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Abstract

This paper studies a generalized busy-time scheduling model on heterogeneous machines. The input
to the model includes a set of jobs and a set of machine types. Each job has a size and a time interval
during which it should be processed. Each job is to be placed on a machine for execution. Different types of
machines have distinct capacities and cost rates. The total size of the jobs running on a machine must always
be kept within the machine’s capacity, giving rise to placement restrictions for jobs of various sizes among
the machine types. Each machine used is charged according to the time duration in which it is busy, i.e., it
is processing jobs. The objective is to schedule the jobs onto machines to minimize the total cost of all the
machines used. We develop an O(1)-approximation algorithm in the offline setting and an O(µ)-competitive
algorithm in the online setting (where µ is the max/min job length ratio), both of which are asymptotically
optimal.

1 Introduction

In this paper, we study generalized busy-time scheduling on heterogeneous machines. In this model, each job is
specified by a size and a time interval of execution. The jobs are to be scheduled onto machines nonpreemptively.
At any time, the total size of the jobs running on a machine cannot exceed the machine’s capacity. Each machine
used is charged proportional to its busy time which is the total length of the time periods in which it is processing
jobs. Multiple types of machines with different capacities and cost rates are available. The goal is to schedule
the jobs onto machines to minimize the accumulated cost of all the machines used. We focus on the algorithmic
aspects of the above model and aim to develop effective solutions in both the offline and online settings.

Our busy-time scheduling model has useful applications. Major cloud providers such as Amazon EC2 [2],
Google Cloud [8] and Microsoft Azure [14] provide different types of predefined server instances (virtual ma-
chines) for customers to rent at different rates. Jobs with various resource demands have placement constraints
among the server types accordingly. The servers rented from the clouds are charged according to their working
hours. It is critical for cloud users to decide the types and numbers of servers to rent in order to minimize the
total rental cost for processing their jobs. Our model elegantly captures the “pay-as-you-go” billing feature of
the clouds and the goal of optimizing the monetary expenses for cloud users.

There have been quite a few studies on busy-time scheduling, but almost all of them assumed homogeneous
machines only. Earlier work has investigated scheduling interval jobs of uniform sizes, so that each machine can
run at most a fixed number of jobs simultaneously [23, 1, 10, 7, 19, 13, 6]. This problem was termed interval
scheduling with bounded parallelism and is NP-hard. More recent work has addressed scheduling interval jobs
of non-uniform sizes, where the number of jobs that can share a machine is not fixed [11, 12, 21, 17, 15, 3].
This problem was termed MinUsageTime dynamic bin packing. For both problems, the objective is to minimize
the total machine busy time for processing a given set of jobs. In the offline setting where all the jobs are
known, there exist O(1)-approximation algorithms for both problems [1, 10, 7, 9, 15, 6]. For jobs of uniform
sizes, Flammini et al. [7] presented a 4-approximation First Fit algorithm that schedules jobs in descending
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order of length. Chang et al. [6] proposed a 3-approximation GreedyTracking algorithm. They also showed
that the work of Alicherry and Bhatia [1] and that of Kumar and Rudra [10] imply 2-approximation algorithms.
For jobs of non-uniform sizes, Khandekar et al. [9] gave a 5-approximation algorithm by extending the work
of [7]. Ren and Tang [15] presented a 4-approximation dual coloring algorithm by extending the work of [10].
Very recently, Buchbinder et al. [5] presented algorithms with improved asymptotic approximation ratios. In
the online setting where jobs are released when they are to start execution and the job lengths are not known
until they complete execution, the competitiveness of scheduling is bounded from below by the variation of job
lengths for both problems [11, 12]. That is, the competitive ratio of any online algorithm is Ω(µ), where µ is
the max/min job length ratio among all the jobs to schedule. It has been shown that the First Fit algorithm
achieves a competitive ratio of µ+ 3 for scheduling jobs of non-uniform sizes, closely matching the lower bound
[17]. In the case that the length of a job is revealed when it is released, the competitiveness of scheduling has a
tight bound of Θ(

√
logµ) [3]. In addition, recent work has also considered discrete charging unit [20], machine

launch cost [18], and load predictions [5] in busy-time scheduling. However, none of the above work has studied
multiple types of machines.

With heterogeneous machines, jobs have different restrictions on which types of machines can process them.
In addition, various machine types can differ in the normalized cost rate per capacity unit. As a result, the
cost of scheduling each job depends on not only other overlapping jobs scheduled on the same machine but
also the machine type. To the best of our knowledge, the only work that considered heterogeneous machines
was [16], which investigated just two simple cases in which the normalized cost rate per capacity unit increases
or decreases monotonically with the machine capacity. In both cases, it was shown that there exist O(1)-
approximation and O(µ)-competitive algorithms. The authors of [16] conjectured that in the general case, the
asymptotic approximability and competitiveness of scheduling would be dependent on the cost and capacity
profiles of the machine types. In this paper, we close this open problem by developing O(1)-approximation and
O(µ)-competitive algorithms in the offline and online settings respectively for any set of machine types and any
set of jobs, when there are plenty of machines available for each type.

2 Problem Definition

Formally, the input to the Busy-time Scheduling on Heterogeneous Machines (BSHM) model includes a set of
jobs J and a set of machine types M.

Each job J ∈ J has its size s(J) which represents the resource demand for processing J , and its time
interval of execution I(J) := [I(J)−, I(J)+). We refer to I(J) as J ’s active interval and say that J is ac-
tive during I(J). We also refer to the two endpoints I(J)− and I(J)+ of I(J) as J ’s start and end times
respectively. We denote the length of I(J) by len(J) := I(J)+ − I(J)− and refer to it as the job length. Let
µ := maxJ∈J len(J)/minJ∈J len(J) denote the max/min job length ratio. Without loss of generality, we assume
that the maximum and minimum job lengths are µ and 1 respectively.

Each job needs to be scheduled to run on a single machine. LetM = {1, 2, . . . , |M|} be the set of the indices
of all machine types available, where every machine type indexed by z ∈ {1, 2, . . . , |M|} has a cost rate rz (per
unit time) and a resource capacity gz. At any time, the total size of the jobs running on a machine cannot
exceed the machine capacity. Each machine used is charged at its cost rate for the time duration in which it is
processing at least one job. There are sufficient machines of each type available. The objective of BSHM is to
minimize the total cost of machine usage for processing all the jobs J .

Note that if two different machine types satisfy gi ≤ gj and ri ≥ rj , then type-i machines will not be needed
for processing jobs because any type-i machine used can be replaced by a type-j machine that has at least the
same capacity but lower or equal cost. Thus, without loss of generality, we assume that the machine types have
distinct capacities and it holds that g1 < g2 < · · · < g|M| and r1 < r2 < · · · < r|M|.

We study both the offline and online settings of BSHM. The difference between the two settings lies in how
much information about J can be used for scheduling each job. In the offline setting, all the information about
J can be used, while in the online setting, only the information available before each job J starts can be used
for scheduling J , i.e., this includes the start times and sizes of the jobs started before I(J)− and the end times
of the jobs ended before I(J)−.

The performance of an offline algorithm or an online algorithm is often characterized by its approximation
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ratio or competitive ratio, i.e., the worst-case ratio between a solution constructed by the algorithm and an
optimal solution over all instances of the problem [4, 22]. To facilitate algorithm analysis, we assume that the
cost rate of each machine type z is a power of 8, i.e., rz ∈ {8n : n ∈ Z}, where Z denotes the set of all integers.
This assumption will cause us to lose at most a factor of 8 = O(1) in deriving the approximation or competitive
ratio of any algorithm. Specifically, for each z ∈ M, suppose cz is the real cost rate of machine type z, which
can be any positive value, and rz ∈ {8n : n ∈ Z} is the power of 8 integer such that 1

8 ·rz < cz ≤ rz, which is the
assumed cost rate for machine type z to be used throughout the rest of this paper. For any scheduling algorithm
ALG, let N(z, t) be the number of type-z machines used by ALG at time instant t for a given set of jobs J . For
the two sets of cost rates of machine types {cz : z ∈ M} and {rz : z ∈ M}, the optimal scheduling for J can
be different. Let Oc(z, t) be the number of type-z machines used by the optimal scheduling for {cz : z ∈M} at
time instant t, and Or(z, t) be the number of type-z machines used by the optimal scheduling for {rz : z ∈M}
at time instant t. If it is shown that

∫
t

∑
z∈MN(z, t) · rz dt ≤ α ·

∫
t

∑
z∈MOr(z, t) · rz dt, we have∫

t

∑
z∈M

N(z, t) · cz dt ≤
∫
t

∑
z∈M

N(z, t) · rz dt

≤ α ·
∫
t

∑
z∈M

Or(z, t) · rz dt

≤ α ·
∫
t

∑
z∈M

Oc(z, t) · rz dt

≤ 8α ·
∫
t

∑
z∈M

Oc(z, t) · cz dt,

where the third inequality is because Or(z, t) is the optimal scheduling for the set of cost rates {rz : z ∈ M}.
Thus, for the purpose of studying the asymptotic approximability and competitiveness of scheduling, it suffices
to assume that the cost rates are powers of 8.

To facilitate presentation, we further define some notations. We denote by OPTBSHM(X ) the optimal cost
of scheduling any given set of jobs X for the BSHM problem. For any job J , m(J) denotes the machine
type in {1, 2, . . . , |M|} such that s(J) ∈ (gm(J)−1, gm(J)], i.e., m(J) is the lowest-indexed machine type that can
accommodate job J . We refer to m(J) as the exact machine type of J . For any set of jobs X , S(X ) :=

∑
J∈X s(J)

denotes the total size of these jobs, and span(X ) := ∪J∈X I(J) denotes the time interval(s) in which at least
one job in X is active. For any set of jobs X and any time instant t, X (t) := {J ∈ X : t ∈ I(J)} denotes the
active jobs in X at time t, and S(X , t) := S(X (t)) denotes the total size of the active jobs at time t.

Details of all the missing proofs in the analysis are given in the corresponding sections of appendices.

3 Preliminaries

3.1 Cost-per-capacity graph

The main challenge for the general BSHM problem comes from the arbitrary order of the normalized cost rates
per capacity unit among different machine types. We construct a directed graph to describe the relationships
among the machine types in terms of their normalized cost rates per capacity unit. The graph is referred to as
the cost-per-capacity graph. This graph was also indicated in [16].

Definition 3.1. In the cost-per-capacity graph, each node i represents a machine type i ∈ M. Each node i
has a directed edge pointing to node p(i) := min{j : j > i ∧ rj/gj < ri/gi} if such p(i) exists (i.e., p(i) is the
lowest-indexed machine type above i that has a lower normalized cost rate per capacity unit than i).

Proposition 3.1.1. The cost-per-capacity graph is a forest.

For simplicity, we shall use the terms “node” and “machine type” (or “type”) interchangeably. We say that
p(i) is the parent of i, and i is a child of p(i). Let f(i) denote the set of children of node i: f(i) := {z : p(z) = i}.
Let P (i) denote the set of nodes including node i and all its ancestors p(i), p(p(i)), p(p(p(i))), . . .. Let Ai denote
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the set of nodes in the tree rooted at node i: Ai := {z : i ∈ P (z)}. Let v(i) denote the lowest-indexed node in
Ai: v(i) := minAi.

Let y(i) denote the set of younger siblings of node i: y(i) := {z : z < i∧p(z) = p(i)}, and let e(i) denote the
set of elder siblings of node i: e(i) := {z : z > i ∧ p(z) = p(i)}. Furthermore, let T (i) denote the set of nodes(
∪z∈P (i)y(z)

)
∪ {i}.

Table 1 and Figure 1 show an example of a set of machine types and the cost-per-capacity graph constructed
accordingly. By the above definitions, p(10) = 11, P (10) = {10, 11, 13}, f(11) = {9, 10}, A11 = {8, 9, 10, 11},
y(11) = {7}, and e(11) = {12}. In Figure 1, the nodes in grey constitute T (10) = {3, 5, 7, 9, 10}.

Table 1: An example of a set of machine types

machine type i cost rate ri capacity gi ratio ri/gi

13 86 = 262144 100000 2.62
12 85 = 32768 3000 10.92
11 84 = 4096 1000 4.10
10 83 = 512 50 10.24
9 82 = 64 12 5.33
8 81 = 8 1 8
7 80 = 1 1/3 3
6 8−1 = 1/8 1/40 5
5 8−2 = 1/64 1/65 1.02
4 8−3 = 1/512 1/1024 2
3 8−4 = 1/4096 1/4096 1
2 8−5 = 1/32768 1/100000 3.05
1 8−6 = 1/262144 1/300000 1.14

3

1 2

5

4

13

12117

6 9 10

8

Figure 1: The cost-per-capacity graph for Table 1

Proposition 3.1.2. The node set of each tree has consecutive indexes, i.e., for any k ∈M, Ak = {v(k), v(k) +
1, . . . , k}.

Proposition 3.1.3. For any k ∈M and any y1, y2 ∈ T (k), if y1 ≤ y2, then ry1/gy1 ≤ ry2/gy2 . That is, for the
nodes in T (k), their normalized cost rates per capacity unit is non-decreasing with indexes.

Proposition 3.1.4. For any k ∈ M, the trees rooted at the nodes of T (k), i.e., {Az : z ∈ T (k)}, is a
partitioning of {1, 2, . . . , k}. Furthermore, suppose that T (k) = {i1, i2, . . . , in} where i1 < i2 < . . . < in. Then
iq = v(iq+1)− 1 for each q = 1, 2, . . . , n− 1.

Proposition 3.1.5. For any k0 ∈M and any k1 ∈ P (k0), denoting minT (k0) ∩Ak1 by z0, we have:
(1) T (k0) ∩Ak1 =

(
∪z∈P (k0)\P (k1)y(z)

)
∪ {k0} = {z : z ∈ T (k0) ∧ z ≥ z0};

(2) T (k0) \Ak1 = ∪z∈P (k1)y(z) = {z : z ∈ T (k0) ∧ z < z0}.

4



3.2 One-shot job scheduling

To understand the optimal cost of BSHM, we start by considering scheduling jobs on heterogeneous machines
at a single time instant and refer to this problem as one-shot scheduling. In the one-shot scheduling problem,
we relax the constraint that each job must be scheduled onto a single machine and allow a job to be divided
into multiple pieces along its size dimension and each piece to be scheduled onto a distinct machine. However,
we retain the restriction that all the machines onto which a job is scheduled must have capacities no less than
the original size of the job. The goal of one-shot scheduling is to minimize the total cost rate of all the machines
used for accommodating the jobs.

Note that BSHM does not allow jobs to be divided and it also enforces each job to be scheduled onto the
same machine throughout its active interval. Therefore, the optimal cost OPTBSHM(J ) of BSHM for a set of
jobs J is bounded from below by the accumulated cost of optimal one-shot scheduling for the active jobs J (t)
at each time instant t, i.e.,

OPTBSHM(J ) ≥
∫
t

OPT1(J (t)) dt, (1)

where OPT1(J (t)) denotes the optimal cost rate of one-shot scheduling for the jobs J (t). Note that in one-shot
scheduling, only the sizes of the jobs J (t) matter while the active intervals of the jobs are irrelevant. We shall
use the above lower bound in the analysis of algorithm performance with respect to OPTBSHM(J ).

We define a machine configuration w as a set of numbers {w(z) : z ∈ M}, each representing the number
of machines for a machine type. Given a set of jobs J 1d, the one-shot scheduling problem essentially seeks a
minimum-cost machine configuration described by the following integer linear program:1

min
∑
z∈M

w(z)rz

s.t. S({J ∈ J 1d : m(J) ≥ i}) ≤
∑
z≥i

w(z) · gz,∀i ∈M;

w(z) ∈ Z≥0,∀z ∈M;

(2)

The first constraint above says that the total capacity of the machines of types at least i must be no less
than the total size of the jobs whose exact machine types are at least i.

Since integer programming is NP-complete in general, it is not easy to derive a closed-form optimal machine
configuration for one-shot scheduling. Moreover, the optimal machine configuration may not be unique. For
the purpose of analysis, we present several properties of a particular optimal machine configuration. Let
k0 := max{m(J) : J ∈ J 1d} be the exact machine type of the highest index among all the jobs. Then, any
feasible machine configuration must include at least one machine of type no less than k0. For each machine
type z ∈ M, let Hz = {J ∈ J 1d : m(J) ∈ Az} denote all the jobs whose exact machine types are in the tree
rooted at type z.

Theorem 3.1. There exists an optimal machine configuration w∗ satisfying all the following properties:
(1) kopt := max{z : w∗(z) > 0} ∈ P (k0), i.e., the highest-indexed machine type kopt used is either k0 or an
ancestor of k0 in the cost-per-capacity graph;
(2)

∑
z∈Az0

\{z0} w
∗(z)rz < rz0 for each z0 ∈ M, i.e., the total cost of the machines in the tree rooted at each

machine type z0 (except type z0 itself) is less than the cost of one type-z0 machine;

(3)
⌊
S(Hkopt )

gkopt

⌋
≤ w∗(kopt) ≤

⌈
S(Hkopt )

gkopt

⌉
, i.e., the number of type-kopt machines can almost host all the jobs

whose exact machine type is in the tree rooted at type kopt.

In the rest of this paper, the optimal machine configuration discussed shall always refer to one with the
above properties.

