
Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight
I/O Lower Bounds for Statically Analyzable Programs

Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu, Timo Schneider,

Alexandros Nikolaos Ziogas, Maciej Besta, Torsten Hoefler

ETH Zurich, Switzerland

ABSTRACT
Determining I/O lower bounds is a crucial step in obtaining com-

munication-efficient parallel algorithms, both across the memory

hierarchy and between processors. Current approaches either study

specific algorithms individually, disallow programmatic motifs such

as recomputation, or produce asymptotic bounds that exclude im-

portant constants. We propose a novel approach for obtaining pre-

cise I/O lower bounds on a general class of programs, which we call

Simple Overlap Access Programs (SOAP). SOAP analysis covers a

wide variety of algorithms, from ubiquitous computational kernels

to full scientific computing applications. Using the red-blue pebble

game and combinatorial methods, we are able to bound the I/O of

the SOAP-induced Computational Directed Acyclic Graph (CDAG),

taking into account multiple statements, input/output reuse, and

optimal tiling. To deal with programs that are outside of our repre-

sentation (e.g., non-injective access functions), we describe methods

to approximate them with SOAP. To demonstrate our method, we

analyze 38 different applications, including kernels from the Poly-

bench benchmark suite, deep learning operators, and — for the first

time — applications in unstructured physics simulations, numeri-

cal weather prediction stencil compositions, and full deep neural

networks. We derive tight I/O bounds for several linear algebra

kernels, such as Cholesky decomposition, improving the existing

reported bounds by a factor of two. For stencil applications, we

improve the existing bounds by a factor of up to 14. We implement

our method as an open-source tool, which can derive lower bounds

directly from provided C code.

CCS CONCEPTS
•Theory of computation→Communication complexity;Par-
allel computing models; Scheduling algorithms.

KEYWORDS
I/O complexity, red-blue pebble game, parallel scheduling model

1 INTRODUCTION
I/O operations, both across the memory hierarchy and between par-

allel processors, dominate time and energy costs in many scientific

applications [1–4]. It is thus of key importance to design algorithms

with communication-avoiding or I/O-efficient schedules [5, 6]. To in-
form, and occasionally inspire the development of such algorithms,

onemust first understand the associated lower bounds on the amounts
of communicated data. Deriving these bounds has always been of

theoretical interest [7, 8]. It is particularly relevant for dense linear

algebra, as many important problems in scientific computing [9, 10]

and machine learning [11] rely on linear algebra operations such

as matrix factorization [12, 13] or tensor contractions [14].

Analyzing I/O bounds of linear algebra kernels dates back to

the seminal work by Hong and Kung [8], who derived the first as-

ymptotic bound for matrix-matrix multiplication (MMM) using the

red-blue pebble game abstraction. This method was subsequently

extended and used by other works to derive asymptotic [15] and

tight [16] bounds for more complex programs. Despite the expres-

siveness of pebbling, it is prohibitively hard to solve for arbitrary

programs, as it is PSPACE-complete in the general case [17].

Since analyzing programs with parametric sizes disallows the

construction of an explicit Computation Directed Acyclic Graph

(CDAG), some form of parameterization is often needed [18–20].

However, we argue that the widely-used approaches based on the

Loomis-Whitney or the HBL inequalities [21–23] (a) are often too

restrictive, requiring the programs to be expressed in the polyhe-

dral model to count the points in the projection polytopes; (b) do

not capture pebbling motifs such as recomputation [19]; or (c) are

limited to single-statement programs [7, 21–23, 23, 24].

In our work, we take a different approach based on a combi-

natorial method. We directly map each elementary computation

to a vertex in a parametric CDAG, which allows us not only to

operate on unstructured iteration domains, but also to precisely

count the sizes of dominator sets and model vertex recomputation.

Furthermore, to handle complex data dependencies in programs

that evaluate multiple arrays, we introduce the Symbolic Directed

Graph (SDG) abstraction, which encapsulates the data flow between

elementary computations. This allows us to cover a wider class of

programs and handle more complex data flow.

To enable precisely mapping every data access to the parametric

CDAG vertex, we introduce a class of Simple Overlap Access Pro-
grams (SOAP), and present a general method to derive precise I/O
bounds of programs in this class. Specifically, SOAPs are defined

as loop nests of statements, whose data access sets can be mod-

eled as injective functions, and their per-statement data overlap

can be expressed with constant offsets. For programs that do not

directly adhere to SOAP, with nontrivial overlaps and non-injective

access functions, we show that under a set of assumptions, we can

construct SOAP “projections” of those programs, which can be ana-

lyzed in the same way. Our method strictly contains the polyhedral

model and associated analysis methods.

To show the breadth of our approach, we demonstrate SOAP

analysis on a set of 38 applications, taking Python and C codes as in-

put to create the SDG. This automated analysis procedure generates

symbolic bounds, which match or improve upon previously-known

results. Notably, we tighten the known I/O lower bounds for nu-

merous programs, including stencils by up to a factor of 14, linear

algebra kernels (e.g., Cholesky factorization by a factor of two), and

the core convolution operation in deep learning by a factor of 8.

1

ar
X

iv
:2

10
5.

07
20

3v
1

 [
cs

.C
C

]
 1

5
M

ay
 2

02
1

Technical Report, 2021, G. Kwasniewski et al.

Input program CDAG pebbling

for i in range(100):
for j in range(100):
C[i,j]=((A[i]+A[i+1])

*(B[j]+B[j+1]))
for i in range(100):
for j in range(100):
for k in range(100):
E[i,j]+=C[i,k]*D[k,j]

Ignoring
compute

cost

X-partitioning Symbolic Directed Graph
A B D

C

E

SOAP
Ignoring

loop carried
depend.

Minimal I/O cost
→ opt. schedule

Features: Beyond polyhedral model (non-affine accesses); recomputation; dependency struct (SDG)
Improved lower bounds: Linear algebra (Cholesky, correlation, covariance); stencils (fdtd, jacobi, heat3d)
New lower bounds: Neural networks (LeNet-5, BERT Encoder); climate code (vertical adv., horizontal diff.)

Section 2
opt. schedule →

opt. pebbling

Section 2

opt. pebbling
→ max. subset

reuse
overapprox

Section 4

max. subset
→ rect. subcomp.

Section 6

rect. subcomp.
→ opt. subgraph

reuse
overapprox

Recompute
and reuse

upper bound

Comp./comm.
ratio upper

bound

Pebbling
schedule

lower bound

Tiled
parallel

code

Figure 1: High level overview of the combinatorial SOAP analysis. An input program’s schedule is modeled as the red-blue pebble game. The 𝑋 -Partitioning
abstraction relaxes the pebbling problem to the graph partition problem. The SOAP abstraction utilizes the static loop structure to upper-bound the size of
the optimal 𝑋 -partition. The Symbolic Directed Graph (SDG) models inter-statement data dependencies. Our method derives I/O lower bounds together with
accompanying tile sizes and loop fusions that can be used by a compiler to generate an I/O optimal parallel code.

Since our derivation of the bounds is constructive — i.e., it pro-

vides loop tilings and fusions after relaxing loop-carried depen-

dencies — the results can be used by a compiler to generate I/O

optimal parallel codes. This can both improve existing schedules

and possibly reveal new parallelization dimensions.

The paper makes the following contributions:

• A combinatorial method for precisely counting the number of

data accesses in parametric CDAGs.

• A class of programs — SOAP — on which I/O lower bounds can

be automatically derived.

• Symbolic dataflow analysis that extends SOAP to multiple-

statement programs, capturing input and output reuse between

statements, as well as data recomputation.

• I/O analysis of 38 scientific computing kernels, improving ex-

isting bounds [19, 20] by up to a factor of 14, and new lower

bounds for applications in deep learning, unstructured physics

simulation, and numerical weather prediction.

2 BACKGROUND
We first present several fundamental concepts used throughout the

paper. We introduce program, memory, and execution models that

are based on the work by Hong and Kung [8]. We then present a

general approach for deriving I/O lower bounds based on graph

partitioning abstractions. The bird’s eye view of our method is

presented in Figure 1.

2.1 General Approach of Modeling I/O Costs
Program model: CDAG. One of the most expressive ways to

model executions of arbitrary programs is a Computation Directed

Acyclic Graph (CDAG) [8, 16, 18, 20, 25]𝐺 = (𝑉 , 𝐸), where vertices
represent data (either inputs or results of computations) and edges

represent data dependencies. That is, for 𝑢, 𝑣 ∈ 𝑉 , a directed edge

(𝑢, 𝑣) ∈ 𝐸 signifies that 𝑢 is required to compute 𝑣 . Given vertex 𝑣 ,

vertices {𝑢 : (𝑢, 𝑣) ∈ 𝐸} are referred to as parents of 𝑣 . Analogously,
{𝑢 : (𝑣,𝑢) ∈ 𝐸} are children of 𝑣 . Vertices with in-degree (out-

degree) zero are denoted program inputs (program outputs).
Memory model: red-blue pebble game [8]. Programs are exe-

cuted on a sequential machine equipped with a two-level memory

system, which consists of a fast memory of limited size and unlim-

ited slow memory. The contents of the fast memory are represented

by 𝑆 red pebbles. A red pebble placed on a vertex indicates that

the data associated with this vertex resides in the fast memory.

Analogously, data residing in the slow memory is represented with

blue pebbles (of unlimited number).

Execution model: graph pebbling. An execution of a program

represented by a CDAG𝐺 = (𝑉 , 𝐸) is modeled as a sequence of four

allowed pebbling moves: 1) placing a red pebble on a vertex which

has a blue pebble (load), 2) placing a blue pebble on a vertex which

has a red pebble (store), 3) placing a red pebble on a vertex whose

parents have red pebbles (compute) 4) removing any pebble from a

vertex (discard). At the program start, all input vertices have blue

pebbles placed on them. Execution finishes when all output vertices

have blue pebbles on them. A sequence of moves leading from the

start to the end is called a graph pebbling 𝑃 . The number of load

and store moves in 𝑃 is called the I/O cost of 𝑃 . The I/O cost 𝑄 of
a program 𝐺 is the minimum cost among all valid pebbling
configurations. A pebbling with cost 𝑄 is called optimal.

2.2 I/O Lower Bounds
Assume that the optimal pebbling 𝑃𝑜𝑝𝑡 is given. For any constant

𝑋 > 𝑆 we can partition this sequence of moves into subsequences,

such that in each subsequence except of the last one, exactly 𝑋 − 𝑆
load/store moves are performed (the last subsequence contains at

most 𝑋 − 𝑆 load/store moves). Denote the number of these subse-

quences as ℎ. Then observe that (𝑋 − 𝑆) (ℎ − 1) ≤ 𝑄 ≤ (𝑋 − 𝑆)ℎ.
Graph pebbling vs graph partitioning. Since finding 𝑃𝑜𝑝𝑡 is

PSPACE complete [26], we seek to derive a lower bound of 𝑄 from

the structure of 𝐺 . Observe that the set of vertices which are com-

puted in each subsequence defines a subgraph H ⊆ 𝐺 . By this

construction, computing vertices in H requires 𝑋 − 𝑆 load/store

operations in the optimal schedule. The number of subsequences ℎ

may be bounded by a particular partitioning of 𝐺 . To do this, we

need to introduce two vertex sets defined for any subgraph of 𝐺 .

