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ABSTRACT 
With the development of remote sensing technology, the 
acquisition of remote sensing images is easier and easier, which 
provides sufficient data resources for the task of detecting remote 
sensing objects. However, how to detect objects quickly and 
accurately from many complex optical remote sensing images is a 
challenging hot issue. In this paper, we propose an efficient 
anchor free object detector, CenterFPANet. To pursue speed, we 
use a lightweight backbone and introduce the asymmetric 
revolution block. To improve the accuracy, we designed the FPA 
module, which links the feature maps of different levels, and 
introduces the attention mechanism to dynamically adjust the 
weights of each level of feature maps, which solves the problem 
of detection difficulty caused by large size range of remote 
sensing objects. This strategy can improve the accuracy of remote 
sensing image object detection without reducing the detection 
speed. On the DOTA dataset, CenterFPANet mAP is 64.00%, and 
FPS is 22.2, which is close to the accuracy of the anchor-based 
methods currently used and much faster than them. Compared 
with Faster RCNN, mAP is 6.76% lower but 60.87% faster. All in 
all, CenterFPANet achieves a balance between speed and 
accuracy in large-scale optical remote sensing object detection.   

CCS Concepts 
•Computing methodologies➝Artificial 
intelligence➝Computer vision➝Computer vision 
problems➝Object detection    
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1. INTRODUCTION 
Remote sensing image technology is increasingly used. For 
example, companies need to use remote sensing image technology 
to provide location-related services. Remote sensing images are 
used to build a complete and clear model of the earth and observe 
the movement of the earth's surface in real time. The government 
also uses remote sensing technology to provide weather 

forecasting, traffic forecasting and other services. With the 
increasing application of remote sensing technology, the datasets 
of remote sensing images are increasing[1]. The application of 
object detection in remote sensing images has become a hot issue. 

In object detection, remote sensing image detection is more 
difficult than natural image. Object detection in large remote 
sensing images (such as ship, aircraft and vehicle detection) is a 
challenging task because of the small size, large number of 
objects, and complex surrounding environment, which may lead 
to the detection model mistaking unrelated ground objects as 
object objects. The objects in natural images are relatively large, 
and the limited scenes are not complex compared to remote 
sensing images, making it easier to identify objects. This is one of 
the main differences between detecting remote sensing images 
and natural images. 

In recent years, many object detection methods based on deep 
learning have been proposed, which significantly improve the 
performance of object detection. Existing deep learning methods 
for object detection can be divided into two schools according to 
whether they are anchor-based or not. They are anchor-based 
regional proposals and anchor-free regression methods, 
respectively. 

In the past few years, anchor-based object detection methods have 
achieved great success in natural scene images. This method 
divides the framework of object detection into two phases. The 
first phase focuses on generating a series of candidate regions that 
may contain objects. The second stage classifies the candidate 
regions obtained in the first stage as target objects or backgrounds, 
and further fine-tunes the coordinates of the bounding box. R-
CNN[2] is one of the typical representative algorithms for object 
detection methods proposed by regions. R-CNN first obtains 
candidate regions with possible targets through selective search, 
then extracts the eigenvectors from the candidate regions using a 
convolution neural network, and then passes the eigenvectors into 
the support vector machine for classification. Although it 
introduces a neural network in the process of image feature 
extraction to avoid the drawbacks of artificial feature extraction, it 
is difficult to meet the speed requirements because of the 
convolution operation for each candidate region. Fast RCNN[3], 
Faster RCNN[4], Mask RCNN[5] and so on have made different 
improvements to R-CNN, resulting in excellent performance of 
the region proposal method. 

Nevertheless, due to the limited storage space and computing 
power of mobile devices, anchor-based methods require tens of 

  



thousands of anchors to be preset in the image for a high recall 
rate, which makes it difficult to further improve its detection 
speed. Therefore, researchers began to try to optimize the anchor-
free regression algorithm. 

The anchor free regression algorithm uses a single-stage object 
detection model for prediction, simplifying the two steps of object 
detection. Regression-based methods are much simpler and more 
efficient than region-based methods because there is no need to 
generate candidate region proposals and subsequent feature 
resampling phases. The DenseBox[6] proposed in 2015 was an 
early work of anchor free regression algorithm. It uses full 
convolution network to achieve end-to-end training and 
recognition and has a good effect on face detection tasks. 
However, due to the late publication of this paper, anchor free 
algorithm enters people's view later than region proposal object 
detection method, so region proposal method occupies a dominant 
position in the field of object detection. 

Redmon et al.[7] proposed YOLO (You Only Look Once), which 
uses object detection as a regression problem, divides the image 
into discrete grids, and directly returns the probability of bounding 
boxes and related classes. Since there is no region proposal 
generation stage, YOLO uses a set of candidate regions to directly 
predict results. YOLO is fast in design because the region 
proposal generation step has been completely abandoned. 
However, YOLO has a greater positioning error than RCNN 
because the bounding boxes are roughly divided. 