1Since only the sizes of jobs matter in one-shot scheduling, we use the notation J 1d for the input to one-shot scheduling,
differentiating it from the input J to BSHM.
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4 The Offline Setting

4.1 The offline algorithm: ALGoffline

We now discuss the offline BSHM problem, which is NP-hard since it is a generalization of interval scheduling
with bounded parallelism. Consider a set of jobs J for BSHM. For each z ∈M, let Rz = {J ∈ J : m(J) ∈ Az}
denote the set of jobs whose exact machine types are in the tree rooted at type z. Algorithm 1 shows our
offline algorithm ALGoffline for BSHM. The algorithm iteratively determines the set of jobs Kz scheduled onto
each machine type z in descending order of type indexes (line 1). For each machine type z, we consider all
the unscheduled jobs in Rz, denoted by Rz (line 2). Note that Rz includes jobs whose exact machine types
are z (denoted by Rhz ) and jobs whose exact machine types are z’s descendants in the cost-per-capacity graph
(given by Rz \ Rhz ). The jobs in Rhz must be scheduled onto type-z machines (line 4) since all the machine
types indexed higher than z have been considered before. For each job J in Rz \ Rhz , we check whether it is
cost-effective to open a type-z machine throughout J ’s active interval. If so, J is scheduled onto type-z machines
(lines 9-10). If not, J is left to subsequent iterations and will be scheduled onto a descendant machine type of
z (more specifically, a machine type in the tree rooted at a child of z that includes m(J)). To decide whether
it is cost-effective to open a type-z machine at a time instant t, we examine all the active jobs in Rz at time t.
If there exists at least one job in Rhz active at t (i.e., t ∈ span(Rhz )), time instant t is considered cost-effective
(line 7). Otherwise, all the jobs active at t are from Rz \ Rhz . Thus, each job active at t must have its exact
machine type in one of the trees rooted at z’s children. For each child type x of z, we compute the number of
type-x machines needed to host all the jobs Fx,t whose exact machine types are in the tree rooted at x (lines
5-6). If the total cost of the machines of z’s child types calculated in this way exceeds 1/3 of the cost of a type-z
machine, time instant t is considered cost-effective (line 7). Note that the set of active jobs does not change
between two successive job starts/ends. Thus, the cost-effectiveness only needs to be evaluated once for each
interval between two successive job starts/ends. As a result, the algorithm runs in polynomial time.

Algorithm 1: ALGoffline

Input: A set of jobs J .
Output: A schedule for J .

1 for z = |M|, |M| − 1, . . . , 1 do
2 Rz ← Rz \ (∪i=|M|,|M|−1,...,z+1Ki);

3 Rhz ← {J ∈ Rz : m(J) = z};
4 Kz ← Rhz ;
5 Fx,t ← {J ∈ Rz(t) : m(J) ∈ Ax}, for each x ∈ f(z) and t;

6 cz,t ←
∑
x∈f(z)

⌈
S(Fx,t)
gx

rx

⌉
, for each t;

7 Tz ← span(Rhz ) ∪ {t : cz,t ≥ 1
3rz};

8 for each J ∈ Rz \ Rhz do
9 if I(J) ⊂ Tz then

10 add J into Kz;
11 end

12 end
13 schedule jobs in Kz onto type-z machines by using the dual coloring algorithm (see [15]);

14 end

It is easy to infer that ALGoffline eventually assigns each job J to either the exact machine type m(J) or
one of m(J)’s ancestors. After determining the set of jobs Kz for all machine types, we use an existing dual
coloring algorithm [15] to schedule the jobs in each Kz onto the machines of the corresponding type (line 13).
Dual coloring is a 4-approximation algorithm for scheduling jobs onto homogeneous machines.

The output of the ALGoffline algorithm has the following properties for any time instant t ∈ span(J ).

Property 4.1. Let koff := max{z : Kz(t) 6= ∅} be the highest-indexed machine type used by ALGoffline at
time t, and k0 := max{m(J) : J ∈ J (t)} be the highest-indexed exact machine type among the active jobs at
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time t. We have koff ∈ P (k0), i.e., koff is either k0 or an ancestor of k0.

Property 4.2. For any machine type z ∈ M, we have
∑
i∈Az\{z}

⌈
S(Ki,t)
gi

⌉
· ri ≤ 2 · rz, i.e., the total cost of

the machines needed for hosting all the jobs assigned to z’s descendants is bounded by the cost of a constant
number of type-z machines.

Property 4.3. For any machine type z ∈M such that (a) Ki(t) = ∅ for each i ∈ P (z)\{z} (i is z’s ancestor),
(b) Kz(t) 6= ∅, and (c) Rhz (t) = ∅, we have

∑
x∈f(z) S(Rx, t) · rxgx ≥

4
21 · rz, i.e., if no job is assigned to z’s

ancestors and all the jobs assigned to type z have exact machine types that are z’s descendants, then assigning
all the jobs whose exact machine types are z’s descendants to the corresponding z’s children would incur a total
cost at least a constant fraction of a type-z machine.

We exploit the properties of the cost-per-capacity graph to analyze the ALGoffline algorithm. In particular,
Proposition 3.1.4 of the cost-per-capacity graph indicates that all machine types indexed from 1 to any k is a
disjoint union of subtrees rooted at nodes from the set T (k). In our analysis, T (k) plays a critical role to bridge
the cost of ALGoffline and the optimal cost of BSHM. The general idea is as follows. For each time instant,
we charge the cost of the optimal machine configuration onto only machine types T (kopt) within an O(1) factor
(where kopt is the highest-indexed machine type used by the optimal configuration) (Section 4.2). We also
charge the cost of the machines used by the ALGoffline algorithm onto only machine types T (koff ) within an
O(1) factor (where koff is the highest-indexed machine type used by ALGoffline). These charging mechanisms
significantly reduce the set of machine types we need to consider. Finally, we establish the connections between
the costs of T (kopt) and T (koff ) by carefully analyzing different possible relationships between kopt and koff
according to the definition of the ALGoffline algorithm (Section 4.3).

4.2 An O(1) approximation of optimal one-shot scheduling

The optimal machine configuration w∗ for one-shot scheduling discussed in Section 3.2 is not concrete enough.
For the analysis of ALGoffline, we define an alternative machine configuration that is an O(1) approximation
of the optimal machine configuration.

Given a set of jobs J 1d, let k0 := max{m(J) : J ∈ J 1d}. We first define a machine configuration vz∗ given
the highest-indexed machine type z∗ used, where z∗ is either k0 or an ancestor of k0 (i.e., z∗ ∈ P (k0)). The
configuration vz∗ uses only machine types T (z∗). By Proposition 3.1.4, {Az : z ∈ T (z∗)} is a partitioning of
{1, 2, . . . , z∗}. Thus, J 1d can be rewritten as ∪i∈T (z∗)Hi, where Hi is all the jobs in J 1d whose exact machine
types are in the tree rooted at type i. In the configuration vz∗ , the number of type-z∗ machines is given by

vz∗(z
∗) =

⌈
S(Hz∗ )
gz∗

⌉
, which is sufficient to host all the jobs in Hz∗ . A capacity amount of vz∗(z

∗) · gz∗ − S(Hz∗)

from type-z∗ machines is available for hosting other jobs J 1d \Hz∗ . We use this available capacity to host the
jobs in Hi where i ∈ T (z∗) \ {z∗} in decreasing order of i. The jobs in Hi that cannot fit into the type-z∗

machines are put into type-i machines. The number of type-i machines is allowed to be fractional and is just
enough to host all these jobs. Let i∗ ∈ T (z∗) \ {z∗} be a boundary type index such that∑

z∈T (z∗)∧z>i∗
S(Hz) ≤ vz∗(z

∗) · gz∗ , (3)

and ∑
z∈T (z∗)∧z≥i∗

S(Hz) > vz∗(z
∗) · gz∗ . (4)

Then, the machine configuration vz∗ is given by:

vz∗(z
∗) :=

⌈
S(Hz∗ )
gz∗

⌉
,

vz∗(i) :=


0, if i ∈ T (z∗) \ {z∗} and i > i∗,∑

z∈T (z∗)∧z≥i S(Hz)−v(z∗)·gz∗
gi

, if i = i∗,
S(Hi)
gi

, if i ∈ T (z∗) \ {z∗} and i < i∗,

0, if i /∈ T (z∗).
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The machine configuration vz∗ has the following properties:

Proposition 4.2.1. For any z0, z1 ∈ T (z∗) such that z0 ≤ z1, we have
∣∣∣∑z∈T (z∗)∧z0≤z≤z1

(
S(Hz)

rz
gz
− vz∗(z)rz

)∣∣∣ <
rz∗ .

Proposition 4.2.2. For any z0 ∈ T (z∗), we have
∑
z∈T (z∗)∧z≥z0 vz∗(z)rz ≥

∑
z∈T (z∗)∧z≥z0 S(Hz)

rz
gz

.

In the machine configuration vz∗ , there may exist a z∗’s ancestor type z4 ∈ P (z∗) \ {z∗} such that the total
cost of the machines in the tree rooted at z4 exceeds the cost of one type-z4 machine, i.e.,∑

z∈T (z∗)∩A
z4

vz∗(z)rz > rz4 .

In this case, we say that the machine configuration vz∗ is not decent in that the total cost can be reduced
by replacing the machines in the tree rooted at z4 with one type-z4 machine. The alternative machine
configuration is defined as the first decent configuration among vz∗ ’s where z∗ ∈ P (k0), i.e., vz� where z� is the
lowest-indexed type in P (k0) such that vz� is decent. By definition, the alternative machine configuration vz�

has the following property:

Proposition 4.2.3. In the alternative machine configuration vz� ,
(1) for each z4 ∈ P (z�) \ {z�}, we have

∑
z∈T (z�)∩A

z4
vz�(z)rz ≤ rz4 ;

(2) for each z∗ ∈ {z ∈ P (k0) : z < z�}, there exists some z4 ∈ P (z∗)\{z∗} such that
∑
z∈T (z∗)∩A

z4
vz∗(z)rz >

rz4 .

Next, we prove that the alternative machine configuration vz� is an O(1) approximation of the optimal
machine configuration.

Theorem 4.1. For any J 1d, let w∗ be an optimal machine configuration and vz� be the alternative machine
configuration. We have 7

15 ·
∑
z∈T (z�) vz�(z)rz ≤ OPT1(J 1d) =

∑
z∈M w∗(z)rz ≤ 8

7 ·
∑
z∈T (z�) vz�(z)rz.

Sketch of proof. For the left inequality, we are to show that
∑
z∈T (z�) vz�(z)rz ≤ 15

7 ·
∑
z∈M w∗(z)rz. Let

k0 = max{m(J) : J ∈ J 1d} be the highest-indexed exact machine type. Denote by kopt := max{z : w∗(z) > 0}
the highest-indexed machine type used by w∗. By the definition of z� and the choice of w∗, both z� and kopt are
in P (k0). We analyze three cases separately: z� = kopt, z

� < kopt, and z� > kopt. For z� = kopt, by Theorem

3.1, we study the subcases of w∗(kopt) =
⌊
S(Hkopt )

gkopt

⌋
and w∗(kopt) =

⌈
S(Hkopt )

gkopt

⌉
. The analysis makes use of

Proposition 3.1.3, Proposition 4.2.1, and Proposition 4.2.3. The details are given in the appendices.
For the right inequality, consider the machine configuration w′ naturally induced by the definition of vz� :

w′(z) := dvz�(z)e for each z ∈M. It is not hard to see that w′ is a feasible solution to the optimization problem
(2). On the other hand, ∑

z=M
w′(z)rz =

∑
z∈T (z�)\{z�}

w′(z)rz + vz�(z
�)rz�

≤
∑

z∈T (z�)\{z�}

(vz�(z)rz + rz) + vz�(z
�)rz�

≤
∑

z∈T (z�)\{z�}

rz +
∑

z∈T (z�)

vz�(z)rz

≤ 1

7
rz� +

∑
z∈T (z�)

vz�(z)rz

≤ 8

7
·
∑

z∈T (z�)

vz�(z)rz.

Since w∗ is an optimal solution to the optimization problem (2), we have
∑
z∈M w∗(z)rz ≤

∑
z∈M w′(z)rz ≤

8
7 ·
∑
z∈T (z�) vz�(z)rz.
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4.3 ALGoffline achieves O(1) approximation

Now we show that ALGoffline is an O(1)-approximation algorithm. Recall that ALGoffline partitions all the
jobs J into Kz’s for z ∈ M. The jobs in each Kz are scheduled onto type-z machines by the dual coloring
algorithm. Take any time instant t ∈ span(J ). The dual coloring algorithm [15] guarantees that the total cost
rate of type-z machines used at time t is bounded by 4 · dS(Kz, t)/gzerz, where S(Kz, t) is the total size of the
active jobs in Kz at time t. Let vz� be the alternative machine configuration for the set of active jobs J (t) at
time t. The following theorem shows that the total cost rate of all the machines used by ALGoffline at time t
is bounded by O(1) times the cost of the alternative machine configuration.

Theorem 4.2.
∑
z∈MdS(Kz, t)/gzerz ≤ 21 ·

∑
z∈T (z�) vz�(z)rz.

Proof. Let koff := max{z : Kz(t) 6= ∅} be the highest-indexed machine type used by ALGoffline at time t. Let
k0 := max{m(J) : J ∈ J (t)} be the highest-indexed exact machine type among the active jobs at time t. Note
that both koff and z� are in P (k0) by Property 4.1 and the definition of the alternative machine configuration
for J (t).

Case 1: z� ≥ koff .
Note that {1, 2, . . . , koff} ⊂ {1, 2, . . . , z�} = ∪z∈T (z�)Az, where the equality is by Proposition 3.1.4. Also

note that Rz�(t) 6= ∅ since k0 ∈ Az� , where Rz = {J ∈ J : m(J) ∈ Az} is the set of jobs whose exact machine
types are in Az.

Step 1: For each z ∈ T (z�), if Rz(t) 6= ∅, we have∑
i∈Az

dS(Ki, t)/gie · ri

= dS(Kz, t)/gze · rz +
∑

i∈Az\{z}

dS(Ki, t)/gie · ri

≤ (dS(Kz, t)/gze+ 2) · rz (by Property 4.2)

≤ 3 · dS(Rz, t)/gze · rz. (since Kz(t) ⊂ Rz(t))

If Rz(t) = ∅, by Property 4.1, we have Ki(t) = Ri(t) = ∅ for each i ∈ Az. Thus, it also holds that∑
i∈Az

dS(Ki, t)/gie · ri ≤ 3 · dS(Rz, t)/gze · rz.

Therefore, ∑
z=1,2,...,koff

dS(Kz, t)/gze · rz =
∑

z∈T (z�)

∑
i∈Az

dS(Ki, t)/gie · ri

≤ 3 ·
∑

z∈T (z�)

dS(Rz, t)/gze · rz. (5)

Step 2: By the definition of the alternative machine configuration for J (t), vz�(z
�) = dS(Rz� , t)/gz�e. Since

the cost rate of each machine type is a power of 8, we have
∑
z∈T (z�)\{z�} rz ≤

1
7rz� .∑

z∈T (z�)

dS(Rz, t)/gze · rz

≤ dS(Rz� , t)/gz�e · rz� +
∑

z∈T (z�)\{z�}

(
rz + S(Rz, t) ·

rz
gz

)
≤ vz�(z

�) · rz� +
1

7
· rz� +

∑
z∈T (z�)\{z�}

S(Rz, t) ·
rz
gz

≤ vz�(z
�) · rz� +

1

7
· rz� +

∑
z∈T (z�)

S(Rz, t) ·
rz
gz

9



≤ 8

7
· vz�(z

�) · rz� +
∑

z∈T (z�)

vz�(z) · rz (by Proposition 4.2.2)

≤ 15

7
·
∑

z∈T (z�)

vz�(z) · rz.

In summary of steps 1 and 2,
∑
z=1,2,...,koff

dS(Kz, t)/gzerz ≤ 3·
∑
z∈T (z�)dS(Rz, t)/gzerz ≤ 45

7 ·
∑
z∈T (z�) vz�(z)rz.

Case 2: koff > z�.
Step 1: By similar arguments to equation (5), we have∑

z=1,2,...,koff

dS(Kz, t)/gze · rz

≤ 3 ·
∑

z∈T (koff )

dS(Rz, t)/gze · rz

≤ 3 ·
∑

z∈T (koff )\{koff}

(
S(Rz, t) ·

rz
gz

+ rz

)
+ 3 ·

⌈
S(Rkoff

, t)

gkoff

⌉
· rkoff

≤ 3 ·
∑

z∈T (koff )\{koff}

S(Rz, t) ·
rz
gz

+
24

7
·
⌈
S(Rkoff

, t)

gkoff

⌉
· rkoff

.

