xz[5] is a popular tool which offers multiple com-

pression algorithms. The main algorithm used is LZMA2,

which has 9 levels and can achieve a high compression ratio,

but requires a long computation time. For this study level
1 and level 5 were selected.

3.2.5 Zlib. Zlib[3] utilizes the deflate algorithm[6]. Deflate

is an algorithm based on LZ77, followed by Huffman cod-

ing. Zlib is a popular library used, among others, for ZIP

and gzip compression. Zlib offers 9 compression levels, of

which levels 2 and 4 were used in this study. Additional
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to levels 2 and 4 were selected to compare better against

the accelerator zlib implementation.

3.2.6 Zstandard (zstd). Zstd[26] is an algorithm based on

LZ77, in combination with fast Finite State Entropy and

Huffman coding. It was developed by Facebook with the

goal to do real-time compression. Zstd offers 23 levels. Above

compression level 20 the configuration differs to achieve a

higher compression ratio, but this increases significantly the

memory usage. For this study level 2 and level 21 were
selected.

3.3 Compression Accelerators
At the beginning of this study, two commercially available

accelerators were considered: Intel QuickAssist 8970 (QAT),

and AHA378. QAT is an ASIC which offers encryption and

compression acceleration up to 100 Gb/s. AHA378 is an FPGA

accelerator with up to 80 Gb/s, solely designed for compres-

sion. Unfortunately, during this study the QAT exhibited

instabilities in performance and thus did not deliver any

presentable results. Therefore, this work will focus on the

AHA378 accelerator. The PCIe Gen 3 x16 accelerator con-

sists of 4 FPGAs, each providing 20 Gb/s, for a total of up

to 80 Gb/s. It offers two compression algorithms: lzs and

deflate. For deflate the additional data formats gzip and

zlib are provided. The power consumption is specified to

not surpass 25 W when the kernel module is not loaded,

and not to exceed 75 W during heavy workload, as all the

power is provided through the PCIe slot. For this study only

deflate was analyzed, as a pre-study showed that lzs was

inferior in performance compared to the others, and that the

performance of deflate, gzip and zlib were equivalent.

3.4 Benchmark Layout
The benchmarks used for accelerator-based and sw-based

compression were built upon the same principles to reduce

any benchmark-related bias. Themulti-threaded benchmarks

are shown in Fig. 2: the mainThread coordinated the orches-

tration of all other threads, and multiple compressThreads
executed the compression. For the accelerator-based bench-

mark additional queueThreadswere introduced. The param-

eters being measured were: average compression ratio, total

size of uncompressed data, total size of compressed data and

the exact run time.

3.4.1 Time Measurements. For an accurate measurement of

throughput, a particular focus was put on the time measure-

ment. To improve the timing accuracy the mainThread not
only set-up the compressThreads, but also used atomic vari-

ables to coordinate start and stop of the compression task,

making sure that all compressThreads were finished set-

ting up before starting the measurement. The mainThread

InitLocalResources()

waitFor(startCompressCalc)

foreach streamPerThread {
  Dequeue()
  PrepareCompress(stream)
}

while (!stopCompress) {
  foreach streamPerThread {
    if (compressIsFinished) {
     GetResults()
       
    ReinitCompressResources() 
    }
  }
}

GetFinalTime()

CloseCompressStreams()

4. Send Results

DeinitLocalResources()

compressThread

Input Buffer Queue
(thread-safe)

while (timeLimitNotReached) {
  If (queueHasSpace) {
    CreateBufferFromInputData(chunksize)
    Enqueue()
  }
}

queueThread

Enqueue Dequeue

InitSharedResources()

foreach queueThread {

}
WaitUntilQueueIsFull()

foreach compressThread {
  
}
Barrier: wait ThreadInit
StartCompressCalc()

Sleep(runTime)
StopCompressCalc()

foreach compressThread {
  
}
foreach queueThread {

}
7. Print Results

1. Start()

2. Initial 
queue fill

3. Start()

5. Join()

6. Join()

Figure 2: Benchmark layout: The mainThread co-
ordinates the progress of the compressThread. The
compressThread continuously compresses the input
and records the results. For the accelerator benchmark
the additional queueThread (in blue) provides the input
data chunk-wise to the compressThread.

then slept for the requested benchmark run time (2 min)

and issued afterwards the stop signal. To measure the sus-

tained throughput only the time within compressThread
between start and stop was measured. Measuring the time in

mainThread would falsify the results as it would include the

release of the resources, while this study was only interested

in the sustained throughput.