Law et al.[8] questioned anchor's dominant role in the SOTA 
object detection framework. Law et al. argue that anchor has 
drawbacks such as causing a huge imbalance between positive 
and negative samples, slowing down training speed, and 
introducing additional hyperparameters. Law et al. borrowed the 
idea of Associative Embedding in multi-person posture estimation 
and considered the boundary box object detection as the key point 
to detect paired upper left and lower right corners. In CornerNet, 
the network consists of two stacked Hourglass networks, and a 
simple corner pooling method is used to better locate corners. 
Based on COCO, CornerNet achieves 42.1% AP, surpassing all 
previous single-stage detectors. However, CornerNet has 
difficulty deciding which key points should be grouped into the 
same target, which can lead to detection errors. 

To further improve CornerNet, Duan et al.[9] proposed CenterNet. 
By introducing an additional key point in the center of the 
bounding box, corner matching is more accurate, the probability 
of mismatching corners in CornerNet is reduced, and COCO AP 
is increased to 47.0%, but this also results in slower matching than 
CornerNet. 

When a large amount of computation cost is allowed, anchor-
based region proposal algorithms usually achieve higher detection 
accuracy than anchor-free. Most of the winners in the well-known 
detection challenge are anchor-based. 

However, although CNN has achieved great success in natural 
scene images, it is problematic to use it directly for object 
detection in optical remote sensing images because of the 
difficulty in effectively handling the rotation changes of objects. 
Essentially, this is not a critical issue for natural scene images, 
because objects are usually in a vertical direction due to the 
gravity of the earth, so the direction changes on the images are 
usually small. Conversely, objects in remote sensing images, such 
as airfields, buildings, and vehicles, often have many different 
directions because remote sensing images are taken from airspace 

over the sky. In addition, small objects account for a large 
proportion in remote sensing images, are densely distributed, and 
the conditions for taking images are unstable, which are easily 
affected by factors such as lighting, clouds, camouflage and so on. 
Therefore, the accuracy of object detection in remote sensing 
images is often lower than that in natural images. 

Detection speed is also important in this area. For example, 
Sentinel-1 imagery the entire earth every six days. Even though 
Sentinel satellites were launched in 2014, they already have about 
25 PB of data. The Coperni-cus concept requires that the 
algorithm be fast enough and transferable enough to be applied 
across the earth's surface[10].  

However, most of the current remote sensing object detection 
algorithms are based on anchors, which has a lot of redundancy 
and high computational complexity, and the detection speed is 
relatively slow. The object detection model based on anchor free 
has lost some precision, but it often has faster detection speed. 
Therefore, it is of great significance to further explore the object 
detection method based on anchor free for improving the 
application ability of detect remote sensing image.  

The main contributions of this paper lie in the following two 
aspects. 

(1) We present a simple multi-classification object detection 
framework, which can be applied to remote sensing dataset. 

(2) We guarantee the accuracy of detecting the objects in the 
remote sensing image and make the detection speed greatly 
improved compared with the existing detector. 

Compared with the first stage network YOLOv2 and YOLOv3, 
our network speed is almost the same, and mAP is greatly 
improved. Compared with the fast RCNN of the two-stage 
network, the mAP is slightly reduced, but the speed is twice. All 
in all, the proposed model achieves the balance of speed and map 
to achieve high detection performance in large-scale optical 
remote sensing images. 

2. Methods 
This section mainly introduces the overall structure and details of 
the proposed network. Section 3.1 describes the overall network 
structure. Section 3.2 describes the encoder part of the network. 
Section 3.3 introduces the application of feature pyramid network. 
Section 3.4 introduces the structure of attention mechanism. 
Section 3.5 introduces the decoder part of the network and the 
inference process. Section 3.6 describes the loss function used in 
training.  

2.1 Overall network structure 
Our CenterFPANet is based on CenterNet, as shown in Figure 1. 
CenterFPANet is an anchor free network with encoder decoder 
structure. First of all, the encoder network mainly extracts the 
low-level and high-level features from the bottom-up, top-down 
and horizontal connection paths through the feature pyramid 
network, so that the model can better capture the global and local 
information. Then, the acquired features enable important 
channels to be assigned greater weight through channel attention 
mechanism. Finally, the feature image is transferred to the 
decoder network. The decoder part outputs heatmaps 
corresponding to each class, through which the probability of the 
center point of the object, the offset of the center point and the 
length and width of the center point object are obtained.  



  
 

 

 

 

2.2 Backbone network 
Resnet[11] proposed in 2015 is widely used in object detection 
task because of its simple and effective structure. Resnet 
introduces the design of deep residual block to connect the bottom 
feature jump to the top feature, which overcomes the problem that 
the gradient disappears and the accuracy cannot be effectively 
improved due to the deepening of network depth. In order to 
achieve the balance between speed and accuracy, we choose 
resnet-18 as the backbone. At the same time, we also introduced 
the asymmetric revolution block (ACBlock) in ACNet[12] 
published in 2019. We combine ACBlock with resnet-18, as 
shown in Figure 2. ACBlock uses 3 x 3 convolution blocks, 1 x 3 
convolution blocks and 3 x 1 convolution blocks to stack up 
instead of all 3 x 3 convolution blocks in Resnet. In the training 
stage, a variety of irregular convolution filters are used for the 
feature map, which makes the extracted features more diverse and 
richer, and improves the feature expression ability in encoder 
stage. Although some additional parameters are added and the 
training time is lengthened, the irregular convolution kernels of 
the same layer can be added directly in the reasoning stage 
without any computational complexity.  