(6)

Step 2: Since koff > z� and both koff and z� are in P (k0), T (koff ) \ {koff} ⊂ T (z�) holds by Proposition
3.1.5. We have ∑

z∈T (koff )\{koff}

S(Rz, t) ·
rz
gz

≤
∑

z∈T (z�)

S(Rz, t) ·
rz
gz

≤
∑

z∈T (z�)

vz�(z) · rz. (by Proposition 4.2.2) (7)

Step 3: By claim (1) of Proposition 4.2.3 and the condition koff > z�,
∑
z∈T (z�)∩Akoff

vz�(z)rz ≤ rkoff
. By

Propositions 3.1.5 and 4.2.2, we have
∑
z∈T (z�)∩Akoff

S(Rz, t) · rzgz ≤
∑
z∈T (z�)∩Akoff

vz�(z)rz. Furthermore,

S(Rkoff
, t) ·

rkoff

gkoff

<
∑
z∈T (z�)∩Akoff

S(Rz, t) · rzgz because Rkoff
(t) = ∪z∈T (z�)∩Akoff

Rz(t) and rkoff
/gkoff

<

rz/gz for each z ∈ T (z�)∩Akoff
. After combining all the pieces stated above, we have S(Rkoff

, t) ·
rkoff

gkoff

< rkoff
.

Therefore,
S(Rkoff

, t) < gkoff
. (8)

Step 4: Now we give an upper bound to rkoff
. Since koff > z� and z� ∈ P (k0), it follows that koff > k0,

which implies that {J ∈ Rkoff
(t) : m(J) = koff} = ∅. By Property 4.3, 4

21 · rkoff
≤
∑
x∈f(koff )

S(Rx, t) · rxgx .
Furthermore, ∑

x∈f(koff )

S(Rx, t) ·
rx
gx
≤

∑
z∈T (z�)∩Akoff

S(Rz, t) ·
rz
gz

≤
∑

z∈T (z�)∩Akoff

vz�(z) · rz

≤
∑

z∈T (z�)

vz�(z) · rz,

where the first inequality is because for each z ∈ T (v�)∩Akoff
, z ∈ Ax and hence Rz ⊂ Rx for some x ∈ f(koff ),

and the second inequality is due to Proposition 4.2.2. Therefore, we have

rkoff
≤ 21

4
·
∑

z∈T (z�)

vz�(z) · rz. (9)
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In summary of the four steps above,∑
z=1,2,...,koff

dS(Kz, t)/gze · rz

≤ 3 ·
∑

z∈T (koff )\{koff}

S(Rz, t) ·
rz
gz

+
24

7
· rkoff

(by equations (6), (8))

≤ 3 ·
∑

z∈T (z�)

vz�(z) · rz +
24

7
· 21

4
·
∑

z∈T (z�)

vz�(z) · rz

(by equations (7), (9))

= 21 ·
∑

z∈T (z�)

vz�(z) · rz.

By Theorem 4.1, we have the following corollary.

Corollary 4.3.
∑
z∈MdS(Kz, t)/gzerz ≤ 45 · OPT1(J (t)).

It follows that the cost of ALGoffline satisfies

ALGoffline(J ) ≤
∫
t∈ span(J )

(∑
z∈M

4 · dS(Kz, t)/gzerz

)
dt

≤ 180 ·
∫
t∈ span(J )

OPT1(J (t)) dt

≤ 180 · OPTBSHM(J ). (by equation (1))

Therefore, ALGoffline is an O(1)-approximation algorithm.

5 The Online Setting

5.1 The online algorithm ALGonline

We now discuss the online BSHM problem. We say that a machine is opened when it receives the first job
to process. When all the active jobs end on an open machine, the machine is closed. In the online setting,
jobs are released when they are to start execution. For simplicity, we assume that jobs are released one at a
time. Algorithm 2 shows our online algorithm ALGonline for each new job J released. The algorithm iteratively
considers the exact machine type m(J) and its ancestor types for processing J (lines 1 and 9). When a machine
type z is considered, if there are one or more type-z machines that are open and have available capacity to
host job J , J is scheduled onto the machine which was opened earliest among these machines (this is known as
the First Fit rule) (lines 3-5). If not, we check whether a new type-z machine should be opened. If opening a
new type-z machine does not cause the total cost of the open machines for the types in the tree rooted at each
ancestor type za (except type za itself) to exceed that of one type-za machine, a new type-z machine is opened
to host job J (lines 6-8). Otherwise, we proceed to consider the parent type p(z) unless z has no parent in the
cost-per-capacity graph (line 9).

We define some notations for ALGonline. For each machine type z ∈ M, let Kz denote the set of jobs
scheduled onto machine type z. For each machine type z ∈ M and each time instant t ∈ span(J ), let N(z, t)
denote the number of type-z machines being open at time t. Let k(t) := max{z : Kz(t) 6= ∅} = max{z :
N(z, t) > 0} denote the highest-indexed machine type used at time t.

To analyze the ALGonline algorithm, we create a set of artificial jobs to fill up the unused machine capacities
of open machines, in order to establish the relation between the cost of ALGonline and the cost of the optimal

11



Algorithm 2: ALGonline

Input: A new job J released at time I(J)−

Output: A machine for processing J
1 z ← m(J);
2 while true do
3 if there exist type-z machines open at time I(J)− with available capacity at least s(J) then
4 among these machines, return the machine which was opened earliest;
5 end
6 if p(z) does not exist or ∀za ∈ P (z) \ {z},

∑
x∈Aza\{za}

nxrx < rza − rz where nx is the number of

type-x machines open at time I(J)− then
7 open and return a new type-z machine;
8 end
9 z ← p(z);

10 end

machine configuration (see Section 5.2). Recall from Section 4.2 that the alternative machine configuration is an
O(1) approximation of the optimal machine configuration. For each time instant, we also invent a mechanism to
charge the cost of the alternative machine configuration onto individual jobs within an O(1) factor (see Section
5.4). This charging mechanism provides a nice “monotonic” property (adding new jobs can only increase the
costs charged onto existing jobs, see Theorem 5.5). Based on this property, we show that the cost due to the
artificial jobs is bounded by a factor O(µ) of the cost due to the original jobs (Theorem 5.4), which leads to the
O(µ) competitive ratio of the ALGonline algorithm.

5.2 A set of artificial jobs R
We start by creating some artificial jobs to fill up the machine capacities of open machines by ALGonline. For
each job J ∈ J , we create three artificial jobs F1(J), F2(J) and F3(J). They have the same sizes as J , i.e.,
s(F1(J)) = s(F2(J)) = s(F3(J)) = s(J). Their active intervals are defined as follows: I(F1(J)) = I(J), i.e.,
F1(J) has the same active interval as J ; I(F2(J)) = [I(J)+, I(J)+ +µ)∩ span(J ), i.e., F2(J) extends J ’s active
interval by a period µ; I(F3(J)) = [I(J)+, I(J)+ + 2µ) ∩ span(J ), i.e., F3(J) extends J ’s active interval by a
period 2µ. Let R = {F1(J), F2(J), F3(J) : J ∈ J } denote all the artificial jobs created. In the following, we
show that at each time instant t, the active jobs R(t) satisfies some properties.

Lemma 5.1 says that for each machine type z ∈ T (k(t)), if there are multiple type-z machines open at time
t, the active jobs in these machines together with some artificial jobs active at time t can fill up the capacities
of these machines except one.

Lemma 5.1. For each z ∈ T (k(t)) such that N(z, t) > 1, we have S(Kz, t) + S({J ∈ R(t) : m(J) ∈ Az}) >
(N(z, t)− 1)gz.

Proof. As illustrated in Figure 2, suppose n = N(z, t) > 1 type-z machines being open at time t were opened
in the order of m1, m2, . . ., mn. We pick an active job Ji (black rectangle) in each machine mi at time t. For
each i > 1, when Ji was scheduled onto mi at time I(Ji)

−, machine mi−1 was also open at that time. Let Ki−1z

denote the set of active jobs in machine mi−1 at time I(Ji)
− (black rectangles). By the First Fit scheduling

rule, we must have s(Ji) + S(Ki−1z ) > gz for each i = 2, . . . , n. Note that all the jobs Ji and Ki−1z have their
exact machine types in the tree Az. Each job Ji has an artificial job F1(Ji) in R active at t (grey rectangles).
In addition, each job J ∈ Ki−1z has an artificial job F2(J) in R which extends J by a period µ (rectangles in
back slash pattern). Either J or F2(J) is active at t, since I(J)− ≤ I(Ji)

− ≤ t and t − I(J)+ < len(Ji) ≤ µ.
Therefore, the total size of the active jobs in Kz ∪ R at time t (having their exact machine types in Az) is at
least

∑n
i=2(s(Ji) + S(Ki−1z )) > (n− 1)gz.

Lemma 5.2 says that if there is only one k(t)-type machine open at time t and all the active jobs in this
machine can be placed in some lower-indexed machine type than k(t), take any active job Ĵ in this machine,

12
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Figure 2: An example of Lemma 5.1

then for each k(t)’s child type z with multiple type-z machines open at time I(Ĵ)−, the active jobs in these
type-z machines together with some artificial jobs active at time t can fill up the capacities of these type-z
machines except one.

Lemma 5.2. If N(k(t), t) = 1 and m(J) < k(t) for each J ∈ Kk(t)(t), taking any job Ĵ ∈ Kk(t)(t), we have

S(Kz, t) + S({J ∈ R(t) : m(J) ∈ Az}) > (N(z, I(Ĵ)−)− 1)gz for each z ∈ f(k(t)) such that N(z, I(Ĵ)−) > 1.

Proof. The proof is similar to Lemma 5.1. As illustrated in Figure 3, take any active job Ĵ (black rectangle)
in the only open type-k(t) machine at time t, and we consider all the type-z machines being open at time
I(Ĵ)−. Suppose n = N(z, I(Ĵ)−) > 1 type-z machines being open at time I(Ĵ)− were opened in the order
of m1, m2, . . ., mn. We pick an active job Ji (black rectangle) in each machine mi at time I(Ĵ)−. For each
i > 1, when Ji was scheduled into mi at time I(Ji)

−, machine mi−1 was also open at that time. Let Ki−1z

denote the set of active jobs in machine mi−1 at time I(Ji)
− (black rectangles). By the First Fit scheduling

rule, we must have s(Ji) + S(Ki−1z ) > gz for each i = 2, . . . , n. Note that all the jobs Ji and Ki−1z have their
exact machine types in the tree Az. Each job Ji has an artificial job F1(Ji) in R (grey rectangles) and an
artificial job F2(Ji) in R which extends Ji by a period µ (rectangles in back slash pattern). One of these two
artificial jobs must be active at time t, since I(Ji)

− ≤ I(Ĵ)− ≤ t and t− I(Ji)
+ < len(Ĵ) ≤ µ. In addition, each

job J ′ ∈ Ki−1z has an artificial job F3(J ′) in R which extends J ′ by a period 2µ (rectangles in slash pattern).
Either J ′ or F3(J ′) is active at time t, since I(J ′)− ≤ I(Ji)

− ≤ t and t − I(J ′)+ < len(Ji) + len(Ĵ) ≤ 2µ.
Therefore, the total size of the active jobs in Kz ∪ R at time t (having their exact machine types in Az) is at
least

∑n
i=2(s(Ji) + S(Ki−1z )) > (n− 1)gz.

Lemmas 5.1 and 5.2 indicate that the artificial jobs R can fill up the capacity of (most) machines used by
ALGonline at any time t. Based on this fact, we can prove that the total cost of the machines used by ALGonline
at any time t is bounded by O(1) times the cost of optimal one-shot scheduling for the active jobs in J ∪R at
t.

Theorem 5.3. At each time instant t, we have
∑
z=1,...,mN(z, t)rz ≤ 5 · OPT1(J (t) ∪R(t)).

5.3 A sufficient condition

Let Fi = {Fi(J) : J ∈ J } for each i = 1, 2, 3. By definition, J ∪ R = (J ∪ F3) ∪ (F1 ∪ F2). For any time
instant t, the combination of any optimal machine configuration for the active jobs in J ∪ F3 and any optimal
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Figure 3: An example of Lemma 5.2

machine configuration for the active jobs in F1 ∪ F2 is a feasible machine configuration for the active jobs in
J ∪R. By optimality,

OPT1(J (t) ∪R(t))

≤ OPT1(J (t) ∪ F3(t)) + OPT1(F1(t) ∪ F2(t)). (10)

Actually, in order to prove that ALGonline is an O(µ)-competitive algorithm, it suffices to show the following
theorem. Define a function Fd with d ≥ µ which maps each job J in J to a new job Fd(J) defined as:
s(Fd(J)) = s(J) and I(Fd(J)) = [I(J)+, I(J)+ + d) ∩ span(J ), i.e., the new job Fd(J) has the same size as J
and extends J ’s active interval by a period d.

Theorem 5.4. Let H = {Fd(J) : J ∈ J } with d ≥ µ. We have
∫
t∈ span(J )

OPT1(J (t) ∪ H(t)) dt ≤ O(d) ·∫
t∈ span(J )

OPT1(J (t)) dt.

Applying Theorem 5.4 by letting d = µ and 2µ, the cost of ALGonline satisfies

ALGonline(J ) =

∫
t∈ span(J )

∑
i∈M

N(i, t) · ri dt

≤ O(1) ·
∫
t∈span(J )

OPT1(J (t) ∪R(t)) dt (by Theorem 5.3)

≤ O(1) ·
∫
t∈span(J )

(
OPT1(J (t) ∪ F3(t))

+ OPT1(F1(t) ∪ F2(t))
)

dt (by equation (10))

≤ O(µ) ·
∫
t∈span(J )

OPT1(J (t)) dt (by Theorem 5.4)

≤ O(µ) · OPTBSHM(J ). (by equation (1))
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5.4 A modified O(1) approximation of optimal one-shot scheduling

Recall that in Section 4.2, we defined an alternative machine configuration vz� for one-shot scheduling of a set
of jobs J 1d, where the highest-indexed machine type z� used is derived from J 1d. In order to prove Theorem
5.4, we shall charge the machine cost of a machine configuration onto individual jobs in J 1d and have a desired
“monotonic” property that the cost charged on each job is non-increasing as the job set J 1d expands (and hence
the machine configuration changes with J 1d). To achieve this “monotonic” property, the alternative machine
configuration vz� defined in Section 4.2 is not adequate. We modify it as follows.

Given a set of jobs J 1d, the modified machine configuration uses the same highest-indexed machine type z�

as the alternative machine configuration vz� . For each machine type i ∈ M, let Hi = {J ∈ J 1d : m(J) ∈ Ai}
denote the set of jobs whose exact machine types are in the tree rooted at type i. Then, {Hi : i ∈ T (z�)} is a
partitioning of J 1d.

For each i ∈ T (z�) \ {z�}, the jobs in Hi are always accommodated by type-i machines in the modified

machine configuration. Hence, we need S(Hi)
gi

type-i machines with a total cost of S(Hi)
ri
gi

. Each job is charged

a cost proportional to each size, i.e., each job J ∈ Hi is charged a cost of r̃(J 1d)(J) = s(J) rigi , so that their

total cost matches S(Hi)
ri
gi

. Note that we include the job set J 1d in the notation r̃(J 1d)(J) to indicate that

the machine configuration and hence the cost charged to each job are dependent on J 1d.
For the jobs in Hz� , if their total size at least the capacity of one type-z� machine, i.e., S(Hz�) ≥ gz� , all

of them are accommodated by type-z� machines in the modified machine configuration. Hence, we need S(Hz� )
gz�

type-z� machines with a total cost of S(Hz�)
rz�
gz�

. Again, each job is charged a cost proportional to each size,

i.e., each job J ∈ Hz� is charged a cost of r̃(J 1d)(J) = s(J) rz�gz� , so that their total cost matches S(Hz�)
rz�
gz�

.

If S(Hz�) < gz� , we aim to use one type-z� machine to accommodate all the jobs in Hz� with a cost of rz� .
The cost is charged onto the jobs in Hz� as follows. Note that the jobs Hz� can be further partitioned into
Hh
z� := {J ∈ J 1d : m(J) = z�} and {Hi : i ∈ f(z�)} where f(z�) is the set of z�’s child types in the cost-per-

capacity graph. Let c := S(Hh
z�)

rz�
gz�

+
∑
i∈f(z�) S(Hi)

ri
gi

be the cost of using type-z� machines to accommodate

Hh
z� and type-i machines to accommodate each Hi (i ∈ f(z�)). If c > rz� , each job J ∈ Hh

z� is charged a cost
of r̃(J 1d)(J) = s(J) rz�gz� , and each job J ∈ Hi is charged a cost of r̃(J 1d)(J) = s(J)( rigi − ( rigi −

rz�
gz�

) ·α∗), where

α∗ ∈ (0, 1) is given by α∗ = (c − rz�)/
∑
i∈f(z�)

∑
J∈Hi

s(J)( rigi −
rz�
gz�

) to ensure that the total cost charged

is rz� . Since α∗ ∈ (0, 1), we have r̃(J 1d)(J) ∈
(
rz�
gz�

, rigi

)
for each J ∈ Hi. Otherwise, if c ≤ rz� , each job

J ∈ Hh
z� is charged a cost of r̃(J 1d)(J) = s(J) rz�gz� · (1 + β∗) if Hh

z� 6= ∅, and each job J ∈ Hi is charged a cost

of r̃(J 1d)(J) = s(J) rigi , where β∗ ≥ 0 is given by β∗ = (rz� − c)/
∑
J∈Hh

z�
s(J) rz�gz� to ensure that the total cost

charged is rz� .
With the costs charged on individual jobs, the total cost of the modified machine configuration is given

by
∑
J∈J 1d r̃(J 1d)(J). The charging is deliberately designed in the above way to achieve the “monotonic”

property below. Note that a major challenge in guaranteeing the “monotonic” property is that the highest-
indexed machine type z� used is derived from J 1d and it may change as J 1d expands.