3.4.2 Software-based Benchmark. The sw-based benchmark

called the compression libraries directly and used hwloc to
bind threads equally split onto the NUMA nodes. Because

of memory limitation reasons the input data set was loaded

only once for each NUMA node and shared with the node’s

compressThreads. The compression function compressed

150 MB of the input data, moving via round-robin multiple

times over the entire data set. The chunk size was limited to

150 MB to compensate for resource limitations. The chunk

size was selected after pre-studies determined that 150 MB
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is the smallest chunk size which achieved both, stable per-

formance and compression ratio close to the full data set. All

other resources were uniquely assigned and private to each

process (e.g. the output buffer).

3.4.3 Accelerator Benchmark. The accelerator benchmark

consisted of additional queueThreads which filled a thread-

safe queue with buffers containing chunks of the input data

set. This was necessary as each compression stream needed

access to its own allocated input data in order to be able to

communicate with the accelerator. The thread-safe queue

used locks for inter-thread coordination. compressThread
continuously consumed those buffers and compressed them.

To optimize the load for each thread, compressThread was
able to run multiple compression streams in a single thread.

The compression function used busy waiting to retrieve the

results of the streams from the accelerator. Parameters that

could bemodifiedwere the number of each type of thread, the

input buffer size, the size of the thread-safe queue, the num-

ber of compression streams within each compressThread,
and the type of algorithm and its compression level.

Overall, the main difference to the sw-based benchmark

was that each compression stream needed its own allocated

memory for the input data, while the sw-based benchmark

moved a pointer on the shared memory of the input

data.

3.4.4 Performance Instrumentation and Measurement. Both,
the acclerator-based and the sw-based benchmarks were run

with the instrumentation tool likwid[23]. Likwid provides

measurement of performance counters similar to perf, but
is especially designed to support HPC environments. Likwid

provides pre-defined groups to measure different aspects of

performance. For this study two groups were selected. The

first group measured the machine CPU and RAM power con-

sumption, and the read, write and total memory bandwidth.

The second group measured the cycle activity, which gave

an impression how many cycles were additionally needed

due to waiting for different resources. However, it turned

out that the cycle activity measurements were not accurate

enough on this server to be presentable.

4 ACCELERATOR RESULTS
The accelerator achieved a sustained throughput of 75 -

81 Gb/s, which is at least 94 % of the advertised throughput

of 80 Gb/s. This advertised throughput was even surpassed

for the calgary corpus. The configuration achieving this was

using numactl to bind the entire benchmark on the same

NUMA node to which the accelerator was connected to. The

input parameters were set to a chunk size of 2 MB, 500 el-

ements in the queue, 3 queueThreads, 4 compressThreads
and 12 compression streams per compressThread. All results

for throughput and compression ratio are listed in Table 2, for

memory bandwidth in Table 3 and for power consumption

in Table 4.

The lowest throughput and compression ratiowas achieved

by LHCb with 75 Gb/s and a compression ratio of 1.18. The

highest compression ratio was achieved by silesia corpus

with a ratio of 2.94 and a throughput of 79 Gb/s. Overall,

the data-dependent change of the throughput was less then

4 %.

The memory bandwidth was between 22 - 30 GiB/s. AL-

ICE, ATLAS and LHCb had the highest memory bandwidth,

and calgary corpus the lowest memory bandwidth. Exactly

the opposite correlation could be found when looking at

the memory bandwidth percentage used for reads. Between

51 - 63 % of all memory accesses were reads. In general there

was a correlation between having a high compression ratio

and a high percentage of reads. A higher compression ratio

means a lower amount of output to be written and as a result

increases relatively the percentage of reads. Only calgary

corpus defied this in the final measurement taken, with hav-

ing the lowest read percentage (51 %), while at the same time

the second highest compression ratio. However, multiple

measurements showed that in general the read percentage

of calgary corpus was with 59 % on average significantly

higher.