 
 

2.3 Feature Pyramid Network 
Because the object of remote sensing data set has a large size span, 
we need to learn image features from feature pyramid 
network(FPN)[13]. Therefore, we introduced FPN, which is 

combined with Resnet. Most of the original object detection 
algorithms only use the top-level features for prediction, but we 
know that the feature semantic information of the lower level is 
relatively small, but the target location is accurate; the feature 
semantic information of the higher level is relatively rich, but the 
target location is relatively rough. FPN can improve the accuracy 
of the model by combining the low-level features with the high-
level features. 
Since the input image is extracted from different scales by FPN, 
how to use these feature maps is particularly important. There are 
two common processing methods. The first one is to predict the 
features of each layer extracted by FPN, and then fuse the features 
of each layer. The second is to fuse the features of each layer to 
form the final feature map, and predict the final result of this 
feature map. In the field of object detection, most of the anchor 
based models adopt the former method, as shown in Figure 3 (a). 
In the RPN stage, the regression coefficient and confidence degree 
of each anchor are predicted for each layer of feature map. The 
regression coefficient is applied to the coordinates of the initial 
anchor to obtain the prediction coordinates of all the anchors. 
Then, NMS algorithm is used to filter out the good bounding 
boxes from all the anchors, and then the following steps are 
carried out. In this way, we can filter enough bounding boxes 
from a large number of multi-level prediction bounding boxes, 
and reduce the time cost. However, the model of anchor free is 
different from that based on anchor. The model of anchor free 
based on center point detection is a direct prediction of center 
point probability graph, center point offset graph and length width 
dimension graph. This method can not directly predict the 
boundary box coordinates, and it is not convenient to stack the 
prediction results of all feature layers and then filter them. 
Therefore, we adopt the latter method, as shown in Figure 3 (b). 
The final feature map is obtained by using 1 x 1 convolution to 
reduce the number of channels.  

 
 
 
 

2.4 Channel Attention 
Although the convolutional neural network has strong non-linear 
expression ability, when the amount of information is too complex 
and more information needs to be processed, the corresponding 
model also needs to be deeper to obtain stronger expression ability. 
In order to reduce the complexity of the model, we can use 
attention mechanism to improve the ability of neural network to 
process information by the way of human brain processing 
overload information. Attention mechanism can make the model 
focus on more important information and ignore the unimportant 
information. In fact, the realization of attention mechanism is 

Figure 1. The overall structure of CenterFPANet. Encoder 
network includes feature pyramid network and channel 
attention mechanism. Decoder network includes three 

network branches that predict object center, center offset 
and object size. 

 
 

 
 

Figure 2. ACBlock combined with resnet-18 
 

 
 

Figure 3. There are two ways to use feature pyramids. (a) is 
often used in the model based on anchor. (b) is used in 

CenterFPANet. 
 

 
 



divided into three steps: information input, calculation of attention 
distribution, and calculation of weighted average of input 
information based on attention distribution. The general 
expression of attention mechanism can be as follows: 

𝑂𝑂 = 𝑓𝑓(𝑄𝑄𝐾𝐾𝑇𝑇)𝑉𝑉 (1) 
𝑄𝑄 is the query term matrix, 𝐾𝐾 is the corresponding key term, 𝑉𝑉 is 
the value term, and 𝑓𝑓  is the activation function. Attention 
mechanism can be universally understood as a layer of perceptron 
composed of 𝑄𝑄, 𝐾𝐾 and 𝑉𝑉, and its activation function is 𝑓𝑓. 
We hope that the attention used can give appropriate weight to the 
multi-level feature channel extracted by FPN, so that the model 
can dynamically adjust the weight relationship between the high-
level feature and the low-level feature according to the features of 
the input image. Here, the key to the problem of 𝐾𝐾 = 𝑉𝑉 = feature 
map is how to construct 𝑄𝑄. We choose SE block[14]ff as 𝑄𝑄  to 
construct the query matrix. SE block is mainly composed of two 
parts, namely 'squeeze' and 'excitation'. The nonlinear calculation 
of these two parts to the original image can be seen as the product 
of the original feature map 𝐾𝐾  and SE block. Then, through 
sigmoid for weight reduction, and then multiply with the original 
feature image 𝑉𝑉 , the new feature maps after weight change is 
obtained. 
In the squeeze step, Se block compresses the global spatial 
information into a channel descriptor to increase the receptive 
field. Compression is done by global average pooling. The next 
execution operation is used to activate the information in the 
aggregate feature. Se block adopts a simple gathering mechanism 
with a sigmoid activation, which can learn the non-linear 
relationship between channels and non-mutually exclusive 
relationship, so as to ensure that multiple channels can act 
simultaneously. 
The detailed implementation algorithm is as follows. 
SE block can be embedded in all kinds of models flexibly. The 
author of the original paper recommends that it should be 
embedded in the residual structure of Resnet. Considering the 
efficiency of our model, we connect directly behind the FPN 
structure. In the model, the multi-layer feature map predicted by 
FPN is directly sampled and concatenate to a uniform size, and 
then input to SE block to get the final feature map. Then, after 1 x 
1 convolution to reduce the channel dimension, heatmaps, width 
and height graphs and center-regression graphs are predicted 
directly. The detailed SE block structure is shown in Figure 4. 