Dominator and minimum sets [8]. Given H ⊆ 𝐺 , a domina-
tor set Dom (H) is a set of vertices such that every path from

an input to any vertex in H must contain at least one vertex in

Dom (H). The minimum set Min (H) is a set of all vertices inH
that do not have any child in H . To avoid the ambiguity of non-

uniqueness of dominator set size, we denote a minimum dominator
set Dom𝑚𝑖𝑛 (H) to be a dominator set with the smallest size.

𝑋 -Partitioning: bounding I/O cost. Introduced by Kwasniewski
et al. [16], 𝑋 -Partitioning generalizes the S-partitioning from Hong

2

Tight I/O Bounds of Statically Analyzable Programs Technical Report, 2021,

Input program: statements St1 and St2

C[i,j]=(A[i]+A[i+1])*(B[j]+B[j+1])

Input arrays: In(St1) = {A, B}
Output array: Out(St1) = {C}
Access function vectors:

statement St1

n2 = 2 : two 1-dim
access fun. vector

components

E[i,j]+= C[i,k] * D[k,j]

Input arrays In(St2) = {C, D, E}
Output array: Out(St1) = {E}
Access function vectors:

statement St2

n1= 1 : one 2-dim
access fun. vector

component

Array A Array B Array D

Array E

Program CDAG for N=M=2, K=3 Program SDG Subgraph statement

for i in range(N):

for j in range(M):

St1: C[i,j] = (A[i]+A[i+1])

*(B[j]+B[j+1])

for i in range(N):

for j in range(K):

for k in range(M):

St2: E[i,j]+= C[i,k] * D[k,j]

A B D

C

E

A B D

C

E

Array C

Section 3

Section 6

Section 6.1

Elements of C
are

recomputed,
decreasing the

I/O cost!

Section 4

Bounding

by counting
vertices in

Equivalent of executing
statements St1 and St2

“together”

Section 6.2

Figure 2: From the input code to the I/O lower bounds. First, for each statement, the access function vectors 𝝓 are extracted from the input program (green and
blue fields). For each statement, the size of its dominator set is obtained using Lemma 3 (Section 4.2), and then, the I/O lower bound is obtained using inequality 9
(Section 4.5). For programs that contain multiple statements, the SDG is constructed (Section 6) and all valid subgraph statements are evaluated (Section 6.1).
Lastly, the final I/O lower bound is obtained (Section 6.2).

and Kung [8]. Given a constant 𝑋 , an 𝑋 -partition of 𝐺 = (𝑉 , 𝐸)
is a collection of 𝑠 mutually disjoint subsets H𝑖 ⊆ 𝑉 (referred to

as subcomputations) P(𝑋) = {H1, . . . ,H𝑠 } : ∀𝑖≠𝑗H𝑖 ∩ H𝑗 = ∅∧⋃
𝑖 H𝑖 = 𝑉 with two additional properties:

• there are no cyclic dependencies between subcomputations:

∀H𝑖 ≠ H𝑗 : (∃(𝑢1, 𝑣1) ∈ 𝐸 s.t. 𝑢1 ∈ H𝑖 ∧ 𝑣1 ∈ H𝑗) =⇒
(�(𝑣2, 𝑢2) ∈ 𝐸 s.t. 𝑢2 ∈ H𝑖 ∧ 𝑣2 ∈ H𝑗)
• ∀H ∈ P(𝑋), |𝐷𝑜𝑚𝑚𝑖𝑛 (H)| ≤ 𝑋 and |𝑀𝑖𝑛 (Hℎ) | ≤ 𝑋 .

The authors prove that for any 𝑋 > 𝑆 , the optimal pebbling 𝑃𝑜𝑝𝑡
has an associated 𝑋 -partition P𝑜𝑝𝑡 (𝑋) s.t. |P𝑜𝑝𝑡 (𝑋) | = ℎ.
Computational intensity. In previous works it was proven that

(a) 𝑄 is lower bounded by the number of subsequences ℎ in the

optimal pebbling 𝑃𝑜𝑝𝑡 [8]; (b) ℎ is lower bounded by the size of

the smallest 𝑋 -partition |P𝑚𝑖𝑛 (𝑋) | for any value of 𝑋 > 𝑆 [16]; (c)

|P𝑚𝑖𝑛 (𝑋) | is bounded by the maximum size of a single subcomputa-

tion |H𝑋,𝑚𝑎𝑥 | in any valid𝑋 -partition: |P𝑚𝑖𝑛 (𝑋) | ≥ |𝑉 |/|H𝑋,𝑚𝑎𝑥 |
[16]; and (d) if |H𝑋,𝑚𝑎𝑥 | can be expressed as a function of 𝑋 , that

is, 𝜒 (𝑋) ≡ |H𝑋,𝑚𝑎𝑥 |, then 𝑄 is bounded by

𝑄 ≥ |𝑉 |𝑋0 − 𝑆
𝜒 (𝑋0)

, (1)

where 𝑋0 = argmin𝑋
𝜒 (𝑋)
𝑋−𝑆 (Lemma 2 in Kwasniewski et al. [27]).

The expression 𝜌 =
𝜒 (𝑋)
𝑋−𝑆 is called the computational intensity.

3 SIMPLE OVERLAP ACCESS PROGRAMS
In Section 2, we show how the I/O cost of a program can be

bounded by the maximum size of a subcomputationH in any valid

𝑋 -partition of program CDAG. We now introduce Simple Over-
lap Access Programs (SOAP): a class of programs for which we

can derive tight analytic bounds of |H |. We leverage the SOAP

structure and design an end-to-end method for deriving I/O lower

bounds of input programs (summarized in Figure 2).

What is SOAP? Before introducing the formal definition, we start

with an illustrative example, which we use in the following sections.

Example 1. Consider the following 3-point stencil code (we use the
Python syntax in code listings):

for t in range(1,T):

for i in range(t,N-t):

A[i,t+1]=(A[i-1,t] + A[i,t] + A[i+1,t])/3 + B[i]

This is what we will refer to as a single-statement SOAP. The program
consists of one statement 𝑆𝑡 : A[i,t+1]=(A[i,t] + ... which is
placed in two nested loops. All accessed data comes from static, dis-
joint, multi-dimensional arrays (A and B). Furthermore, different ac-
cesses to the same array (array A is referenced by [i,t+1], [i-1,t],
[i,t],[i+1,t]) are offset by a constant stride [0,1], [-1,0],[0,0],
[1,0]. We denote such access pattern as a simple overlap and it is
a defining property of SOAP.
Why SOAP? We use the restriction on the access pattern to pre-

cisely count the number of vertices in 𝐷𝑜𝑚(H). If we allow arbi-

trary overlap of array accesses, we need to conservatively assume

3

Technical Report, 2021, G. Kwasniewski et al.

a maximum possible overlap of accessed vertices. This reduces the

lower bound on |𝐷𝑜𝑚(H)|, which, in turn, increases the upper

bound on |H |, providing less-tight I/O lower bound for a program.

This is not a fundamental limitation of our method. However, it al-
lows a fully automatic derivation of tight I/O lower bounds for input
programs. If the restriction is violated, additional assumptions on the
access overlap are needed (Section 5).
SOAPdefinition. Aprogram is a sequence of statements 𝑆𝑡1, . . . , 𝑆𝑡𝑘 .

Each such statement 𝑆𝑡 is a constant time computable function 𝑓

enclosed in a loop nest of the following form:

for𝜓1 ∈ D1 :

. . .

for𝜓 ℓ ∈ Dℓ (𝜓1, . . . ,𝜓 ℓ−1) :
𝑆𝑡 : 𝐴0 [𝝓0 (𝝍)] ← 𝑓 (𝐴1 [𝝓1 (𝝍)], 𝐴2 [𝝓2 (𝝍)], . . . , 𝐴𝑚 [𝝓𝒎 (𝝍)])

where:

(1) The statement 𝑆𝑡 is nested in a loop nest of depth ℓ .

(2) Each loop in the 𝑡th level, 𝑡 = 1, . . . , ℓ is associated with its

iteration variable 𝜓𝑡
, which iterates over its domain D𝑡 ⊂ N.

Domain D𝑡
may depend on iteration variables from outer loops

𝜓1, . . . ,𝜓𝑡−1
(denoted as D𝑡 (𝜓1, . . . ,𝜓𝑡−1)).

(3) All ℓ iteration variables form the iteration vector 𝝍 = [𝜓1, . . . ,𝜓 ℓ]
and we define the iteration domain D as the set of all values the

iteration vector iterates over during the entire execution of the

programD ⊂ Nℓ .
(4) The dimension of array 𝐴 𝑗 is denoted as 𝑑𝑖𝑚(𝐴 𝑗).
(5) Elements of 𝐴 𝑗 are referenced by an access function vector 𝝓 𝑗

whichmaps𝑑𝑖𝑚(𝐴 𝑗) iteration variables 𝝍 𝑗 = [𝜓1
𝑗
, . . . ,𝜓

𝑑𝑖𝑚 (𝐴 𝑗)
𝑗

]

to a set of 𝒏𝒋 elements from𝐴 𝑗 , that is 𝝓 𝑗 : D1
𝑗
×, . . . ,×D𝑑𝑖𝑚 (𝐴 𝑗)

𝑗

→
(
N𝑑𝑖𝑚 (𝐴 𝑗)

)𝑛 𝑗

. We then write 𝝓 𝑗 = [𝝓 𝑗,1, . . . , 𝝓 𝑗,𝑛 𝑗
], where

𝝓 𝑗,𝑘 : D1
𝑗
×, . . . ,D𝑑𝑖𝑚 (𝐴 𝑗)

𝑗
→ N𝑑𝑖𝑚 (𝐴 𝑗) , 𝑘 = 1, . . . , 𝑛 𝑗 . Further-

more, all access function components 𝝓 𝑗,𝑘 (𝝍 𝑗) are injective.
(6) All 𝑛 𝑗 access function vector’s components are equal up to a

constant translation vector, that is, ∀𝑘 = 1, . . . , 𝑛 : 𝝓 𝑗,𝑘 (𝝍) =
𝝓 𝑗,1 (𝝍) + 𝒕𝑘 , where 𝒕𝑘 = [𝑡1

𝑘
, . . . , 𝑡

𝑑𝑖𝑚 (𝐴)
𝑘

] ∈ N𝑑𝑖𝑚 (𝐴 𝑗)
. We call

𝝓 𝑗 the simple overlap access.
(7) Arrays𝐴1, . . . 𝐴𝑚 are disjoint. If the output array𝐴0 is also used

as an input, that is, 𝐴0 ≡ 𝐴 𝑗 , 𝑗 ≥ 1, then 𝝓0 ∪ 𝝓 𝑗 is also the

simple overlap access (c.f. Example 1).

(8) Each execution of statement 𝑆𝑡 is an evaluation of 𝑓 for a given

value of iteration vector 𝝍.

Iteration variables and iteration vectors. Formally, an iteration

variable 𝜓𝑡
is an iterator: an object which takes values from its

iteration domain during the program execution. However, if it is

clear from the context, we will refer to a particular value of the
iteration variable simply as𝜓𝑡

(or a value of iteration vector as 𝝍).
Vertices as iteration vectors. Since by definition of CDAG, each

computation corresponds to a different vertex, and by definition

of SOAP, every statement execution is associated with a single

iteration vector 𝝍, every non-input vertex in 𝐺 is uniquely associ-

ated with an iteration vector 𝝍. Input vertices are referred to by

their access function vectors 𝑢 = 𝐴 𝑗 [𝝓 𝑗,𝑘 (𝝍)].We further define
CDAG edges as follows: for every value of iteration vector 𝝍, we
add an edge from all accessed elements to the vertex associated

with 𝝍, that is: 𝐸 = {(𝑢, 𝑣) : 𝑢 = 𝐴 𝑗 [𝝓 𝑗,𝑘 (𝝍)], 𝑣 = 𝝍, 𝝍 ∈ D}.