Theorem 5.5. For any two sets of jobs X ⊂ Y, we have r̃(X )(J) ≥ r̃(Y)(J), for each job J ∈ X .

In addition, the modified machine configuration is an O(1) approximation of the alternative machine con-
figuration. Hence, it remains an O(1) approximation of optimal one-shot scheduling.

Theorem 5.6. 1
2 ·
∑
J∈J 1d r̃(J 1d)(J) ≤

∑
z∈T (z�) vz�(z)rz ≤ 15

7 ·
∑
J∈J 1d r̃(J 1d)(J).

5.5 Proof of Theorem 5.4

Now, we are ready to finish the proof of Theorem 5.4 which is the last piece to be discussed.

Proof. By Theorem 4.1 and Theorem 5.6, it suffices to show that∫
t∈span(J )

∑
J∈J (t)∪H(t)

r̃(J (t) ∪H(t))(J) dt

15



≤ O(d) ·
∫
t∈span(J )

∑
J∈J (t)

r̃(J (t))(J) dt. (11)

For each job J ∈ J and each t ∈ I(J), define r̃1(J, t) = r̃(J (t))(J). For each t ∈ span(J ), let Gt := {J ∈
J : t− d < I(J)+ ≤ t} be the set of jobs ending in the period (t− d, t]. By definition, H(t) = {Fd(J) : J ∈ Gt},
i.e., Gt is exactly all the jobs whose d extension (to right) covers time t. For each job J ∈ J , define r̃2(J, t) :=

r̃1

(
J, t−I(J)

+

d len(J) + I(J)−
)

for each t ∈ [I(J)+, I(J)+ + d). We have

∫
t∈span(J )

(∑
J∈Gt

r̃2(J, t)

)
dt

=
∑
J∈J

(∫
t∈[I(J)+,I(J)++d)∩ span(J )

r̃2(J, t) dt

)

≤
∑
J∈J

(∫
t∈[I(J)+,I(J)++d)

r̃2(J, t) dt

)

=
∑
J∈J

(∫
t∈[I(J)+,I(J)++d)

r̃1(J,
t− I(J)+

d
len(J) + I(J)−) dt

)

=
∑
J∈J

(∫
τ∈I(J)

r̃1(J, τ)
dt

dτ
dτ

)
(where τ =

t− I(J)+

d
len(J) + I(J)−)

=
∑
J∈J

(∫
τ∈I(J)

r̃1(J, τ)
d

len(J)
dτ

)

≤ d ·
∑
J∈J

(∫
τ∈I(J)

r̃1(J, τ) dτ

)
(since 1 ≤ len(J) ≤ µ ≤ d)

=d ·
∫
t∈span(J )

∑
J∈J (t)

r̃(J (t))(J) dt, (12)

where we have used a swap of two summations in the first equality and the last equality.
Claim 1: For each t ∈ [t0 − d, t0), we have J (t) ⊂ J (t0) ∪ Gt0 .
Proof of Claim 1. Each job J ∈ J (t) is active at t. If J is also active at t0, then J ∈ J (t0). If J is

not active at t0, it must end in the period (t, t0], i.e., t < I(J)+ ≤ t0. It follows from t ∈ [t0 − d, t0) that
t0 − d < I(J)+ ≤ t0. Hence, J ∈ Gt0 . End of Claim 1

Claim 2: For each t0 ∈ span(J ), we have
∑
J∈J (t0)

r̃(J (t0))(J)+
∑
J∈Gt0

r̃2(J, t0) ≥
∑
J∈J (t0)∪H(t0)

r̃(J (t0)∪
H(t0))(J).

Proof of Claim 2. By Theorem 5.5, J (t0) ⊂ J (t0)∪Gt0 implies that for each job J ∈ J (t0), r̃(J (t0))(J) ≥
r̃(J (t0) ∪ Gt0)(J). Recall that by definition, H(t0) = {Fd(J) : J ∈ Gt0}, which implies that Fd is actually a 1-1
correspondence between Gt0 and H(t0) such that s(J) = s(Fd(J)) for each job J ∈ Gt0 . Therefore,

r̃(J (t0) ∪H(t0))(J) = r̃(J (t0) ∪ Gt0)(J) for each J ∈ J (t0),

and
r̃(J (t0) ∪H(t0))(Fd(J)) = r̃(J (t0) ∪ Gt0)(J) for each J ∈ Gt0 .

Thus, it remains and suffices to show that for each job J ∈ Gt0 , r̃2(J, t0) ≥ r̃(J (t0) ∪ Gt0)(J).

Take any job J ∈ Gt0 . Let t1 := t0−I(J)+
d len(J) + I(J)−. We are to show that t0 − d ≤ t1 < t0. The left

inequality is equivalent to t0−d−I(J)−
len(J) ≤ t0−I(J)+

d = t0−d−I(J)−+d−len(J)
len(J)+d−len(J) . Since d− len(J) ≥ d−µ ≥ 0, it suffices

to show that t0−d−I(J)−
len(J) ≤ 1. This is easy to get: J ∈ Gt0 ⇒ t0 − d < I(J)+ ≤ t0 ⇒ t0 − d < I(J)− + len(J)⇒
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t0 − d − I(J)− < len(J). For the right inequality, t0 − d < I(J)+ implies that t0−I(J)+
d len(J) + I(J)− <

len(J) + I(J)− = I(J)+ ≤ t0. Therefore, t1 ∈ [t0 − d, t0).
By Claim 1 and Theorem 5.5, J (t1) ⊂ J (t0) ∪ Gt0 implies that r̃2(J, t0) = r̃1(J, t1) = r̃(J (t1))(J) ≥

r̃(J (t0) ∪ Gt0)(J). End of Claim 2
Eventually, ∫

t∈ span(J )

∑
J∈J (t)∪H(t)

r̃(J (t) ∪H(t))(J) dt

≤
∫
t∈ span(J )

 ∑
J∈J (t)

r̃(J (t))(J) +
∑
J∈Gt

r̃2(J, t)

 dt

≤ (d+ 1) ·
∫
t∈ span(J )

∑
J∈J (t)

r̃(J (t))(J) dt,

where the first inequality is due to Claim 2, and the second is by equation (12). Hence, equation (11) is
proven.
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APPENDICES

A Preliminaries

A.1 Cost-per-capacity graph

Proof of proposition 3.1.1. By definition, rp(i)/gp(i) < ri/gi for each pair of nodes i and p(i). The whole graph is
clearly acyclic. This implies that for any two nodes in the same component, there is an unique path connecting
them. Take C[i] the component containing node i. We want to show that C[i] is a rooted tree. For node i, by
the finiteness of the graph, the node i∗ := maxP (i). We want to show that C[i] is a tree rooted at i∗. Take
any node z ∈ C[i], since z and i∗ are in the same component, suppose (z, z1, z2, . . . , zl, i

∗) is the unique path
linking z and i∗. Since p(i∗) does not exist, zl must be directed to i∗, i.e., p(zl) = i∗. Consequently, zl−1 must
be directed to zl because of the uniqueness of p(zl). After repeating this argument along the path from i∗ to
z, finally we will have z is directed to z1, z1 is directed to z2, . . . , zl−1 is directed to zl and zl is directed to
i∗. Clearly this means i∗ ∈ P (z). Since z is taken arbitrarily from C[i], C[i] is indeed a tree rooted at node i∗.
Therefore, the whole graph is a forest.

Proof of proposition 3.1.2. Step 1: Consider the set of nodes {z : P (z) = ∅} := {i1, i2, . . . , in} with i1 < i2 <
. . . < in. We show that Aiq is consecutive for each q = 1, 2, . . . , n.

Observe that iq = maxAiq for each q = 1, 2, . . . , n. By definition, v(iq) = minAiq . By proposition 3.1.1,
{Aiq : q = 1, 2, . . . , n} is a partitioning of M := {1, 2, . . . , |M|} which is consecutive by definition. If we
can show that for each 2 ≤ q ≤ n, v(iq) > iq−1, then we have proven that Aiq is consecutive for each q.
Suppose the contrary, i.e. there exists some q ∈ {2, . . . , n} such that iq−1 > v(iq) which implies that v(i1) < iq.
We have v(iq) < iq−1 < iq but rv(iq)/gv(iq) > riq/giq ≥ riq−1

/giq−1
, where rv(iq)/gv(iq) > riq/giq is because

iq ∈ P (v(iq))\{v(iq)} and riq/giq ≥ riq−1
/giq−1

is because otherwise P (iq−1) must not be empty. This situation
contradicts to the fact that iq is an ancestor of v(iq).

Step 2: Suppose that h is any non-negative integer. Assume that for each z ∈ {z : |P (z)| = h}, Az is
consecutive. We show that for each z ∈ {z : |P (z)| = h+ 1}, Az is consecutive.

Take any i∗ ∈ {z : |P (z)| = h + 1}. By the given assumption, Ap(i∗) is consecutive. Suppose that
f(p(i∗)) = {z1, z2, . . . , zx = i∗, . . . , za} with z1 < z2 < . . . < za. To show that Ai∗ is consecutive, similarly
as step 1, we show that for each 2 ≤ q ≤ a, zq−1 < v(iq). Again, similarly as step 1, suppose the contrary,
i.e., there exists some q ∈ {2, . . . , a} such that zq−1 > v(zq). We have v(zq) < zq−1 < zq but rv(zq)/gv(zq) >
rzq/gzq ≥ rzq−1

/gzq−1
. This contradicts to the fact that zq is an ancestor of v(zq). Therefore, we have shown

that Ai∗ is consecutive.
Step 3: By the finiteness of graph, the combination of the results of step1 and step2 have proved that, Ak

must be consecutive, for each k ∈M eventually.

Lemma A.1. For any k ∈M, k = maxT (k).

Proof of lemma A.1. Take any i ∈ T (k) \ {k}. By definition, T (k) = {k} ∪
(
∪z∈P (k)y(z)

)
. Therefore, i ∈ y(z)

for some z ∈ P (k). Proposition 3.1.2 says that i < v(z) ≤ k since k ∈ Az.

Proof of proposition 3.1.3. We separate the discussion into two cases.
Case 1: k /∈ {y1, y2}.
Since y1, y2 ∈ T (k) = {k} ∪

(
∪z∈P (k)y(z)

)
and k /∈ {y1, y2}, we have y1 ∈ y(z1), y2 ∈ y(z2), where z1, z2 ∈

P (k). We show that z1 ≥ z2 must hold. Otherwise, i.e., if z1 < z2, we have y1 ∈ y(z1) ⊂ Az2 and y2 ∈ y(z2).
By proposition 3.1.2, y2 < y1 which contradicts to the condition y1 ≤ y2. Therefore, z1 ≥ z2. Immediately,
y2 ∈ Ap(y1) \ {p(y1)}.

Next, we show that ry1/gy1 > ry2/gy2 cannot hold. Otherwise, i.e., ry1/gy1 > ry2/gy2 and y1 < y2 < p(y1),
where y2 < p(y1) is because y2 ∈ Ap(y1) \ {p(y1)}. In this case, by the definition of the cost per capacity graph,
y1 would not be directed to p(y1). Therefore, we have shown that ry1/gy1 ≤ ry2/gy2 .

Case 2: one of y1 and y2 is k.
y2 must be k by lemma A.1, and it suffices to assume that y1 ∈ y(z) for some z ∈ P (k). By the same

argument in case 1, ry1/gy1 > ry2/gy2 cannot hold, because otherwise y1 would not be directed to p(y1).
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Lemma A.2. Take any k ∈M and let Vk :=
(
∪z∈P (k)y(z) ∪ e(z)

)
∪{k}. We have (P (k) \ {k})∪ (∪z∈Vk

Az) =
M.

Proof of lemma A.2. Let k0 taken from P (k) arbitrarily. We show the lemma by running through each k0 in
P (k) in the top-down manner. When P (k0) = ∅, by proposition 3.1.1, ∪z∈Vk0

Az =M. Now, take k1 arbitrarily

from P (k)\{k}, and let k0 ∈ P (k) such that p(k0) = k1. It suffices to show that (P (k1) \ {k1})∪
(
∪z∈Vk1

Az
)
⊂

(P (k0) \ {k0}) ∪
(
∪z∈Vk0

Az
)

holds.

Let i ∈ (P (k1) \ {k1}) ∪
(
∪z∈Vk1

Az
)
. Since P (k1) \ {k1} ⊂ P (k0) \ {k0} and P (k1) ⊂ P (k0), it suffices to

look at when i ∈ Ak1 . Then, either i = k1 or i ∈ Az for some z ∈ y(k0) ∪ e(k0) ∪ {k0}. Therefore, we have
shown that i ∈ (P (k0) \ {k0}) ∪

(
∪z∈Vk0

Az
)
.

Proof of proposition 3.1.4. Lemma A.1 says that k = maxT (k), while for each z ∈ T (k), maxAz = z. Therefore,
∪z∈T (k)Az ⊂ {1, 2, . . . , k}. For the other direction, take any i ∈M\ ∪ z∈T (k)Az. It suffices to show that i > k.

Note that by definition T (k) = {k} ∪
(
∪z∈P (k)y(z)

)
. By lemma A.2, either i ∈ P (k) \ {k} or i ∈ Az for some

z ∈
(
∪z∈P (k)e(z)

)
∪ {k}. In the former case, clearly i > k. In the latter case, suppose that i ∈ Az for some

z ∈ e(z0) where z0 ∈ P (k). By proposition 3.1.2, since k ∈ Az0 , k ≤ z0 < v(z) ≤ i. Therefore, we have proven
that ∪z∈T (k)Az = {1, 2, . . . , k}.

For the second part of the proposition, suppose T (k) = {i1, i2, . . . , in} with i1 < i2 < . . . < in. It is not
hard to see that by definition of T (k), Aiq1 ∩Aiq2 = ∅ for any two distinct q1 and q2. By proposition 3.1.2, each
Aiq is consecutive. Therefore, iq < v(iq+1) must hold for each q = 1, 2, . . . , n − 1. Since we have proven that
∪q=1,2,...,nAiq = {1, 2, . . . , k} which is a consecutive set, iq+1 = v(iq+1) must hold for each q = 1, 2, . . . , n−1.

Proof of proposition 3.1.5. T (k0) ∩ Ak1 and T (k0) \ Ak1 is a partitioning of T (k0). By definition of T (k0),
since k1 ∈ P (k0), it is not hard to see that T (k0) ∩ Ak1 = {k0} ∪

(
∪z∈P (k0)\P (k1)y(z)

)
. Consequently, T (k0) \

Ak1 = ∪z∈P (k1)y(z). For the second equality, it suffices to show that z1 < z2 for any z1 ∈ ∪z∈P (k1)y(z)

and z2 ∈ {k0} ∪
(
∪z∈P (k0)\P (k1)y(z)

)
. It suffices to assume that z2 6= k and k1 > k0. By proposition 3.1.2,

z1 < v(k1) ≤ z2. Therefore, we are done.

A.2 One-shot job scheduling

Let k0 := max{m(J) : J ∈ J 1d}. For simplicity, for each machine type z ∈M, Let H≥z := {J ∈ J 1d : m(J) ≥
z} denote the set of jobs whose exact indexed machine type is greater than or equal to z. Let O be the set of
all the optimal machine configurations.

Lemma A.3. There exists an optimal machine configuration w∗ ∈ O such that max{z : w∗(z) > 0} ∈ P (k0).

Proof of lemma A.3. Take any w1 ∈ O. Construct another machine configuration w2 := G1(w1) by the following
definition of function G1. (see (13))

w2(z) :=


w1(z), if z = 1, 2, . . . , k0 − 1,

w1(z) +
∑
e∈e(z)

∑
i∈Ae

ri
rz
w1(i), if z ∈ P (k0),

0, otherwise.

(13)

By lemma A.2 and proposition 3.1.4, the changes from w1 to w2 are just that the costs from the machine
types M \ ({1, 2, . . . , k0 − 1} ∪ P (k0)) have been shifted to the machine types P (k0), and the two machine
configurations w1 and w2 have the same cost.
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It remains to show that w2 is a feasible solution to (2). By the definition of k0, for each l > k0, S(H≥l) = 0.
Consider the following inequalities:

S(H≥k0) ≤
|M|∑
z=k0

w1(z)gz =

|M|∑
z=k0

w1(z)rz
gz
rz

≤ (∗)

|M|∑
z=k0

w2(z)rz
gz
rz

=

|M|∑
z=k0

w2(z)gz.

The first inequality is due to the feasibility of w1. For the inequality indexed by (∗), observe that for each
z ∈ P (k0), w1(z)rz +

∑
e∈e(z)

∑
i∈Ae

w1(i)ri = w2(z)rz +
∑
e∈e(z)

∑
i∈Ae

w2(i)ri, while by proposition 3.1.3,

gz/rz ≥ gi/ri, for each i ∈ Ae for e ∈ e(z). Therefore, w1(z)rz
gz
rz

+
∑
e∈e(z)

∑
i∈Ae

w1(i)ri
gi
ri
≤ w1(z)rz

gz
rz

+∑
e∈e(z)

∑
i∈Ae

w1(i)ri
gz
rz

= w2(z)rz
gz
rz

. The inequality ≤(∗) follows.