 
 

2.5 Inference 
In the inference stage, the final bounding box category, bounding 
box coordinates and corresponding confidence need to be 
obtained from the heatmap and wh(width and height), offset  reg 
feature maps predicted by the model. The category and confidence 
of the object are derived from the heatmap. If the value of a pixel 
on the heatmap is larger than the surrounding eight pixels, then 

this pixel is called a hot spot. In the 𝑊𝑊 ∗ 𝐻𝐻 ∗ 𝐶𝐶 heatmap output by 
the model, each channel can extract several hot spots. We perform 
a 3×3 max pooling on the heatmap to obtain all hot spots of the 
entire image, and take the largest K values as object center points 
(K is the hyperparameter), denoted as (𝑥𝑥𝑐𝑐�,𝑦𝑦𝑐𝑐� ). The corresponding 
channel is the category of the object, and the corresponding value 
is the confidence of the object. After obtaining hotspots in each 
channel, the width, height, and pixel offset of the corresponding 
position can be directly obtained in the tensor of the 𝑊𝑊 ∗𝐻𝐻 ∗ (2 +
2) dimension output by object size (height and width) regression 
branch and the offset regression branch , denoted as (𝑤𝑤𝑐𝑐� , ℎ𝑐𝑐�) and 
(𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜� ,ℎ𝑜𝑜𝑜𝑜𝑜𝑜�). So the object position (𝑥𝑥1�,𝑦𝑦1�, 𝑥𝑥2�,𝑦𝑦2�)  detected by 
the model can be calculated by the following formula: 

𝑥𝑥1� = 𝑥𝑥𝑐𝑐� + 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜� −
𝑤𝑤𝑐𝑐�
2

(2) 

𝑥𝑥2� = 𝑥𝑥𝑐𝑐� + 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜� +
𝑤𝑤𝑐𝑐�
2

(3) 

𝑦𝑦1� = 𝑦𝑦𝑐𝑐� + ℎ𝑜𝑜𝑜𝑜𝑜𝑜�−
ℎ𝑐𝑐�
2

(4) 

𝑦𝑦2� = 𝑦𝑦𝑐𝑐� + ℎ𝑜𝑜𝑜𝑜𝑜𝑜� +
ℎ𝑐𝑐�
2

(5) 

Finally, up-sampling the above coordinates back to the original 
size to complete the output of the detected objects, the flow of the 
inference stage is shown in the figure below. 

 
 
 

2.6 Losses 
The output of the model is a tensor of dimension 𝑊𝑊 ∗ 𝐻𝐻 ∗ 𝐶𝐶 +
𝑊𝑊 ∗ 𝐻𝐻 ∗ (2 + 2), where W, H, and C are the width, height, and 
the number of object categories, respectively. The first '2' 
represents the height and width of the object centered on each 
position of the feature map, and the second '2' represents the offset 
of the horizontal and vertical coordinates of the corresponding 
pixel position. Due to down sampling, the pixel value of the 
object center point after down sampling only retains the integer 
part, and the detection of small objects will affect the accuracy, so 
this offset is added to correct the error of integer truncation. In 
order to deal with the problem of imbalance between positive and 
negative samples, this paper adopts an improved focal loss[15] as 
loss function for classification branch; for the regression training 

Figure 4. Channel attention mechanism combined with backbone. 
 

 
 

Figure 5. Output of decoder network. 
 

 
 