SO
A
P
de

fi
ni
ti
on

(§
3)

𝐴0
Output array of statement St (may overlap
with input arrays).

𝐴 𝑗 , 𝑗 = 1, . . . ,𝑚 Mutually disjoint input arrays of statement St.
𝝍 = [𝜓1, . . . ,𝜓 ℓ] Iteration vector composed of ℓ iteration variables.

D ⊆ D1×, . . . ,×Dℓ
Iteration domain: a set of values that iteration
vector 𝝍 takes during the entire program execution.

𝝓 𝑗 = [𝝓 𝑗,1, . . . ,𝝓 𝑗,𝑛𝑗
]

Access function vector that maps 𝑑𝑖𝑚 (𝐴 𝑗) variables
[𝜓 1

𝑗 , . . . ,𝜓
𝑑𝑖𝑚 (𝐴𝑗)
𝑗

] to 𝑛 𝑗 elements in array𝐴 𝑗 .

𝒕 𝑗,𝑘 = [𝑡1
𝑗,𝑘

, . . . , 𝑡
𝑑𝑖𝑚 (𝐴𝑗)
𝑗,𝑘

] Translation vector of 𝑘-th access function vector’s
component 𝝓 𝑗,𝑘 , that is 𝝓 𝑗,𝑘 ≡ 𝝓 𝑗,1, 𝑘 = 1, . . . , 𝑛 𝑗

Si
ng

le
-s
ta
te
m
en

ts
ub

co
m
pu

ta
ti
on

(§
4) P(𝑋) = {H1, . . . ,H𝑠 }

An 𝑋 -partition of CDAG𝐺 = (𝑉 , 𝐸) composed
of 𝑠 disjoint subcomputations.

𝑫 = 𝐷1×, . . . ,×𝐷ℓ
Subcomputation domain: a Caresian product of
ranges of ℓ iteration variables during H.

H ⊆ 𝑫 ⊆ 𝑉

Subcomputation H uniquely defined by a set
of |H | iteration vector’s values 𝝍 ∈ 𝑫 taken
during H. If H = 𝑫 , we call it a rectangular
subcomputation H𝑟𝑒𝑐 .

A = 𝝓 [H] Access set: a set of vertices from array𝐴 that are
accessed by 𝝓 during H.

𝑡𝑖 = {𝑡𝑖1, . . . , 𝑡𝑖𝑛 } \ {0}
Access offset set: set of all non-zero 𝑖th coordinates
among 𝑛 translation vectors 𝒕𝑘 , 𝑘 = 1, . . . , 𝑛.

Dom (H) Dominator set of subcomputation H.
𝜌 The computational intensity of the 𝑋 -partition.

𝑄 ≥ |D |
∑𝑚
𝑗=1
|A 𝑗 (𝑋0) |−𝑆∏ℓ

𝑡=1
|𝐷𝑡 (𝑋0) |

A number of I/O operations of a schedule.

SD
G

(§
6) 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆)

Symbolic Directed Graph, where every array
accessed in a program is a vertex, and edges
represent data dependencies between them.

𝐼 ⊂ 𝑉𝑆 Set of read-only arrays of the program.

𝐺𝑆 [𝐻], 𝐻 ⊂ 𝑉𝑆 \ 𝐼
SDG subgraph that represents a subcomputation
in which at least one vertex from every
array in 𝐻 is computed.

St𝐻 Subgraph SOAP statement.

Table 1: Notation used in the paper.

𝑋 -Partitioning on SOAP’s CDAG. Recall that our objective is to
bound the maximum size of any subcomputation |H |. Given peb-

bling 𝑃 and an associated 𝑋 -partition P(𝑋), every subcomputation
H ∈ P(𝑋) is therefore associated with the set of iteration vectors 𝝍 of
the vertices computed inH . In the following section we will derive

it by counting how many non-input vertices (iteration vectors) can

H contain by bounding its dominator set size |𝐷𝑜𝑚(H)| - again,
by counting vertices corresponding to each access 𝐴 𝑗 [𝝓 𝑗,𝑘 (𝝍)].

4 I/O LOWER BOUNDS FOR
SINGLE-STATEMENT SOAP

We now derive the I/O bounds for programs that contain only one

SOAP statement. We start with introducing necessary definitions

that allow us to bound the size of a rectangular subcomputation.
The summary of the notation is presented in Table 1.

4.1 Definitions
Definition 1. Subcomputation domain. Denote the set of all val-
ues which iteration variable 𝜓𝑡 takes during subcomputation H
as 𝐷𝑡 ⊂ D𝑡 , 𝑡 = 1, . . . , ℓ . Then, the subcomputation domain
𝑫 (H) ⊆ D is a Cartesian product of ranges of all ℓ iteration vari-
ables which they take duringH , that is 𝑫 (H) = 𝐷1×, . . . ,×𝐷ℓ . We
therefore have H ⊆ 𝑫 (H) ⊂ Nℓ . If it is clear from the context, we
will sometimes denote 𝑫 (H) simply as 𝑫 .

4

Tight I/O Bounds of Statically Analyzable Programs Technical Report, 2021,

Example 2. Recall the program from Example 1. Consider subcom-
putationH in which t ∈ {1, 2} and i ∈ {1, 2}. Then, subcomputation
domain 𝑫 = {1, 2} × {1, 2} = {[1, 1], [1, 2], [2, 1], [2, 2]}, but com-
putation itself can contain atmost 3 elementsH ⊆ {[1, 1], [1, 2], [2, 2]},
since 𝝍 = [2, 1] ∉ D does not belong to the iteration domain.

Definition 2. Access set and access subdomain. Consider input
array𝐴 and its access function vector 𝝓. GivenH , the access setA of
𝐴 is the set of vertices belonging to𝐴 that are accessed duringH , that
is A = 𝝓 [H] = {𝐴[𝝓 (𝝍)] : 𝝍 ∈ H}. If function 𝝓 = [𝝓1, . . . , 𝝓𝑛]
accesses 𝑛 vertices from 𝐴, we analogously define access sets for each
access function component 𝝓𝑘 [H], 𝑘 = 1, . . . , 𝑛. We then have A =⋃𝑛

𝑘=1
𝝓𝑘 [H]. The access subdomain 𝑫 (A) is minimum bounding

box of the access set A.

Example 3. For program in Example 1, consider subcomputationH
evaluated on only one iteration vectorH = [𝑖 = 2, 𝑗 = 2]. We have
two accessed arrays A and B. Furthermore, we have 𝝓A = [[𝑖, 𝑡+1], [𝑖−
1, 𝑡], [𝑖, 𝑡], [𝑖 − 1, 𝑡]]. Therefore, 𝑑𝑖𝑚(A) = 2, and 𝝓B : N2 →

(
N2

)4
.

We further have 𝝓B = [[𝑖]], 𝑑𝑖𝑚(B) = 1, and 𝝓A : N → N.
To evaluate 𝑆𝑡 for 𝝍 = [2, 2], we need to access four elements of
A (three loads and one store), so its access set is A = 𝝓A [H] =

{[2, 3], [1, 2], [2, 2], [2, 3]}. Furthermore, we have the access subdo-
main 𝑫 (A) = {2, 3} × {1, 2, 3}.

Definition 3. Access offset set. Given a simple overlap access 𝝓 =

[𝝓1, . . . , 𝝓𝑛] consider its𝑛 translation vectors 𝒕𝑘 = [𝑡1
𝑘
, . . . , 𝑡

𝑑𝑖𝑚 (𝐴 𝑗)
𝑘

]
∈ N𝑑𝑖𝑚 (𝐴) , 𝑘 = 1, . . . , 𝑛. For each dimension 𝑖 = 1, . . . , 𝑑𝑖𝑚(𝐴 𝑗) we
denote 𝑡𝑖 = {𝑡𝑖1, . . . , 𝑡

𝑖
𝑛} \ {0} as the set of all unique non-zero 𝑖th

coordinates among all 𝑛 translation vectors.

Definition 4. Rectangular subcomputation For a given subcom-
putation domain 𝑫 , a subcomputation H is called rectangular if
H = 𝑫 and is denotedH𝑟𝑒𝑐 (𝑫). The size of rectangular computation
is |H𝑟𝑒𝑐 (𝑫) | =

∏ℓ
𝑡=1 |𝐷𝑡 |. If it is clear from the context, we will

denoteH𝑟𝑒𝑐 (𝑫) simply asH𝑟𝑒𝑐 .

Observation 1. Consider a simple overlap access 𝝓 = [𝝓1, . . . , 𝝓𝑛]
of array𝐴 and a rectangular subcomputationH𝑟𝑒𝑐 (𝑫). Then since all
𝝓𝑘 are equal up to translation, the ranges of iteration variables they
access are also equal up to the same translation: ∀𝑖 = 1, . . . , 𝑑𝑖𝑚(𝐴) :
∀𝑗 = 1, . . . , 𝑛 : 𝝓 𝑗 [𝐷𝑖] = 𝝓1 [𝐷𝑖] + 𝑡 𝑗 , which also implies that
∀𝑖 = 1, . . . , 𝑑𝑖𝑚(𝐴) : ∀𝑗 = 1, . . . , 𝑛 : |𝝓 𝑗 [𝐷𝑖] | = |𝝓1 [𝐷𝑖] |.

To bound the sizes of rectangular subcomputations, we use two

lemmas given by Kwasniewski et al. [27]:

Lemma 1. (Lemma 4 in [27]) For statement 𝑆𝑡 , given 𝑫 , the size of
subcomputationH (number of vertices of 𝑆 computed duringH) is
bounded by the sizes of the iteration variables’ sets 𝐷𝑡 , 𝑡 = 1, . . . , ℓ :

|H | ≤
ℓ∏

𝑡=1

|𝐷𝑡 |. (2)

Proof. Inequality 2 follows from a combinatorial argument:

each computation inH is uniquely defined by its iteration vector

[𝜓1, . . . ,𝜓 ℓ]. As each iteration variable𝜓𝑡
takes |𝐷𝑡 | different val-

ues duringH , we have |𝐷1 | · · · · · |𝐷𝑡 | = ∏ℓ
𝑡=1 |𝐷𝑡 | ways how to

uniquely choose the iteration vector inH . □

Lemma 2. (Lemma 5 in [27]) For the given access function 𝝓 =

[𝝓1, . . . , 𝝓𝑛] accessing array 𝐴, 𝐴[𝝓 (𝝍)], the access set size of each
of components |𝝓𝑘 [H]| during subcomputationH is bounded by the
sizes of 𝑑𝑖𝑚(𝝓𝐴) iteration variables’ sets 𝐷𝑖 , 𝑘 = 1, . . . , 𝑑𝑖𝑚(𝝓 𝑗):

|𝝓𝑘 [H]| ≤
𝑑𝑖𝑚 (𝝓𝐴)∏

𝑖=1

|𝐷𝑖 | (3)

where 𝐷𝑖 ∋ 𝜓 𝑖 is the iteration domain of variable𝜓 𝑖 duringH .

Proof. We use the same combinatorial argument as in Lemma 1.

