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ABSTRACT

We consider durable data structures for non-volatile main memory,
such as the new Intel Optane memory architecture. Substantial
recent work has concentrated on making concurrent data structures
durable with low overhead, by adding a minimal number of blocking
persist operations (i.e., flushes and fences). In this work we show
that focusing on minimizing the number of persist instructions is
important, but not enough. We show that access to flushed content
is of high cost due to cache invalidation in current architectures.
Given this finding, we present a design of the queue data structure
that properly takes care of minimizing blocking persist operations
as well as minimizing access to flushed content. The proposed
design outperforms state-of-the-art durable queues.

We start by providing a durable version of the Michael Scott
queue (MSQ). We amend MSQ by adding a minimal number of persist
instructions, fewer than in available durable queues, and meeting
the theoretical lower bound on the number of blocking persist op-
erations. We then proceed with a second amendment to this design,
that eliminates accesses to flushed data. Evaluation shows that
the second amendment yields substantial performance improve-
ment, outperforming the state of the art and demonstrating the
importance of reduced accesses to flushed content. The presented
queues are durably linearizable and lock-free. Finally, we discuss
the theoretical optimal number of accesses to flushed content.

CCS CONCEPTS

+ Computing methodologies — Shared memory algorithms;
Concurrent algorithms; - Theory of computation — Data
structures design and analysis; « Hardware — Emerging ar-
chitectures; Non-volatile memory.
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The conference version of this paper is available at [46], and the code
is publicly available at https://github.com/galysela/DurableQueues.

1 INTRODUCTION

Byte-addressable non-volatile memory combines DRAM’s byte-ac-
cessibility, with the durability and size of storage. Various technolo-
gies, such as resistive random access memory [2], phase-change
memory [41] and 3D XPoint [25], are expected to become available
soon, with Intel/Micron 3D XPoint already available to consumers
(under the brand name Optane). Non-volatile RAM (abbreviated as
NVRAM) is expected to co-exist or replace DRAM in upcoming ar-
chitectures, allowing program’s modifications to its data structures
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survive system crashes. NVRAM platforms are expected to make
a fundamental change in the design of the computing infrastruc-
ture including file systems, databases and other computations that
process persistent data.

While data stored in main memory will survive a crash, with-
out further technological development, the caches and machine
registers remain volatile, losing their content during a crash. This
creates a consistency challenge, because writes may not reach the
memory at the time and order the processor issues them. When pro-
grams write data to memory, the CPU does not access the memory
directly, but rather writes to the cache and the data only later gets
flushed back to memory. Furthermore, the order in which cache
lines get written back to the memory is unpredictable, as cache line
evictions are triggered by local needs to make room for new cache
content. This process may cause the state of the memory after a
crash to become inconsistent, reflecting some modifications but
missing others, impeding correct recovery.

In order to make sure that the memory contains the required
data for a potential crash and recovery, special instructions are
used to force the flushing of cache lines from the cache to the mem-
ory. Asynchronous flush instructions initiate a cache line flush and
let other instructions proceed while the data is being copied to
memory. An additional synchronous fence (such as Intel’s SFENCE
instruction) makes sure that the flushing becomes visible before
any other memory instruction becomes visible to other threads.
The fence instruction is blocking and costly and therefore durable
algorithms have attempted to reduce the use of SFENCE to achieve
better performance. Cohen et al. [9] have shown that a durably
linearizable [27] lock-free [21] object must use at least one fence in-
struction per update operation at worst case. They also presented a
universal construction that achieves this bound, but their universal
construction was intended as a proof of existence and no attempt
was made to provide acceptable performance.

The initial goal of this project was to optimize the performance
of a durable FIFO queue. FIFO queues are used at the core of several
existing persistent messaging systems (e.g., IBM MQ [24], Oracle
Tuxedo MQ [37], Rabbit MQ [48] and many more). Currently these
queues are structured to suit the block-based interface of HDDs and
SSDs. This design incurs costs like marshaling queue updates in
streams, file system calls to persist message queues, etc., and so an
adaptation to NVRAM platforms can bring a dramatic improvement
to the queues performance and future use.

Following previous work in this area, we focused on reducing the
number of blocking persist operations. We started with the lock-free
queue of Michael and Scott [35] (denoted henceforth MSQ), which
was used in previous work [16] due to its wide applicability to all
architectures. We amended MSQ in two different manners, obtaining
two novel durably linearizable lock-free queue constructions with
a minimal number of blocking persist operations: one blocking
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persist operation for any data structure modification operation.
This meets the lower bound of Cohen et al. [9]. These two optimal
durable queue algorithms are the first contribution of this paper.

One of these two algorithms, called UnlinkedQ, is designed in
the spirit of [57] to avoid persisting the underlying node links.
In this algorithm, we allocate the nodes on designated areas, in
which the recovery procedure can look for valid nodes of the queue.
This requires a new persistent ordering mechanism that allows
the recovery to determine the order of nodes in the queue without
incurring a large overhead on the normal execution of the queue.
The second algorithm, denoted LinkedQ, does persist the underly-
ing node links. It reduces the number of fences by using a validity
scheme to inform the recovery algorithm which nodes are adequate
for recovery. It also adds a backward link to the queue nodes, for
enabling to efficiently assist persisting concurrent operations.

We implemented these two algorithms on a platform with an
Intel Cascade Lake processor and an Intel Optane NVRAM. Surpris-
ingly, the new algorithms did not show a clear improvement over
the state-of-the-art durable queue of Friedman et al. [16] although
Friedman’s queue executes more blocking persist operations during
the execution. Further investigations raised an interesting problem.
Our queues frequently access flushed cache lines, and these accesses
significantly deteriorated performance. It turned out that Intel flush
instructions, which flush a cache line to the NVRAM, cause the
flushed cache line to be invalidated in the cache, so that subsequent
accesses yield cache misses and re-read the data from memory.
(We tried various instructions including the most advanced CLWB
instruction, but they all had the same performance degradation ef-
fect). The resulting additional loads from memory are significantly
more costly on NVRAM than on DRAM, due to the high NVRAM
read latency. While the recently-launched Intel Ice Lake processors
with Optane persistent memory 200 series may provide flush in-
structions that do not invalidate the flushed cache lines, existing
NVRAM architectures with Cascade Lake processors do not seem
to support such instructions. Our impression is corroborated in the
findings of [5, 15, 17, 20, 28, 50, 52]. Existing (costly) architectures
will probably remain in use for years to come and one needs to use
algorithmic modifications to obtain improved performance on such
machines.

We amended the two algorithms further, obtaining algorithms
that avoid accessing flushed locations. While changing the algo-
rithms, we made sure that their original advantage of a single fence
per update operation is maintained. An evaluation of this second
amendment demonstrates a significant performance improvement,
which confirms the high cost of accessing flushed content on these
platforms.

The second contribution of this paper is a guideline for designing
durable data structures and algorithms for NVRAM. In addition
to the well-known guideline to minimize blocking persist opera-
tions, we recommend designing algorithms with reduced access
to recently flushed cache lines!. This guideline is relevant for plat-
forms that invalidate cache lines when flushing their content to
the memory, and the purpose is to avoid the cost of fetching data

!We consider only explicitly flushed cache lines. There are additional implicit flushes,
e.g., when the system evacuates cache lines to make space for new lines that need to
be loaded to the cache. Such implicit flushes are hard to predict and this guideline does
not attempt to consider them.
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from the memory after it is evicted from the cache. This guideline
is especially important in light of the high read latency of available
NVRAM (see measurements in [50, 55]).

Our third contribution is the design of durable lock-free queues
with significantly improved performance for the new Intel Optane
architecture. We present OptUnlinkedQ and OptLinkedQ, obtained
by amending UnlinkedQ and LinkedQ respectively according to
the new guideline. OptUnlinkedQ and OptLinkedQ are the best per-
forming lock-free durable queues available today. We compare the
performance of OptUnlinkedQ and OptLinkedQ against state-of-
the-art durable queues and against UnlinkedQ and LinkedQ them-
selves, which use minimal blocking persist operations but do not
consider the new guideline and do not reduce access to flushed
cache lines. While OptUnlinkedQ and OptLinkedQ outperform all
other queues on nearly all thread counts and workloads, we believe
UnlinkedQ and LinkedQ are still interesting to present. This is be-
cause for potential more advanced platforms that might provide
flushing without cache invalidation, UnlinkedQ and LinkedQ may
turn out best.

From a theoretical standpoint, it is interesting to note that Opt-
UnlinkedQ and OptLinkedQ yield the best possible design charac-
teristics for durability. Following our guideline above, they make
zero accesses to content that was previously (explicitly) flushed,
while they also meet the lower bound shown by Cohen et al. [9],
executing only a single blocking persist operation per data structure
update operation. Interestingly, while these theoretical character-
istics are the best possible, they are also obtainable for any object.
This follows from the universal construction of [9]. While Cohen’s
universal construction of lock-free durably linearizable data struc-
tures is not practical, it has the above-mentioned characteristics
(a single blocking persist instruction per update operation and no
access to flushed content) and it is applicable to any object.

The rest of the paper is organized as follows. In Section 2 we
elaborate on the model and the general upper bound on the de-
sign parameters. In Section 3 we recall the definitions of durable
linearizability and lock-freedom as well as MSQ, the basic queue
algorithm that we extend in our constructions. We discuss related
work in Section 4. In Section 5 we provide an overview of the main
ideas in the first amendment to MSQ: minimizing blocking persist
operations, which produces UnlinkedQ and LinkedQ. In Section 6
we describe the second amendment to the two algorithms, adhering
to the guideline of reducing access to flushed data, which results in
the optimal queues OptUnlinkedQ and OptLinkedQ. The details of
the UnlinkedQ algorithm are provided in Section 5, while further
details of the rest of our queues are deferred to Appendices A-C.
We argue about the durable linearizability and lock-freedom of
our queues in Sections 7 and 8. The memory management scheme
applied in our queues is described in Section 9, and the performance
of all queue algorithms is evaluated in Section 10. We conclude in
Section 11.

2 MODEL

In the persistent memory model, there are two levels of memory -
volatile (registers, caches) and persistent (NVRAM). Values in the
cache may be written back to the persistent memory implicitly by
a cache eviction, or explicitly by flush instructions. We adopt the
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failure model of Izraelevitz et al. [27] for crashes, which considers
full-system crashes in which all processes fail together. The state of
the volatile memory is lost in a crash, but the state of the persistent
memory remains unaffected. After a crash, new threads are created
and proceed with the computation. Each data structure may provide
a recovery procedure to be invoked after the crash for restoring a
consistent state of the object from its preserved state in the NVRAM.
Our data structures apply a complete recovery before continuing
with any new operation.

To maintain correctness in the presence of crashes, one has
to ensure that necessary writes propagate from the cache to the
persistent memory. To ensure a written value becomes persistent
(after being written to the cache), one may issue a flush instruction
and block until it completes. A flush instruction receives a mem-
ory address and flushes the content of the cache line containing
this address to the persistent memory. Some flush instructions are
asynchronous, enabling issuing multiple flushes concurrently as
an optimization. Subsequently, a store fence instruction, denoted
SFENCE (like the instruction name on Intel), may be placed to en-
sure completion of all previous asynchronous flushes. Throughout
the paper, when mentioning a persisting of a location, we refer to
an asynchronous flush of its address accompanied by an SFENCE
to ensure that the data in this location has been written to the
NVRAM.