For each l = 1, 2, . . . , k0 − 1, we have S(H≥l) ≤
∑|M|
z=l w1(z)gz ≤

∑|M|
z=l w2(z)gz, where the first inequality is

due to the feasibility of w1, and the second is because of ≤(∗) and w2(z) = w1(z) for each z = 1, 2, . . . , k0 − 1.
Eventually, we have shown that w2 is feasible and hence optimal. Clearly, max{z : w2(z) > 0} ∈ P (k0).

Lemma A.4. There exists an optimal machine configuration w∗ ∈ O such that max{z : w∗(z) > 0} ∈ P (k0)
and

∑
z∈Az0\{z0}

w∗(z)rz < rz0 for each z0 ∈M.

Proof of lemma A.4. Take w1 ∈ G1(O). It suffices to construct an function G2 which maps w1 to some optimal
machine configuration w2 such that max{z : w2(z) > 0} ∈ P (k0) and∑
z∈Az0

\{z0} w2(z)rz < rz0 for each z0 ∈M. (see Algorithm 3 for the definition of G2)

Algorithm 3: G2

Input: w1 ∈ G1(O)
Output: w2

1 w2(z)← w1(z) for each z ∈M;
2 for z0 = 1, 2, . . . , |M| do
3 if

∑
z∈Az0

\{z0} w2(z)rz ≥ rz0 then

4 Take z∗ ∈ Az0 \ {z0} and nz∗ ∈ {0, 1, . . . , w2(z∗)} such that

nz∗rz∗ +
∑
z∈{z∗+1,...,z0−1} w2(z)rz =

⌊∑
z∈Az0

\{z0}
w2(z)rz

rz0

⌋
· rz0 (see remark A.2.1);

5 w2(z0)← w2(z0) +

⌊∑
z∈Az0

\{z0}
w2(z)rz

rz0

⌋
;

6 w2(z)← 0 for each z = z∗ + 1, . . . , z0 − 1;
7 w2(z∗)← w2(z∗)− nz∗ ;
8 end

9 end

Remark A.2.1. By proposition 3.1.2, Az0 \ {z0} = {v(z0), v(z0) + 1, . . . , z0− 1}. Because

⌊∑
z∈Az0\{z0}

w2(z)rz

rz0

⌋
·

rz0 ≤
∑
z∈Az0\{z0}

w2(z)·rz and rz0 > rz for each z ∈ Az0\{z0}, there must exist z∗ ∈ {v(z0), v(z0)+1, . . . , z0−1}
such that ∑

z∈{z∗+1,...,z0−1}

w2(z) · rz ≤

⌊∑
z∈Az0

\{z0} w2(z)rz

rz0

⌋
· rz0

≤
∑

z∈{z∗,...,z0−1}

w2(z) · rz,
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which implies that

0 ≤

⌊∑
z∈Az0

\{z0} w2(z)rz

rz0

⌋
· rz0 −

∑
z∈{z∗+1,...,z0−1}

w2(z) · rz

≤ w2(z∗) · rz∗ .

Since the cost rate of each machine type is a power of 8, rz∗ divides
∑
z=z∗+1,...,z0

az ·rz for integers az∗+1, . . . , az0 .
The existence of nz∗ follows.

Now, we show that w2 is indeed an optimal machine configuration. In the definition of G2,
∑
z∈M w2(z)·rz =∑

z∈M w1(z) · rz holds at the end of each iteration. So, the output machine configuration w2 has the same cost

as w1. Next, we show that w2 is feasible to the optimization problem (2), i.e., S(H≥l) ≤
∑|M|
z=l w2(z)gz, for l =

1, 2, . . . , |M|. It suffices to assume that the machine configuration represented by w2 is feasible at the beginning
of each iteration and we are to show that that is still feasible at the end of the iteration. Take any iteration
z0 ∈ {1, 2, . . . , |M|}. Denote the two machine configurations at the beginning and the end of the z0-th iteration

by wa and wb respectively. By definition, say nz∗rz∗ +
∑
z∈{z∗+1,...,z0−1} wa(z)rz =

⌊∑
z∈Az0

\{z0}
wa(z)rz

rz0

⌋
· rz0 .

Clearly gz
rz
≤ gz0

rz0
for each z ∈ Az0 . Therefore, we have the following result, for each l = 1, 2, . . . , |M|:∑

z∈Az0
\{z0}∧z≥l

(wa(z)− wb(z))gz

≤ nz∗gz∗ +
∑

z∈{z∗+1,...,z0−1}

wa(z)gz

≤

⌊∑
z∈Az0\{z0}

wa(z)rz

rz0

⌋
· gz0

= (wb(z0)− wa(z0)) · gz0

Since z0 = maxAz0 , we have that for each l ∈M,
∑|M|
z=l wa(z)gz ≤

∑|M|
z=l wb(z)gz. Since wa is feasible, we also

have wb feasible and hence optimal.
It remains to show that the output machine configuration w2 satisfies the two properties: (1). max{z :

w2(z) > 0} ∈ P (k0) and (2).
∑
z∈Az0

\{z0} w2(z)rz < rz0 for each z0 = 1, 2, . . . , |M|.
For property (1): denote max{z : w2(z) > 0} and max{z : w1(z) > 0} by k2 and k1 respectively. By the

definition of G2, clearly k2 ≥ k1 because in each iteration of algorithm 3 the variable max{z : w2(z) > 0} does
not decrease. By lemma A.2, (P (k0) \ {k0})∪

(
∪z∈Vk0

Az
)

=M, and also note that k1 ∈ P (k0). Then, k2 must
be in P (k1) or Ae for some e ∈ e(x) for some x ∈ P (k0). (see proposition 3.1.4). We show that the latter case
is impossible. On the one hand, by the definition of G1, w1(i) = 0 for each i ∈ Ae. On the other hand, by
the definition of G2, ∃z ∈ Ak2 s.t. w1(z) > 0. Therefore, we have shown k2 ∈ P (k1) ⊂ P (k0) and hence the
property (1) holds.

For property (2), we show it by contradiction. Assume that
∑
z∈Az1

\{z1} w2(z)rz ≥ rz1 for some z1 ∈M. For

each z0-th iteration with z0 ∈M, let wz0 denote the the machine configurations w2 represents at the end of the
z0-th iteration. At the end of the z1-th iteration, we must have rz1 >

∑
z∈Az1

\{z1} w
z1(z)rz. By the definition

of algorithm 3, observe that
∑
z∈Az1

\{z1} w
z1(z)rz ≥

∑
z∈Az1

\{z1} w
z1+1(z)rz ≥ . . . ≥

∑
z∈Az1

\{z1} w
|M|(z)rz.

Consequently, rz1 >
∑
z∈Az1\{z1}

w2(z)rz since w|M| is actually the output machine configuration w2. Therefore,

property (2) is proven.

Proof of theorem 3.1. Take w1 ∈ G2(G1(O)). Let kopt := max{z : w1(z) > 0} ∈ {k0, . . . , kh}. We are to
construct an optimal machine configuration w2 := G3(w1) which is the optimal machine configuration described

in theorem 3.1. If T (kopt) is singleton, i.e. v(kopt) = 1, then w1(kopt) ≤
⌈
S(Hkopt )

gkopt

⌉
clearly holds because

anymore type-kopt machine must be redundant. If T (kopt) is singleton or w1(kopt) ≤
⌈
S(Hkopt )

gkopt

⌉
, let w2 := w1.
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Otherwise, i.e., w1(kopt) >
⌈
S(Hkopt )

gkopt

⌉
and v(kopt) > 1. Let s = maxT (kopt) \ {kopt} = v(kopt)− 1.

w2(z) :=


⌈
S(Hkopt )

gkopt

⌉
≥ 1, if z = kopt,

w1(s) +
rkopt

rs
·
(
w1(kopt)−

⌈
S(Hkopt )

gkopt

⌉)
, if z = s,

w1(z), otherwise.

The above has defined w2 = G3(w1) in each of the cases. It is clear that w2 and w1 have the same costs. Now,
we show that w2 is feasible. Since for each l > k0, S(H≥l) = 0, it remains to consider l = 1, 2, . . . , k0. For

any l = s + 1, . . . , k0 (Note that s + 1 = v(kopt) ≤ k0. ), S(H≥l) ≤ S(H≥s+1) = S(Hkopt) ≤
⌈
S(Hkopt )

gkopt

⌉
gkopt =

w2(kopt)gkopt ≤
∑|M|
z=l w2(z)gz. For l = 1, 2, . . . , s, we have S(H≥l) ≤

∑|M|
z=l w1(z)gz ≤

∑|M|
z=l w2(z)gz where

the first inequality is due to the feasibility of w1 and the second is due to gs
rs
≥ gkopt

rkopt
and (w2(s) − w1(s))rs =

(w1(kopt)− w2(kopt))rkopt ≥ 0. Finally, we have shown that w2 is feasible and hence optimal.
Next, we show that w2 satisfies the first two properties. Clearly, max{z : w2(z) > 0} = max{z : w1(z) >

0} = kopt ∈ P (k0). For the second property, since the only machine type whose usage has been increased from
w1 to w2 is type s, it suffices to check the trees rooted at the nodes P (s) \ {s}. Since s ∈ T (kopt), by definition
of T (kopt), P (s) \ {s} ⊂ P (kopt) \ {kopt}. For each z ∈ P (s) \ {s}, both kopt and s are in Az. This implies that∑
i∈Az\{z} w2(i)ri =

∑
i∈Az\{z} w1(i)ri < rz for each z ∈ P (s) \ {s}. Therefore, w2 indeed satisfies the first two

properties.

At last, we show that
⌊
S(Hkopt )

gkopt

⌋
≤ w2(kopt) holds as a consequence of the second property. Note that∑

z∈Akopt\{kopt}
w2(z)rz < rkopt implies that

∑
z∈Akopt\{kopt}

w2(z)gz =
∑

z∈Akopt\{kopt}

w2(z)rz ·
gz
rz

<

 ∑
z∈Akopt\{kopt}

w2(z)rz

 · gkopt
rkopt

< rkopt ·
gkopt
rkopt

= gkopt .

By the feasibility of w2, S(Hkopt) = S(H≥v(kopt)) ≤
∑
z∈Akopt\{kopt}

w2(z)gz+w2(kopt)gkopt < (w2(kopt)+1)gkopt ,

where the last inequality is the result from the above equation in display. After dividing both sides by gkopt , we

have
⌊
S(Hkopt )

gkopt

⌋
≤ S(Hkopt )

gkopt
< w2(kopt) + 1, which implies that

⌊
S(Hkopt )

gkopt

⌋
≤ w2(kopt).

B The offline setting

B.1 The offline algorithm: ALGoffline

Proof of property 4.1. By the definition of ALGoffline, koff /∈ ∪e∈∪z∈P (k0)e(z)Ae. By lemma A.2 and proposition

3.1.4, koff ∈ {1, 2, . . . , k0} ∪ (P (k0) \ {k0}). On the other hand, {J ∈ J (t) : m(J) = k0} 6= ∅ implies that
Kz(t) 6= ∅ for some z ∈ P (k0). This implies that koff ≥ k0. Therefore, koff ∈ P (k0).

Proof of property 4.2. We are to show that for any z ∈ M and t ∈ span(J ),
∑
i∈Az\{z}

⌈
S(Ki,t)
gi

ri

⌉
≤ 2 · rz

holds. Use induction on the height l ≥ 1 of the tree rooted at z, where the height of the tree rooted at z is
defined as max{|P (i) ∩ Az| : i ∈ Az}. The base case when l = 1 is trivially true, so it suffices to consider the
inductive case. Let T := {t0 : Rhz (t0) = ∅ ∧ cz,t0 < 1

3rz}. For each job J ∈ Rz, by definition of ALGoffline,
J ∈ Kz if and only if I(J) ∩ T = ∅.(line 9-11) For the fixed time t, we have either t ∈ T or t /∈ T.
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Case 1: t ∈ T.
In this case, Kz(t) = ∅. For each job J ∈ Rz(t), J ∈ Rx(t) for some x ∈ f(z), i.e., all the jobs in Rz(t)

are passed to z’s children nodes. Clearly, Rz(t) = ∪x∈f(z)Rx(t). By definition, Fx,t = Rx(t) ⊃ Kx(t) for each

x ∈ f(z). (line 5) Hence,
∑
x∈f(z)

⌈
S(Kx,t)
gx

⌉
rx ≤

∑
x∈f(z)

⌈
S(Fx,t)
gx

⌉
rx = cz,t <

1
3rz. Consider the following:

∑
i∈Az\{z}

⌈
S(Ki, t)

gi

⌉
ri

=
∑
x∈f(z)

⌈S(Kx, t)

gx

⌉
rx +

∑
i∈Ax\{x}

⌈
S(Ki, t)

gi

⌉
ri


≤
∑
x∈f(z)

⌈
S(Fx,t)

gx

⌉
rx + 2 ·

⌈
S(Fx,t)

gx

⌉
rx

= 3 · cz,t < 3 · (1

3
rz) = rz.

Here we explain the above inequalities. By inductive hypothesis,
∑
i∈Ax\{x}

⌈
S(Ki,t)
gi

⌉
ri ≤ 2·rx for each x ∈ f(z),

since the heights of trees rooted at the children nodes of z are all strictly less than the height of the tree rooted

at z. If
∑
i∈Ax\{x}

⌈
S(Ki,t)
gi

⌉
ri > 0, then Rx(t) is nonempty as well as Fx,t. Therefore,

∑
i∈Ax\{x}

⌈
S(Ki,t)
gi

⌉
ri ≤

2 ·
⌈
S(Fx,t)
gx

⌉
rx always holds.

Case 2: t /∈ T.
Denote Rz(t0) \ Kz(t0) by R′z(t0) for any t0 ∈ span(J ), i.e., R′z(t0) represents the set of jobs active at

t0 which are passed into the children nodes of z. Clearly, R′z(t0) = ∪x∈f(z)Rx(t0). By definition, we also

have R′z(t) = {J ∈ J (t) \
(
∪i=|M,|M|−1,...,z+1Ki(t)

)
: m(J) ∈ Az \ {z} ∧ I(J) ∩ T 6= ∅}. Consider two sets:

S1 := span(R′z(t)) ∩ T ∩ (−∞, t) and S2 := span(R′z(t)) ∩ T ∩ (t,∞). If both S1 and S2 are empty, clearly

R′z(t) = ∅. Then, for each i ∈ Az \ {z}, Ki(t) = ∅. Then
∑
i∈Az\{z}

⌈
S(Ki,t)
gi

⌉
ri = 0. Therefore, it suffices to

consider the cases when at least one of S1 and S2 is nonempty.
Case 2.1: both S1 and S2 are nonempty.
Let t1 := supS1 and t2 := minS2. The essential reason why sup is used in the first definition and min

is used in the second definition is that the active intervals of jobs are defined as left closed and right open
intervals. Observe that t1 ≤ t < t2. Suppose that ε > 0 is infinitesimal. Note that t1− ε ∈ T and t2 ∈ T. Then,
we have for each J ∈ R′z(t), either t1 − ε or t2 is in I(J), otherwise I(J) ∩ T would be empty. So, we have
R′z(t) ⊂ R′z(t1−ε)∪R′z(t2) = Rz(t1−ε)∪Rz(t2), where the equality is because t1−ε, t2 ∈ T. (see the discussion
in case 1) Consequently, after the partitioning of jobs into children nodes of z, we have Rx(t) ⊂ Fx,t1−ε ∪ Fx,t2
for each x ∈ f(z). Therefore, ∑

x∈f(z)

⌈
S(Rx, t)

gx

⌉
rx

≤
∑
x∈f(z)

⌈
S(Fx,t1−ε ∪ Fx,t2)

gx

⌉
rx

≤
∑
x∈f(z)

⌈
S(Fx,t1−ε)

gx

⌉
rx +

∑
x∈f(z)

⌈
S(Fx,t2)

gx

⌉
rx

<
2

3
rz, since t1 − ε, t2 ∈ T.

(14)
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Similarly as case 1, we have ∑
i∈Az\{z}

⌈
S(Ki, t)

gi

⌉
ri

=
∑
x∈f(z)

⌈S(Kx, t)

gx

⌉
rx +

∑
i∈Ax\{x}

⌈
S(Ki, t)

gi

⌉
ri


≤
∑
x∈f(z)

(⌈
S(Rx, t)

gx

⌉
rx + 2 ·

⌈
S(Rx, t)

gx

⌉
rx

)

= 3 ·
∑
x∈f(z)

⌈
S(Rx, t)

gx

⌉
rx

< 3 · (2

3
rz) = 2 · rz, by equation (14),

where the first inequality has used inductive hypothesis on the trees rooted at x for each x ∈ f(z).
Case 2.2: either S1 or S2 is empty.
Due to symmetry, it suffices to assume S1 6= ∅ and S2 = ∅. Let t1 := supS1. Let ε > 0 be infinitesimal.

Similarly, R′z(t) ⊂ Rz(t1 − ε). Furthermore, R′z(t) = ∪x∈f(z)Rx(t) and Rz(t1 − ε) = ∪x∈f(z)Rx(t1 − ε) =
∪x∈f(z)Fx,t1−ε. Therefore, Rx(t) ⊂ Fx,t1−ε. Therefore,

∑
x∈f(z)

⌈
S(Rx, t)

gx

⌉
rx

≤
∑
x∈f(z)

⌈
S(Fx,t1−ε)

gx

⌉
rx

= cz,t1−ε <
1

3
rz.