The power consumption was stable and, similar to the

throughput, was negligibly influenced by the data sets. The

CPU power consumption was 58 W and the RAM power

consumption was 7W for the socket to which the accelerator

was connected. While running the benchmark, the power

consumption of the entire server was 266 W.

5 RESULT COMPARISON
In this section the results of the accelerator are compared

to the results of the sw-based benchmark. The algorithms

chosen and their respective compression levels are stated

in section 3.2. The sw-based benchmark was run with 40

compressThreads, using all 40 virtual cores of the server.

The performance of throughput and compression ratio

is listed in Table 2. Even though the achieved compression

ratios of the accelerator were comparable to zlib level 4,
zlib level 2 will be taken as comparison. This decision

was taken because, relative to zlib level 2, zlib level
4 had only up to 7 % increase in compression ratio, while

at the same time the throughput decreased by 13 - 37 %.

Depending on the data set, the accelerator achieved a 8 -

17 times increased throughput compared to the sw-based

zlib level 2 when utilizing the entire server. A different

algorithm, zstd level 2 achieved a similar compression

ratio as zlib level 2, while at the same time having 2 to 3

times higher throughput then zlib level 2.
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Table 2: Compression ratio and throughput for the accelerator and sw-based algorithms. For the latter only the
maximum and minimum values are listed. Additionally, zlib level 2 and 4 are listed to be able to compare to
the accelerator and to see the difference between those two levels.

Compression Ratio Throughput (Gb/s)

lowest highest zlib

level 2

zlib

level 4

AHA lowest highest zlib

level 2

zlib

level 4

AHA

ALICE lz4 xz level 5 +1% zstd level 21 lz4 -29%

1.07 1.83 1.42 1.44 1.4 0.2 45.2 4.5 3.2 76

ATLAS snappy xz level 5 +1% zstd level 21 snappy -21%

1.36 1.92 1.65 1.67 1.67 0.3 63.4 6.2 4.9 77

CALGARY snappy xz level 5 +7% xz level 5 snappy -29%

1.81 185 2.73 2.93 2.86 0.6 53.5 9.3 6.6 81

ENWIK9 snappy zstd level 21 +7% zstd level 21 snappy -28%

1.79 3.95 2.72 2.92 2.87 0.2 50.4 9.6 6.9 79

LHCb lz4 xz level 5 <+1% zstd level 21 lz4 -13%

1.05 1.37 1.17 1.18 1.18 0.3 46.2 4.7 4.1 75

PROTEINS snappy zstd level 21 +3% zstd level 21 lz4 -37%

1.23 3.35 2.04 2.11 2.12 0.1 78.2 8.1 5.1 78

SILESIA snappy xz level 5 +5% zstd level 21 snappy -26%

1.93 4.11 2.74 2.87 2.94 0.3 66.4 9.8 7.3 79

Table 3: Memory bandwidth and percentage of reads for the accelerator and sw-based algorithms. For latter only
the maximum and minimum values are listed. Additionally, zlib level 2 is listed to be able to compare to the
accelerator.

Memory Bandwidth (GiB/s) Percentage of Reads

lowest highest zlib

level 2

AHA lowest highest zlib

level 2

AHA

ALICE zlib level 2 xz level 5 lz4 xz level 1

snappy

1 33 1 30 49% 77% 53% 58%

ATLAS zlib level 2 xz level 5 zlib level 2 xz level 1

2 25 2 30 50% 68% 50% 59%

CALGARY zlib level 2 xz level 5 zstd level 21 xz level 1

2 38 2 22 50% 69% 64% 59%

ENWIK9 zlib level 2 zstd level 21 xz level 5 xz level 1

2 28 2 56% 69% 61% 57%

LHCb zlib level 2 xz level 5 29 zlib level 2 xz level 1

zstd level 21

2 30 2 30 45% 72% 45% 56%

PROTEINS zlib level 2 xz level 5 lz4 xz level 1

snappy

2 40 2 29 51% 83% 65% 61%

SILESIA zlib level 2 xz level 5 zstd level 21 xz level 1

2 22 2 28 55% 72% 65% 63%
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Table 4: CPU and RAM power consumption for the accelerator and sw-based algorithms. For the latter only the
maximum and minimum values are listed. Additionally, zlib level 2 is listed to be able to compare to the
accelerator.