Intel flush instructions (such as the synchronous CLFLUSH and
the asynchronous CLFLUSHOPT and CLWB) take a memory location
and write back the cache line containing it to the memory, if this
line consists of modified data. According to the Intel architectures
software developer’s manual [26], CLFLUSH and CLFLUSHOPT do not
only write the cache line to the memory, but rather also invalidate it.
Regarding CLWB, the Intel manual states that it may retain the line in
the cache. However, on the Second Generation Intel Xeon Scalable
Cascade Lake processor we use, CLWB seems to invalidate the cache
line like CLFLUSHOPT does: replacing CLWB with CLFLUSHOPT in all
the data structures we measured yielded similar performance. This
is also noted by others [e.g. 5, 15, 17, 20, 28, 50, 52]. The recently-
launched Third Generation Intel Xeon Scalable Ice Lake processors
with Optane persistent memory 200 series may implement CLWB
retaining lines in the cache, but NVRAM platforms currently in the
market do not seem to support flushes without cache invalidation.
Existing architectures will probably remain in use for years to come.
Therefore, designers of efficient durable algorithms should take into
consideration the cost of accessing a memory location after it was
flushed and evicted from the cache.

To eliminate some of the costly persisting occurrences, we rely
on the following assumption, which is based on the cache line gran-
ularity of write backs to memory. The assumption is mentioned in
the SNIA NVM programming model [47, Section 10.1.1], adopted by
Intel for working with persistent memory (as stated in Intel’s for-
mal persistent memory programming book [44]), and is confirmed
by Intel Senior Principal Engineer Andy Rudoff in online informal
discussions [e.g. 4, 42, 43]. This assumption was also previously
made in [6, Footnote 16] and [8, Assumption 2].

ASSUMPTION 1. A cache line is evicted atomically to memory,
thus, the order of multiple writes to the same cache line is preserved

in memory. In other words, the content of a cache line in the memory
reflects a prefix of the stores to that cache line.

As the order of writes to the same cache line is preserved in
NVRAM?, placing a flush plus SFENCE between them to ensure
their persistence order (which is required for writes to different
cache lines) is redundant.

In addition to a flush, another useful instruction for our algo-
rithms is an instruction that writes back data directly to the memory
without touching or polluting the cache (like movnti). Such asyn-
chronous instructions require an accompanying SFENCE to ensure
their completion.

2.1 Upper Bound on Accesses after a Flush

Due to cache invalidation after a flush, we recommend designing
algorithms that minimize accesses to flushed content. This comes
in addition to designing algorithms that minimize blocking flushes.
In fact, we claim that it is possible to implement any object with
a deterministic sequential specification in a durably linearizable
lock-free way using the minimum possible number of fences (one
per update operation and zero per read-only operation, as proved by
[9]) while at the same time performing zero accesses to (explicitly)
flushed cache lines.

To prove our claim, we leverage the universal construction of [9],
called ONLL. ONLL consists of two main components. The first is a
shared execution trace, containing a mark indicating the trace’s pre-
fix guaranteed to be persistent. This prefix represents the current
state of the object. The execution trace is not used during recov-
ery, thus also not persisted to memory. The second component
is local per-thread persistent logs (adopted from [8]), that will be
read during recovery. An update operation first appends a record
representing it to the execution trace, then appends a copy of the
trace’s suffix that is not yet guaranteed to be persistent to its local
log and persists it, and finally marks the trace’s prefix up to the
current operation as persistent. A read-only operation calculates
its response based on the current state of the object, represented
by the trace’s marked prefix.

[9] proves that ONLL obtains the minimum possible number of
fences. We suggest the following slight modification to ONLL: align
log entries to cache lines, so that no two entries will share a cache
line. By applying this modification, ONLL still obtains minimum
fences, while also performing no access to flushed memory. This is
because only data in the local per-thread persistent logs is explicitly
flushed, and these logs’ cache lines are not accessed after their flush:
they are read only during recovery, and not written by following
log appends — which write to following cache lines thanks to our
modification.

2Writes to the cache are not guaranteed to occur in program order, due to compiler
optimizations, but program order can be enforced by placing inexpensive release fences
(that prevent compiler optimizations, thus, ordering writes to cache). We placed release
fences in our implementation where required, and we do not further mention them
here.



3 PRELIMINARIES FOR THE DURABLE
QUEUES

3.1 MS-Queue

Our persistent queue algorithms extend the widely used MSQ (the
Michael and Scott queue [35]), a well-performing concurrent queue
adequate for general hardware, included as part of the Java™ Con-
currency Package [32]. This is a (non-persistent) lock-free FIFO
queue, which supports enqueue and dequeue operations. It imple-
ments the queue as a singly-linked list with head and tail pointers.
Nodes in the list have two fields: a value and a next pointer. The
head points to the first node of the list, which functions as a dummy
node. Subsequent nodes, after the dummy and until the node whose
next pointer’s value is NULL, contain the queue’s items. The queue is
initialized to an empty queue as a list that contains a single (dummy)
node, to which both the head and tail point.

A dequeue operation checks if next of the obtained head is NULL
(meaning the queue is empty). If so, this is a failing dequeue that
returns without extracting an item from the queue. Otherwise, an
attempt is made to update the head to point to its successive node
in the list, using a CAS, and on failure the dequeue operation starts
over. A dequeue that succeeds to perform a CAS that advances the
queue’s head is denoted a successful dequeue.

Enqueuing requires two CAS operations. Initially, a node with
the item to enqueue is created. Then, an attempt to set tail->next
to the address of the new node is made using a first CAS. The CAS
fails if the value of tail->next is not NULL in that moment. In such a
case, an attempt to advance tail to the current value of tail->next
is made using a CAS, to help an obstructing enqueue operation
complete. Then, a new attempt to perform the first CAS starts. After
the first CAS succeeds, a second CAS is applied to update tail to
point to the new node.

3.2 Linearizability and Durable Linearizability

Defining correctness for durable executions in the presence of both
concurrency and NVRAM is not a trivial task. In this work, follow-
ing recent work in this domain, we adopt durable linearizability
[27] described below as a correctness criterion. Nevertheless, it is
easy to verify that our proposed queues satisfy also other correct-
ness criteria, like strict linearizability [1], persistent atomicity [18]
and recoverable linearizability [3].

We recall some basic terminology. An operation consists of two
events — invocation and response. An execution of a concurrent
system in the full-system-crash model may be modeled by a finite
sequence of events of three types: invocation events and response
events, each tied to specific process and object, and system crash
events (which are not tied to a specific process or object). Such
sequence is denoted a history. An operation in a given history is
pending if the history contains only its invocation event and not
its response event. We refer to an operation for which the history
contains also the response as completed. Each object has a sequential
specification, which describes its behavior in sequential executions,
where operations do not overlap.

A history without crash events is considered linearizable [22, 45]
if each completed operation appears to take effect at once, between
its invocation and its response events, in a way that satisfies the
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sequential specification of the objects. Each pending operation
is required to either take effect at once after its invocation in a
way that satisfies the sequential specification of the objects, or
not take effect at all. A history in the full-system-crash model (i.e.,
a history that might contain crashes in which all processes fail
together and there is no subsequent thread reuse) is considered
durably linearizable [27] if the history with the crashes omitted is
linearizable.

3.3 Lock-Freedom

A concurrent object implementation is lock-free [21] if each time a
thread executes an operation on the object, some thread (not nec-
essarily the same one) completes an operation on the object within
a finite number of steps. We extend the definition to executions
with crashes, and define a concurrent object implementation to be
lock-free in the presence of crashes if each time a thread executes an
operation on the object, and there are no interrupting crash events
since the operation’s invocation, some thread (not necessarily the
same one) completes an operation on the object within a finite
number of steps. This definition is equivalent to the one brought
in [57], which considers crashes as progress, as if a crash is one
of the operations on the data structure. Lock-freedom guarantees
system-wide progress. Our implementations are lock-free.

4 RELATED WORK

There has been a large body of work by multiple communities that
provides algorithms for NVRAM. Several libraries for persistent
transactional access to objects in NVRAM have been proposed [7, 10,
30, 33, 40, 49, 51, 53, 56], but persistent transactions require heavy-
duty logging mechanisms, and thus do not yield highly efficient
solutions, and are not competitive with ad-hoc constructions such
as ours. [34] presents an NVRAM library taking another logging-
based approach. Izraelevitz et al. [27] suggested to automatically
make concurrent objects durably linearizable by adding a flush
and a fence after each access to global memory (a read or a write).
This transformation yields a durable variant of any existing lock-
free data structure, but the resulting implementations are typically
inefficient. The first ad-hoc efficient lock-free durable data structure
was the queue presented by Friedman et al. [16], with a substantial
reduction of the number of fences executed with each operation
over the general construction of Izraelevitz. Subsequently, David et
al. [12] presented lock-free durable set implementations (including
a linked list, a skip list and a hash map). Zuriel et al. [57] improved
over that construction and presented a set with a single SFENCE
per update operation, thus meeting the lower bound of Cohen
et al. [9] and also obtaining much better performance. Raad et
al. [39] implemented a persistent FIFO queue to demonstrate the
application of their suggested hardware model, but did not aim for
optimized performance (e.g., they do not track the tail pointer, thus
significantly slowing down enqueues).

5 FIRST AMENDMENT: QUEUES WITH
MINIMUM FENCES
The current literature offers a fast queue with several fences [16]

on the one hand, and a universal construction for all data struc-
tures with a single fence (per update operation) which is extremely
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inefficient [9] on the other hand. A question that naturally arises
is whether it is possible to reduce the number of fences to the
minimum possible number, and at the same time be able to use
this reduced blocking to obtain a better performing queue. In this
section we provide two durably linearizable lock-free queues, Un-
linkedQ and LinkedQ, that meet the theoretical lower bound on
the number of fences (a single SFENCE per operation).

5.1 UnlinkedQ

As its name implies, UnlinkedQ does not rely on links between
nodes for restoring the queue after a crash and therefore does not
persist them, similarly to the basic idea in [57]. It keeps all infor-
mation required for recovery in the nodes themselves, which are
located in designated areas. Upon a crash, the recovery procedure
checks these nodes to decide which ones are valid and belong to the
resurrected queue. The links are still used to expedite operations
on the queue when no crash occurs, but they are not required to
reconstruct the queue after a crash. Care is taken to persist the
queue order in the nodes to allow proper recovery.

UnlinkedQ places index and linked fields in each node to enable
the recovery to identify which nodes in the designated areas should
be restored and in what order. The index field states the node’s
index in the queue (according to enqueue order). Overflow can be
handled, but for now we allocate 64 bits for the index field and
assume that it does not overflow (while humans are still around).
The linked field marks nodes that have been added to the queue.
After an enqueuer succeeds to link a node to the queue, it sets
its linked flag, and then persists the node content. The recovery
procedure resurrects nodes that are marked linked and have an
index larger than the head, and arranges them in the order induced
by their indices. After advancing the head, a dequeuer persists the
new head’s index, to indicate to the recovery that all nodes up to
this one are dequeued. This scheme forms a consecutive prefix of
dequeued nodes - all those that the head has persistently passed,
thus satisfying the FIFO order requirement.