Since access functions are injective, each vertex in 𝐴 accessed by

𝝓𝒌 is uniquely defined by [𝜓1
𝑘
, . . . ,𝜓

𝑑𝑖𝑚 (𝐴)
𝑘

]. Knowing the number

of different values each 𝜓
𝑗

𝑘
takes in H , we bound the number of

different access vectors 𝝓𝑘 [H]. □

4.2 Bounding SOAP Access Size
Recall that our goal is to find the maximum size of the subcompu-

tation given its dominator size. We first do the converse: given the

rectangular subcomputationH𝑟𝑒𝑐 , we bound the minimum num-

ber of input vertices required to computeH𝑟𝑒𝑐 . In Section 4.4 we

prove that indeedH𝑟𝑒𝑐 is the subcomputation that upper-bounds

the maximum computational intensity 𝜌 . Since arrays 𝐴1, . . . , 𝐴𝑚
are disjoint, the total number of input vertices is the sum of their

access set sizes: |𝐷𝑜𝑚𝑚𝑖𝑛 (H𝑟𝑒𝑐) ≥
∑𝑚

𝑗=1 |A 𝑗 |. We now proceed to

bound individual access set sizes |A 𝑗 |.
Consider array𝐴with𝑑𝑖𝑚(𝐴) = 𝑑 and its access function 𝝓 (𝝍) =

[𝝓1 (𝝍), . . . , 𝝓𝑛 (𝝍)] that access 𝑛 elements from 𝐴 (to simplify

the notation, we drop the subscript 𝑗 , since we consider only one

array). Observe that during H𝑟𝑒𝑐 , all combinations of iteration

variables𝜓1 ∈ 𝐷1, . . . ,𝜓 ℓ ∈ 𝐷ℓ
are accessed, so |H𝑟𝑒𝑐 | =

∏ℓ
𝑡=1 |𝐷𝑡 |

(Lemma 1). This also implies that each of 𝑘 = 1, . . . , 𝑛 accesses to

𝐴 required |𝝓𝑘 [H𝑟𝑒𝑐] | =
∏𝑑

𝑡=1 |𝐷𝑡 | vertices from 𝐴 (Lemma 2 and

Observation 1). Therefore, the total number of accesses to array

𝐴 during H𝑟𝑒𝑐 is |A| ≥ ∏𝑑
𝑡=1 |𝐷𝑡 |. However, the sets of vertices

accessed by different 𝝓𝑘 may overlap, that is, there may exist two

accesses 𝝓𝑙 and 𝝓𝑚 , for which 𝝓𝑙 [H𝑟𝑒𝑐]∩𝝓𝑚 [H𝑟𝑒𝑐] ≠ ∅. Therefore,
we also obtain the upper bound |A| ≤ ∑𝑛

𝑗=1

∏𝑑
𝑡=1 |𝐷𝑡 |. We now

want to narrow the gap between the upper and the lower bounds.

Lemma 3. If a given input array 𝐴 with 𝑑𝑖𝑚(𝐴) = 𝑑 is accessed
by a simple overlap access 𝝓 (𝝍) = [𝝓1 (𝝍), . . . , 𝝓𝑛 (𝝍)], its access set
size |A| during rectangular computationH𝑟𝑒𝑐 (𝑫) is bounded by

|A| = |𝝓 [H𝑟𝑒𝑐 (𝑫)] | ≥ 2
𝑑∏
𝑖=1

|𝐷𝑖 | −
𝑑∏
𝑖=1

(|𝐷𝑖 | − |𝑡𝑖 |), (4)

where |𝑡𝑖 | is the size of the access offsets set in the 𝑖th dimension.

Proof. W.l.o.g., consider the first access function component 𝝓1
and its

∏𝑑
𝑡=1 |𝐷𝑡 | accessed vertices 𝝓1 [H𝑟𝑒𝑐]. We will lower bound

the number of accesses to𝐴 from remaining 𝝓𝑘 , 𝑘 = 2, . . . , 𝑛, which
do not overlap with 𝝓1 [H𝑟𝑒𝑐], that is |

⋃𝑛
𝑘=2

𝝓𝑘 [H𝑟𝑒𝑐] \𝝓1 [H𝑟𝑒𝑐] |.
Since by construction ofH𝑟𝑒𝑐 , all 𝝓𝑘 [H𝑟𝑒𝑐] are Cartesian products

of iteration variables’ ranges 𝝓𝑘 [𝐷1]×, · · · , ×𝝓𝑘 [𝐷𝑑], there is a

bijection between 𝝓𝑘 [H𝑟𝑒𝑐] and an 𝑑-dimensional hyperrectangle

𝐻𝑘 ∈ N𝑑 . To secure correctness of our lower bound on |A|, we need
to find the volume of the smallest union of these hyperrectangles.

5

Technical Report, 2021, G. Kwasniewski et al.

Iteration vector (3 iteration variables)

Access function vector (2 components)

Iteration variables’ ranges

Figure 3: Intuition behind Lemma 3. Access sets 𝝓 [H𝑟𝑒𝑐 (𝑫)] as 3-
dimensional hyperrectangles. The union |⋃𝑛

𝑘=1 𝝓𝑘 [H𝑟𝑒𝑐] | (and therefore,
the total number of accesses |A |) is minimized when the hyperrectangles
are placed in two antipodal locations of the subcomputation domain D.

Note that |𝑡𝑖 | is a lower bound on the maximum offset between

any two 𝐻 𝑗 ≠ 𝐻𝑘 in dimension 𝑖: the union of all hyperrectangles⋃𝑛
𝑘=1

𝐻𝑘 “stretches” at least |𝐷𝑖 |+ |𝑡𝑖 | elements in the 𝑖th dimension

for all 𝑖 = 1, . . . , 𝑑 (see Figure 3). To see this, observe that since

𝐷𝑖 ⊂ 𝑁 , for each element in the access offset set 𝑡𝑖
𝑗
∈ 𝑡𝑖 there is at

least one element in 𝐷𝑖 + 𝑡𝑖
𝑗
that is not in 𝐷𝑖

, which implies that

| (𝐷𝑖 + 𝑡𝑖
𝑗
) \𝐷𝑖 | ≥ 1. Since 𝐷𝑖

is finite, there is a single well-defined

maximum and a minimum element, which implies that (max{𝐷𝑖 }+
𝑡𝑖
𝑗
∉ 𝐷𝑖) ∨ (min{𝐷𝑖 } +𝑡𝑖

𝑗
∉ 𝐷𝑖). Also, because by definition of 𝑡𝑖 we

have ∀𝑡𝑖
𝑗
, 𝑡𝑖
𝑘
∈ 𝑡𝑖 : 𝑡𝑖

𝑗
≠ 𝑡𝑖

𝑘
, then we also have that each 𝑡𝑖

𝑗
accesses

at least one “non-overlapping” element independent of any other

𝑡𝑖
𝑘
, that is ∀𝑡𝑖

𝑗
, 𝑡𝑖
𝑘
∈ 𝑡𝑖 : max{𝐷𝑖 } + 𝑡𝑖

𝑗
≠ max{𝐷𝑖 } + 𝑡𝑖

𝑘
.

The arrangement of hyperrectangles 𝐻𝑘 , 𝑘 = 1, . . . , 𝑛 in a N𝑑

lattice s.t., their bounding box is 𝑫 = (|𝐷1 | + |𝑡1 |) × · · · × (|𝐷𝑑 | +
|𝑡𝑑 |), which minimizes the size of their union |⋃𝑘 𝐻𝑘 | satisfies two
properties:

(1) there exist two “extreme” 𝐻𝑝 , 𝐻𝑞 , such that 𝐻𝑞 = 𝐻𝑝 + 𝒗,
𝒖 = Z𝑑 ,∀𝑖=1,...,𝑑 : |𝑣𝑖 | = |𝑡𝑖 |,

(2) all the remaining 𝐻𝑘 , 𝑘 ≠ 𝑝, 𝑞 perfectly overlap with the

“extreme” hyperrectangles 𝐻𝑘 ⊆ 𝐻𝑝 ∪ 𝐻𝑞 .

To see this, observe that for every non-zero |𝑡𝑖 | we need two

hyperrectangles 𝐻 𝑖
𝑝 ≠ 𝐻 𝑖

𝑞 , s.t., 𝐻
𝑖
𝑞 = 𝐻 𝑖

𝑝 + [·, . . . , |𝑡𝑖 |, . . . , ·], that is,
𝐻 𝑖
𝑞 is offset from 𝐻 𝑖

𝑝 by |𝑡𝑖 | in 𝑖th dimension. We therefore have⋃
𝑖, |𝑡𝑖 |>0 (𝐻 𝑖

𝑝 ∪ 𝐻 𝑖
𝑞) ⊆

⋃
𝑘 𝐻𝑘 . Since 𝐻

𝑖
𝑝 and 𝐻 𝑖

𝑞 are pairwise non-

equal, but there are no restrictions on 𝐻 𝑖
𝑝 , 𝐻

𝑗
𝑝 , 𝑖 ≠ 𝑗 , we have that

the union

⋃
𝑖, |𝑡𝑖 |>0 (𝐻 𝑖

𝑝 ∪ 𝐻 𝑖
𝑞) is minimized if ∀𝑖≠𝑗𝐻 𝑖

𝑝 = 𝐻
𝑗
𝑝 .

Finally, observe the volume of |⋃𝑛
𝑘=1

𝐻𝑘 | s.t. to the claimed

arrangement is:

��� 𝑛⋃
𝑘=1

𝐻𝑘

��� = |𝐻𝑝 ∪ 𝐻𝑞 | = 2
𝑑∏
𝑖=1

|𝐷𝑖 | −
𝑑∏
𝑖=1

(|𝐷𝑖 | − |𝑡𝑖 |) (5)

It shows that for any set of 𝑛 hyperrectangles s.t. the given

constraint, the volume of their union is no smaller than the one

in Equation 5. Since the offset constraint is also a lower bound on

the number of non-overlapping accesses in each dimension, it also

forms the bound on |⋃𝑛
𝑘=1

𝝓𝑘 [H𝑟𝑒𝑐] | = |𝝓 [H𝑟𝑒𝑐] | = |A|. □

4.3 Input-Output Simple Overlap
If one of the input arrays 𝐴𝑖 , 𝑖 ≥ 1, is also the output array 𝐴0,

then their access function vectors 𝝓0 and 𝝓𝑖 form together a simple

overlap access (Section 3). In such cases, some vertices accessed by

𝝓𝑖 duringH𝑟𝑒𝑐 may be computed and do not need to be loaded. We

formalize it in the following corollary, which follows directly from

Lemma 3:

Corollary 1. Consider statement 𝑆𝑡 that computes array𝐴,𝑑𝑖𝑚(𝐴) =
𝑑 and simultaneously accesses it as an input𝐴[𝝓0 (𝝍)] = 𝑓 (𝐴[𝝓1 (𝝍)]).
If 𝝓0 ∪ 𝝓1 is a simple overlap access, the access set size |A| during
rectangular computationH𝑟𝑒𝑐 is bounded by

|A| ≥
𝑑∏
𝑖=1

|𝐷𝑖 | −
𝑑∏
𝑖=1

(|𝐷𝑖 | − |𝑡𝑖 |), (6)

where 𝑡 is an access offset offset set of 𝝓0 ∪ 𝝓1.
Proof. This result follows directly from Lemma 3. Since there

are at least 2
∏𝑑

𝑖=1 |𝐷𝑖 | −∏𝑑
𝑖=1 (|𝐷𝑖 | − |𝑡𝑖 |) vertices accessed from

𝐴𝑖 , and at most

∏𝑑
𝑖=1 |𝐷𝑖 | of them can be computed during H𝑟𝑒𝑐

(Lemma 2) and therefore, do not have to be loaded, then at least

2
∏𝑑

𝑖=1 |𝐷𝑖 | −∏𝑑
𝑖=1 (|𝐷𝑖 | − |𝑡𝑖 |) −∏𝑑

𝑖=1 |𝐷𝑖 | elements have to be

accessed from the outside ofH𝑟𝑒𝑐 . □

4.4 Bounding Maximal Subcomputation
In Section 4.2we lower-bounded the dominator set size of the rectan-

gular subcomputation |𝐷𝑜𝑚𝑚𝑖𝑛 (H𝑟𝑒𝑐) | =
∑𝑚

𝑗=1 |A 𝑗 | by bounding

the sizes of simple overlap access sets sizes |A 𝑗 | (Lemma 3). Recall

that to bound the I/O lower bound we need the size 𝜒 (𝑋) of the
maximal subcomputationH𝑚𝑎𝑥 for given value of 𝑋 (Inequality 1).