of height, width and offset, this paper adopts L1 loss; the final loss 
is the sum of the two. 
For a common object detection dataset, the ground truth format is 
mostly: x1, y1, x2, y2, label . The coordinates of two points are 
used to describe the object position, but the output of this model is 
a 𝑊𝑊 ∗ 𝐻𝐻 ∗ (𝐶𝐶 + 2 + 2) dimension tensor, so before calculating the 
loss, it is needed to convert the ground truth into the consistent 
form firstly. When calculating the ground truth of 𝑊𝑊 ∗ 𝐻𝐻 ∗ 𝐶𝐶 
dimension tensor, calculating the center point coordinates 
according to the original ground truth(Formula 6), then down-
sampling R times (here 𝑅𝑅 = 4), the center point pixel of the low-
resolution feature map after downsampling is recorded as 
q(Formula 7), then the ground truth in heat maps corresponding to 
q pixels all equal to 1, and the rest of the pixels should be 0 
because of the non-center point for any objects. But in fact, even 
if the model outputs is a few pixels nearby, the result of object 
detection is still very accurate, this design would make training 
difficult. Therefore, after setting the hot spots corresponding to 
the q pixel to 1, the Gaussian kernel diffusion method is used to 
diffuse the ground truth value to the entire 𝑊𝑊 ∗ 𝐻𝐻 ∗ 𝐶𝐶 
heatmap(Formula 8), where 𝛿𝛿1, 𝛿𝛿2  are the standard deviations 
related to the object size. If in one heatmap, multiple Gaussian 
distributions overlap, the larger one is directly taken. Through this 
conversion, in the heatmap, the position at the object’s center 
point is 1, and the value of the surrounding pixels gradually 
decrease to 0. When calculating the ground truth corresponding to 
height and width (𝑊𝑊 ∗ 𝐻𝐻 ∗ 2  tensor), simply record the object 
height and width after down sampling at the corresponding 
position. When calculating the ground truth corresponding to 
offset (𝑊𝑊 ∗ 𝐻𝐻 ∗ 2 tensor), just assigning the decimal part of the 
horizontal and vertical coordinates after down sampling to the 
corresponding position This completes the ground truth 
conversion. 

𝑝𝑝 = �
𝑥𝑥1 + 𝑥𝑥2

2
,
𝑦𝑦1 + 𝑦𝑦2

2 � (6) 

𝑞𝑞 =  �
𝑝𝑝
𝑅𝑅�

(7) 

𝑌𝑌𝑥𝑥𝑥𝑥𝑐𝑐 = exp�−
(𝑥𝑥 − 𝑞𝑞𝑥𝑥)2

2𝛿𝛿1
2 � ∗ exp�−

�𝑦𝑦 − 𝑞𝑞𝑦𝑦�
2

2𝛿𝛿2
2 � (8) 

Among them, x1, y1, x2, y2  in formula (6) are the pixel 
coordinates of the top left corner and bottom right corner of the 
object, and p is the coordinate of the object center point. R in 
formula (7) is the down sampling scale, and q is the coordinate of 
the corresponding pixel after down sampling R times at the center 
point p. 𝑌𝑌𝑥𝑥𝑥𝑥𝑐𝑐  in formula (8) represents the ground truth of the 
pixel of the Cth channel whose coordinates are (x, y), the range is 
[0,1], 𝑞𝑞𝑥𝑥 , 𝑞𝑞𝑦𝑦  represents the coordinate of the center point after 
down sampling, the value of the pixel is the maximum value 1, 
𝛿𝛿1, 𝛿𝛿2  are calculated by the height and width of the object. To 
ensure that the bounding boxes output by the model has a large 
IOU with the actual object, let 3𝛿𝛿1 = 𝑊𝑊′

2
, 3𝛿𝛿2 = 𝐻𝐻′

2
 in this article, 

where 𝑊𝑊′,𝐻𝐻′ are the width and height of the object after down 
sampling. Most of the ground truth after Gaussian kernel diffusion 
can fall in the central area of the object. 

2.6.1 Heatmap Loss（Classification Loss Function） 
For the calculation of classification loss, the output of the 
classification branch of this model is the probability that each 
pixel is the object center point. The model will regard the pixel 
points whose ground truth exceeds the threshold value 𝜑𝜑 in the 

heatmap (that is, the corresponding position of the object center 
point after down sampling) as positive samples, all other pixels 
with ground truth less than 𝜑𝜑 are regarded as negative samples, so 
the number of positive and negative samples is extremely uneven. 
In order to solve this problem, this paper uses improved focal loss 
as the loss function of classification branch, as shown in the 
following formula. 

𝐿𝐿𝑐𝑐 = −
1
𝑁𝑁��

�1 − 𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥� �𝛼𝛼 log�𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥� � ,𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥 ≥ 𝜑𝜑

�1 − 𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥�
𝛽𝛽�𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥� �𝛼𝛼 log�1 − 𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥� � ,𝑌𝑌𝑥𝑥𝑥𝑥𝑥𝑥 < 𝜑𝜑

(9) 

The original focal loss is suitable for binary classification, that is, 
the ground truth of positive samples is 𝑦𝑦 = 1, and the ground truth 
of negative samples is 𝑦𝑦 = 0 . However, the ground truth of 
positive and negative samples in this model is an interval (𝑌𝑌 ≥ 𝜑𝜑 
and 𝑌𝑌 < 𝜑𝜑), Therefore, the value of the ground truth is involved 
in the calculation of the loss function, so that the weight of the 
pixel points that are far from the center point and the prediction 
probability output by the model is large can be set higher, and the 
loss of such negative samples is increased, which is conducive to 
the loss function optimization process. Generally, the threshold 𝜑𝜑 
can be between 0.8 and 1 according to the actual application. The 
larger 𝜑𝜑, the more positive samples, but the less accurate in model 
training. This model considers that the heatmap is obtained by 
down sampling R (𝑅𝑅 = 4) times from the original image, and 
there is a certain deviation itself. If 𝜑𝜑  is small, the model is 
difficult to extract a more accurate center point, so just let 𝜑𝜑 = 1 , 
That is, pixels with a ground truth equals 1 in the original heatmap 
are regarded as positive samples, and the rest are regarded as 
negative samples. 