The simple scheme described so far involves several races which
should be resolved. One race stems from the fact that the order in
which enqueue operations complete does not necessarily match
the linking order of their nodes. For example, it is possible that the
enqueue of the fourth node in the queue has completed before the
enqueue of the third node in the queue completed. Hence, it might
be that the fourth node is marked linked while the third node is
not. One consequence of this race is that the indices of valid linked
nodes that the recovery identifies do not always form a sequence
of consecutive integers. Even worse, a dequeue operation might
point the head at a node inserted by a concurrent enqueue, whose
content is not yet flushed and therefore contains a stale index that
may confuse the recovery.

Next, we elaborate on the implementation of UnlinkedQ, includ-
ing describing how it resolves the above-mentioned issues. The
UnlinkedQ algorithm is presented in Figure 1. A description of its
operations follows.

5.1.1 The Enqueue Operation. The enqueue operation first allo-
cates a node and initializes its data (Lines 21-23). It then unsets
linked (Line 24), sets the index of the new node to be the index
of the last node plus one (Line 28), and attempts to link the node

Figure 1: UnlinkedQ implementation

1 class Node
2 Itemx item

3 atomic<Nodex> next
4 bool linked
5 int index

¢ Item*x Dequeue()
7 while (true)

8 head = Head

9 headNext = head.ptr->next

10 if (headNext == NULL)

11 FLUSH(&Head.index); SFENCE

12 return NULL

13 if (CAS(&Head, head, (headNext, headNext->index))

14 dequeuedItem = headNext->item

15 FLUSH(&Head.index); SFENCE

16 if (nodeToRetire[tid]) // It equals NULL in the
first successful dequeue

17 retire(nodeToRetire[tid])

18 nodeToRetire[tid] = head.ptr

19 return dequeuedItem

20 Enqueue(item)

21 newNode = allocNode()
22 newNode->item = item
23 newNode->next = NULL

24 newNode->linked = false
25 while (true)

26 tail = Tail

27 if (tail->next == NULL)

28 newNode->index = tail->index + 1

29 if (CAS(&tail->next, NULL, newNode))
30 newNode->linked = true

31 FLUSH(newNode); SFENCE

32 CAS(&Tail, tail, newNode)

33 break

34 CAS(&Tail, tail, tail->next)

to the queue (Line 29). The reason linked is unset before index is
updated, is that when the node is allocated, its linked flag might
be set; thus, assigning the new node a relevant index in this state
might erroneously cause the recovery to restore the node even
though it is not yet linked to the queue.

After succeeding to link the node, the enqueuer sets its linked
flag (Line 30), to signal to the recovery (that would run if a crash
occurs) that the node should be restored. The described order of
writes to the node fields guarantees, based on Assumption 13, that
a node will be restored by the recovery only if it is successfully
linked. Finally, the enqueuer persists the node and advances the
queue’s tail to point to the new node (Lines 31-32). If a concurrent
enqueue operation interferes, the enqueuer attempts to assist the
other enqueue to advance the tail to point to its node (Line 34),
before starting a new attempt to enqueue its own item.

3 Applying Assumption 1 requires that the whole node resides on a single cache line,
which is typically the case, and it also holds for the queues implemented in this paper.
The method of [8] can be used to generalize the algorithms to nodes that span multiple
cache lines without adding fence operations.



We note that the recovery procedure might restore a suffix of
enqueues with nonconsecutive indices. This happens only if several
enqueues are running when a crash occurs: an enqueue that linked
e.g. the fourth node in the queue might have set its linked flag and
persisted it before the crash, while an enqueue that linked the third
node in the queue has not. Discarding pending enqueue operations
which have not set and persisted the linked flag is correct due to
the following observation:

OBSERVATION 1. Durable linearizability allows pending operations
to not be linearized. Therefore, the recovery may discard pending
enqueue operations, which might result in a suffix of enqueued nodes
with nonconsecutive indices.

5.1.2  The Dequeue Operation. If a dequeue operation encounters
an empty queue, it returns NULL. Otherwise, it attempts to advance
the head by one node, and on success — it returns the oldest item
to the caller. On failure it retries the whole scheme.

To signal to the recovery procedure that it should ignore the
dequeued node, a successful dequeue operation ensures that the
head’s index is persistently increased to a value bigger than or
equal to its dequeued node’s index. Persisting the new head’s index
is intended to indicate to the recovery not only that this node is
dequeued, but also that all nodes up to this one are dequeued, and
a failing dequeue also needs to persist the head’s index before
returning in order to persist the previous dequeues that emptied
the queue. This is obligatory due to the following observation:

OBSERVATION 2. The recovery must restore a consecutive prefix of
dequeued nodes, to satisfy the FIFO order requirement.

The recovery achieves this by interpreting nodes with index
smaller than or equal to the head’s index as dequeued.

A successful dequeue is responsible to reclaiming the node that
was the head during the previous dequeue that this thread executed.
This node to be retired is kept in a nodeToRetire array, consisting
of a cell per thread. Its cells do not share cache lines to avoid false
sharing. Each thread may access its cell using its thread ID as an
index.

Next, we explain how dequeuers ensure that the correct head’s
index is restored by the recovery. If we let a dequeuer persist the
head’s address, and let the recovery determine the head’s index
to be the index in the node pointed to by this head (as appears in
NVRAM in the crash moment), then the recovery might erroneously
restore a stale (smaller) head’s index value, and discard completed
dequeues. This could happen if the enqueuer of the node pointed to
by the head has linked the node but was interrupted by the crash
before persisting the node’s data. Therefore, UnlinkedQ takes a
different approach to determine the head’s index in recovery.

UnlinkedQ makes the head hold not only a pointer to the dummy
node, but also its index. They are held side-by-side and updated
together atomically using a double-width CAS. A dequeuer starts by
performing a double-width CAS (Line 13) that advances the head’s
pointer and increments the head’s index. Next, the dequeuer persists
the index placed in the head (Line 15). A failing dequeue assists
persisting the head’s index too (Line 11).% The recovery procedure

4We particularly specify the head’s index as the flushed value in order to stress that
this is the data required in recovery, but its flush clearly writes the whole containing
cache line to the memory.
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restores the head’s index from the value kept in the queue’s head,
rather than from the possibly stale value in the node pointed to by
the head. This prevents discarding a completed dequeue: persisting
the head’s index after incrementing it to the index of the dequeued
node, makes the recovery procedure ignore the dequeued node.

The use of a double CAS can be eliminated (if the platform does
not support it) by taking an alternative approach: Each thread could
maintain a local index. After each time it advances the queue’s head,
it would update the local index with the value of the new head’s in-
dex and persist it. The recovery would then restore the head’s index
as the maximum across these local indices. The alternative handling
of the head’s persistence described here, is actually required and
applied in the second amendment of MSQ (see Section 6).

5.1.3 Recovery. The recovery procedure of UnlinkedQ resurrects
nodes in the designated areas that are marked linked and have an
index bigger than the head’s index. It then sets their links to form a
linked list that holds the queue nodes in the order induced by their
indices. This is implemented as follows.

The head’s index is not modified. A dummy node is allocated
and assigned an index that matches the head’s index. The head’s
pointer is set to point at this dummy node. Next, the recovery scans
the designated areas and makes a list of recovered nodes, which
are those with a set linked flag and an index larger than the head’s
index. All other nodes are reclaimed. The recovered nodes are then
sorted and their next pointers are set accordingly to create the
queue. Finally, the queue’s tail is set to point to the last node in the
queue.

We note that free nodes (owned by the memory manager) in the
designated areas are appropriately ignored by the recovery: When
the memory manager allocates a new designated area for nodes
from the operating system, it zeros its content, to make all nodes
consist of a zeroed index, and then persists it in NVRAM (by placing
asynchronous flushes of the whole area accompanied by a single
SFENCE). If the number of required nodes is unknown in advance,
each time a designated area is depleted, the memory manager may
allocate a new area from the operating system and initialize it in a
similar manner using a single SFENCE. The zeroed indices guarantee
that the unused nodes owned by the memory manager are ignored
by the recovery. In addition to these not-yet-allocated nodes, nodes
reclaimed by dequeuers are also ignored by the recovery thanks
to their index value, as dequeue operations return nodes to the
memory manager only after the head’s index persistently equals
to the index of a subsequent node. Finally, nodes reclaimed by a
previous recovery process are ignored thanks to either their index
or their unset linked.

5.2 LinkedQ

LinkedQ also performs a single fence in each operation, but using
a completely different approach. Here, we provide an overview of
LinkedQ, and the full details appear in Appendix A.

The first idea LinkedQ employs is to make the recovery proce-
dure able to deal with nodes whose data has not been persisted.
This allows linking nodes to the queue without blocking to persist
their data beforehand, thus avoiding one of the fences of the queue
in [16]. To enable this, LinkedQ presents a mechanism that identi-
fies nodes with stale data: a designated initialized flag in each node
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signifies whether the content of the node is guaranteed to be valid.
We maintain the invariant that if the node’s data is not initialized
in NVRAM, then its initialized flag is unset in NVRAM. To achieve
this, LinkedQ’s enqueue operation initializes the node in two steps:
first, it initializes the node content, and then it sets the initialized
flag. No SFENCE is issued during this execution, as Assumption 1
guarantees that the order of writes to the same cache line is not
reversed.

For this scheme to work, we need to make sure that when a node
is allocated, its initialized flag is unset. This can be easily done with
an extra fence at allocation time, but would yield two fences per
enqueue operation. We manage to avoid this fence by postponing
the return of dequeued nodes to the memory manager. Think first
of a simplified version that lets each thread accumulate k nodes
it removed from the queue. After each k" successful dequeue,
before returning the k nodes to the memory manager, the thread
clears their initialized flags, issues an (asynchronous) flush for each
of the flags, and then a single blocking fence before letting the
memory manager reclaim these objects. Such a simplified algorithm
would execute 1+ 1/k fences per successful dequeue operation, not
perfectly meeting the desired theoretical lower bound of a single
fence. To reduce the number of fences to one, we take a more
complex approach: After removing a node N from the queue, its
dequeueing thread T clears N’s initialized flag and records N’s
address for later. Instead of placing an additional fence every k
dequeues, T will piggyback on the fence which its next successful
dequeue anyhow performs: T will flush N’s initialized flag before
this fence, and return N to the memory manager after this fence.
Such piggybacking on a fence of a later operation by the same thread
makes sure that initialized flags are properly reset in memory before
their nodes are reused, without incurring additional fences.

The recovery procedure resurrects all nodes reachable from the
head through a path of consecutive nodes with the initialized flag
set. It remains to ensure that completed enqueue operations are
visible to the recovery procedure, even though previous nodes® in
the queue may have been enqueued by operations that have not yet
completed. Before an enqueue operation completes, LinkedQ makes
sure that all data on nodes from the head to the enqueued node is
written back to the NVRAM. This guarantees that the recovery will
reach the new node in its traversal from the head. Naively, before
an enqueue operation completes, the enqueuer could traverse all
nodes from the head until the new node, flush their contents, and
then issue a single fence. This persists all relevant nodes but at a
very high cost. To make this process efficient, we add a backward
edge to the underlying linked list, and walk backwards persisting
only nodes that might have not yet been persisted. We attempt to
minimize the length of walk as much as possible. The full details of
LinkedQ appear in Appendix A.