We now prove thatH𝑟𝑒𝑐 upper-bounds the size ofH𝑚𝑎𝑥 .

Given H , denote the the ratio of the size of the subcomputa-

tion to the dominator set size 𝛿 (H) = |H |∑𝑚
𝑗=1 |𝝓 𝑗 [H] | . By definition,

H𝑚𝑎𝑥 maximizes 𝛿 among all valid H ∈ P. We need to show

that for a fixed subcomputation domain 𝑫0, among all subcompu-

tations for which 𝑫 (H) = 𝑫0, the rectangular subcomputation

H𝑟𝑒𝑐 (𝑫0) upper-bounds 𝛿 . Note that an 𝑋 -partition derived from
the optimal pebbling schedule 𝑃𝑜𝑝𝑡 may not include H𝑟𝑒𝑐 . How-

ever, ∀𝑋 : 𝜒𝑟𝑒𝑐 (𝑋) ≥ 𝜒 (𝑋), that is, given 𝑋 , the size of H𝑟𝑒𝑐 s.t.,∑𝑚
𝑗=1 |𝝓 𝑗 [H𝑟𝑒𝑐] | = 𝑋 will always be no smaller than the size of

H𝑚𝑎𝑥 . To show this, we first need to introduce some auxiliary

definitions.

Iteration variables, their indices, and their values. To sim-

plify the notation, throughout the paper we used the iteration vari-

ables𝜓 𝑖 and the values they take for some iteration interchangeably.

However, now we need to make this distinction explicit. The it-

eration vector consists of ℓ iteration variables 𝝍 = [𝜓1, . . . , 𝜓 ℓ].
Each access function 𝝓 𝑗 is defined on 𝑑𝑖𝑚(𝐴 𝑗) ≤ ℓ of them. Re-

call that 𝝍 𝑗 is the set of iteration variables accessed by 𝝓 𝑗 (Sec-

tion 3, property (5)). To keep track of the indices of particular

iteration variables, denote 𝚿 = [ℓ] = {1, . . . , ℓ} ⊂ N, 𝚿 𝑗 ⊆ 𝚿,

and 𝚿
′
𝑗 = 𝚿 \ 𝚿 𝑗 as the sets of integers. If 𝑖 ∈ 𝚿 𝑗 , then the 𝑖th

iteration variable𝜓 𝑖 is accessed by the access function 𝝓 𝑗 . We fur-

ther define 𝝍∗ ∈ Nℓ as a specific value of the iteration vector 𝝍
that uniquely defines a single non-input vertex. We analogously

define 𝝍∗
𝑗
,𝜓 𝑖,∗, and𝜓 𝑖,∗

𝑗
(the last one being a value of 𝑖th iteration

6

Tight I/O Bounds of Statically Analyzable Programs Technical Report, 2021,

Extend in

remaining

domains

Figure 4: Intuition behind Lemma 4: extending the subcomputation in the
free dimensions w.r.t 𝝓 𝑗 does not increase |𝝓 𝑗 [H] |. Once the subcomputa-
tion is almost rectangular, extending 𝐻 in the remaining dimensions keeps
the ratio 𝛿−1𝑗 constant.

variable of the 𝑗th access). We also define \ (𝝍∗
𝑗
,H) as the number

of vertices inH that have all their 𝚿 𝑗 coordinates equal to 𝝍∗𝑗 , that

is \ (𝝍∗
𝑗
,H) = |{𝝍∗ : 𝝍∗ ∈ H ∧ (∀𝑖 ∈ 𝚿 𝑗 : 𝜓

𝑖,∗ = 𝜓 𝑖,∗
𝑗
)}|.

We now formalize our claim in the following lemma:

Lemma 4. Given the subcomputation domain 𝑫0,H𝑟𝑒𝑐 (𝑫0) maxi-
mizes 𝛿 (H) for allH s.t. 𝑫 (H) = 𝑫0.

∀H : 𝛿 (H) ≤ 𝛿 (H𝑟𝑒𝑐) (7)

Proof. Instead ofmaximizing𝛿 (H), wewill minimize𝛿−1 (H) =
(∑𝑚

𝑗=1 |𝝓 𝑗 [H]|)/|H | =
∑𝑚

𝑗=1 |𝝓 𝑗 [H]|/|H | over all possibleH . Ob-

serve that 𝛿−1 (H) is linear w.r.t. the ratios of individual access

function sets sizes |𝝓 𝑗 [H]| and the size of subcomputation |H |.
Therefore, we can examine each access 𝝓 𝑗 [H] separately and show
that every 𝛿−1

𝑗
= |𝝓 𝑗 [H]|/|H | is minimized forH = H𝑟𝑒𝑐 . Then,

ifH𝑟𝑒𝑐 minimizes each of 𝛿−1
𝑗

, then 𝛿−1 =
∑𝑚

𝑗=1 𝛿
−1
𝑗

is minimized,

so indeedH𝑟𝑒𝑐 maximizes the ratio of the subcomputation size to

the dominator set size.

Observe now, that for anyH we have that ∀𝑗 : 𝛿−1𝑗 is monoton-

ically decreasing w.r.t. \ (𝝍∗
𝑗
,H) for all 𝝍∗

𝑗
∈ 𝝓 𝑗 [H]. That is - pick

any input vertex 𝝍∗
𝑗
from the set of vertices accessed by 𝝓 𝑗 [H].

Adding compute vertices 𝝍∗ toH that access 𝝍∗
𝑗
do not increase

the access set size 𝝓 𝑗 [H], since 𝝍∗𝑗 is already accessed. However,

it increases the size of H . Clearly, 𝛿−1
𝑗

reaches its minimum if

∀𝝍∗
𝑗
∈ 𝝓 𝑗 [H] : \ (𝝍∗𝑗 ,H) =

∏
𝑖∈𝚿′𝑗 |𝐷

𝑖 |, that is, H computes all

vertices spanned by the access set 𝝓 𝑗 [H] and all elements in the

Cartesian product of “free” (independent of the access function 𝜙 𝑗)

iteration domains 𝐷𝑖 , 𝑖 ∈ 𝚿′𝑗 .
We showed that for all 𝑗 , given its initial access set 𝝓 𝑗 [H], the

ratio𝛿−1
𝑗

is minimized for the “almost-rectangular” subcomputation,

that is, H which computes all vertices 𝝍∗ ∈ 𝝓 𝑗 [H] ×
∏

𝑖∈𝚿′𝑗 𝐷
𝑖
.

We now need to show that also extendingH over the “dependent”

ranges 𝚿 𝑗 won’t increase the ratio 𝛿
−1
. When the access set size

𝝓 𝑗 [H] increases by a factor 𝑥 ,H increases proportionally by 𝑥 too,

keeping the ratio constant (See Figure 4 for an example for ℓ = 3).
Since our goal is to minimize each 𝛿−1

𝑗
separately, indepen-

dently of other 𝛿−1
𝑖
, 𝑖 ≠ 𝑗 , assume that we have already extended

H to the “almost-rectangular” subcomputation, that is, all com-

binations of

∏
𝑖∈𝚿′𝑗 𝐷

𝑖
were accessed in H . Observe now that

\ (𝝍∗
𝑗
,H) = ∏

𝑖∈𝚿′𝑗 |𝐷
𝑖 | for any vertex 𝝍∗

𝑗
. Therefore, since |H | =∑

𝝍∗
𝑗
∈𝝓 𝑗 [H]

∏
𝑖∈𝚿′𝑗 |𝐷

𝑖 |, we see that 𝛿−1
𝑗

is constant w.r.t., the size

of the access set: 𝛿−1
𝑗

=
|𝝓 𝑗 [H] |
|H | = 1∏

𝑖∈𝚿′
𝑗
|𝐷𝑖 | . Therefore, we can

safely maximize 𝝓 𝑗 [H] to the entire access set of the rectangular

subcomputation H𝑟𝑒𝑐 without increasing 𝛿−1
𝑗
. We conclude that

for every access function 𝝓 𝑗 and every iteration variable index 𝑖 ,

evaluating all vertices 𝝍∗ s.t.𝜓 𝑖 iterates over the entire domain 𝐷𝑖

minimizes 𝛿−1
𝑗
.

□

4.5 I/O Lower Bounds and Optimal Tiling
We now proceed to the final step of finding the I/O lower bound. Re-

call from Section 2.2, that the last missing piece is 𝜒 (𝑋); that is, we
seek to express |H𝑚𝑎𝑥 (𝑫) | =

∏ℓ
𝑡=1 |𝐷𝑡 | as a function of𝑋 . Observe

that by Lemma 4, |𝐷𝑜𝑚𝑚𝑖𝑛 (H𝑚𝑎𝑥 (𝑫)) ≥
∑𝑚

𝑗=1 (2
∏𝑑𝑖𝑚 (𝐴 𝑗)

𝑖=1 |𝐷𝑖
𝑗
| −∏𝑑𝑖𝑚 (𝐴 𝑗)

𝑖=1 (|𝐷𝑖
𝑗
| − |𝑡𝑖

𝑗
|). On the other hand, by definition of

𝑋 -Partitioning, |𝐷𝑜𝑚𝑚𝑖𝑛 (H𝑚𝑎𝑥 (𝑫)) | ≤ 𝑋 . Combining these in-

equalities, we solve for all |𝐷𝑡 | as functions of 𝑋 by formulating

it as the optimization problem (see Section 3.2 in Kwasniewski et

al. [27]):

max
ℓ∏

𝑡=1

|𝐷𝑡 | s.t.

𝑚∑︁
𝑗=1

|A 𝑗 | ≤ 𝑋

∀1 ≥ 𝑡 ≥ ℓ : |𝐷𝑡 | ≥ 1 (8)

Solving the above optimization problem yields 𝜒 (𝑋) = |H𝑚𝑎𝑥 (𝑫) |.
Since Lemma 4 gives a valid upper bound on computational in-

tensity for any value of 𝑋 , we seek to find the tightest (lowest)

upper bound. One can obtain 𝑋0 = argmin𝑋
𝜒 (𝑋)
𝑋−𝑆 , since 𝜒 (𝑋) is

differentiable. Finally, combining Lemma 3, inequality 1, and the

optimization problem 8, we obtain the I/O lower bound for the

single-statement SOAP program:

𝑄 ≥ |D |
∑𝑚

𝑗=1 |A 𝑗 (𝑋0) | − 𝑆∏ℓ
𝑡=1 |𝐷𝑡 (𝑋0) |

, (9)

where |A 𝑗 (𝑋0) | are the access set sizes obtained from Lemma 3 for

the optimal value of |𝐷𝑖 | derived from the optimization problem 8.