(15)

Finally, ∑
i∈Az\{z}

⌈
S(Ki, t)

gi

⌉
ri

=
∑
x∈f(z)

⌈S(Kx, t)

gx

⌉
rx +

∑
i∈Ax\{x}

⌈
S(Ki, t)

gi

⌉
ri


≤
∑
x∈f(z)

(⌈
S(Rx, t)

gx

⌉
rx + 2 ·

⌈
S(Rx, t)

gx

⌉
rx

)

= 3 ·
∑
x∈f(z)

⌈
S(Rx, t)

gx

⌉
rx

< 3 · (1

3
rz) = rz, by equation (15),

where the first inequality has used inductive hypothesis on the trees rooted at x for each x ∈ f(z).
Eventually, we have proved the inductive case.

Proof of property 4.3. Kz(t) 6= ∅ and Rhz = ∅ implies that cz,t =
∑
x∈f(z)

⌈
S(Fx,t)
gx

⌉
rx ≥ 1

3rz. Meanwhile, the

condition Ki(t) = ∅ for each i ∈ P (z) \ {z} says that Rz(t) = Rz(t). Therefore, {Fx,t : x ∈ f(z)} is not only
the partitioning of Rz(t) but also Rz(t). Therefore, by the definition of Fx,t and Rx(t), we have Fx,t = Rx(t)
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for each x ∈ f(z). Consequently,∑
x∈f(z)

S(Rx, t)
rx
gx

=
∑
x∈f(z)

S(Fx,t)
rx
gx

≥
∑
x∈f(z)

(⌈
S(Fx,t)

gx

⌉
− 1

)
rx

=
∑
x∈f(z)

⌈
S(Fx,t)

gx

⌉
rx −

∑
x∈f(z)

rx

≥ 1

3
rz −

1

7
rz =

4

21
rz.

B.2 An O(1) approximation of optimal one-shot scheduling

Proof of proposition 4.2.1. By the definition of the alternative machine configuration vz∗ , for each z ∈ T (z∗) \
{z∗},

S(Hz) ≥ vz∗(z) · gz (16)

By proposition 3.1.3, for each z ∈ T (z∗),
rz
gz
≤ rz∗

gz∗
(17)

There are two cases when z1 = z∗ or z1 < z∗.
Case 1: z1 = z∗.
On the one hand, it can be observed that for each z0 ∈ T (z∗), the initial part of the alternative machine

configuration vz∗(z) with z ∈ T (z∗) ∧ z ≥ z0 is actually able to contain all the jobs in ∪z∈T (z∗)∧z≥z0Hz.
Therefore, 0 ≤

∑
z∈T (z∗)∧z≥z0 vz∗(z) · gz − S(Hz) holds. So, we have∑

z∈T (z∗)∧z≥z0

vz∗(z) · rz − S(Hz) ·
rz
gz

=
∑

z∈T (z∗)∧z≥z0

(vz∗(z)gz − S(Hz)) ·
rz
gz

≥
∑

z∈T (z∗)∧z≥z0

(vz∗(z)gz − S(Hz)) ·
rz∗

gz∗
, by equation (16) and (17)

=

 ∑
z∈T (z∗)∧z≥z0

vz∗(z)gz − S(Hz)

 · rz∗
gz∗

≥ 0.

On the other hand, we have ∑
z∈T (z∗)∧z≥z0

vz∗(z) · rz − S(Hz) ·
rz
gz

=
∑

z∈T (z∗)∧z≥z0

(vz∗(z) · gz − S(Hz)) ·
rz
gz

≤ (vz∗(z
∗) · gz∗ − S(Hz∗)) ·

rz∗

gz∗
, by equation (16)

=

(⌈
S(Hz∗)

gz∗

⌉
· gz∗ − S(Hz∗)

)
· rz

∗

gz∗

≤ rz∗
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Case 2: z1 < z∗.
By equation (16),

∑
z∈T (z∗)∧z0≤z≤z1 vz∗(z)·rz−S(Hz)· rzgz =

∑
z∈T (z∗)∧z0≤z≤z1 (vz∗(z) · gz − S(Hz))· rzgz ≤ 0.

On the other hand, by the definition of the alternative machine configuration,∑
z∈T (z∗)∧z0≤z≤z1 S(Hz)− vz∗(z) · gz < gz∗ . Therefore, we have∑

z∈T (z∗)∧z0≤z≤z1

S(Hz) ·
rz
gz
− vz∗(z) · rz

=
∑

z∈T (z∗)∧z0≤z≤z1

(S(Hz)− vz∗(z) · gz) ·
rz
gz

≤
∑

z∈T (z∗)∧z0≤z≤z1

(S(Hz)− vz∗(z) · gz) ·
rz∗

gz∗
, by equation (16), (17)

=

 ∑
z∈T (z∗)∧z0≤z≤z1

S(Hz)− vz∗(z) · gz

 · rz∗
gz∗

≤ rz∗

Proof of proposition 4.2.2. By Proposition 3.1.3, we have rz
gz
≤ rz∗

gz∗
for each z ∈ T (z∗). Suppose i∗ ∈ T (z∗)\{z∗}

is the boundary machine type satisfying equations (3) and (4). Either z0 > i∗ or z0 ≤ i∗.
If z0 > i∗, by equation (3), we have∑

z∈T (z∗)∧z≥z0

S(Hz) ·
rz
gz
≤
( ∑
z∈T (z∗)∧z≥z0

S(Hz)

)
· rz

∗

gz∗

≤vz∗(z
∗) · gz∗ ·

rz∗

gz∗
= vz∗(z

∗) · rz∗ .

If z0 ≤ i∗, by the definition of vz∗ , we have∑
z∈T (z∗)∧z≥z0

S(Hz) ·
rz
gz

=
∑

z∈T (z∗)∧z>i∗
S(Hz) ·

rz
gz

+
∑

z∈T (z∗)∧i∗>z≥z0

S(Hz) ·
rz
gz

+

( ∑
z∈T (z∗)∧z≥i∗

S(Hz)− vz∗(z
∗) · gz∗

)
· ri

∗

gi∗

+

(
vz∗(z

∗) · gz∗ −
∑

z∈T (z∗)∧z>i∗
S(Hz)

)
· ri

∗

gi∗

=
∑

z∈T (z∗)∧z>i∗
S(Hz) ·

rz
gz

+
∑

z∈T (z∗)∧i∗>z≥z0

vz∗(z) · gz ·
rz
gz

+ vz∗(i
∗) · gi∗ ·

ri∗

gi∗
+

(
vz∗(z

∗) · gz∗ −
∑

z∈T (z∗)∧z>i∗
S(Hz)

)
· ri

∗

gi∗

≤
∑

z∈T (z∗)∧z>i∗
S(Hz) ·

rz∗

gz∗
+

∑
z∈T (z∗)∧i∗>z≥z0

vz∗(z) · rz

+ vz∗(i
∗) · ri∗ +

(
vz∗(z

∗) · gz∗ −
∑

z∈T (z∗)∧z>i∗
S(Hz)

)
· rz

∗

gz∗

=vz∗(z
∗) · rz∗ + vz∗(i

∗) · ri∗ +
∑

z∈T (z∗)∧i∗>z≥z0

vz∗(z) · rz

27



=
∑

z∈T (z∗)∧z≥z0

vz∗(z) · rz.

Proof of the left inequality in theorem 4.1. To show all the details of the proof, we need a lemma first.

Lemma B.1. Suppose that (aj)
n
j=1, (bj)

n
j=1, (cj)

n
j=1 are three sequences of non-negative values. If

∑n
j=x aj ≤∑n

j=x bj for each x = 1, 2, . . . , n and (cj)
n
j=1 is an non-decreasing sequence, then we have a1c1+a2c2+. . .+ancn ≤

b1c1 + b2c2 + . . .+ bncn.

Proof of lemma B.1. We prove the lemma by using induction on n. It suffices to consider the inductive case.
Assume the lemma holds for n − 1 ≥ 1, and we show that the lemma holds for n ≥ 2.By the conditions given
and the induction assumption, we have

(

n∑
x=2

bx −
n∑
x=3

ax)c2 + a3c3 + . . .+ ancn

≤ b2c2 + b3c3 + . . .+ bncn,

(18)

because
∑n
x=x0

ax ≤
∑n
x=x0

bx for each x0 = 3, 4, . . . , n,
∑n
x=2 bx −

∑n
x=3 ax ≥ 0, and

∑n
x=2 bx −

∑n
x=3 ax +

a3 + . . .+ an = b2 + b3 + . . .+ bn.
Therefore,

a1c1 + a2c2 + . . .+ ancn

≤ (

n∑
x=1

ax −
n∑
x=2

bx)c1 + (

n∑
x=2

bx −
n∑
x=3

ax)c2 + a3c3 + . . .+ ancn

≤ (

n∑
x=1

ax −
n∑
x=2

bx)c1 + b2c2 + b3c3 + . . .+ bncn, by equation (18)

≤ b1c1 + b2c2 + . . .+ bncn,

where the first inequality is because (
∑n
x=1 ax−

∑n
x=2 bx)c1+(

∑n
x=2 bx−

∑n
x=3 ax)c2−(a1c1+a2c2) = (

∑n
x=2 ax−∑n

x=2 bx)c1 + (
∑n
x=2 bx −

∑n
x=2 ax)c2 = (

∑n
x=2 bx −

∑n
x=2 ax)(c2 − c1) ≥ 0, and the last inequality is due to

b1 ≥
∑n
x=1 ax −

∑n
x=2 bx and c1 ≥ 0.

Case 1: z� = kopt.

By Theorem 3.1, w∗(kopt) ≥ 1 is either
⌊
S(Hkopt )

gkopt

⌋
or
⌈
S(Hkopt )

gkopt

⌉
.

Case 1.1: w∗(kopt) =
⌊
S(Hkopt )

gkopt

⌋
.

By the definition of z�, we have

vz�(z
�) · rz� =

⌈
S(Hkopt)

gkopt

⌉
· rkopt

≤ 2 ·
(⌊

S(Hkopt)

gkopt

⌋
· rkopt

)
= 2 · w∗(kopt) · rkopt .

(19)

On the other hand, we can also show that∑
z∈T (z�)\{z�}

vz�(z)rz ≤
∑

z=1,2,...,kopt−1

w∗(z)rz (20)

By the definition of vz� , for each z ∈ T (z�) \ {z�}, vz�(z)rz ≤ S(Hz)
rz
gz

. Thus,
∑
z∈T (z�)\{z�} vz�(z)rz ≤∑

z∈T (z�)\{z�} S(Hz)
rz
gz

. Therefore, it suffices to show that
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∑
z∈T (z�)\{z�} S(Hz)

rz
gz
≤
∑
z=1,2,...,kopt−1 w

∗(z)rz. Suppose that T (z�) \ {z�} = {i1, i2, . . . , in−1} where

i1 < i2 < . . . < in−1. By the feasibility of w∗,
(∑

j=x,x+1,...,n−1 S(Hij )
)

+ S(Hz�) ≤
∑
z≥v(ix) w

∗(z)gz for

each x = 1, 2, . . . , n−1. Since w∗(kopt) ·gkopt =
⌊
S(Hkopt )

gkopt

⌋
·gkopt < S(Hkopt), we have

∑
j=x,x+1,...,n−1 S(Hij ) ≤∑

v(ix)≤z≤kopt−1 w
∗(z)gz. By Proposition 3.1.3, (

rij
gij

)n−1j=1 is a non-decreasing sequence. By Lemma B.1, we have∑
z∈T (z�)\{z�} S(Hz)

rz
gz
≤
(∑

v(i1)≤z<v(i2) w
∗(z)gz

)
· ri1gi1 +

(∑
v(i2)≤z<v(i3) w

∗(z)gz

)
· ri2gi2 +. . .+

(∑
v(in−1)≤z≤kopt−1 w

∗(z)gz

)
·

rin−1

gin−1
. By the definition of the cost-per-capacity graph,(∑

v(i1)≤z<v(i2) w
∗(z)gz

)
· ri1gi1 +

(∑
v(i2)≤z<v(i3) w

∗(z)gz

)
· ri2gi2 + . . . +

(∑
v(in−1)≤z≤kopt−1 w

∗(z)gz

)
· rin−1

gin−1
≤∑

z=1,2,...,kopt−1 w
∗(z)rz. Therefore, equation (20) has been proved.

In summary, ∑
z∈T (z�)

vz�(z)rz = vz�(z
�)rz� +

∑
z∈T (z�)\{z�}

vz�(z)rz

≤ 2 · w∗(kopt) · rkopt +
∑

z=1,2,...,kopt−1

w∗(z)rz

(by equations (19),(20))

≤ 2 ·
∑

z=1,2,...,kopt

w∗(z)rz.

Case 1.2: w∗(kopt) =
⌈
S(Hkopt )

gkopt

⌉
.

By the definition of vz� , vz�(z
�) = w∗(kopt) and also, for any z0 ∈ T (z�),

∑
z∈T (z�)∧z≥z0 S(Hz) =∑

z∈T (z�)∧z≥z0 vz�(z)gz if∑
z∈T (z�)∧z≥z0 vz�(z)gz > vz�(z

�)gz� . Therefore, due to the feasibility of w∗, we have
∑
z∈T (z�)∧z≥z0 vz�(z)gz ≤∑

z≥v(z0) w
∗(z)gz for each z0 ∈ T (z�). Suppose that T (z�)\{z�} = {i1, i2, . . . , in−1} where i1 < i2 < . . . < in−1.

Similar to the discussion in Case 1.1, by Proposition 3.1.3, Lemma B.1 and the definition of the cost-per-capacity

graph, we have
∑
z∈T (z�) vz�(z)rz ≤

(∑
v(i1)≤z<v(i2) w

∗(z)gz

)
· ri1gi1 +

(∑
v(i2)≤z<v(i3) w

∗(z)gz

)
· ri2gi2 + . . . +(∑

v(in−1)≤z<v(z�) w
∗(z)gz

)
· rin−1

gin−1
+
(∑

v(z�)≤z≤z� w
∗(z)gz

)
· rz�gz� ≤

∑
z=1,2,...,kopt

w∗(z)rz.

Case 2: z� < kopt.
By claim (1) of Proposition 4.2.3, ∑

z∈T (z�)∩Akopt

vz�(z)rz ≤ rkopt . (21)

Next, we show that ∑
z∈T (z�)\Akopt

vz�(z)rz ≤
∑

z=1,2,...,m

w∗(z)rz. (22)

Similar to the discussion in Case 1.1, we have
∑
z∈T (z�)\Akopt

vz�(z)rz ≤
∑
z∈T (z�)\Akopt

S(Hz)
rz
gz

. Suppose

that T (z�) \Akopt = {i1, i2, . . . , ia} where i1 < i2 < . . . < ia. By the feasibility of w∗, Proposition 3.1.3, Lemma

B.1 and the definition of the cost-per-capacity graph, we have
∑
z∈T (z�) vz�(z)rz ≤

(∑
v(i1)≤z<v(i2) w

∗(z)gz

)
·

ri1
gi1

+
(∑

v(i2)≤z<v(i3) w
∗(z)gz

)
· ri2gi2 + . . .+

(∑
v(ia)≤z<v(kopt) w

∗(z)gz

)
· riagia +

(∑
v(kopt)≤z≤kopt w

∗(z)gz

)
· rkopt

gkopt
≤∑

z=1,2,...,kopt
w∗(z)rz.
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In summary, ∑
z∈T (z�)

vz�(z)rz =
∑

z∈T (z�)\Akopt

vz�(z)rz +
∑

z∈T (z�)∩Akopt

vz�(z)rz

≤
∑

z=1,2,...,kopt

w∗(z)rz + rkopt (by equations (21),(22))

≤ 2 ·
∑

z=1,2,...,kopt

w∗(z)rz.

Case 3: z� > kopt.
By Theorem 3.1,

∑
z∈Az�

w∗(z)rz < rz� . Consequently,∑
z∈Az�

w∗(z)gz =
∑
z∈Az�

w∗(z)rz · gzrz ≤
∑
z∈Az�

w∗(z)rz · gz�rz� < rz� · gz�rz� = gz� . By the feasibility of w∗,

S(Hz�) = S({J ∈ J 1d : m(J) ≥ v(z�)}) ≤
∑
z∈Az�

w∗(z)gz. Therefore, S(Hz�) < gz� . By the definition of vz� ,
we have

vz�(z
�) = 1. (23)

Consider z′ := max{z ∈ P (kopt) : z < z�} which clearly exists. By claim (2) of Proposition 4.2.3,∑
z∈T (z′)∩A

z4
vz′(z)rz > rz4 ≥ rz� for some z4 ∈ P (z′) \ {z′}. By Proposition 3.1.5 and Proposition 4.2.1,∑

z∈T (z′)∩A
z4
S(Hz)

rz
gz

+ rz′ ≥
∑
z∈T (z′)∩A

z4
vz′(z)rz ≥ rz� . This implies that

∑
z∈T (z′)∩A

z4
S(Hz)

rz
gz
≥

rz� − rz′ ≥ 7
8rz� . Meanwhile, by the feasibility of w∗, Proposition 3.1.3, Lemma B.1 and the definition of the

cost-per-capacity graph,
∑
z=1,2,...,kopt

w∗(z)rz ≥
∑
z∈T (z′)∩A

z4
S(Hz)

rz
gz

. Therefore,

7

8
rz� ≤

∑
z=1,2,...,kopt

w∗(z)rz. (24)

On the other hand, note that by Proposition 3.1.5, T (z�) \ {z�} ⊂ T (kopt). Similar to the arguments for
equation (22), we also have ∑

z∈T (z�)\{z�}

vz�(z)rz ≤
∑

z=1,2,...,kopt

w∗(z)rz. (25)

In summary, ∑
z∈T (z�)

vz�(z)rz = rz� +
∑

z∈T (z�)\{z�}

vz�(z)rz (by equation (23))

≤ 8

7
·

∑
z=1,2,...,kopt

w∗(z)rz +
∑

z=1,2,...,kopt

w∗(z)rz

(by equations (24),(25))

=
15

7
·

∑
z=1,2,...,kopt

w∗(z)rz.