6 SECOND AMENDMENT: QUEUES WITH NO
POST-FLUSH ACCESS
It turns out in the evaluation that reducing the number of fences

is not enough to obtain high performance, and one should further
improve the algorithms by reducing accesses to flushed data. In

5We think of the nodes as ordered by the underlying linked list of the queue. This
order enables the terms previous, preceding, subsequent, consecutive, etc.

this section we describe further transformations of UnlinkedQ and
LinkedQ into the new algorithms OptUnlinkedQ and OptLinkedQ
respectively which do not access flushed locations, while still ex-
ecuting the minimal possible number of blocking fences per op-
eration. Evaluation will show that the obtained algorithms yield
excellent performance in current architectures. These algorithms
are the fastest available persistent queues today, but we believe
that UnlinkedQ and LinkedQ are of value on their own. This is
because future architectures may provide flushes that do not invali-
date cache lines. In such architectures UnlinkedQ and LinkedQ are
expected to perform well thanks to using the minimal number of
fence instructions. However, we cannot evaluate this performance
prediction on the platform we currently possess.

6.1 OptUnlinkedQ

We provide an overview of OptUnlinkedQ here, and detail its pseu-
docode in Appendix B. We start with looking at what data is flushed
in the UnlinkedQ algorithm, for use in a recovery. UnlinkedQ flush-
es the global head index, plus, the index, item and linked fields for
each node in the underlying linked list. All of these values except
for the linked field are later accessed. We eliminate these accesses
using algorithmic modifications, amending UnlinkedQ to become
OptUnlinkedQ.

First, we switch the global head index with a per-thread head
index, holding the value that the head index had during the last de-
queue by the thread. In OptUnlinkedQ the head pointer is a pointer
only (with no adjacent index). Instead of persisting the global head
index in the end of every dequeue operation as UnlinkedQ does,
a dequeuer of OptUnlinkedQ copies the index value of the node
pointed to by the head pointer to its local head index and persists
it. In a recovery, the head index is set to the maximal index among
the local head indices of all threads. Note that in this description
we write to the local head index after persisting it. We eliminate
this access in Section 6.3 below.

The index and item fields of a node in UnlinkedQ are written
by the node’s enqueuer, and then (after the node is linked to the
queue) — flushed by it, as well as read by subsequent operations:
the item is read by a subsequent dequeue and the index is read by
subsequent enqueuers. To prevent reads of a location after it is
flushed, an enqueuer in OptUnlinkedQ physically splits the node
into two nodes. The first one is called Persistent and it is flushed
and not accessed after the flush. It is only used during a recovery, for
which its content is essential. It is allocated in the designated areas
that the recovery will scan. The second node is denoted Volatile
and it is not flushed and not used in a recovery. However, Volatile
is accessed after the flush of Persistent and is utilized to expedite
the normal operation on the object. The index and item fields are
placed in both Persistent and Volatile, with the two copies of
each of them set to the same value. The enqueuer persists Persis-
tent, while subsequent operations read the index and item from
Volatile, thus adhering to our guideline. To enable access to the
non-flushed fields, the queue’s head and tail point to the Volatile
part.

Each part of the node contains additional fields other than index
and item: The linked field is not accessed after the enqueuer per-
forms the flush (except for during recovery), so there is no need



to keep two copies of it, and it is placed in Persistent only. The
two following additional fields, which are not required in recovery,
are placed in Volatile: next, and a pointer to the associated Per-
sistent object, which the enqueuer sets for enabling the thread
that reclaims the node later to locate Persistent and reclaim it
together with Volatile.

The recovery procedure of OptUnlinkedQ resurrects Persis-
tent objects in the designated areas that are marked linked and have
an index bigger than the head’s index. It then allocates matching
Volatile objects and links them in a linked list in the order induced
by their indices. This is implemented as follows.

Let headIndex be the maximal index among the local head indices
of all threads. These per-thread indices are not modified. A dummy
Persistent object is allocated and assigned the index headIndex.
Next, the recovery scans the designated areas and makes a list of
recovered Persistent objects, which are those with a set linked flag
and an index larger than headIndex. All other Persistent objects
are reclaimed. Then, in order to construct a queue of Volatile
objects, for each of the recovered Persistent objects, as well as for
the dummy Persistent, the recovery allocates a Volatile object
and sets a pointer from it to the associated Persistent object. In
addition, the index and item of each Volatile are copied from the
associated Persistent. The Volatile objects are sorted by their
indices, and their next pointers are set accordingly to create the
queue. Finally, the queue’s head and tail pointers are pointed at the
first and last Volatile objects in the linked list.

6.2 OptlLinkedQ

Transforming LinkedQ to a queue with no access to flushed data is
trickier and involves further modifications, since it is problematic
to eliminate accesses to a node’s next field after its flush. It is eas-
ier to avoid accessing a node’s backward link pred after its flush,
so we make the recovery rely on the node’s pred instead of next.
Accordingly, the recovery mechanism is reversed, so that instead
of resurrecting a path of consecutive valid nodes reachable from
the head (as LinkedQ does), OptLinkedQ resurrects a chain of con-
secutive nodes reachable from the tail by backward links, ending
with the node succeeding the dummy node. Similarly to OptUn-
linkedQ, the queue node will be split into two nodes (Persistent
and Volatile) so that the fields accessed after a flush (including
the forward links) will not reside on the same cache line with the
flushed fields (including the backward links).

Maintaining a single fence in each enqueue operation compli-
cates the design of OptLinkedQ further: An enqueuer needs to use
a single fence to ensure the persistence of both all recently inserted
nodes and the tail. Therefore, before the final fence, the tail might
be already persisted while some nodes are not, which may cause
the recovery to encounter stale nodes when walking from the tail
backwards. The way we deal with this problem is to let the recov-
ery identify stale nodes during the traversal. When a stale node is
discovered, the recovery starts over from an older recorded value of
the tail, and repeats this process until finding a recorded tail value
from which the node succeeding the head is reachable through a
chain of persisted nodes. An index field placed in the nodes allows
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the recovery to identify stale nodes. These are nodes whose in-
dex value is nonconsecutive. This field is set in a new node by its
enqueuer, to the index of the last node plus 1.

The index field in nodes is also utilized to recover the head and
the tail. As for the head, we cannot let dequeues flush the head
pointer, because it will be accessed thereafter by following deq-
ueues. Like in OptUnlinkedQ, we assign a per-thread head index,
which dequeues update with the head index and persist, and recover
the head index as the maximum among these values in all threads.
The recovery terminates its backward walk when it reaches a node
with the head index plus 1.

We can also not let enqueues flush the tail, because it will be
accessed thereafter by subsequent enqueues. To solve this, we assign
a per-thread last-enqueue pointer (pointing to the last Persistent
object enqueued by the thread), as well as a per-thread last-enqueue
index. Note that a backward walk from a last-enqueue pointer of
a thread that performed an enqueue during the crash, might pass
through stale nodes, as the per-thread last-enqueue pointer and
index might be persisted before some queue nodes are persisted.
Thus, the recovery looks for the per-thread last-enqueue pointer
pointing to the latest node up to which all nodes are persisted. The
recovery starts the traversal from the node pointed to by the per-
thread last-enqueue pointer with the maximum associated per-
thread last-enqueue index among all threads, and if the index of
this node is different from the associated last-enqueue index, or if
nonconsecutive index values are encountered (each of these cases
implies that the inspected node is stale), it restarts the walk from
the next last-enqueue pointer candidate, which is the one with
the next largest associated index, until it identifies a Persistent
object from which it establishes a complete walk up to the node
succeeding the head.

The recovery scheme cannot be complete without dealing with
the following rare scenario. All threads execute enqueues concur-
rently, the new last-enqueue pointer and index of them all are
persisted in the memory, but then a crash occurs before any of the
new nodes is persisted. In such a case, all last-enqueue pointers in
all threads point to stale nodes, and the recovery will identify them
as such. To restore a valid tail in this case, we assign two per-thread
last-enqueue pointer and index, in which each thread keeps the
details of both the last node enqueued by this thread and the penul-
timate node enqueued by this thread (up to which all queue nodes
are definitely persisted by now because the penultimate enqueue
was completed, including its fence instruction). The recovery sorts
all last-enqueue indices (two of each thread) from largest to smallest
and gathers their matching pointers to a single list of potential tail
pointers. It attempts starting a backward walk from them, one after
another. For each attempted tail pointer, if the index in the node it
points to is different from the associated local enqueue index, or if
a nonconsecutive index is encountered during the backward walk
from it to the node with the recovered head index plus 1 (each of
these cases implies that the index of the inspected node is stale) —
the recovery moves on to try the next potential tail.

An enqueuer sets the index of the new node after setting its item
and pred, so based on Assumption 1, when the recovery identifies
the node’s index as non-stale, it is guaranteed that its item and pred
values are not stale. In this new recovery scheme that uses index to
detect stale nodes, an initialized field like in LinkedQ is redundant.
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Overall, the node’s fields required in the recovery of OptLinkedQ
are index, item and pred. A node of OptLinkedQ is composed of the
following two parts: Persistent consists of the above mentioned
fields, and Volatile consists copies of these fields for access after
the flush of Persistent, as well as a next field that is not required
in recovery, and a pointer to the associated Persistent object for
its later reclamation. Additional details of OptLinkedQ appear in
Appendix C.

6.3 Direct Write-Backs to Memory

The scheme described for OptUnlinkedQ replaces the global head
index of UnlinkedQ, which is read, written and persisted for an
unbounded number of times, with local variables that are never
read (except for during recovery). However, they are still written
and persisted for an unbounded number of times: each dequeue
operation writes and persists the local head index of its thread. A
standard write to a value that is absent from the cache causes a
fetch of the containing cache line from the memory. Thus, we wish
to avoid such a write to a flushed (thus evicted) location. Instead of
a standard write, we issue a non-temporal write (using the movnti
instruction) of the local head index, which writes back the value to
the memory without touching the cache. This way, OptUnlinkedQ
optimally performs no access to flushed cache lines.

To achieve this goal for OptLinkedQ as well, we need to eliminate
any access to its local variables. The head index is handled just like
in OptUnlinkedQ, using non-temporal writes. In addition, the local
last-enqueue pointers and indices are also written and persisted
for an unbounded number of times, and we update them too using
non-temporal writes.

7 DURABLE LINEARIZABILITY

To define linearization points for our queue algorithms, we first
define some supporting terminology. We start with volatile lin-
earization points, which match the standard linearization points
of MSQ, and are intuitively the steps applying the operations to
the volatile queue. We also define a survival point for each oper-
ation, which marks the time from which the operation survives
a crash. These two terms should basically be interpreted as: if an
operation passes its survival point, then it is linearized at the time
of its volatile linearization point. If it does not reach its survival
point, then it is not linearized in this execution. Then, we derive
the abstract state of the queue for each possible state of the queue’s
underlying list of nodes.

7.1 Linearization Points

DEFINITION 1 (VOLATILE LINEARIZATION POINT). For each op-
eration op in an execution E of the queue, we define its volatile lin-
earization point to be the same as op’s standard linearization point
in MSQ:

e Enqueue’s volatile linearization point is the CAS that links
its new node (Volatile object in case of OptUnlinkedQ and
OptLinkedQ) to the last one.

o For a successful dequeue, its successful CAS that advances the
queue’s head is its volatile linearization point.

o The volatile linearization point of a failing dequeue is reading
the next pointer of the dummy node (Volatile object in case

of OptUnlinkedQ and OptLinkedQ), which is later revealed to
be NULL.