Substituting 𝑋0 back to |𝐷𝑡 | (𝑋) has a direct interpretation: they
constitute optimal loop tilings for the maximal subcomputation.

Note that such tiling might be invalid due to problem relaxations:

e.g., we ignore loop-carried dependencies andwe solve optimization

problem 8 over real numbers, relaxing the integer constraint on

|𝐷𝑡 | set sizes. However, this result can serve as a powerful guideline in
code generation. Furthermore, if derived tiling sizes generate a valid
code, it is provably I/O optimal.

5 PROJECTING PROGRAMS ONTO SOAP
By the definition of SOAP, one input array may be accessed by

different access function vector components, only if they form the

simple overlap access — that is, the accesses are offset by a constant

stride. However, our analysis may go beyond this constraint if

additional assumptions are met.

7

Technical Report, 2021, G. Kwasniewski et al.

5.1 Non-Overlapping Access Sets
Given input array 𝐴 and its access function components 𝝓 (𝝍) =
[𝝓1 (𝝍1), . . . , 𝝓𝑛 (𝝍𝑛)], if all access sets are disjoint, that is:∀𝑖≠𝑗𝝓𝑖 [D]∩
𝝓 𝑗 [D] = ∅, then we represent it as 𝑛 disjoint input arrays 𝐴𝑖 ac-

cessed by single corresponding access function component 𝝓𝑖 (𝝍𝑖).

Example 4. Consider the following code fragment from LU decom-
position:

for k in range(N):

for i in range(k+1,N):

for j in range(k+1,N):

𝑆𝑡 : A[i,j] = A[i,j] - A[i,k] * A[k,j]

The analysis of iteration variables’ domains D𝑖 ,D 𝑗 ,D𝑘 shows
that for fixed value of 𝑘0, there are no two iteration vectors 𝝍1 =

[𝑘0, 𝑖1, 𝑗1] and𝝍2 = [𝑘0, 𝑖2, 𝑗2] such that [𝑖1, 𝑘0] = [𝑘0, 𝑗2] ∨[𝑖1, 𝑗1] =
[𝑘0, 𝑗2] ∨[𝑖1, 𝑗1] = [𝑖1, 𝑘0], therefore, their access sets are disjoint.
Furthermore, for 𝑘0, all elements from 𝐴 in range [(𝑘0, 𝑁), (𝑘0, 𝑁)]
are updated. Therefore, all accesses of form [𝑖1, 𝑘1] = [𝑘2, 𝑗2] access
different vertices. We model this as a SOAP statement with three
disjoint arrays:

𝑆𝑡2 : 𝐴1 [𝑖, 𝑗] = 𝑓 (𝐴1 [𝑖, 𝑗], 𝐴2 [𝑖, 𝑘], 𝐴3 [𝑘, 𝑗])

5.2 Equivalent Input-Output Accesses
If array 𝐴 is updated by statement 𝑆𝑡 — i.e., it is both input and

output — then we require that the output access function 𝝓0 is

different than the input access function 𝝓𝑖 . If the input program
does not meet this requirement, we can add additional “version

dimension” to access functions that is offset by a constant between

input and output accesses.

Example 5. Consider again Example 4. Observe that array 𝐴1 is
updated (it is both the input and the output of 𝑆𝑡2. Furthermore, both
access functions are equal: 𝝓0 = 𝝓1 = [𝑖, 𝑗]. We can associate a
unique version (and therefore, a vertex) of each element of 𝐴 with a
corresponding iteration of the 𝑘 loop. We add the version dimension
associated with 𝑘 and offset it by constant 1 between input and output:

𝑆𝑡3 : 𝐴1 [𝑖, 𝑗, 𝑘 + 1] = 𝑓 (𝐴1 [𝑖, 𝑗, 𝑘], 𝐴2 [𝑖, 𝑘], 𝐴3 [𝑘, 𝑗])

5.3 Non-Injective Access Functions
Given input array𝐴 and its access function vector 𝝓, we require that
∀𝝍𝑖 ≠ 𝝍 𝑗 : 𝐴[𝝓 (𝝍𝑖)] ≠ 𝐴[𝝓 (𝝍 𝑗)]. If this is not the case, then we

seek to bound the size of such overlap, that is, given subcomputation

domain 𝑫 (H), how many different iteration vectors 𝝍 𝑗 map to

the same array element 𝐴[𝝓 (𝝍𝑖)]. We can solve this by analyzing

the iteration domain D and the access function vector 𝝓. If one
array dimension is accessed by a function of multiple iteration

variables 𝑔(𝜙1, . . . , 𝜙𝑘) and 𝑔 is linear w.r.t. all 𝜙𝑖 , the number of

different values𝑔 takes in𝑫 (H) is bounded bymax𝑖=1,...,𝑘 {|𝐷𝑖 |} ≤
|𝑔[H]| ≤ ∏𝑘

𝑖=1 |𝐷𝑖 |, for 𝐷𝑖 ≠ {0}, 𝑖 = 1, . . . , 𝑘 .

Example 6. A single layer of the direct convolution used in neural
networks may be written as seven nested loops with iteration variables
𝑏, 𝑐, 𝑘,𝑤, ℎ, 𝑟, 𝑠 and statement (c.f. [23]):

𝑆𝑡 : 𝑂𝑢𝑡 [𝑘, ℎ,𝑤,𝑏]+ = 𝐼𝑚𝑎𝑔𝑒 [𝑟 +𝜎𝑤𝑤, 𝑠 +𝜎ℎℎ, 𝑐, 𝑏] × 𝐹𝑖𝑙𝑡𝑒𝑟 [𝑘, 𝑟, 𝑠]

Depending on the value of 𝜎𝑤 and 𝜎ℎ , the access function of 𝐼𝑚𝑎𝑔𝑒 ,
𝝓 = [𝑟 + 𝜎𝑤𝑤, 𝑠 + 𝜎ℎℎ, 𝑐, 𝑏] may not be injective. Yet, observe that:

(1) 𝜎𝑤 ≥ |𝐷𝑟 |∧𝜎ℎ ≥ |𝐷𝑠 | =⇒ 𝝓 is injective =⇒ |𝝓 [H𝑚𝑎𝑥] | ≥
|𝐷𝑟 | · |𝐷𝑤 | · |𝐷𝑠 | · |𝐷ℎ | · |𝐷𝑐 | · |𝐷𝑏 |

(2) 𝜎𝑤 = 1 ∧ 𝜎ℎ = 1 =⇒ |𝝓 [H𝑚𝑎𝑥] | ≥
max(|𝐷𝑟 |, |𝐷𝑤 |) ·max(|𝐷𝑠 |, |𝐷ℎ |) · |𝐷𝑐 | · |𝐷𝑏 |,

Our analysis provides a conditional computational intensity: 𝜌𝑚𝑖𝑛 =√
𝑆/2 in case (1) and 𝜌𝑚𝑎𝑥 = 𝑆/2 in case (2). Observe that case (2)

yields the maximum non-injective overlap (maximum number of
different iteration vectors map to the same element in 𝐼𝑚𝑎𝑔𝑒). For any
other values of 𝜎𝑤 and 𝜎ℎ , we have 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥 .

6 MULTI-STATEMENT SOAP
I/O lower bounds are not composable: the I/O cost of a program

containing multiple statements may be lower than the sum of the

I/O costs of each statement if evaluated in isolation. Data may be

reused and merging of statements may lower the I/O cost.

Note that the number of vertices in the program’s CDAG 𝐺

depend on domain sizes 𝐷𝑖
of each iteration variable. However, our

derived upper bound of the computational intensity 𝜌 is independent
of the CDAG size, as it depends only on the access functions 𝝓 𝑗 .

This is also true for programs that contain multiple statements

- to bound 𝜌 for multi-statement SOAP, we only need to model

dependencies between the arrays and how they are accessed - e.g.,

one statement may take as an input an array that is an output of a

different statement.

We represent the data flow between the program statements

with a symbolic directed graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆). For a given state-

ment 𝑆𝑡𝑖 , denote 𝐼𝑛(𝑆𝑡𝑖) = {𝐴𝑖,1, . . . , 𝐴𝑖,𝑚} a set of input arrays

of statement 𝑆𝑡𝑖 . Analogously, denote 𝑂𝑢𝑡 (𝑆𝑡𝑖) the set containing
the output array of 𝑆𝑡𝑖 . Analogously to program CDAG 𝐺 that cap-

tured dependencies between particular array elements, 𝐺𝑆 models

dependencies between whole arrays (Figure 2).

Definition 5. Symbolic Digraph: SDG Given 𝑘-statement SOAP
𝑆𝑡1, . . . , 𝑆𝑡𝑘 , its symbolic digraph (SDG) 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) is a directed
graphwhere𝑉𝑆 =

⋃𝑘
𝑖=1 (In(𝑆𝑡𝑖)∪Out(𝑆𝑡𝑖)) and (𝐴𝑢 , 𝐴𝑣) ∈ 𝐸𝑆 ⇐⇒

∃𝑆𝑡𝑖 : 𝐴𝑢 ∈ 𝐼𝑛(𝑆𝑡𝑖) ∧𝐴𝑣 ∈ 𝑂𝑢𝑡 (𝑆𝑡𝑖).

𝐺𝑆 is a directed graph, where vertices represent arrays accessed

by a program, and edges represent data dependencies between

them. Two arrays 𝐴𝑢 and 𝐴𝑣 are connected if there is a statement

that accesses 𝐴𝑢 and computes 𝐴𝑣 . Each edge is annotated with

the corresponding access function vector of the statement that

generates it.

Example 7. Consider the example in Figure 2. We have two state-
ments 𝑆𝑡1 and 𝑆𝑡2, with In(𝑆𝑡1) = {𝐴, 𝐵}, Out(𝑆𝑡1) = {𝐶}, In(𝑆𝑡2) =
{𝐶, 𝐷, 𝐸}, Out(𝑆𝑡2) = {𝐸}. We then construct the SDG𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆),
with𝑉𝑆 = In(𝑆𝑡1) ∪Out(𝑆𝑡1) ∪ In(𝑆𝑡2) ∪Out(𝑆𝑡2) = {𝐴, 𝐵,𝐶, 𝐷, 𝐸}.
Furthermore, we have edges𝐸𝑆 = {(𝐴,𝐶), (𝐵,𝐶), (𝐶, 𝐸), (𝐷, 𝐸), (𝐸, 𝐸)}.
The edges are annotated with the corresponding access function vectors
𝝓𝑆𝑡1,1, . . . , 𝝓𝑆𝑡2,3.

Note: While the “explicit” program CDAG 𝐺 = (𝑉 , 𝐸), where
every vertex represents a single computation is indeed acyclic,

the SDG 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) may contain self-edges when a statement

updates the loaded array ((𝐸, 𝐸) in the example above). In 𝐺 , one

8

Tight I/O Bounds of Statically Analyzable Programs Technical Report, 2021,

vertex corresponds to one version of a single array element, while

in 𝐺𝑆 , one vertex encapsulates all versions of all array elements.