2.6.2 Width-height Loss and Offset Loss 
For the regression loss calculation of height, width and offset, 
because these values are relatively large, so we use L1 loss. As 
shown in the formula below. 

𝐿𝐿𝑤𝑤ℎ =
1
𝑁𝑁��𝑌𝑌𝑤𝑤ℎ − 𝑌𝑌𝑤𝑤ℎ� � (10) 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 =
1
𝑁𝑁��𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜� � (11) 

2.6.3 Total Loss 
The overall objective function of the model is the weighted sum 
of 𝐿𝐿𝑐𝑐，𝐿𝐿𝑤𝑤ℎ  and 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 . Considering that the classification branch 
loss and offset branch loss values are small, and the height and 
width branch loss values are relatively large, so set different 
weights, this model sets 𝜆𝜆1 = 0.1，𝜆𝜆2 = 1. 

𝐿𝐿 = 𝐿𝐿𝑐𝑐 + 𝜆𝜆1𝐿𝐿𝑤𝑤ℎ + 𝜆𝜆2𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 (12) 

3. Results 
This section reports several experiments conducted with the 
proposed architecture. 

3.1 Dataset 
In order to verify the effect of the model, we tested it on the 
DOTA dataset[16]. Dota is a large-scale dataset for object 
detection in aerial images. The images of in DOTA-v1.0 dataset 
are manily collected from the Google Earth, some are taken by 
satellite JL-1, the others are taken by satellite GF-2 of the China 
Centre for Resources Satellite Data and Application. It contains 
2806 aerial images, the size of each image is in the range of about 
800 × 800 to 4000 × 4000 pixels, and contains objects of various 
proportions, directions and shapes. There are 15 different 
categories in the dataset. The object categories in DOTA-v1.0 
include: plane, ship, storage tank, baseball diamond, tennis court, 



basketball court, ground track field, harbor, bridge, large vehicle, 
small vehicle, helicopter, roundabout, soccer ball field and 
swimming pool. The categories of the dataset are shown in Figure 
6(a). It can be seen that in all samples, more than 80% are 
vehicles, cars, ships and storage-tank, and the remaining 11 
categories have a small number of samples. This caused 
difficulties in training and testing. Moreover, as shown in Figure 
6(b), the sample size scales of different categories and the same 
category vary greatly, and it is difficult to choose an appropriate 
segmentation size to segment the original input image. Therefore, 
we have adopted multi-scale detection to deal with this problem. 
Due to the limitation of computing resources, we chose to split the 
input image into a size of 1024 * 1024 and use 824 as the stride. 
During prediction, the input image is scaled at different scales to 
reduce the difficulty of prediction caused by the different sample 
sizes. 
The entire splitted dataset is divided into two parts, namely 
training set and validation set. The separation method is to 
randomly sample 80% of the data as training set and 20% as 
validation set. For the training set, in order to further expand the 
dataset scale, we used color enhancement and random cropping 
for data augmentation. For the validation set, we adopt the same 
image cutting method, the size is 1024 * 1024, and the stride is 
824. Finally, the splitted prediction images are merged into the 
entire image, and then NMS is used to remove the overlapping 
bounding boxes at the borders of two adjacent images. 

 
 
 

 

3.2 Experiment Environment 
The experiments in this paper were conducted on E5-2650, 132G 
memory, 4 TITAN XP workstations. 

3.3 Evaluation Method 
The evaluation indicators used in the experiments are mAP, speed, 
model parameters, etc. 
mAP is a commonly used evaluation index in the field of object 
detection. mAP chooses the average value of precision under 11 
different recall values ([0, 0.1, ..., 0.9, 1.0]). Precision is the 
proportion of positive samples among all predicted samples. 
Recall is the proportion of all positive samples that are detected. 
The method to judge whether the predicted sample is a positive 
sample is to calculate the IOU of the predicted bounding box and 
the true bounding box. If the IOU is greater than the artificially set 
threshold, the predicted sample is a positive sample. IOU is an 
index to measure the overlapping degree of two bounding boxes.  
 

𝐴𝐴𝐴𝐴 =
1

11 � 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)
𝑟𝑟𝑟𝑟{0,0.1,…1}

(13) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(14) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(15) 

 
Speed is used to measure the detection speed of the model. The 
index to evaluate the speed of the model is the time taken (MS) to 
predict each picture on average.  
The amount of model parameters can measure the lightness of the 
model. The small amount of model parameters means that the 
model is more efficient and requires less computing resources. 