An operation in E that does not reach its volatile linearization
point as defined above, does not have a volatile linearization point
(similarly to how not all operations in an execution have a lineariza-
tion point). Intuitively, an operation’s volatile linearization point is
the step that applies the operation to the volatile queue.

DEFINITION 2 (SURVIVAL POINT). For each operation op in an
execution E of the queue, we define a survival point as follows:

o Successful Dequeue. Let op be a successful dequeue that

advances the head to point to N at moment t.

op’s survival point in UnlinkedQ and LinkedQ is the first

(implicit or explicit) flush of the queue’s head to the NVRAM

after t, if a crash does not happen between t and this flush

(else, the dequeue operation does not have a survival point).

(Note that the flushed value of the head could be pointing to N

or a subsequent node in the queue).

op’s survival point in OptUnlinkedQ and OptLinkedQ is the

first (implicit or explicit) flush of a per-thread head index to

the NVRAM after t with a value greater than or equal toN’s
index, if a crash does not happen between t and this flush (else,
the dequeue operation does not have a survival point).

Failing Dequeue. Let op be a failing dequeue. Let head be

the last value read off the queue’s head, before discovering the

queue is empty. This read is followed by op’s volatile lineariza-
tion point, where the next pointer in head is read and found

NULL. Let t; be the time of this volatile linearization point, and

let us look back in time at the point t where the value head

was written to the queue’s head. Let t,, be the first time after t,

where the content of the queue’s head was flushed (implicitly or

explicitly) to the memory, if a crash does not happen between

t and this flush (else, tp is undefined, and so is the survival

point of the dequeue). Then op’s survival point in UnlinkedQ

and LinkedQ is defined to be the later between ty and tp.

op’s survival point in OptUnlinkedQ and OptLinkedQ is de-
fined similarly but using an alternative definition of t,, as the
moment of the first (implicit or explicit) flush of a per-thread
head index to the NVRAM after t with a value greater than

or equal to head->index, if a crash does not happen between t

and this flush (else, tp is undefined, and so is the survival point

of the dequeue).

e Enqueue. Let op be an enqueue operation that inserts N to
the queue. By N we refer to a Node object linked to the queue in
case of UnlinkedQ and LinkedQ, and to a Persistent object
pointed to by a Volatile object that is linked to the queue in
case of OptUnlinkedQ and OptLinkedQ. Then the first of the
following events to occur in E after the linking and before a
crash occurs, is op’s survival point (if none of the following
happens after the linking and before a crash, then the enqueue
operation does not have a survival point):

(1) The queues differ in this event:

— For UnlinkedQ and OptUnlinkedQ: An (implicit or ex-
plicit) flush of N’s linked field to the NVRAM after it is
set to true.

— For LinkedQ: The first time when all of the following
conditions have been met, for some node preceding N,



denoted dummy (intuitively, N has become reachable from

dummy and marked as initialized in the NVRAM view):
(a) The queue’s head has been flushed (implicitly or explic-
itly) to the NVRAM with a pointer to dummy. (Intu-
itively: dummy has become the queue’s dummy node
in the NVRAM view.)
The underlying linked list of the queue connects dummy
to N; and for each of the nodes along the way excluding
N, its next field pointing to the subsequent node has
been flushed (implicitly or explicitly) to the NVRAM.
(Intuitively: N has been linked to the queue in the NV-
RAM view.)
The setting of a true value to the initialized field in
N reaches NVRAM by an (implicit or explicit) flush
of N. (Intuitively: N has been marked as valid in the
NVRAM.)

— For OptLinkedQ: The first time when all of the following
conditions have been met, for some Persistent object
preceding N, denoted dummy, and some Persistent ob-
ject denoted last that is either N or a later Persistent
object (intuitively, a backward path from the tail to the
head through N became persistent):

(a) Some per-thread head index has been flushed (implicitly
or explicitly) to the NVRAM with the index of dum-
my (which means the head index will be recovered as
dummy’s index or a bigger value).

(b) A last-enqueue pointer of some thread has been flushed
(implicitly or explicitly) to the NVRAM with a pointer
to last, and the associated last-enqueue index of that
thread has been flushed to the NVRAM with the value
last.index. (Intuitively: last has become a potential tail
for the recovery.)

(c) The index of each Persistent object, from last back-
wards up to dummy excluding dummy, has been flush-
ed (implicitly or explicitly) to the NVRAM with its final
value (namely, the indices of all these Persistent ob-
Jjects have been flushed with consecutive values).

(2) The survival point of a successful dequeue operation that

dequeues the value inside N.

(b

~

(c

~

An operation in E that does not reach its defined-above survival
point (in particular, a failing dequeue that does not reach both t,
and tp, and an enqueue that does not reach any of the two detailed
points), either due to a crash or since the execution ends, does not
have a survival point.

Intuitively, an operation’s survival point is the flush that makes
the operation survive a crash. The failing dequeue is somewhat
different, as this operation does not modify the queue and we some-
times let its survival point be set to its volatile linearization point,
rather than a flush. Operations that reach a survival point are lin-
earized even if a crash occurs after their survival point before they
complete. Note that for our queues the survival point always hap-
pens when the volatile linearization point has already occurred.

DEFINITION 3 (LINEARIZATION POINT). The linearization point
of an operation op in an execution E of the queue, is defined to be its
volatile linearization point if op reaches a survival point in E. In this

10

Gal Sela and Erez Petrank

case, we say that op is linearized. Otherwise, op is not linearized, i.e.,
has no linearization point.

7.2 The Abstract State of the Queue

We define the abstract state of the queue at each moment (including
during the recovery) in a given execution of each queue. This state
reflects the applying of all operations linearized so far in their
linearization order.

7.2.1 UnlinkedQ. The abstract head index in an execution of Un-
linkedq is set to the value® of the index field in the queue’s head
except in an interval before a crash. Between the last flush of the
head to the NVRAM before a crash and the crash, the value of the
abstract head index is not modified. It remains the value that was
flushed to the memory.

The abstract state of the queue for execution E at moment ¢ is
defined as all items in nodes with indices bigger than the current
abstract head index, which were enqueued by linearized enqueues
whose linearization points occurred prior to t, ordered by their
enqueues’ linearization order.

7.2.2  LinkedQ. The abstract head of the queue in an execution
E of LinkedqQ is defined similarly to the abstract head defined for
UnlinkedQ, but this time we look at the head pointer. We define the
abstract head to be the queue’s head value, except in an interval be-
fore a crash. From the last flush of the head (explicitly or implicitly)
to the memory before a crash, until the crash, the abstract state of
the head keeps the value flushed to the memory with no further
abstract head state modifications in this interval.

Consider an execution E of the queue and a moment ¢ during
the execution, and consider the sequence of underlying list’s nodes,
starting with the dummy node pointed to by the abstract head, and
ending with the first node along the chain whose next pointer is
NULL or points to a node enqueued by a non linearized enqueue.
Namely, we do not include nodes whose enqueues have not been
linearized yet. The abstract state of the queue for E at ¢ is the
sequence of items contained in all these nodes except for the first
one (the dummy node). Note that the abstract state of the queue
is an empty sequence if and only if the next pointer of the dummy
node is NULL or points to a node enqueued by a non linearized
enqueue.

7.2.3 OptUnlinkedQ. The abstract head index of the queue in an
execution E of OptUnlinkedQ is set to the value of the index field
in the node pointed to by the queue’s shared head, except in an
interval enclosing a crash. Let headIndex be the biggest per-thread
head index value flushed (explicitly or implicitly) to the NVRAM
before the crash. Between the moment a pointer to a node with
the index headIndex is written to the queue’s head and the moment
the recovery procedure (that runs after the crash) terminates, the
abstract head index keeps the value headIndex.

The abstract state of the queue for execution E at moment ¢ is
defined as all items in Persistent objects with indices bigger than
the current abstract head index, which were enqueued by linearized

©To avoid confusion between the value in cache and the value in memory, we clarify
that whenever a variable’s value is mentioned, we refer to the last value written to the
variable (regardless of whether it has reached the NVRAM).
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enqueues whose linearization points occurred prior to ¢, ordered
by their enqueues’ linearization order.

7.2.4 OptLinkedQ. The abstract head index of the queue in Opt-
Linkedq is defined exactly like that of OptUnlinkedQ. OptLinkedQ
is our only algorithm for which the abstract state of the queue
depends also on the abstract state of the tail. The abstract tail index
in an execution E of OptLinkedqQ is set to the index of the node
enqueued by the last linearized enqueue operation. The abstract
state of the queue is the sequence of items contained in the Persis-
tent objects starting with the one enqueued by the last linearized
enqueue and going through backward links until (including) the
Persistent object with index bigger by 1 than the abstract head
index, in reversed order; or an empty queue if the abstract tail index
is not bigger than the abstract head index.

8 LOCK-FREEDOM

Our queue algorithms are lock-free: An operation might fail to
perform a volatile linearization point only when another operation
performs a conflicting volatile linearization point, causing the orig-
inal operation to retry in a new loop iteration. We argue that at a
crash-free interval of execution, it is guaranteed that within a finite
number of retries, some operation succeeds to reach not only a
volatile linearization point, but also a survival point, thus achieving
a linearization point. Hence, system-wide progress is ensured.

The same basic argument applies to all operations of all presented
queues: A queue operation op branches backwards and starts a new
loop iteration each time another operation performs an obstruct-
ing volatile linearization point. If op does not succeed to pursue
a volatile linearization point within n iterations, where n is the
number of threads operating on the queue, then some other thread
must have reached two volatile linearization points. This means it
has completed the operation for which its first volatile lineariza-
tion point was reached, and persisted it before returning (to satisfy
durable linearizability). Thus, this operation is linearized. Yet, its
linearization point might have occurred before op’s execution, and
we need to verify that some linearization point occurs during op’s
execution. We defer the details to Appendix D.

9 MEMORY MANAGEMENT

All queues evaluated in this paper (except for OneFileQ and Redo-
0ptQ which were adopted from [40] and [11] respectively as they
are with their integrated memory manager), use the same version
of epoch based reclamation for memory management, called ssmem.
This memory manager is adopted from [57], which implements a
durable extension of the mechanism presented by [13] for volatile
memory. ssmem maintains designated areas in the heap memory for
node allocation. When a thread enqueues an item, it allocates a node
from the next available space in these areas, or from a free list (to
which dequeued nodes are inserted) if it is not empty. The memory
manager keeps a persistent list of all the areas it allocated through-
out the execution. During recovery, free lists are reconstructed from
the unused chunks in these areas. Each thread in ssmem has its own
allocator, operating on its separate designated areas and local free
list, to avoid synchronization and reduce contention. See [57] for
more details.
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10 EVALUATION

Evaluated algorithms. We compare to the durable queue in [16]
as the most efficient lock-free durably linearizable queue algorithm
known today. However, the queue as presented in [16] is built to sat-
isfy more than just durable linearizability. It contains a mechanism
for retrieving previously obtained results after a crash, which is
not required by durable linearizability, and is not provided by other
durable data structures [12, 57]. To put all these data structures
on the same level of guarantees, we remove the additional mecha-
nism from [16], obtaining a thinner version of the original durable
queue that executes faster, a version we denote DurableMSQ. Com-
parison to the exact original queue from [16] would yield better
performance for us, but would not be fair. The extra mechanism
in [16] can be easily added to the versions we propose (with the
corresponding additional cost).