CPU Power Consumption (W) RAM Power Consumption (W)

lowest highest zlib

level 2

AHA lowest highest zlib

level 2

AHA

ALICE zstd level 21 zstd level 2 zlib level 2 xz level 5

82 101 99 58 4 10 4 7

ATLAS zstd level 21 zstd level 2 zlib level 2 zstd level 21

xz level 1,5

85 101 98 59 5 8 5 7

CALGARY xz level 5 zstd level 2 zlib level 2 xz level 5

88 103 97 56 4 11 4 6

ENWIK9 zstd level 21 zstd level 2 zlib level 2 bzip2 level 9

xz level 5

zstd level 21

84 101 98 5 9 5 7

LHCb snappy zlib level 2 zlib level 2 xz level 1,5

zstd level 21

72 99 99 59 4 9 4 8

PROTEINS zstd level 21 zlib level 2 zlib level 2 xz level 5

zstd level 2

84 101 101 58 4 11 4 7

SILESIA snappy zstd level 2 zlib level 2 bzip level 9

zstd level 21 xz level 1,5

zstd level 21

94 102 98 557 5 8 5 7

snappy and lz4 achieved the highest throughput: In the

best case they achieved the same throughput as the accelera-

tor on the data set PROTEINS. However, overall the through-

put was very data-dependent and their compression ratio

was only 65 - 82 % of zlib level 2. The lowest throughput
achieved zstd level 21 and in few cases xz level 5, but
these were also the algorithms with the highest compression

ratio. For the 150 MB version of the calgary corpus both

algorithms, zstd level 21 and xz level 5, were able to
recognize the entire calgary corpus sequence, and achieved

a compression ratio of over 170.

The memory bandwidth is listed in Table 3 and was for

the sw-based algorithms between 1 - 40 GiB/s. zlib level
2 had the lowest with 1 - 2 GiB/s and xz level 5 the highest.
The percentage of memory bandwidth being read access was

between 49 - 77 %. zlib level 2 had here a similar split as

the accelerator.

The CPU power consumption of the sw-based algorithms

was between 72 - 103 W for each socket, with snappy and
zstd level 21 having the lowest CPU power consumption

and zstd level 2 and zlib level 2 having the highest

CPU power consumption. zlib level 2 used between 98 -

101 W, which is 30 W more CPU power consumption than

the accelerator. The RAM power consumption of sw-based

algorithms was between 4 - 11 W, with zlib level 2 hav-
ing the lowest and xz level 5 having the highest RAM

power consumption. All results for CPU and RAM power

consumption are listed in Table 4. There was a direct corre-

lation between RAM power consumption and the memory

bandwidth measured for the sw-based algorithms. However,

for the same RAM power consumption of 7 W, the accel-

erator benchmark achieved twice the memory bandwidth -

the value reached for 9 W by the sw-based algorithms. The

server’s power consumption was with 266 W for the acceler-

ator within the range also achieved by the different sw-based

algorithms (259 - 301 W).

6 DISCUSSION
This study analyzed the integration cost of accelerators used

for compression in terms of throughput, power consump-

tion and effort to integrate into the software stack using as

example the AHA378 compression card. During the study it
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was shown that the accelerator achieved up to 17 times the

throughput compared to the sw-based equivalent of the com-

pression algorithm (zlib level 2) while utilizing over 80 %
less resources. The throughput achieved by the accelerator

was at least 94 % of the advertised throughput.