6.1 SDG Subgraphs
Denote 𝐼 ⊂ 𝑉𝑆 set of input vertices of 𝐺𝑆 (∀𝐴 ∈ 𝐼 : indegree(𝐴) =
0). Let 𝐻 ⊂ 𝑉𝑆 \ 𝐼 be a subset of the vertices of SDG 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆).
The SDG subgraph 𝐺𝑆 [𝐻] is a subgraph of 𝐺𝑆 induced by the

vertex set 𝐻 . It corresponds to some subcomputation in which

at least one vertex from each array in 𝐻 was computed. We now

use the analogous strategy to the 𝑋 -Partitioning abstraction: since

the optimal pebbling has an associated 𝑋 -partition with certain

properties (the dominator set constraint), we bound the cost of

any pebbling by finding the maximum subcomputation among all
valid 𝑋 -partitions. We now show that every subcomputation in

the optimal 𝑋 -partition has a corresponding SDG subgraph𝐺𝑆 [𝐻].
Therefore, finding 𝐺𝑆 [𝐻𝑜𝑝𝑡] that maximizes the computational

intensity among all subgraphs bounds the size of the maximal sub-

computation (which, in turn, bounds the I/O cost of any pebbling).

Recall that an optimal pebbling 𝑃 has an associated 𝑋 -partition

P(𝑋), where eachH ∈ P(𝑋) represents a sequence of operations
that are not interleaved with other subcomputations. Given 𝐺𝑆 ,

eachH ∈ P(𝑋) has an associated subgraph𝐺𝑆 [𝐻] s.t. every array

vertex 𝐴𝑖 ∈ 𝐻 represents an array from which at least one vertex

was computed inH .

Note that both the pebbling 𝑃 and the partition P(𝑋) depend on
the size of the CDAG that is determined by the sizes of the iteration

domains 𝐷𝑖
. However, the SDG does not depend on them. Thus, by

finding the subgraph that maximizes the computational intensity,

we bound 𝜌 for any combination of input parameters.

Definition 6. The subgraph SOAP statement 𝑆𝑡𝐻 of subgraph
𝐺𝑆 [𝐻] is a single SOAP statement with the input 𝐼𝑛(𝑆𝑡𝐻) = {𝐴 :
𝐴 ∉ 𝐻 ∧ ∃𝐵 ∈ 𝐻 : (𝐴, 𝐵) ∈ 𝐸𝑆 }. Additionally, for each vertex 𝐵 ∈ 𝐻
that is not computed in 𝐻 , that is �𝐴 ∈ 𝐻 : (𝐴, 𝐵) ∈ 𝐸𝑆 , self-edges
(𝐵, 𝐵) ∈ 𝐸 are preserved (𝐵 ∈ 𝐼𝑛(𝑆𝑡𝐻)).

Intuition. The subgraph statement 𝑆𝑡𝐻 is a “virtual” SOAP state-

ment that encapsulates multiple statements 𝑆𝑡1, . . . , 𝑆𝑡𝑘 . Given 𝐻 ,

its subgraph statement’s inputs 𝐼𝑛(𝑆𝑡𝐻) are formed by merging

inputs

⋃𝑘
𝑖=1 𝐼𝑛(𝑆𝑡𝑖) \ 𝑉 (𝐻) from all statements that form 𝐻 , but

are not in 𝐻 . By the construction of the SDG, this is equivalent to

the definition above: take all vertices 𝐴 ∈ 𝑉𝑠 \ 𝑉 (𝐻) that have a
child in 𝑉 (𝐻), that is ∃𝐵 ∈ 𝑉 (𝐻) : (𝐴, 𝐵) ∈ 𝐸𝑆 (see Figure 2).

This forms the lower bound on the number of inputs for a

corresponding subcomputation H : all the vertices from arrays

𝐴𝑖 ∈ 𝑉 (𝐻) could potentially be computed during H and do not

need to be loaded, but at least vertices from arrays 𝐼𝑛(𝑆𝑡𝐻) have to
be accessed.

Example 8. Consider again the example from Figure 2. The set
of input nodes is 𝐼 = {𝐴, 𝐵, 𝐷}. There are three possible subgraph
statements: 𝐻1 = {𝐶}, with 𝐼𝑛(𝑆𝑡𝐻1

) = {𝐴, 𝐵}, 𝐻2 = {𝐶} with
𝐼𝑛(𝑆𝑡𝐻2

) = {𝐶, 𝐷, 𝐸}, and 𝐻3 = {𝐶, 𝐸} with 𝐼𝑛(𝑆𝑡𝐻3
) = {𝐴, 𝐵, 𝐷}.

Note that by definition, the self-edge (𝐶,𝐶) is preserved in 𝐻2, but
not in 𝐻3. Subgraphs 𝐻1 and 𝐻2 correspond to the input statements
𝑆𝑡1 and 𝑆𝑡2. Subgraph 𝐻3 encapsulates a subcomputation H that
computes some vertices from both arrays 𝐶 and 𝐸, merging subcom-
putations 𝑆𝑡1 and 𝑆𝑡2 and reusing outputs from 𝑆𝑡1 to compute 𝐸.

Then, we establish the following lemma:

Lemma 5. Given an 𝑋 -partition P(𝑋) = {H1, . . . ,H𝑠 } of the 𝑘-
statement SOAP, with its corresponding 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆), each subcom-
putationH has an associated intensity 𝜌H =

|H |
|𝐷𝑜𝑚𝑚𝑖𝑛 (H) |−𝑆 that

is upper-bounded by the computational intensity of the subgraph
statement 𝑆𝑡𝐻 (Lemma 4).

Proof. Recall that given the subcomputationH , its correspond-

ing SDG subgraph 𝐻 is constructed as follows: for each vertex

𝑣 ∈ 𝑉 computed during H belonging to some array 𝐴𝑖 , add the

corresponding array vertex 𝑠𝑖 to 𝐻 . Note that we allow a vertex

recomputation: if some vertex is (re)computed during the optimal

schedule ofH , its array vertex will belong to 𝐻 .

Observe that by this construction and by definition of the sub-

graph statement, all arrays from which at least one vertex is loaded

duringH are in 𝐼𝑛(𝑆𝑡𝐻). Furthermore, 𝐼𝑛(𝑆𝑡𝐻) is a subset of these
arrays: during H , there might be some loaded vertex from array

𝐴 𝑗 ∈ 𝐻 , but, by definition of 𝑆𝑡𝐻 , this array will not be in 𝐼𝑛(𝑆𝑡𝐻).
Therefore, 𝑆𝑡𝐻 lower bounds the input size ofH .

The last step of the proof is to observe that by Lemma 4, the

computational intensity of 𝑆𝑡𝐻 bounds the maximum number of

computed vertices for any H ′ ∈ P(𝑋) that belong to 𝐻 , that is,

the union of all arrays in 𝐻 . But since all vertices that are com-

puted inH belong to one of these arrays,H cannot have higher

computational intensity. □

6.2 SDG I/O Lower Bounds
We now proceed to establish a method to derive the I/O lower

bounds of the multi-statement SOAP given its SDG 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆).
For each array vertex 𝐴 ∈ 𝑉𝑆 , denote |𝐴| as the total number of

vertices in the CDAG that belong to array 𝐴. Denote further S(𝐴)
the set of all subgraphs of 𝐺𝑆 that contain 𝐴. Then we prove the

following theorem:

Theorem 1. The I/O cost 𝑄 of a 𝑘-statement SOAP represented by
the SDG 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) is bounded by

𝑄 ≥
∑︁
𝐴∈𝑉𝑆

|𝐴|
max𝐻 ∈S(𝐴) 𝜌𝐻

(10)

wheremax𝐻 ∈S(𝐴) 𝜌𝐻 is the maximum computational intensity over
all subgraph statements of subgraphs 𝐻 that contain vertex 𝐴.

Proof. This theorem is a direct consequence of Lemma 5 and

the fact that all vertices in CDAG𝐺 are associated with some array

vertex in SDG 𝐺𝑆 . Lemma 5, together with the definition of S(𝑎),
states that max𝐻 ∈S(𝑎) 𝜌𝐻 is the upper bound on any subcompu-

tation H that contains any vertex from array 𝑎. Since there are

|𝑎 | vertices associated with 𝑎, at least
|𝑎 |

max𝐻∈S(𝑎) 𝜌𝐻
I/O operations

must be performed to compute these vertices. Since the computa-

tional intensity expresses the average cost per vertex, even if some

subcomputation in an optimal 𝑋 -partition spans more than one

array, this is already modeled by the set S(𝑎). Therefore, we can
sum the I/O costs per arrays 𝑎, yielding inequality 10. □

Note that applying Theorem 1 requires iterating over all possible

subgraphs. In the worst case, this yields exponential complexity,

prohibiting scaling our method to large programs. However, many

scientific applications contain a limited number of kernels with

9

Technical Report, 2021, G. Kwasniewski et al.

simple dependencies. In practice we observed that our approach

scales well to programs containing up to 35 statements.

7 EVALUATION
We evaluate our lower bound analysis on a wide range of applica-

tions, ranging from fundamental computational kernels and solvers

to full workloads in hydrodynamics, numerical weather prediction,

and deep learning. The set of applications covers both the previously

analyzed kernels (the Polybench suite [28], direct convolution), and

kernels that were never analyzed before due to complicated depen-

dency structures (multiple NN layers, diffusion, advection). Not

only our tool covers broader class of programs than state-of-the-art

approaches, but also it improves bounds generated by methods

dedicated to specific narrower classes [19]. Improving I/O lower

bounds has not only theoretical implications: loose bounds may

not be applicable for generating corresponding parallel codes, as

too many overapproximations may yield an invalid schedule.

In our experiments we use DaCe [29] to extract SOAP statements

from Python and C code, and use MATLAB for symbolic analysis.

Polybench. As our first case study, we analyze Polybench [28],

a polyhedral application benchmark suite composed of 30 pro-

grams from several domains, including linear algebra kernels, linear

solvers, data mining, and computational biology. Prior best results

were obtained by IOLB [19], a tool specifically designed for analyz-

ing I/O lower bounds of affine programs. We summarize the results

in Table 2, listing the leading order term for brevity.

We find that SOAP analysis derives tight I/O lower bounds for all

Polybench kernels. Analyzing these programs as multi-statement

SOAP either reproduces existing tight bounds, or improves them by

constant factors (e.g., in Cholesky decomposition) on 14 out of 30

applications (Table 2). Of particular note is adi (Alternating Direc-

tion Implicit solver). Our algorithm detected a possible tiling in the

time dimension, yielding the lower bound (12𝑁 2𝑇)/
√
𝑆 , compared

to 𝑁 2𝑇 reported by Olivry et al. [19]. However, due to dependency

chains incurred by alternating directions, such tiling may violate

loop-carried dependency constraints, which our algorithm relaxes.

A parallel machine could potentially take advantage of this tiling

scheme, possibly providing super-linear communication reduction.

However, this is outside of the scope of this paper.

Neural Networks. Analyzing I/O lower bounds of neural net-

works is a nascent field, and so far only single-layer convolution

was analyzed [20, 23]. We improve the previously-reported bound

reported by Zhang et al. [20] by a factor of 8.

7.1 New Lower Bounds
Analyzing SOAP and the SDG representation enables capturing

complex data dependencies in programs with a large number of

statements. To demonstrate this, we study larger programs in three

fields, where no previous I/O bounds are known. If an application

contains both SOAP and data-dependent kernels, we find a SOAP

representation that bounds the access sizes from below.