In addition, we compare to a persistent queue implementation
resulting from applying the general construction of Izraelevitz [27]
to MSQ. We also compare to the persistent queue version obtained
by NVTraverse [15], which resembles IzraelevitzQ since the tra-
versal phase in MSQ is empty, hence, the operations access directly
the critical point, being the head or tail. The only difference be-
tween the two versions is that NVTraverseQ does not issue a fence
after a flush that follows a read or CAS instruction. To complement
the comparison, we compare to queues produced by wrapping a
sequential queue implementation with a persistent transactional
memory (PTM): OneFileQ, produced using the OneFile lock-free
PTM [40], and RedoOptQ, produced using the RedoOpt PTM [11].

Platform. The queues were implemented in C++ and compiled
using the g++ (GCC) compiler version 9.3.0 with a -O3 optimiza-
tion level. We conducted our experiments on a machine running
Linux (Ubuntu 18.04) equipped with 2 Intel Xeon Gold 6234 3.3GHz
processors with 8 cores each. In experiments with up to 8 threads,
each thread was attached to a different core of the same processor.
In experiments with more than 8 threads in which the ninth and on
threads were attached to the second processor, NUMA effects kick
in impeding scalability and reducing performance, but the trends
remain the same (OptUnlinkedQ performs best, OptLinkedQ is sec-
ond best). To avoid NUMA effects, we utilize hyper-threading (SMT)
on a single processor for measurements of more than 8 threads re-
ported in Figure 2: we attach the (8 + i) thread to the second
virtual core on the same physical core as the it thread.

The machine has an L1 data cache of 32KB and an L2 cache of
1MB per core, and an L3 cache of 25MB per processor. It has 1.5TB
of NVRAM (Intel Optane DC Persistent Memory), organized as
128GB DIMMs (6 per processor). The machine uses the NVRAM in
App-Direct Mode Interleaved in our configuration. CLWB is utilized
as a flush instruction, SFENCE as a store fence and movnti as a
write-back to memory (non-temporal store) instruction.

Methodology. In each experiment, the queue is initialized with a
certain number of enqueued items, and then operations are applied
to it, for five seconds unless specified otherwise. Each data point
[x,y] in the graphs represents the average result of 10 experiments.
In each experiment, x threads performed operations concurrently.
The left graphs depict the throughput, namely, number of opera-
tions applied to each queue per second by the threads altogether.
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Figure 2: Measurement results

The right graphs depict the throughput ratio between each queue
and the baseline DurableMsQ.

We ran various workloads following prior works (see Figure 2):
In the first workload, operations were randomly chosen to be en-
queue or dequeue (50-50 uniform distribution) following [23, 31, 54].
In the second workload, each thread ran enqueue-dequeue pairs,
following measurements in [14, 16, 23, 31, 35, 36, 40, 54]. Next, we
ran producers only (performing enqueues) on an empty queue. We
also ran consumers only (performing dequeues) on a queue of size
12M following [38] for 1 second. At last, we ran a mixed producer-
consumer workload, loosely following [19, 29, 38]. Here, unlike in
other workloads, the threads did not run for a preset amount of
time, but rather executed a preset number of operations: one quar-
ter of the threads performed 1M dequeues and then 1M enqueues,
and the rest performed 1M enqueues and then 1M dequeues. This
is intended to ensure that the queue is not drained, as enqueues are
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slower than dequeues. The initial queue in the presented graphs in
the first, second and last workloads is of size 10. An initial size of
10K yields similar results (as we do not traverse the entire queue,
but only touch the front and rear of the queue). RedoOpt is evalu-
ated only in the first two workloads since we had problems running
it on the other workloads.

Results. Our first two queue designs, UnlinkedQ and LinkedQ,
perform better than DurableMSQ for some workloads and worse
for others. They do not gain an advantage over DurableMsQ al-
though performing minimum fences, due to accesses to flushed
cache lines. Our efficient transformations that avoid such accesses,
OptUnlinkedQ and OptLinkedQ, outperform all other queues in-
cluding Durab1eMsQ, the state-of-the-art durable queue, in nearly
all experiments. For example, OptUnlinkedQ runs more than twice
faster than DurableMSQ for nearly all workloads with more than
one thread. IzraelevitzQ is substantially slower than DurableMSQ
and our queues, as expected from a universal construction that
places many more fences than the tailor-made queues. NVTra-
verseQ, which is similar to IzraelevitzQ, shows nearly identical
performance. The transactional approach of OneFileQ and Redo-
0ptQ results in reduced performance as transactions impose addi-
tional overhead over a short operation.

11 CONCLUSION

In this paper we presented a new guideline for designing efficient
durable algorithms suitable for the current architecture: reducing
accesses to flushed memory. We demonstrated the advantage of
following this guideline with durable queues. We first present novel
queues that abide only to the known guideline of minimizing the
fence count, meeting the theoretical lower bound on the number
of fences from [9], executing only one blocking fence per opera-
tion. UnlinkedQ does not persist the links, but rather allocates the
nodes on designated areas and adds an ordering mechanism, so the
recovery procedure can look for valid nodes of the queue in the
designated areas and order them correctly. LinkedQ uses a validity
scheme on the queue nodes to inform the recovery algorithm which
nodes are adequate for recovery, and adds a backward link to the
queue’s underlying structure to allow enqueues to persist previ-
ous enqueues efficiently. These queues do not beat state-of-the-art
queues in spite of issuing fewer fences. We then amended these
queues to achieve zero accesses to flushed memory while still main-
taining a single blocking fence per operation. The resulted queues
demonstrate a significant performance improvement on the Intel
Optane NVRAM over state-of-the-art durable queues, showing that,
at least in our context, the second amendment is desirable.
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Figure 3: LinkedQ implementation

35 class Node
36 Itemx item

37 atomic<Nodex> next
38 atomic<Nodex> pred
39 bool initialized

40 Itemx Dequeue()

4 while (true)

42 head = Head

43 headNext = head->next

44 if (headNext == NULL)

45 FLUSH (&Head) ; SFENCE

46 return NULL

47 if (CAS(&Head, head, headNext)

48 dequeuedItem = headNext->item

149 if (nodeToPersistAndRetire[tid])

50 FLUSH (&nodeToPersistAndRetire[tid]->
initialized)

51 FLUSH (&Head)

52 SFENCE

53 headNext->pred = NULL

54 if (nodeToPersistAndRetire[tid])

55 retire(nodeToPersistAndRetire[tid])

56 head->initialized = false

57 nodeToPersistAndRetire[tid] = head

58 return dequeuedItem

s9 FlushNotPersistedSuffix(notPersisted)

60 do
61 FLUSH(notPersisted)
62 notPersisted = notPersisted->pred

63 while (notPersisted != NULL);
6+ Enqueue(item)

65 newNode = allocNode()

66 newNode->item = item

67 newNode->next = NULL

68 newNode->initialized = true

69 while (true)

70 tail = Tail

71 if (tail->next == NULL)

72 newNode->pred = tail

73 if (CAS(&tail->next, NULL, newNode))
74 FlushNotPersistedSuffix(newNode)
75 SFENCE

76 CAS(&Tail, tail, newNode)

7 // All nodes preceding newNode are persistent
78 newNode->pred = NULL

79 break

30 CAS(&Tail, tail, tail->next)

A LINKEDQ DETAILS

The LinkedQ algorithm appears in Figure 3. Next, we describe its
operations in detail.

A.1 The Enqueue Operation

The enqueue operation first allocates a node denoted newNode
from the memory manager and initializes its data (Lines 65-67).
Then it sets newNode’s initialized flag (Line 68). In what follows,
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the enqueue operation attempts to link newNode to the last node
(Line 73). Note that it might have just linked a node whose data is
not persisted in NVRAM. If the link to newNode is written back to
NVRAM (which could happen implicitly due to a cache eviction) and
then a crash occurs, the recovery would have to deal with reaching
a node with stale data. The correctness is maintained using the
initialized flag and a matching recovery procedure: The initialized
flag is used as a stamp indicating to the recovery that newNode is
initialized. Relying on Assumption 1, the order of writing initialized
after newNode’s data is preserved in NVRAM. Accordingly, the
recovery resurrects only nodes with the initialized flag set. This
guarantees that it resurrects only nodes with persisted data. If a
crash occurs after the link to newNode is flushed to NVRAM and
before newNode’s data is written back to NVRAM, then newNode’s
initialized flag must be unset in NVRAM, thus, the recovery will
ignore it (and all nodes linked after it).

The recovery procedure resurrects all nodes reachable from the
head through a path of consecutive nodes with the initialized flag set.
Since durable linearizability allows the recovery procedure to ignore
enqueue operations that are concurrent with a crash and elide their
nodes from the queue, the fact that the recovery procedure ignores
nodes of ongoing enqueues that were linked after a node with an
unset initialized, does not break durable linearizability. However,
after an enqueue operation completes, the recovery procedure must
not discard it, even if earlier nodes belong to incomplete enqueue
operations. To this end, after successfully linking newNode, the
enqueue operation ensures that the path of nodes leading from the
head to newNode is persisted (Lines 74-75). This could be achieved
naively by flushing all nodes from the head until newNode. To
save redundant flushes, an enqueuer avoids flushing a prefix of
queue’s nodes that are guaranteed to be already flushed. Instead, it
flushes only a suffix of queue’s nodes that are not guaranteed to be
persistent. To identify the relevant suffix, we place backward links
in the nodes, but we remove a backward link when we know that
all previous nodes in the queue have already been persisted. The
backward links preserve the following invariant: all queue nodes
(starting from the current queue’s head) that precede a node with
a nullified backward link have all relevant content (their item, set
initialized flag and a non-NULL forward link) persisted.

To maintain a backward path connecting the linked list’s nodes
that should be flushed, an enqueuer links a node with a backward
link pointing to the previous node (Line 72). After linking newN-
ode, its enqueuer traverses the queue from newNode backwards
using the backward links, until reaching a NULL backward link, and
flushes the content of all traversed nodes (including newNode itself)
(Lines 60—63). Finally, it issues a single SFENCE to block until all
these flushes complete (Line 75). By the above-mentioned invariant,
all nodes starting from the current head and preceding this suffix
of nodes, are persistent. Now, as this suffix is persisted as well,
the data of all nodes preceding newNode starting from the current
head is guaranteed to be persistent. As an optimization to prevent
future enqueues from flushing these nodes, the enqueuer then sets
newNode’s backward link to NULL (Line 78). Thus, each enqueue
operation that reaches newNode from now on, during its backward
walk, would not need to traverse the preceding persistent nodes.
Note that backward links are not used in the recovery and there is
no need to explicitly flush them.



Durable Queues: The Second Amendment

To complete the enqueue operation, the tail is advanced to point
to newNode (Line 76). Like in the original MSQ, a concurrent enqueue
might prevent the enqueue’s linking. In this case, the enqueuer tries
to assist and advance the tail to point to the node enqueued by the
obstructing enqueue (Line 80), before starting a new attempt to
enqueue its own item.

We note that, as an optimization on x86 platforms, the SFENCE
in Line 75 can be eliminated, because the following CAS instruction
serves as an SFENCE guaranteeing completion of previous flushes.
In the measured implementations of all algorithms, each SFENCE
preceding a CAS is eliminated. We did not include this optimization
in the paper’s pseudocode for clarity.