3.4 Evaluation Results 
The evaluation results of all the experiments in this section are 
performed on the DOTA valid set. The evaluation result (mAP) 
on the valid set is calculated using the official development kit 
provided by DOTA. The backbone of each experimental model is 
loaded with pre-trained weight files, which is pretrained by 
ImageNet dataset. The experimental results of our model always 
use the results of the 180th generation. The initial value of 
learning rate is 1.25e-4, and the optimizer is Adam optimizer, the 
maximum number of objects per image is set to 160. The model is 
detected on the 1024 * 1024 small image after cutting. When 
merging into the original image, NMS is needed. Here, the IOU 
threshold of NMS is set to 0.45. 
We evaluate the improvement of each module of the model 
separately. The baseline is the CenterNet that introduced 
ACBlock. Table 1 shows the mAP and AP of each category, 
including baseline model, the model with FPN module and the 
model with FPA module(combined FPN and Attention module). 
The baseline model architecture is CenterNet with the asymmetric 
revolution block(ACBlock). The 3 × 3 convolution kernel in the 
original Resnet network is replaced by 3 × 1, 1 × 3, 3 × 3 
convolution kernels, to extract more diverse feature maps, and 
then connect the classification branch and regression branch to get 
the final detection result. From Tabel 1, mAP is 62.26%, the 
detection accuracy in some categories, such as planet, large 
vehicle, tennis court, storage tank, etc. performs good. 
 

Figure 6. (a) The number distribution of objects in 
different categories; (b) the size distribution of objects in 

different categories. 
 

 
 



Table 1. Accuracy performance of different models 

Method Baseline Baseline+FPN Baseline+FPA Baseline+FPA+mutiscaletest 
Plane 88.90  89.14  88.83  88.74  
BD 66.83  69.02  69.63  71.25  

Bridge 43.42  45.18  47.22  48.95  
GTF 50.19  50.88  45.80  52.06  
SV 49.14  50.59  49.96  48.55  
LV 70.07  73.62  73.89  73.37  

Ship 65.09  66.44  63.46  61.14  
TC 90.52  90.48  90.44  90.53  
BC 61.92  54.80  59.52  57.63  
ST 75.29  82.15  83.65  84.06  

SBF 58.75  57.06  58.40  66.64  
RA 61.52  64.38  64.25  62.71  

Harbor 65.98  65.13  69.43  73.33  
SP 46.67  50.16  55.00  57.63  

Helicopter 39.63  46.07  40.55  42.76  
mAP 62.26  63.67  64.00  65.29  

 
After adding FPN on the baseline, that is, after Resnet-18 the 
feature pyramid network is used to obtain the features of different 
levels, and then deconvolution to the same size and concatenate 
them, and then connect the classification and regression branches 
after multi-layer feature maps to obtain the test results. Compared 
with baseline, after obtaining multi-layer feature maps, features of 
different scales can be extracted. Storage tank, helicopter and 
other categories have a good improvement, and the overall mAP 
is increased to 63.67%. 
Further, after introducing the attention mechanism on the basis of 
FPN, the weights of different channels are dynamically adjusted 
according to the characteristics of the input remote sensing image, 
and the most useful features are sent to the classification and 
regression branches. Similarly, training 180 epoch, storage tank, 
swimming pool and other categories improved significantly, and 
mAP reached 64.00%. 
Analysis shows that after adding FPA module (FPN + attention) 
to the baseline, it can obtain higher accuracy than the baseline, 
which verifies the effectiveness of the FPA module. Using multi-
level detection in the inference stage, mAP has further increased 
to 65.29%. Compared with the baseline, most categories of AP 
have more improvements. However, due to the large number of 
objects such as Plane, small vehicles, and large vehicles, or the 
original AP has reached a high level, these categories have not 
been significantly improved. 
We compared the inference speed, the amount of model 
parameters and mAP of the CenterFPANet with other common 
models. For YOLOv2 and YOLOv3, first we use K-means 
clustering algorithm to calculate the initial size of the anchors, and 
then train. The training parameters basically refer to the official 
Darknet[17], the initial learning rate is set to 0.001, iterative to the 
loss function convergence. We selected the 400,000th epoch’s 
model with the highest mAP as the experimental result. The 
models of RetinaNet, Faster RCNN, and MaskRCNN are 
provided by Mmdetection[18]. The relevant parameters of training 
also refer to official parameters. The initial value of learning rate 
is 0.01, which is decayed in the 16th and 22nd epochs respectively. 
Finally, the 24th epoch model with loss function convergence is  

 
selected for evaluation. The experimental results are shown in 
Table 2. 