6.1 Interpretations
6.1.1 Throughput. The accelerator’s throughput was stable
independent of the input data (<4 % variation), while the

software-based zlib level 2 had a throughput reduction

of up to 55 % depending on the data set. This suggests that

the logic on the accelerator could support a higher through-

put but some (bandwidth) bottleneck prevents this. During

the study it was shown that NUMA binding is important to

maintain a stable and good performance. Without NUMA

binding the same data input could have a decreased through-

put of up to 10 Gb/s for the entire benchmark. Likwid did

not deteriorate the measurements. Utilizing hyper-threading

for the sw-based algorithms did not increase the through-

put, but instead prevented a degradation of the performance

compared to the single core performance multiplied by the

number of real cores.

6.1.2 Memory Bandwidth. The measured memory band-

width, when using the accelerator, was between 2.8 to 3.3

times higher than the throughput of the uncompressed stream

to the accelerator. For normal operations one would expect

this to be a factor of 1.3 to 1.8 (1x sending uncompressed

data, 1x receiving uncompressed data). This can be explained

by the procedure how the data was sent to the card. In or-

der to not be limited by slow disk I/O bandwidth, data was

supplied from a circular, static memory buffer. To simulate

the additional write that would come from a high-speed net-

work card or storage device, from which the data would

originate, data was then copied out of the circular buffer

in properly sized chunks for the compression accelerator,

which accounted for one read and write. Data is then di-

rectly read by the accelerator via DMA and sent back to host

memory after compression, also via DMA. This results in 2

read/write cycles for the uncompressed input data, plus the

compressed output data, plus additional overheads caused

by the benchmark and the driver itself. Overall, this results

in a memory bandwidth 2.8 to 3.1 times higher than the

measured throughput.

6.1.3 Power Consumption. When installing the accelerator,

the default power consumption is set to 25 W. If the PCIe

slot supports 75 W, the kernel module can be loaded. The

difference between listed power consumption (25 W) and

measured power consumption (35 W), which was 10 W, can

be resolved as follows: the efficiency of the power supply is

about 80 %. This number was acquired by measuring the total

power consumption of the server in idle mode and while

running the compression benchmark full blast and expecting

that - as stated by the manufacturer - the accelerator con-

sumed 75 W. Removing the 20 % inefficiency of the measured

35 W results in a power consumption of 28 W. The slight

difference to the manufacturer-stated 25 W was likely due

to the power consumption of the motherboard itself and an

increased inefficiency of the power supply at a lower total

power consumption.

6.1.4 Comparison with Related Works. For a comparison

with the works of Abdelfattah et al. [1] and Qiao et al. [21],

the calgary corpus was run like described in their works.

Each file part of the corpus was compressed separately and

afterwards the geometric mean was calculated over all those

files to get the compression ratio for the entire corpus. This

was run with a subset of the sw-based algorithms, choosing

algorithms with the maximum and minimum compression

ratio and zlib. The sw-based algorithms achieved the follow-

ing values: snappy achieved 1.85, zlib level 2 achieved

2.65, zstd level 2 achieved 2.76, zstd level 21 achieved
3.26 and xz level 5 achieved 3.38. The accelerator achieved
a geometric mean compression ratio of 3.02 significantly sur-

passing the cited works which achieved a compression ratio

of 2.17 with 24 Gb/s[1] and 2.03 with 80 Gb/s[21].

6.1.5 Applicability for Real-World Applications. The here

presented pipeline-setup is a realistic model of the planned

data acquisition pipeline for the LHCb experiment at CERN.

For each captured particle collision the data will be filtered

for interesting events, compressed in-flight and sent to stor-

age. The compression will be done by directly streaming the

data to the accelerator after the data was filtered. Thus, the

data will at all times reside in the server’s main memory.

Only after the compression the data will be sent to perma-

nent storage, e.g. HDDs.