C The online setting

C.1 About one-shot job scheduling

In this subsection, we keep denoting the given set of jobs for the optimization problem (2) by J 1d. In the follow-
ing, we point out one special explicit way of scheduling the jobs in J 1d into any feasible machine configuration.
Subsequently, for each job in J 1d, its placement actually indicates a cost for each individual job in J 1d.

Suppose that w represents a feasible machine configuration. Sort all the machines in w in the descending
order of capacity. Also, sort the jobs in J 1d in the descending order of job size. Schedule the (divisible) jobs
into the first available machine one by one until the machine is full or all parts of the jobs in J 1d are scheduled.
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In the latter case, the scheduling is done. If the former case happens, continue to schedule the rest parts of
jobs into the next available machine. The feasibility of w guarantees that there always exists the next available
machine. Observe that each job can be scheduled into at most two distinct machines. For each J ∈ J 1d, define
r∗(J 1d, w)(J) := s1 ·

rz1
gz1

+ s2 ·
rz2
gz2

, where s(J) = s1 + s2, where s1 part of J is scheduled into some machine in

type-z1 and that s2 part of J is scheduled into some machine in type-z2. The feasibility of w also guarantees
that s(J) ≤ gz1 and s(J) ≤ gz2 .

Remark C.1.1. (1). Suppose that w is any machine configuration feasible to (2) and kopt := max{z : w(z) > 0}.
For any job J ∈ Hz = {J ∈ J 1d : m(J) ∈ Az}, where z is any machine type from T (kopt), we show that
r∗(J 1d, w)(J) ≥ s(J) · rzgz .

Suppose J is divided into two parts which are scheduled into some type z1 machine and some z2 machine,
without loss of generality. By the feasibility of w, z1 ≥ m(J) ≥ v(z) and z2 ≥ m(J) ≥ v(z). On the other hand,
by proposition 3.1.4 and 3.1.3, for each i ∈ {v(z), v(z) + 1, . . . , kopt}, ri

gi
≥ rz

gz
. Therefore, r∗(J 1d, w)(J) :=

s1 ·
rz1
gz1

+ s2 ·
rz2
gz2
≥ s(J) · rzgz .

(2).
∑
J∈J 1d r∗(J 1d, w)(J) ≤

∑
z∈M w(z) · rz.

C.2 Proof of Theorem 5.3

Lemma C.1. For each machine type z ∈M and for each time t ∈ span(J ), we have
∑
i∈Az\{z}N(i, t)ri < rz.

Proof of lemma C.1. This lemma can be easily proven by contradiction. Assume that at some time t there
exists some machine type z0 such that

∑
i∈Az0

\{z0}N(i, t)ri ≥ rz0 . Choose the last opened machine among all

the machines being open at time t and whose machine type is from Az0 \ {z0}, say machine m1 whose machine
type is z1 ∈ Az0 \ {z0}. (By assumption of the online setting, there is only one such machine) Call the job
arriving at the same time as the starting time of the machine m1 by J1. (by the same assumption, there is
only one such job. ) We have I(J1)− ≤ t. By the choice of m1, we know that

∑
i∈Az0

\{z0}N(i, I(J1)−)ri ≥∑
i∈Az0

\{z0}N(i, t)ri ≥ rz0 , where the first inequality is because every machine being open at time t from the

machine types Az0 \ {z0} must also be open at I(J1)−. Also note that since J1 is scheduled into a new machine
m1 of type z1 ∈ Az0 \ {z0}, we have N(i, I(J)−) = ni for each i ∈ Az0 \ {z0, z1}, and N(z1, I(J)−) = nz1 + 1,
where nx for each x ∈ Az0 \ {z0} is the number of type x machines being open when J1 is arriving but has not
been scheduled yet. Therefore,

∑
i∈Az0

\{z0} ni · ri ≥ rz0 − rz1 which contradicts to the condition defined in the

online algorithm ALGonline. (line 6)

Proof of theorem 5.3. Take any time t ∈ span(J ). Denote max{m(J) : J ∈ J (t)} by k0.
In the following we briefly show that k(t) ∈ P (k0), because the arguments will be identical to the proof of

property 4.1. By the definition of ALGonline, for each J ∈ J (t), the machine type J is scheduled into must
be in P (m(J)). Therefore, all the possible machine types J is scheduled into are {z ∈ M : ∃i, s.t. , 1 ≤ i ≤
k0 ∧ z ∈ P (i)} = {1, 2, . . . , k0} ∪ (P (k0) \ {k0}). Since the jobs in {J ∈ J (t) : m(J) = k0} must be scheduled
into some machine of type from P (k0), k(t) must be in P (k0).

Denote by w∗(z) with z ∈M some optimal machine configuration for the one-shot scheduling of the jobs in
R(t) ∪ J (t) chosen by theorem 3.1. Subsequently, let kopt := max{z : w∗(z) > 0} denote the highest machine
type used by the chosen optimal machine configuration. We have kopt ∈ P (k0).

Case 1: kopt ≥ k(t).
By proposition 3.1.4, {1, 2, . . . , k(t)} ⊂ {1, 2, . . . , kopt} = ∪z∈T (kopt)Az. Note that if N(kopt, t) > 1, then

kopt = k(t). For each z ∈ I := {z ∈ T (kopt) : N(z, t) > 1}, denote the union of Kz(t) and {J ∈ R(t) : m(J) ∈
Az} by Lz. Clearly all such Lz’s are mutually disjoint.
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We have
OPT1(R(t) ∪ J (t))

=
∑
z∈M

w∗(z) · rz

≥
∑

J∈∪z∈ILz

r∗(R(t) ∪ J (t), w∗)(J), by remark C.1.1 (2)

≥
∑

J∈∪z∈ILz

s(J) · rz
gz
, by remark C.1.1 (1)

≥
∑
z∈I

(N(z, t)− 1) · rz, by lemma 5.1

(26)

Consider the following sequence of inequalities:∑
i=1,2,...,k(t)

N(i, t) · ri

=
∑

i∈Akopt

N(i, t) · ri +
∑

z∈T (kopt)\{kopt}

∑
i∈Az

N(i, t) · ri

≤ (N(kopt, t) + 1) · rkopt +
∑

z∈T (kopt)\{kopt}

(N(z, t) + 1) · rz, by lemma C.1

≤ (N(kopt, t) + 1) · rkopt +
2

7
· rkopt +

∑
z∈I\{kopt}

(N(z, t)− 1) · rz,

(27)

where we have used the assumption which says that the cost rate of each machine type is a power of 8.
Note that rkopt ≤ OPT1(R(t)∪J (t)). No matter N(kopt, t) ≤ 1 or N(kopt, t) ≥ 2, the right end of equation

(27) is bounded by (3 + 2
7 ) ·OPT1(R(t) ∪ J (t)) by using equation (26).

Therefore, in case 1, we have
∑
i=1,2,...,k(t)N(i, t) · ri ≤ (3 + 2

7 ) ·OPT1(R(t) ∪ J (t)). Clearly, 3 + 2
7 ≤ 5.

Case 2: kopt < k(t)
Firstly, we show that only the case that N(k(t), t) = 1 and ∀J ∈ Kk(t)(t), m(J) < k(t) will happen. Since

k0 ≤ kopt < k(t), we have ∀J ∈ J (t), m(J) < k(t). For the sake of contradiction, assume that N(k(t), t) ≥ 2.
Lemma 5.1 and the definition of ALGonline implies that

S({J ∈ R(t) ∪ J (t) : m(J) ∈ Ak(t)})
≥ S({J ∈ R(t) : m(J) ∈ Ak(t)}) + S(Kk(t), t)

≥ (N(k(t), t)− 1) · gk(t).
(28)

However, the choice of the optimal machine configuration says that
∑
z∈Ak(t)

w∗(z) · rz < rk(t). Since the node

k(t) has the lowest cost rate among all the nodes in Ak(t), immediately we have gk(t) >
∑
z∈Ak(t)

w∗(z) · gz ≥
S({J ∈ R(t) ∪ J (t) : m(J) ∈ Ak(t)}), where the last inequality is due to the feasibility of w∗. This clearly
contradicts to equation (28).

Therefore, N(k(t), t) = 1. By Lemma 5.2, take Ĵ ∈ Kk(t)(t). Since m(Ĵ) < k(t), m(Ĵ) ∈ Af1 for some

f1 ∈ f(k(t)). By the definition of the online algorithm, if Ĵ were to be scheduled into some type f1 machine,
one new type f1 machine must be opened for processing Ĵ . However, although it is known that Ĵ is scheduled
into some type k(t) machine, it is not known that whether a new type k(t) machine is opened for processing it
or not. There are two cases in general:

Case 2.1:
∑
z∈Ak(t)\{k(t)}N(z, I(Ĵ)−) · rz + rf1 ≥ rk(t).

Case 2.2: there exists some k4 ∈ P (k(t))\{k(t)} such that
∑
z∈A

k4\{k4,k(t)}
N(z, I(Ĵ)−) ·rz +nk(t) ·rk(t) +

rf1 ≥ rk4 , where nk(t) is either N(k(t), I(Ĵ)−) or N(k(t), I(Ĵ)−)− 1. (see line 6 of the definition of ALGonline)
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Case 2.1. In this case, we have ∑
z∈f(k(t))∧N(z,I(Ĵ)−)>1

(N(z, I(Ĵ)−)− 1) · rz

≥ rk(t) − rf1 −
∑

z∈f(k(t))

rz +
∑

i∈Az\{z}

N(i, I(Ĵ)−) · ri


≥ rk(t) − rf1 −

∑
z∈f(k(t))

2 · rz, by lemma C.1

≥ (1− 1

8
− 2

7
) · rk(t),

(29)

where in the last inequality we have used the assumption that the cost rate for each machine type is a power of
8.

Consider those z ∈ f(k(t)) such that N(z, I(Ĵ)−) > 1 (corresponding to the left-hand side of the above
equation (29)). For each J ∈ Lz := Kz(t) ∪ {R(t) : m(J) ∈ Az}, we have

r∗(R(t) ∪ J (t), w∗)(J) ≥ s(J) · rz0
gz0
≥ s(J) · rz

gz
, (30)

where z0 is the node in T (kopt) such that m(J) ∈ Az0 . The first inequality is by remark C.1.1 (1), and the
second is because kopt < k(t) implies that z0 ∈ Az.

We have the following inequalities hold:

OPT1(R(t) ∪ J (t))

≥
∑

J∈∪z∈f(k(t))∧N(z,I(Ĵ)−)>1Lz

r∗(R(t) ∪ J (t), w∗)(J),

by remark C.1.1 (2)

≥
∑

z∈f(k(t))∧N(z,I(Ĵ)−)>1

S(Lz) ·
rz
gz
, by equation (30)

≥
∑

z∈f(k(t))∧N(z,I(Ĵ)−)>1

(N(z, I(Ĵ)−)− 1) · rz, by lemma 5.1

≥ (1− 1

8
− 2

7
) · rk(t), by equation (29)

Eventually, we have OPT1(R(t) ∪ J (t)) ≥ (1− 1
8 −

2
7 ) · rk(t).

Case 2.2. At first, we show that Ĵ was scheduled into some type k(t) machine which has been opened before
Ĵ arrives, i.e., nk(t) = N(k(t), I(Ĵ)−). For the sake of contradiction, assume that a new type k(t) machine was

opened for scheduling Ĵ at time I(Ĵ)−. In this case, we have
∑
z∈A

k4\{k4}
N(z, I(Ĵ)−)rz − rk(t) + rf1 ≥ rk4 .

This implies that
∑
z∈A

k4\{k4}
N(z, I(Ĵ)−)rz ≥ rk4 which contradicts to lemma C.1.

It is easy to see that k(t) − 1 = max f(k(t)). Denote T (k(t) − 1) ∩ Ak4 by H. By proposition 3.1.2 and
proposition 3.1.4, we have ∪z∈HAz = {v(k4), v(k4) + 1, . . . , k(t)− 1}. Now, the condition of the case 2.2 says
that

∑
z∈A

k4\{k4}
N(z, I(Ĵ)−) · rz + rf1 ≥ rk4 which implies that∑

z∈H∧N(z,I(Ĵ)−)>1

(N(z, I(Ĵ)−)− 1) · rz

+
∑
z∈H

rz +
∑

i∈Az\{z}

N(i, I(Ĵ)−) · ri

+ rf1

≥ rk4 −
∑

z=k(t),k(t)+1,...,k4−1

N(z, I(Ĵ)−) · rz.

(31)
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For the right-hand side of the above equation (31), by lemma C.1, rk4 −
∑
z=k(t),k(t)+1,...,k4−1N(z, I(Ĵ)−) · rz

must be positive. Furthermore, after dividing it by rk(t), the result is a positive integer. Therefore, rk4 −∑
z=k(t),k(t)+1,...,k4−1N(z, I(Ĵ)−) · rz must be at least 1 · rk(t). By equation (31), we have the following∑

z∈H∧N(z,I(Ĵ)−)>1

(N(z, I(Ĵ)−)− 1) · rz

+
∑
z∈H

rz +
∑

i∈Az\{z}

N(i, I(Ĵ)−) · ri

+ rf1

≥ rk(t),

and consequently, ∑
z∈H∧N(z,I(Ĵ)−)>1

(N(z, I(Ĵ)−)− 1) · rz

≥ rk(t) − rf1 −
∑
z∈H

rz +
∑

i∈Az\{z}

N(i, I(Ĵ)−) · ri


≥ rk(t) −

1

8
· rk(t) −

∑
z∈H

2 · rz

≥ (1− 1

8
− 2

7
) · rk(t).

(32)

Similarly as case 2.1, let Lz := Kz(t) ∪ {R(t) : m(J) ∈ Az} for each z ∈ H such that N(z, I(Ĵ)−) > 1. we
have the inequalities:

OPT1(R(t) ∪ J (t))

≥
∑

J∈∪z∈H∧N(z,I(Ĵ)−)>1Lz

r∗(R(t) ∪ J (t), w∗)(J)

≥
∑

z∈H∧N(z,I(Ĵ)−)>1

S(Lz) ·
rz
gz
, since kopt < k(t)

≥
∑

z∈H∧N(z,I(Ĵ)−)>1

(N(z, I(Ĵ)−)− 1) · rz, by lemmas 5.1 and 5.2

≥ (1− 1

8
− 2

7
) · rk(t), by equation (32).

In summary, all the above discussion for the two subcases 2.1 and 2.2 has shown that

OPT1(R(t) ∪ J (t)) ≥ (1− 1

8
− 2

7
) · rk(t) (33)

Also let Lz := Kz(t)∪{J ∈ R(t) : m(J) ∈ Az} for each z ∈ {z ∈ T (k(t)) : N(z, t) > 1}. Since kopt < k(t), we
have ∪z∈T (kopt)Az = {1, 2, . . . , kopt} ⊂ {1, 2, . . . , k(t)} = ∪z∈T (k(t))Az. For each z ∈ {z ∈ T (k(t)) : N(z, t) > 1},
for each job J ∈ Lz, r∗(R(t) ∪ J (t), w∗)(J) ≥ s(J) · rzgz . Therefore,

OPT1(R(t) ∪ J (t))

≥
∑

J∈∪z∈T (k(t))∧N(z,t)>1Lz

r∗(R(t) ∪ J (t), w∗)(J)

≥
∑

z∈T (k(t))∧N(z,t)>1

S(Lz) ·
rz
gz

≥
∑

z∈T (k(t))∧N(z,t)>1

(N(z, t)− 1) · rz.

(34)
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At last, we have ∑
z=1,2,...,k(t)

N(z, t) · rz

≤
∑

z∈T (k(t))∧N(z,t)>1

(N(z, t)− 1) · rz

+
∑

z∈T (k(t))

rz +
∑

i∈Az\{z}

N(i, t) · ri


≤ OPT1(R(t) ∪ J (t)) +

∑
z∈T (k(t))

2 · rz,

by equation (34) and lemma C.1

≤ OPT1(R(t) ∪ J (t)) + (2 +
2

7
) · rk(t)

≤
(

1 +
2 + 2

7

1− 1
8 −

2
7

)
·OPT1(R(t) ∪ J (t)), by equation (33).

Clearly, 1 +
2+ 2

7

1− 1
8−

2
7

≤ 1 +
2+ 2

7

1− 3
7

= 5. We have finished the discussion of case 2.

C.3 Proof of Theorem 5.5

For ease of reference, Figure 4 summarizes the costs r̃(J 1d)(J) charged on individual jobs in different cases.