Table 2. Time consumption of different models 

Method Speed(fps） Size(MB) mAP 
YOLOv2 20.2 240 42.72 
YOLOv3 9.0 262 37.42 

Mask RCNN 8.3 391 71.61 
Faster RCNN 13.8 380 70.76 

RetinaNet 12.2 367 67.45 
CenterFPANet 22.2 113 64.00 

YOLOv2 and YOLOv3 are both classic one-stage object detectors, 
which divide the entire image evenly into multiple grids, and 
directly predict N anchor sizes for each grid. Therefore, the 
detection speeds are 20.2fps and 9.0fps, respectively. However, 
due to the large scale of object size and the denseness of the 
objects in DOTA dataset, the YOLO series network is easy to 
miss small objects and dense objects, so it is not suitable for 
remote sensing images. They only reached 42.72% and 37.42% 
mAP. 
Faster RCNN and RetinaNet are classic anchor-based object 
detectors, which need to extract candidate anchors before making 
predictions. Based on Faster RCNN, RetinaNet introduces focal 
loss to solve the problem of sample imbalance. But in this 
experiment, the effect of Faster RCNN is better, reached 70.76%, 
which is 3.31% higher than RetinaNet. It shows that focal loss 
cannot solve the problem of sharp imbalance in the number of 
various samples in the DOTA dataset. In terms of speed, the 
anchor-based detectors are the slowest, only 13.8fps and 12.2fps. 
Mask RCNN is a semantic segmentation network based on Faster 
RCNN. Therefore, it is more accurate than Faster RCNN, but the 
speed is slowed by 5.5fps. 
CenterFPANet is also a one-stage object detection network, but 
compared to the YOLO series, our network is an anchor free 
detector, which directly predicts the location of the object center 
points, so the speed can be as high as 22.2fps, which is 1.9fps 
faster than YOLOv2. Compared with the two-stage network, it is 



 
 
 
almost twice as fast. In terms of accuracy, our network is more 
suitable for detecting dense objects and multi-scale objects, which 
is 21.3% higher than YOLOv2. CenterFPANet's mAP is 64.00%, 
which is 7.61% lower than Mask RCNN, but its speed is 2.67 
times faster. Therefore, it can be said that CenterFPANet has 
reached a balance between speed and accuracy. 

In terms of the size of the model, our network also has 
outstanding advantages. Our model parameters are only 113MB, 
only half of the parameters of the YOLO series, and one third of 
the RCNN series. 

Figure 7. Visualization of detection results from CenterFPANet 
 

 
 



We visualized the partial results of CenterFPANet in the DOTA 
dataset, as shown in Figure x. Since some object sizes are too 
small, we appropriately cropped 1024 size images. Each picture 
shows the predicted bounding boxes for each category. 
The typical characteristics of remote sensing images can be seen 
from above figure. The sharpness of the image varies, and the 
sharpness of Figure 7(i) is reduced due to nighttime shooting and 
blocked by clouds. The size of objects in different categories 
varies greatly, and the size of plane in Figure 7(a), and the 
baseball diamond and soccer ball field in Figure 7(d) and Figure 
7(n) are quite different. The objects are relatively dense, and the 
objects in Figure 7(j) are awfully close, which may cause missed 
detection. Some categories are relatively similar in shape, such as 
basketball court and soccer ball field, it is difficult to distinguish. 
Faced with the unique difficulties of these remote sensing images, 
CenterFPANet solved these problems well. For scenes with dense 
objects, as shown in Figure 7(j) and Figure 7(l), we can see that 
our model has less missing detection problems. In a multi-
classification scenario, as shown in Figure 7(k), the task can also 
be completed well. Of course, CenterFPANet also has some 
problems. As shown in Figure 7(h), the model missed the harbor 
in the upper right corner. We can observe that the shapes of these 
harbors are quite different, which makes detection difficult. This 
shows that CenterFPANet's generalization ability is not 
extraordinarily strong. 

4. Discussion 
We have proved the effectiveness of the FPA module through 
experiments. FPN enables the network to detect large and small 
objects more accurately at the same time. In the anchor free 
detection method, FPN is used to extract the characteristics of 
remote sensing images. It is impossible to directly generate 
anchors artificially at various level features, like anchor-based 
methods such as Faster RCNN. Given this problem, we 
introduced an attention mechanism, which is based on the 
characteristics of different images, adjust the weight of each 
channel dynamically to extract more useful features for 
subsequent detection subnetwork. 
Compared with other models, our speed and model parameters 
have outstanding advantages. The model capacity of only 110MB 
can be more easily embedded in the drone, and the speed of 
22.20fps can ensure real-time detection. At the same time, 
CenterFPANet can still maintain a high accuracy rate. 
In summary, compared with other models, CetnerFPANet is 
undoubtedly the most suitable object detection network for 
detecting remote sensing images. 

5. Conclusions 
In this paper, we discuss the problem of slow detection speed of 
the existing optical remote sensing image object detection model. 
To solve this problem, we propose a multi-classification object 
detection framework for optical remote sensing images. We adopt 
the strategy of lightweight encoder and multi-scale attention 
mechanism. With this strategy, the accuracy of network detection 
can be enhanced without huge loss of detection speed. 
Experiments show that the proposed framework is efficient and 
accurate for multi-scale objects in complex optical remote sensing 
scenes. 
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