A.2 The Dequeue Operation

The dequeue operation attempts to extract the oldest item, placed
in the node subsequent to the dummy node. If the queue is empty
when the dequeue operation takes effect, it returns NULL. But before
returning, the failing dequeue must persist the head (Line 45), to
ensure that previous ongoing dequeues that emptied the queue are
persistent. Otherwise, if a crash occurs after the failing dequeue
returns, the previous dequeues might be discarded. This would
break durable linearizability, since it will be impossible to linearize
the completed failing dequeue correctly as applied to an empty
queue, without the previous dequeues being linearized beforehand.

If the queue is not empty, the dequeuer attempts to advance the
head by one node (Line 47), and on success — returns the oldest item
to the caller. On failure it retries the whole scheme. Before return-
ing, the dequeuer persists the head (Lines 51-52), to comply with
durable linearizability, which requires that completed operations
be linearized.

Each dequeue makes sure that the dummy node from which it
advances the head will be unreachable by future operations, so that
the next successful dequeue by the same thread will safely return
this dummy node to the memory manager. To make it unreachable
by backward walks (of enqueue operations that will try to identify
a not persisted suffix), the dequeuer disconnects the backward link
from the new dummy head to the previous one (Line 53). In addition,
persisting the head guarantees that the previous dummy node will
be unreachable by future operations even in case of a crash.

A successful dequeue does not simply return the previous dummy
node (i.e., the node from which the previous successful dequeue
by the same thread has advanced the head) to the memory man-
ager as it is. Recall from Section 5.2 that we must make sure that
newly allocated nodes have their initialized flags reset. The initial-
ized flag placed in each node is used by its enqueuer to signal to
the recovery when the node’s data is persisted. Suppose a node is
erroneously allocated in an enqueue operation with a set initial-
ized flag. After the enqueue operation links the node, the link to
the node might be implicitly flushed to the NVRAM, and - before
the node’s data is persisted — a crash might follow. The recovery
procedure would then find the linked node, containing stale data
including a set initialized flag, and would erroneously interpret the
node with the stale content as part of the queue. To prevent this
scenario, enqueuers could unset the initialized flag after the node’s
allocation and then persist it before initializing its data, but this
incurs an additional fence. Instead, we make sure that a node is
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always allocated with an initialized flag persistently unset. Next we
explain how we ensure that.

If we allocate nodes from the operating system, we would get
nodes with arbitrary content, possibly with the initialized field set.
Instead, we implement a memory manager that maintains large
designated areas from which all node allocations are performed.

First, we explain how nodes, allocated from the designated areas
for the first time, are allocated with a persistently unset initialized
value. If the number of nodes required by the program is known
in advance, then on program startup, the memory manager may
allocate a sufficiently large designated area for nodes from the
operating system, zero its content to make all nodes marked as not
initialized, and then persist it in NVRAM (by placing asynchronous
flushes of the whole area accompanied by a single SFENCE). This
guarantees that when the memory manager allocates a node for the
first time, its initialized field is unset. If the number of required nodes
is unknown in advance, each time a designated area is depleted,
the memory manager may allocate a new area from the operating
system, and initialize it in a similar manner using a single SFENCE.

It remains to explain how nodes, reallocated from the designated
areas after reclamation, are allocated with an initialized flag persis-
tently unset. The dequeue operation and the recovery procedure
return nodes to the memory manager, hence, they are responsible
to return them with an initialized flag persistently unset.

Starting with dequeue, a successful dequeuer could unset the
initialized flag of the dummy node from which it has advanced
the head and then perform additional flush and SFENCE to persist
the unset initialized flag before returning the node to the memory
manager. However, to achieve the fence lower bound of a single
SFENCE per operation, LinkedQ takes a different approach.

The persistence of the previous dummy node’s initialized flag
is accomplished through piggybacking on the next successful de-
queue’s SFENCE, which this thread is anyhow going to execute (in
Line 52). More precisely, the dequeuer sets the previous dummy
node’s initialized flag to false (Line 56) after the queue’s head persis-
tently points to a subsequent node. The dequeuer thread postpones
the reclamation of this previous dummy node, and keeps the node
locally in a nodeToPersistAndRetire array (Line 57). This array con-
sists of a pointer cell per thread, each cell lying in another cache
line to avoid false sharing. Each thread may access its cell using its
thread ID as an index. In the next successful dequeue execution of
the same thread, right before its SFENCE, the initialized flag of the
node we kept aside is flushed (Line 50). After the fence completes,
the node may be returned to the memory manager (Line 55).

As for the recovery, as detailed in Appendix A.3, for each node
with a set initialized flag that it returns to the memory manager —
the recovery unsets the flag and flushes it. A single SFENCE placed
in the end of the recovery ensures that these flags are unset in the
memory.

A.3 Recovery

The recovery procedure of LinkedQ, running after a crash, resur-
rects all nodes reachable from the head through a path of consec-
utive nodes with the initialized flag set. It does so by leaving the
queue’s head as it is and reconstructing the queue as follows.
(1) If the initialized flag of the dummy node (namely, the node
pointed to by the head) is unset, the recovery procedure sets
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Figure 4: OptUnlinkedQ implementation

class Persistent
Itemx item
int index
bool linked
class Volatile
Item+ item
int index
atomic<Volatile*> next
Persistent* persistentNode

Item+ Dequeue()

while (true)
head = Head
headNext = head->next
if (headNext == NULL)
movnti(&localData[tid].headIndex,
SFENCE
return NULL
(CAS(&Head, head, headNext)
dequeuedItem = headNext->item
movnti(&localData[tid].headIndex, headNext->
index)
SFENCE
if (localData[tid].nodeToRetire)
retire(localData[tid].nodeToRetire->
persistentNode)
retire(localData[tid].nodeToRetire)
localData[tid].nodeToRetire = head
return dequeuedItem

head->index)

if

Enqueue(item)

newNode = allocVolatile()
newNode->item = item
newNode->next = NULL
newNode->persistent = allocPersistent()
newNode->persistent->item = item
newNode->persistent->linked = false
while (true)
tail = Tail
if (tail->next == NULL)
newNode->persistentNode->index = tail->index + 1
newNode->index = newNode->persistentNode->index
if (CAS(&tail->next, NULL, newNode))
newNode->persistentNode->linked = true
FLUSH (newNode->persistentNode); SFENCE
CAS(&Tail, tail, newNode)
break
CAS(&Tail, tail, tail->next)

the dummy node’s next to NULL and then sets its initialized

flag. The order of the last two writes ensures (based on As-

sumption 1) a proper recovery from a possible crash in the

midst of the current recovery. The tail is set to point to the
dummy node as well.

(2) Otherwise (the dummy node’s initialized is set) —

(a) The recovery procedure traverses the nodes starting with

the one pointed to by the head, until it reaches either a

node whose next value is NULL, or a node with an unset
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initialized. In the first case, the recovery points the queue’s
tail to the last traversed node.

(b) If the traversal ends due to a node with an unset initialized
flag, then let P be its preceding node. The recovery sets
P.next to NULL and flushes it, and sets the tail to point to
P.

In all cases, the predfield of the last node (pointed to by the tail) is set
to NULL. In addition, throughout the queue traversal, the addresses
of all traversed nodes with a set initialized flag are recorded. All
other nodes in the designated allocation areas are reclaimed. For
each reclaimed node with a set initialized flag, the recovery unsets
the initialized flag and flushes it before retiring the node. There
could be at most two such nodes per thread: There is at most one
such node (namely, a node which is not part of the queue but has
a set initialized flag) which the thread has dequeued and placed
in its local nodeToPersistAndRetire array, where the node awaits
its persistence. In addition, there could be another such node — a
node that the thread was about to enqueue, if the thread were in
the middle of an enqueue operation when the crash occurred; or
alternately a node that the thread has just advanced the head from,
if the thread were in the middle of a dequeue operation when the
crash occurred.

If any flush were executed during the recovery, a single SFENCE is
placed in the end to ensure the completion of the executed flushes.

B OPTUNLINKEDQ DETAILS

Figure 4 contains the pseudocode of the OptUnlinkedQ algorithm,
described in Section 6.1. Note that the queue’s global head and
tail pointers point to Volatile nodes. The movnti instruction is a
non-temporal store instruction that writes back data directly to the
memory, bypassing the caches.

C OPTLINKEDQ DETAILS

The pseudocode of the OptLinkedQ algorithm appears in Figures 5
and 6. The queue’s global head and tail pointers point to Volatile
nodes. localData is an array consisting of a cell per thread. Each
thread may access its cell using its thread ID as an index. Each
cell consists of the fields headIndex and nodeToRetire accessed in
dequeues, and lastEnqueues (an array containing two cells, each
composed of a pointer to a Persistent object and an index), las-
tEnqueuesIndex and validBit accessed in enqueues. localData array’s
cells do not share cache lines to avoid false sharing. In addition,
for each cell, the lastEnqueues array and headIndex field, which are
written using movnti instructions, are kept in a cache line separate
from the rest of the cell’s fields.
Next, we describe OptLinkedQ’s operations in detail.

C.1 The Enqueue Operation

The enqueue operation first allocates a Volatile node denoted
newNode from the memory manager and a matching Persistent
node and initializes their data (Lines 171-175). Then, before at-
tempting to link newNode to the last node, it sets the pred and index
fields of both the Volatile and Persistent parts (Lines 179-182).
The index field of the Persistent object serves as a stamp indi-
cating to the recovery that the object’s data is up-to-date: index is
the last written field of the Persistent object, for ensuring that
if this object is traversed during a recovery walk, and its index is



Durable Queues: The Second Amendment

Figure 5: OptLinkedQ implementation — Objects and Dequeue

Figure 6: OptLinkedQ implementation — Enqueue

125 class Persistent

126 Itemx item

127 Persistent* pred
128 int index

129 class Volatile

130 Item+ item

131 atomic<Volatilex*> next
132 atomic<Volatile*> pred
133 int index

134 Persistent* persistentNode

135 Itemx Dequeue()
136 while (true)

137 head = Head

138 headNext = head->next

139 if (headNext == NULL)

140 movnti(&localData[tid].headIndex, head->index)

141 SFENCE

142 return NULL

143 if (CAS(&Head, head, headNext)

144 dequeuedItem = headNext->item

145 movnti(&localData[tid].headIndex, headNext->
index)

146 SFENCE

147 headNext->pred = NULL

148 if (localData[tid].nodeToRetire)

149 retire(localData[tid].nodeToRetire->

persistentNode)

150 retire(localData[tid].nodeToRetire)

151 localData[tid].nodeToRetire = head

152 return dequeuedItem

identified as non-stale, then all the object’s data is non-stale. This is
due to Assumption 1, guaranteeing that the order of writing index
after the other fields is preserved in NVRAM.

Next, the enqueue operation attempts to link newNode to the last
Volatile node (Line 183), and on success it advances the queue’s
tail and ensures that the path of nodes leading from the head to
newNode->persistentNode is flushed to the NVRAM (Lines 184-185).

It then records the address and index of the newly enqueued Per -
sistent node in the thread’s lastEnqueues array (Line 186). This
array contains two cells per thread - for keeping record of the
thread’s last and penultimate enqueued nodes. The thread writes
alternately — on each enqueue it writes to the cell with index local-
Datal[tid].lastEnqueuelndex and in the end flips its lastEnqueueln-
dex (in Line 169). The writes to lastEnqueues are performed using
movnti instructions (Lines 166-167). In case a crash occurs after
only one of the address and index was written to the memory, the
subsequent recovery needs to identify that the cell’s content is
invalid and should be ignored. To this end, we place a valid bit in
both the address and value (the least significant bit of the address
and the most significant bit of the index). A lastEnqueues cell is
considered valid only if the valid bits of its address and index match.