Figure 4: Definition of r̃(J 1d)(J)

In this section, we prove Theorem 5.5. Suppose X and Y are two sets of jobs such that X ⊂ Y. Let
h0 := max{m(J) : J ∈ X} and k0 := max{m(J) : J ∈ Y}. Furthermore, let vXz�1

and vYz�2
denote the alternative

machine configurations for the one-shot scheduling X and Y respectively. By definition, z�1 ∈ P (h0) and
z�2 ∈ P (k0).

Lemma C.2. Take any k1 ∈ P (k0) arbitrarily. There exists h1 ∈ T (k1) such that h0 ∈ Ah1
. Furthermore, for

each z0 ∈ T (h1), we have
∑
z∈T (h1)∧z≥z0 vXh1

(z) · rz ≤
∑
z∈T (k1)∧z≥z0 vYk1(z) · rz.

Proof. For the first part, X ⊂ Y implies that h0 ≤ k0 ≤ k1. By proposition 3.1.4, h0 ∈ Ah1
for some h1 ∈ T (k1).

For the second part, it suffices to prove the special case of lemma C.2 when Y \ X is singleton. Hence, assume
that Y \ X = {J0}.

Case 1:
⌈
S(J∈X :m(J)∈Ak1

)

gk1

⌉
=
⌈
S(J∈X∪{J0}:m(J)∈Ak1

)

gk1

⌉
.

In this case, clearly h1 = k1. No matter where m(J0) is within ∪z∈T (k1)Az, vXk1(z) ≤ vYk1(z) for each
z ∈ T (k1) \ {k1}. Therefore, we are done.

Case 2:
⌈
S(J∈X :m(J)∈Ak1

)

gk1

⌉
+ 1 =

⌈
S(J∈X∪{J0}:m(J)∈Ak1

)

gk1

⌉
.

There are two subcases about {J ∈ X : m(J) ∈ Ak1}.
Case 2.1:

⌈
S({J∈X :m(J)∈Ak1

})
gk1

⌉
= 0, and Case2.2:

⌈
S({J∈X :m(J)∈Ak1

})
gk1

⌉
≥ 1. For simplicity of notations, for

each z ∈ T (k1) \ {k1}, let Hz denote the set of jobs {J ∈ X : m(J) ∈ Az}.
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In case 2.1.
⌈
S({J∈X :m(J)∈Ak1

})
gk1

⌉
= 0 implies that h1 < k1 must hold. Furthermore, {J0} = {J ∈ X ∪{J0} :

m(J) ∈ Ak1}. We have the following inequalities:∑
z∈T (h1)∧z≥z0

vXh1
(z) · rz

≤ rh1
+

∑
z∈T (h1)∧z≥z0

S(Hz) ·
rz
gz
, by proposition 4.2.1

≤ s(J0)

gh1

· rh1
+

∑
z∈T (h1)∧z≥z0

S(Hz) ·
rz
gz
, because m(J0) ∈ Ak1

≤ s(J0) · rk1
gk1

+
∑

z∈T (h1)∧z≥z0

S(Hz) ·
rz
gz
, by proposition 3.1.3

≤ s(J0) · rk1
gk1

+
∑

z∈T (k1)∧z0≤z<k1

S(Hz) ·
rz
gz

≤
∑

z∈T (k1)∧z≥z0

vYk1(z) · rz, by proposition 4.2.2

In case 2.2, clearly h1 = k1. And m(J0) must be in Ak1 . We have the following inequalities:∑
z∈T (h1)∧z≥z0

vXh1
(z) · rz

= vXk1(k1) · rk1 +
∑

z∈T (k1)∧z0≤z<k1

vXk1(z) · rz

≤ vXk1(k1) · rk1 +
∑

z∈T (k1)∧z0≤z<k1

S(Hz) ·
rz
gz
,

since vXk1(z) · gz ≤ S(Hz), for each z ∈ T (k1) \ {k1}

≤ (vXk1(k1) + 1) · rk1 +
∑

z∈T (k1)∧z0≤z<k1

vYk1(z) · rz,

by proposition 4.2.1

=
∑

z∈T (k1)∧z≥z0

vYk1(z) · rz

Lemma C.3. We have z�1 ∈ Ai for some i ∈ T (z�2). Equivalently, we show that the highest machine type used
by the alternative machine configuration for one-shot scheduling X is less than or equal to the highest machine
type used by the alternative machine configuration for one-shot scheduling Y. (see Proposition 3.1.4)

Proof. Recall that h0 := max{m(J) : J ∈ X} and k0 := max{m(J) : J ∈ Y}. By lemma C.2, h0 ∈ Ah1 for
some h1 ∈ T (z�2). To show that z�1 ∈ Ah1 , it suffices to show that

∑
z∈T (h1)∩Ah2

vXh1
(z) · rz ≤ rh2 for each

h2 ∈ P (h1) \ {h1}.
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For each h2 ∈ P (h1) \ {h1}, let z0 = minT (h1) ∩Ah2 . Indeed, we have∑
z∈T (h1)∩Ah2

vXh1
(z) · rz

=
∑

z∈T (h1)∧z≥z0

vXh1
(z) · rz, by Proposition 3.1.5

≤
∑

z∈T (z�2 )∧z≥z0

vYz�2
(z) · rz, by lemma C.2

=
∑

z∈T (z�2 )∩Ah2

vYz�2
(z) · rz, by Proposition 3.1.5

≤ rh2 , by Proposition 4.2.3 (1).

Proof of Theorem 5.5. By lemma C.3, z�1 ∈ Ah1 for some h1 ∈ T (z�2) with P (h1) ⊂ P (z�1) ⊂ P (h0). Take any
job J ∈ X \ {J ∈ X : m(J) ∈ Ah1}. Since h0 ∈ Ah1 , clearly J ∈ Hz for some z ∈ T (h1) \ {h1}. By definition,
T (h1) \ {h1} ⊂ T (z�1) \ {z�1}. r̃(X )(J) = s(J) · rzgz by definition. On the other hand, again by definition, since

h1 ∈ T (z�2), T (h1)\{h1} ⊂ T (z�2)\{z�2}, which implies that r̃(Y)(J) = s(J) · rzgz . Therefore, it suffices to consider

the set of remaining jobs, i.e., {J ∈ X : m(J) ∈ Ah1}.
We show that it suffices to assume that h1 = z�2 . Otherwise, h1 ∈ T (z�2)\{z�2}. We have {1, 2, . . . , h0}∩Ah1 ⊂

{1, 2, . . . , z�1}∩Ah1
= ∪z∈T (z�1 )∩Ah1

Az, where the inclusion is due to h0 ≤ z�1 and the equality is due to proposition
3.1.4. Therefore, {J ∈ X : m(J) ∈ Ah1

} = {J ∈ X : m(J) ∈ ∪ z∈T (z�1 )∩Ah1
Az}. For each i ∈ T (z�1) ∩ Ah1

,

for each J ∈ {J ∈ X : m(J) ∈ Ai}, we have r̃(X )(J) ≥ s(J) · rigi ≥ s(J) · rh1

gh1
. On the other hand, note that

h1 ∈ T (z�2) \ {z�2}. Therefore, for each J ∈ {J ∈ X : m(J) ∈ Ah1
}, r̃(Y)(J) = s(J) · rh1

gh1
. Therefore, we have

r̃(X )(J) ≥ r̃(Y)(J) for each J ∈ {J ∈ X : m(J) ∈ Ah1
}.

Furthermore, it suffices to assume z�1 = z�2 . This is because otherwise z�2 ∈ P (z�1) \ {z�1} and hence {J ∈
X : m(J) ∈ Az�2 } = {J ∈ X : m(J) ∈ Az�2 \ {z

�
2}} = ∪i∈f(z�2 ){J ∈ X : m(J) ∈ Ai}. For each i ∈ f(z�2), for

each J ∈ {J ∈ X : m(J) ∈ Ai}, r̃(X )(J) ≥ s(J) · rigi by definition. On the other hand, for each i ∈ f(z�2),

for each J ∈ {J ∈ X : m(J) ∈ Ai}, r̃(Y)(J) ≤ s(J) · rigi . Clearly, we must have r̃(X )(J) ≥ r̃(Y)(J) for each

J ∈ {J ∈ X : m(J) ∈ Az�2 }.
Let z∗ = z�2 .
Let h := S(J ∈ Y : m(J) = z∗) · rz∗gz∗ .

Let c1 :=
∑
i∈f(z∗) S({J ∈ Y : m(J) ∈ Ai}) · rigi .

Let c2 := S({J ∈ Y : m(J) ∈ Az∗ \ {z∗}}) · rz∗gz∗ .

Let h′ := S({J ∈ X : m(J) = z∗}) · rz∗gz∗ .

Let c′1 :=
∑
i∈f(z∗) S({J ∈ X : m(J) ∈ Ai}) · rigi .

Let c′2 := S({J ∈ X : m(J) ∈ Az∗ \ {z∗}}) · rz∗gz∗ .

Clearly, we have h′ ≤ h, c′1 ≤ c1 and c′2 ≤ c2. In the following, we show that r̃(X )(J) ≥ r̃(Y)(J) for each
J ∈ {J ∈ X : m(J) ∈ Az∗} case by case.

Case 1: h+ c1 ≤ rz∗ .
Consequently, h′ + c′1 ≤ rz∗ . By definition, for each i ∈ f(z∗), for each J ∈ {J ∈ X : m(J) ∈ Ai}, we

have r̃(X )(J) = r̃(Y)(J) = s(J) · rigi . If h′ > 0, which implies h > 0, for each J ∈ {J ∈ X : m(J) = z∗},
r̃(X )(J) = s(J) · rz∗gz∗ ·

rz∗−c′1
h′ ≥ rz∗

gz∗
· rz∗−c

′
1

h ≥ rz∗
gz∗
· rz∗−c1h = r̃(Y)(J).

Case 2: h+ c1 > rz∗ and h+ c2 < rz∗ .
Consequently, we must have h′ + c′2 < rz∗ .
Case 2.1: h′ + c′1 ≤ rz∗ and h′ + c′2 < rz∗ .
For each i ∈ f(z∗), for each J ∈ {J ∈ X : m(J) ∈ Ai}, we have r̃(X )(J) = s(J) · rigi > s(J) ·(

ri
gi

+ ( rz∗gz∗ −
ri
gi

) · α∗
)

= r̃(Y)(J). For each J ∈ {J ∈ X : m(J) = z∗}, r̃(X )(J) ≥ s(J) · rz∗gz∗ = r̃(Y)(J)

no matter whether h′ > 0 or not.
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Case 2.2: h′ + c′1 > rz∗ and h′ + c′2 < rz∗ .
For each J ∈ {J ∈ X : m(J) = z∗}, r̃(X )(J) = s(J) · rz∗gz∗ = r̃(Y)(J) by definition. It suffices to check

{J ∈ X : m(J) ∈ Ai} for each i ∈ f(z∗). Define the linear function

l(α) =
∑

i∈f(z∗)

∑
J∈{J∈Y:m(J)∈Ai}

s(J) ·
(
ri
gi

+ (
rz∗

gz∗
− ri
gi

) · α
)

(35)

l′(β) =
∑

i∈f(z∗)

∑
J∈{J∈X :m(J)∈Ai}

s(J) ·
(
ri
gi

+ (
rz∗

gz∗
− ri
gi

) · β
)

(36)

such that l(α∗) = rz∗ − h and l′(β∗) = rz∗ − h′. For each i ∈ f(z∗), for each J ∈ {J ∈ X : m(J) ∈ Ai}, in

order to show that r̃(X )(J) = s(J) ·
(
ri
gi

+ ( rz∗gz∗ −
ri
gi

) · β∗
)
≥ s(J) ·

(
ri
gi

+ ( rz∗gz∗ −
ri
gi

) · α∗
)

= r̃(Y)(J), it suffices

to show that β∗ ≤ α∗.
Look at

l′(α∗) =
∑

i∈f(z∗)

∑
J∈{J∈X :m(J)∈Ai}

s(J) ·
(
ri
gi

+ (
rz∗

gz∗
− ri
gi

) · α∗
)

≤
∑

i∈f(z∗)

∑
J∈{J∈Y:m(J)∈Ai}

s(J) ·
(
ri
gi

+ (
rz∗

gz∗
− ri
gi

) · α∗
)

= l(α∗) = rz∗ − h ≤ rz∗ − h′ = l′(β∗).

Since l′ is always decreasing, we must have β∗ ≤ α∗.
Case 3: h+ c2 ≥ rz∗ .
By definition of r̃(Y), for each J ∈ {J ∈ X : m(J) ∈ Az∗}, r̃(Y)(J) = s(J) · rz∗gz∗ . For each J ∈ {J ∈

X : m(J) = z∗}, r̃(X )(J) ≥ s(J) · rz∗gz∗ in general. For each i ∈ f(z∗), for each J ∈ {J ∈ X : m(J) ∈ Ai},
r̃(X )(J) ≥ s(J) · rz∗gz∗ in general, again.

C.4 Proof of Theorem 5.6

Proof of theorem 5.6. Recall the z� is the largest machine type used by the alternative machine configuration
with the input set of jobs J 1d. For each machine type z ∈M, let Hz denote the set of jobs {J ∈ J 1d : m(J) ∈
Az} for simplicity. Let h := S(Hh

z�) ·
rz�
gz�

. Let c1 :=
∑
i∈f(z�) S(Hi) · rigi . Let c2 := S(Hz� \Hh

z�) ·
rz�
gz�

, where

Hh
z� = {J ∈ J 1d : m(J) = z�}.

Case 1: h+ c1 ≤ rz� . Clearly, in this case, vz�(z
�) = 1.

Case 1.1: h > 0.
We have the following results immediately:∑

J∈J 1d

r̃(J 1d)(J)

= rz� +
∑

z∈T (z�)\{z�}

S(Hz) ·
rz
gz

≤ 2 · rz� +
∑

z∈T (z�)\{z�}

vz�(z) · rz, by proposition 4.2.1

≤ 2 ·
∑

z∈T (z�)

vz�(z) · rz.
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and ∑
z∈T (z�)

vz�(z) · rz

= rz� +
∑

z∈T (z�)\{z�}

vz�(z) · rz

≤ rz� +
∑

z∈T (z�)\{z�}

S(Hz) ·
rz
gz
,

since vz�(z) · gz ≤ S(Hz), for each z ∈ T (z�) \ {z�}

=
∑
J∈J 1d

r̃(J 1d)(J).

Case 1.2: h = 0.
In this case, we have c1 ≤ rz� . Immediately,∑

J∈J 1d

r̃(J 1d)(J)

= c1 +
∑

z∈T (z�)\{z�}

S(Hz) ·
rz
gz

≤ rz� +
∑

z∈T (z�)\{z�}

S(Hz) ·
rz
gz

≤ 2 · rz� +
∑

z∈T (z�)\{z�}

vz�(z) · rz, by proposition 4.2.1

≤ 2 ·
∑

z∈T (z�)

vz�(z) · rz.

For the other inequality, let k0 := max{m(J) : J ∈ J 1d}. By definition of z� and h = 0, z� ∈ P (k0) \ {k0}.
Suppose z′ ∈ P (k0) such that p(z′) = z�. Clearly, {1, 2, . . . , k0} ⊂ {1, 2, . . . , z′} = ∪z∈T (z′)Az. Also by the

choice of z�,
∑
z∈T (z′)∩A

z4
vz�(z) · rz > rz4 for some z4 ∈ P (z�). We have∑

J∈J 1d

r̃(J 1d)(J)

=
∑

z∈T (z′)

S(Hz) ·
rz
gz

≥

 ∑
z∈T (z′)

vz′(z) · rz

− rz′ , by proposition 4.2.1

≥

 ∑
z∈T (z′)∩A

z4

vz�(z) · rz

− rz′
> rz4 − rz′ ≥

7

8
· rz� .

(37)
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Consequently, ∑
z∈T (z�)

vz�(z) · rz

= rz� +
∑

z∈T (z�)\{z�}

vz�(z) · rz

≤ (
8

7
+ 1) ·

∑
J∈J 1d

r̃(J 1d)(J), by equation (37)

=
15

7
·
∑
J∈J 1d

r̃(J 1d)(J)

Case2: h+ c1 > rz� and h+ c2 < rz� .
Again, in this case, we have vz�(z

�) = 1. The arguments in this case are identical to case 1.1 and we still
have

∑
J∈J 1d r̃(J 1d)(J) ≤ 2 ·

∑
z∈T (z�) vz�(z) · rz and

∑
z∈T (z�) vz�(z) · rz ≤

∑
J∈J 1d r̃(J 1d)(J).

Case 3: h+ c1 > rz� and h+ c2 ≥ rz� .
In this case, we have ∑

J∈J 1d

r̃(J 1d)(J)

=
∑

z∈T (z�)

S(Hz) ·
rz
gz
, by the definition of r̃

≤
∑

z∈T (z�)

vz�(z) · rz, by proposition 4.2.2.

and ∑
z∈T (z�)

vz�(z) · rz

= vz�(z
�) · rz� +

∑
z∈T (z�)\{z�}

vz�(z) · rz

≤ 2 ·
⌊
S(Hz�)

gz�

⌋
· rz� +

∑
z∈T (z�)\{z�}

S(Hz) ·
rz
gz

≤ 2 · S(Hz�) ·
rz�

gz�
+

∑
z∈T (z�)\{z�}

S(Hz) ·
rz
gz

≤ 2 ·
∑

z∈T (z�)

S(Hz) ·
rz
gz

= 2 ·
∑
J∈J 1d

r̃(J 1d)(J).
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