6.1.6 Limitations. The authors hoped to be able to analyze

the cycle activity for both benchmarks. The cycle activity

would have included e.g. an analysis about the percentage

of stalls, and stalls due to pending memory load for each

algorithm. With this it would be possible to argue about

the efficiency of each implementation, and if there is the

possibility to overlap dead time due to stalls with other com-

putational tasks. However, the server did not provide reliable

results for the cycle activity, often returning no results or re-

sults which changed from run to run significantly. This was

not an issue of likwid, but an issue of the server itself, as run-

ning with the Intel Performance Counter Monitor showed

the same problems. Such analysis is left for future work.
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6.2 Implications
In general, there is no surprise that the accelerator is faster

than the software-based algorithms while using significantly

less resources. However, for the system integration it is im-

portant to understand the underlying requirements so that

the accelerator’s performance is not degraded. To achieve

the maximum throughput, the accelerator needs 4 compress-
Threads NUMA-bound to the same node to which the ac-

celerator is attached. That means, for this particular server,

only 10 % of the CPU compute resources are needed (exclud-

ing the resources for queueThreads, which are considered

part of I/O). While compute requirements are rather low,

the memory bandwidth requirements of the accelerator are

notable. With up to 30 GiB/s of memory bandwidth it utilizes

over 80 % of the available memory bandwidth on a single

socket
4
. This memory bandwidth includes the allocation in

queueThreads for the data to be compressed.

These results suggest that compute-intensive tasks are

most compatible for a collocation on such a server, in order

to utilize the unused 90 % of the CPU time. Still, NUMA bind-

ing is important to prevent unnecessary data transfers and

collisions. Furthermore it allows to utilize the entire memory

bandwidth efficiently on the sockets which are not connected

directly to the accelerator. Possibly, the best choice would be

a task which utilizes the compression as post-processing step,

making sure that the data is already available in memory.

Alternatively, two accelerators could be put into one server,

which would then saturate the memory bandwidth.

As the benchmark used busy-waiting, it is strongly be-

lieved that the CPU overhead can still be reduced further.

Future work will focus on implementing a more complex

communication model based on polling to reduce the CPU

overhead, while also integrating other tasks on the same

server.

The results furthermore suggest that CPUs are not the

perfect solution for compression algorithms. Due to their

flexibility, they can either offer a higher throughput or com-

pression ratio than FPGAs for lower implementation costs,

but not both. However at the same time, CPUs are not as opti-

mized as FPGAs for heavy integer and bit operations, which

might even perform best in exotic bit lengths. It would there-

fore be interesting to analyze the cycle activity, especially

the stalls, for CPUs and FPGAs.

In terms of integration of the AHA accelerator, the authors

think the effort needed was - considering the complexity of

accelerators - on the easy to moderate side. Most of the time

the documentation clearly written and contained enough in-

formation to achieve good performance. However, for some

4
Note that for a dual socket the memory bandwidth will not increase by

the factor of two if a single program uses the entire server. This is due to

penalties in the cross-socket communication.

API calls it was significant to read the documentation thor-

oughly to understand all implications. Example code was

available and allowed a better understanding of the code

structure needed to interact with the accelerator. Compared

to other accelerators with similar functionality, the API pro-

vided did not seem to enforce over-complicated or overly

redundant structures to be maintained. Furthermore, the pos-

sibility to encapsulate the process in a single thread allows

to implement an easy-to-use access wrapper for high-level

developers. In contrast to this, the Intel QuickAssist came

with many different versions of accelerators or on-chip hard-

ware to choose from. In the documentation it was not clear

which feature is available on which device and the imple-

mentations needed more manual intervention for a working

device configuration. Additionally, the results achieved were

in the end not presentable.
5

For choosing an appropriate sw-based compression algo-

rithm 1 acan be used as reference. Independent of the data

set the relative ranking of throughput and compression ratio

of the algorithms should stay in the majority of cases the

same.

7 CONCLUSION
This study provided insights of the integration cost of ac-

celerators used for compression from system perspective,

considering power consumption and total machine utiliza-

tion. The results were compared to multiple software-based

algorithms, including zlib which was also provided by the

accelerator. Compared to the software-based zlib the ac-

celerator achieved equal compression ratio, but with up to

17 times increased throughput and utilizing over 80 % less

CPU resources. Overall, it seems that such a commercially

available compression accelerator is a good option to harvest

the advantages of FPGAs of providing high throughput for

well-known, reliable compression algorithms without inten-

sive FPGA development effort. Future works to be considered

are: Further improvements to reduce the workload on the

CPU while maintaining the compression performance and

characterizing the accelerator performance while different

workloads are run in parallel on the CPU.
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