After the writes, the value of localData[tid].validBit is flipped if
localData[tid].lastEnqueues=1 (Line 168), so that the thread’s follow-

ing writes to its two lastEnqueues cells will be with the opposite
valid bit value.
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153 FlushNotPersistedSuffix(notPersisted)
154 while (true)

155 pred = notPersisted->pred

156 if (pred == NULL)

157 break

158 FLUSH(notPersisted->persistentNode)
159 notPersisted = pred

160 ZeroBit(value, bitIndex)

161 return value & ~(1 << bitIndex)

162 ApplyBit (value, bitIndex, bitValue)

163 return ZeroBit(value, bitIndex) |
bitIndex)

164 RecordLastEnqueue (newNode)

165 i = localData[tid].lastEnqueuesIndex

166 movnti(&localData[tid].lastEnqueues[i].ptr, ApplyBit(
newNode->persistentNode, 0, localData[tid].
validBit))

167 movnti(&localData[tid].lastEnqueues[i].index, ApplyBit
(newNode->index, sizeof(newNode->index)*8-1,
localData[tid].validBit))

168 localData[tid].validBit ~= i // Flip valid bit if i=1

169 localData[tid].lastEnqueuesIndex "= 1 // Flip index

o Enqueue(item)

171 newNode = allocVolatile()

172 newNode->item = item

173 newNode->next = NULL

174 newNode->persistentNode = allocPersistent()

175 newNode->persistentNode->item = item

176 while (true)

(bitValue <<

S

177 tail = Tail

178 if (tail->next == NULL)

179 newNode->pred = tail

180 newNode->index = tail->index + 1

181 newNode->persistentNode->pred = tail->
persistentNode

182 newNode->persistentNode->index = newNode->index

183 if (CAS(&tail->next, NULL, newNode))

184 CAS(&Tail, tail, newNode)

185 FlushNotPersistedSuffix(newNode)

186 RecordLastEnqueue (newNode)

187 SFENCE

188 // All nodes up to newNode are persistent

189 newNode->pred = NULL

190 break

191 CAS(&Tail, tail, tail->next)

Finally, the enqueue operation issues an SFENCE (Line 187) to en-
sure the completion of all executed flushes and movnti instructions.
In particular, all Persistent nodes succeeding the current head
up to newNode->persistentNode are guaranteed to be persistent. To
prevent future enqueues from redundantly flushing these nodes,
the enqueuer then sets newNode’s backward link to NULL (Line 189).
Thus, each enqueue operation that reaches newNode from now on,
during its backward walk, would not need to traverse the preceding
Persistent nodes.



Like in the original MSQ, a concurrent enqueue might prevent
the enqueue’s linking. In this case, the enqueuer tries to assist
the obstructing enqueue and advance the tail to point to the node
enqueued by that obstructing enqueue (Line 191), before starting a
new attempt to enqueue its own item.

C.2 The Dequeue Operation

The dequeue operation attempts to extract the oldest item, placed
in the node subsequent to the dummy node. If the queue is empty
when the dequeue operation takes effect, it returns NULL. But before
returning, the failing dequeue must ensure that previous dequeues
that emptied the queue survive a crash. It does so by copying the
head’s index to its local head index and persisting it (Lines 140-141).
Each thread’s local head index variable is placed in the thread’s cell
in the localData array.

If the queue is not empty, the dequeuer attempts to advance
the head by one node (Line 143), and on success — returns the
oldest item to the caller. On failure it retries the whole scheme.
Before returning, the dequeuer copies the new head’s index to its
local head index and persists it (Lines 145-146), to comply with
durable linearizability, which requires that completed operations
be linearized.

A successful dequeue is responsible for reclaiming the dummy
node recorded by the previous dequeue executed by the same thread.
Before reclaiming, it must ensure that the node is unreachable by
future operations. To make it unreachable by backward walks (of
enqueue operations that will try to identify a non-persisted suffix),
the dequeuer disconnects the backward link from the new dummy
head to the previous one (Line 147). It then returns the Persistent
and Volatile objects of the previous dummy node to the memory
manager (Lines 148-150), and keeps a record of the current dummy
node for its future reclamation (Line 151).

C.3 Recovery

The recovery procedure of OptLinkedQ resurrects all nodes reach-
able through backward links from the abstract tail until the node
succeeding the dummy head. It then allocates matching Volatile
objects and sets their forward links to form the linked list that
constitutes the volatile queue. This is implemented as follows.

Let headIndex be the maximal index among the local head in-
dices of all threads. The recovery does not modify these per-thread
indices. It sorts all per-thread lastEnqueues’s indices that are valid
(namely, their valid bit value matches the valid bit value of the
associated pointer), bigger than headIndex and have an associated
non-NULL pointer from largest to smallest, and gathers them with
their matching per-thread last enqueue pointers to a single list of
potential tails. The recovery then attempts to start a backward walk
from each potential pointer, one after another. For each attempted
pointer, if the index in the Persistent object it points to is different
from the associated index kept in the appropriate lastEnqueues cell,
or if a nonconsecutive index is encountered during the backward
walk from it to the Persistent object with index headIndex+1(each
of these cases implies that the index of the inspected Persistent
object is stale) — the recovery moves on to try the next potential
tail.

All Persistent objects in the designated allocation areas but
the ones traversed in the last successful walk are reclaimed (if there
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was such a walk, otherwise the queue is empty and all Persis-
tent objects are reclaimed). For each reclaimed node with an index
bigger than headIndex (there could be at most one such node per
thread - for threads that were in the middle of enqueuing when the
crash occurred), the recovery zeroes the node’s index and flushes it
before retiring the node.

In order to construct a linked list of Volatile objects, for each of
the recovered Persistent objects, the recovery allocates a Volatile
object and sets its Persistent pointer to the associated Persis-
tent object. In addition, the index and item of each Volatile are
copied from the associated Persistent. The next pointers of the
Volatile objects are set according to the queue’s order. The pred
field of the last Volatile object is set to NULL. Dummy Volatile
and Persistent objects are allocated too. Their index fields are set
to headIndex. The Persistent pointer of the dummy Volatile ob-
ject is pointed at the dummy Persistent object. The next pointer
of the dummy Volatile is pointed at the recovered Volatile ob-
ject with index headIndex+1, or set to NULL if an empty queue is
recovered. The queue’s head and tail pointers are pointed at the
first and last Volatile objects in the linked list respectively.

For all threads that do not contain a valid record of the recovered
tail in any of their lastEnqueues cells, these cells are zeroed using
movnti instructions. In addition, their lastEnqueuesIndex is set to 0,
and their validBit is set to 1. For a thread with a valid lastEnqueues
cell referring to the recovered tail: Its other cell is zeroed using
movnti instructions. In addition, its lastEnqueuesIndex is set to the
other cell’s index, and the thread’s validBit is set appropriately (so
that the next write to the cell that refers to the recovered tail will
be with a valid bit value opposite of its current one).

Finally, the recovery issues an SFENCE to ensure the completion
of all executed flushes and movnti instructions.

D LOCK-FREEDOM PROOF

To prove lock-freedom in the presence of crashes, we need to prove
that each time a thread executes an operation on the queue, and
there are no interrupting crash events since the operation’s invo-
cation, some thread completes an operation on the queue within
a finite number of steps. Namely, it is sufficient to prove progress
for crash-free intervals of execution. For each of the four described
queue algorithms, the following holds: within n+1 loop iterations
of a given running operation (assuming a crash-free long-enough
interval of execution), where n is the number of threads operating
on the queue, some operation succeeds to perform a linearization
point.

We complete the argument brought in Section 8. We start with
noting that an obstructing volatile linearization point of some oper-
ation does not cause another operation to branch backwards more
than once: a dequeue obstructing another dequeue has advanced
the head, so the interrupted dequeue will read a new value from
the queue’s head in its next iteration, and an enqueue interrupted
by another enqueue ensures the tail is advanced before starting a
new iteration.

Next, we explain why in case of a dequeue operation, n iterations
are sufficient to guarantee progress. Let the examined running op
be a dequeue. It branches backwards each time another dequeue
precedes it with advancing the head. If op does not complete within



Durable Queues: The Second Amendment

n iterations, some other thread must have advanced the head twice,
in two different dequeue operations. This means it must have com-
pleted the first dequeue operation of the two, denoted firstDegq.
Prior to completing firstDeq, the other thread has persisted the
head. Thus, firstDeq is linearized. We still need to show that the
linearization point occurs within the n inspected iterations of op
and not prior to them, in order to show that n iterations of a de-
queue are enough to achieve progress. firstDeq’s linearization point
occurs in op’s iteration in which firstDeq has failed op, because in
this iteration op read the queue’s head, and then failed to advance
it since the obstructing firstDeq has advanced it in between.

For an enqueue, n iterations are not adequate to ensure progress.
Let the examined running op be an enqueue. We analyze its execu-
tion since an iteration it started at moment ¢. op branches backwards
each time another enqueue precedes it with linking a node to the
tail. If a linearized enqueue fails op’s first linking attempt, it is not
guaranteed that the linearization point of this enqueue occurs after
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t. But from op’s second iteration on, each enqueue that fails op and
is linearized - is guaranteed to be linearized after ¢: it is linearized
when it links its node to a previous node denoted N, after the tail is
advanced to point to N, which happens after op obtains the tail in
the first inspected iteration (since its obtained value must point to
a preceding node, to which another enqueue operation has linked a
node). Therefore, we do not look at the first n iterations of op, but
rather at the n iterations starting with the second one. A similar
argument to the one brought for a dequeue op applies to these iter-
ations: If op does not complete within n+1 iterations, some other
thread must have linked twice within iterations 2 to n+1, in two
different enqueue operations. This means it has completed the first
enqueue of the two. Prior to returning from this enqueue, it has
ensured the survival point of that enqueue. Thus, this enqueue is
linearized. As explained before, its linearization point occurs after
t, namely, within the n+1 inspected iterations of op.



	Abstract
	1 Introduction
	2 Model
	2.1 Upper Bound on Accesses after a Flush

	3 Preliminaries for the Durable Queues
	3.1 MS-Queue
	3.2 Linearizability and Durable Linearizability
	3.3 Lock-Freedom

	4 Related Work
	5 First Amendment: Queues with minimum fences
	5.1 UnlinkedQ
	5.2 LinkedQ

	6 Second Amendment: Queues with no post-flush access
	6.1 OptUnlinkedQ
	6.2 OptLinkedQ
	6.3 Direct Write-Backs to Memory

	7 Durable Linearizability
	7.1 Linearization Points
	7.2 The Abstract State of the Queue

	8 Lock-Freedom
	9 Memory Management
	10 Evaluation
	11 Conclusion
	References
	A LinkedQ Details
	A.1 The Enqueue Operation
	A.2 The Dequeue Operation
	A.3 Recovery

	B OptUnlinkedQ Details
	C OptLinkedQ Details
	C.1 The Enqueue Operation
	C.2 The Dequeue Operation
	C.3 Recovery

	D Lock-Freedom Proof