LULESH. The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics (LULESH) [30] application is an unstructured phy-

sics simulation. We analyze the main computational kernel, totaling

over 60% of runtime within one time-step of the simulation from

Improv.
Kernel SOAP I/O Bound over SotA

Po
ly
be

nc
h[

19
]

adi
12𝑁 2𝑇√

𝑆

12√
𝑆

atax 𝑀𝑁 1
bicg 𝑀𝑁 1

cholesky
𝑁 3

3
√
𝑆

2

correlation
𝑀2𝑁√

𝑆
2

covariance
𝑀2𝑁√

𝑆
2

deriche 3𝐻𝑊 3

doitgen

2𝑁 2
𝑃
𝑁𝑄𝑁𝑅√
𝑆

1

durbin
3𝑁 2

2 3

fdtd2d
2
√
3𝑁𝑋𝑁𝑌𝑇√

𝑆
6
√
6

floyd-warshall
2𝑁 3
√
𝑆

2

gemm
2𝑁 2
√
𝑆

1

gemver 𝑁 2 1
gesummv 2𝑁 2 1

gramschmidt
𝑀𝑁 2
√
𝑆

1

heat3d
6𝑁 3𝑇

3√
𝑆

32

3 3√3
jacobi1d

2𝑁𝑇
𝑆

8

jacobi2d
4𝑁 2𝑇√

𝑆
6
√
3

2mm
4𝑁 3
√
𝑆

1

3mm
6𝑁 3
√
𝑆

1

lu
2𝑁 3

3
√
𝑆

1

ludcmp
2𝑁 3

3
√
𝑆

1

mvt 𝑁 2 1

nussinov
𝑁 3

3
√
𝑆

2

seidel2d
4𝑁 2𝑇√

𝑆
6
√
3

symm
2𝑀2𝑁√

𝑆
1

syr2k
2𝑀𝑁 2
√
𝑆

2

syrk
𝑀𝑁 2
√
𝑆

2

trisolv
𝑁 2

2 1

trmm
𝑀2𝑁√

𝑆
1

N
eu

ra
lN

et
w
or
ks Direct conv.

2𝐶𝑖𝑛𝐶𝑜𝑢𝑡𝐻𝑜𝑢𝑡𝑁𝑊𝑜𝑢𝑡𝑊𝑘𝑒𝑟𝐻𝑘𝑒𝑟√
𝑆

8

Softmax 4𝐵𝐻𝑀𝑁 —

MLP
2𝑁 (𝑓 𝑐1 𝑓 𝑐2+𝑓 𝑐1𝑖𝑛𝑝+𝑓 𝑐2𝑜𝑢𝑡)√

𝑆
—

LeNet-5
300
√
2𝐶𝐻𝑁𝑊√
𝑆

—

BERT Encoder
4𝐵𝐻 𝑃 𝐿 (𝐿+2𝐻 𝑃)√

𝑆
—

V
ar
io
us LULESH 22 · numElem —

horizontal diff. 2𝐼 𝐽𝐾 —

vertical adv. 5𝐼 𝐽𝐾 —

Table 2: Simplified leading-order terms of the I/O lower bounds ex-
tracted from multi-statement SOAP and previous state-of-the-art.
For the direct convolution layer, the best previously known bound
was published by Zhang et al. [20].

10

Tight I/O Bounds of Statically Analyzable Programs Technical Report, 2021,

the full C++ source code. As LULESH falls outside the purview of

affine programs, this result is the first reported I/O lower bound.

Numerical Weather Prediction. We select two benchmark sten-

cil applications from the COSMOWeather Model [31] — horizontal

diffusion and vertical advection — representatives of the two major

workload types in the model’s dynamical core.

Deep Neural Networks. For deep learning, we choose both in-

dividual representative operators (Convolution and Softmax) and

network-scale benchmarks. Previous approaches only study data

movement empirically [32]. To the best of our knowledge, we are

the first to obtain I/O lower bounds for full networks, including a

Multi-Layer Perceptron (MLP), the LeNet-5 CNN [33], and a BERT

Transformer encoder [34].

8 RELATEDWORK
I/O analysis spans almost the entire history of general-purpose com-

puter architectures, and graph pebbling abstractions were among

the first methods to model memory requirements. Dating back to

challenges with the register allocation problem [35], pebbles were

also used to prove space-time tradeoffs [36] and maximum par-

allel speedups by investigating circuit depths [37]. Arguably the

most influential pebbling abstraction work is the red-blue pebble

game by Hong and Kung [8] that explicitly models load and store

operations in a two-level-deep memory hierarchy. This work was

extended numerous times, by: adding blocked access [38], multiple

memory hierarchies [25], or introducing additional pebbles to allow

CDAG compositions [18]. Demaine and Liu proved that finding the

optimal pebbling in a standard and no-deletion red-blue pebble

game is PSPACE-complete [17]. Papp and Wattenhofer introduced

a game variant with a non-zero computation cost and investigated

pebbling approximation algorithms [39].

Although the importance of data movement minimization is be-

yond doubt, the general solution for arbitrary algorithms is still an

open problem. Therefore, manyworks were dedicated to investigate

lower bounds only for single algorithms (often with accompanying

implementations), like matrix-matrix multiplication [16, 40–42],

LU [41] and Cholesky decompositions [43, 44]. Ballard et al. [45]

present an extensive collection of linear algebra algorithms. More-

over, a large body of work exists for minimizing communication in

irregular algorithms [46, 47], such as Betweenness Centrality [5],

min cuts [48], BFS [49], matchings [50], vertex similarity coeffi-

cients [51], or general graph computations [52, 53, 53]. Many of

them use linear algebra based formulations [54]. Recently, convolu-

tion networks gained high attention. The first asymptotic I/O lower

bound for single-layer direct convolution was proved by Demmel

et al. [23]. Chen et al. [55] propose a matching implementation, and

Zhang et al. [20] present the first non-asymptotic I/O lower bound

for Winograd convolution.

In parallel with the development of I/O minimizing implemen-

tations for particular algorithms, several works investigated I/O

lower bounds for whole classes of programs. Christ et al. [7] use a

discrete version of Loomis-Whitney inequality to derive asymptotic

lower bounds for single-statement programs nested in affine loops.

Demmel and Rusciano [22] extended this work and use discrete

Hölder-Brascamp-Lieb inequalities to find optimal tilings for such

programs. The polyhedral model [56] is widely used in practice

by many compilers [57, 58]. However, polyhedral methods have

their own limitations: 1) they cannot capture non-affine loops [59];

2) while the representation of a program is polynomial, finding

optimal transformations is still NP-hard [60]; 3) they are inappli-

cable for many neural network architectures, e.g., the Winograd

algorithm for convolution [20].

Recently, Olivry et al. [19] presented IOLB — a tool for automatic

derivation of non-parametric I/O lower bounds for programs that

can be modeled by the polyhedral framework. IOLB employs both

“geometric” projection-based bounds based on the HBL inequal-

ity [21], as well as the wavefront-based approach from Elango [61].

To the best of our knowledge, this is the only method that can

handle multiple-statement programs. However, the IOLB model

explicitly disallows recomputation that may be used to decrease the

I/O cost, e.g., in the Winograd convolution algorithm, backpropaga-

tion, or vertical advection. Furthermore, the framework is strictly

limited to affine access programs. Even then, our method is able to

improve those bounds by up to a factor of 6
√
6 (fdtd2d) using a

single, general method without the need to use application-specific

techniques, such as wavefront-based reasoning.

9 CONCLUSIONS
In this work we introduce SOAP — a broad class of statically ana-

lyzable programs. Using the explicit assumptions on the allowed

overlap between arrays, we are able to precisely count the number

of accessed vertices on the induced parametric CDAG. This stands

in contrast with many state-of-the art approaches that are based on

bounding projection sizes, as they need to underapproximate their

union size, often resulting in a significant slack in constant factors

of their bounds. Our single method is able to reproduce or improve

existing lower bounds for many important scientific kernels from

various domains, ranging from 2× increase in the lower bound

for linear algebra (cholesky, syrk), to more than 10× for stencil

applications (fdtd2d, heat3d).
Our SDG abstraction precisely models data dependencies in

multiple-statement programs. It directly captures input and output

reuse, and allows data recomputation. Armed with these tools, we

are the first to establish I/O lower bounds for entire neural networks,

as well as core components of the popular Transformer architecture.

We believe that our work will be further extended to handle data-

dependent accesses (e.g., sparse matrices), as well as scale better

with input program size. The derived maximum subcomputation

sizes can guide compiler optimizations and development of new

communication-optimal algorithms through tiling, parallelization,

or loop fusion transformations.

10 ACKNOWLEDGEMENTS
This project received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 programme (grant

agreement DAPP, No. 678880). Tal Ben-Nun is supported by the

Swiss National Science Foundation (Ambizione Project #185778).

The authors wish to thank the Swiss National Supercomputing

Center (CSCS) for providing computing infrastructure and support.

REFERENCES
[1] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain,

R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot, A. Kamil,

J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. Newburn, ,

11

Technical Report, 2021, G. Kwasniewski et al.

and M. Pericas, “Trends in Data Locality Abstractions for HPC Systems,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 28, no. 10, Oct. 2017.

[2] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the energy cost

of data movement in scientific applications,” in 2013 IEEE international symposium
on workload characterization (IISWC). IEEE, 2013, pp. 56–65.

[3] A. Tate, A. Kamil, A. Dubey, A. Größlinger, B. Chamberlain, B. Goglin, C. Edwards,

C. J. Newburn, D. Padua, D. Unat et al., “Programming abstractions for data

locality.” PADAL Workshop 2014.

[4] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamber-

lain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot,

A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. New-

burn, and M. Pericás, “Trends in data locality abstractions for hpc systems,” IEEE
Transactions on Parallel and Distributed Systems, pp. 3007–3020, 2017.

[5] E. Solomonik, M. Besta, F. Vella, and T. Hoefler, “Scaling Betweenness Centrality

using Communication-Efficient Sparse Matrix Multiplication,” in SC, 2017.
[6] E. Solomonik, E. Carson, N. Knight, and J. Demmel, “Trade-offs between syn-

chronization, communication, and computation in parallel linear algebra compu-

tations,” ACM Transactions on Parallel Computing (TOPC), vol. 3, no. 1, pp. 1–47,
2017.

[7] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick, “Communication lower

bounds and optimal algorithms for programs that reference arrays–part 1,” arXiv
preprint arXiv:1308.0068, 2013.

[8] J. Hong and H. Kung, “I/O complexity: The red-blue pebble game,” in STOC, 1981,
pp. 326–333.

[9] M. Del Ben et al., “Enabling simulation at the fifth rung of DFT: Large scale RPA

calculations with excellent time to solution,” Comp. Phys. Comm., pp. 120–129,
2015.

[10] Q. Zheng and J. D. Lafferty, “Convergence analysis for rectangular matrix com-

pletion using burer-monteiro factorization and gradient descent,” CoRR, 2016.
[11] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning:

An in-depth concurrency analysis,” ACM Comput. Surv., vol. 52, no. 4, 2019.
[12] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000.

[13] A. Krishnamoorthy and D. Menon, “Matrix inversion using Cholesky decom-

position,” in 2013 signal processing: Algorithms, architectures, arrangements, and
applications (SPA). IEEE, 2013, pp. 70–72.

[14] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Demmel, “A mas-

sively parallel tensor contraction framework for coupled-cluster computations,”

Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3176–3190, 2014.
[15] V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan, “On

characterizing the data access complexity of programs,” in Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’15. New York, NY, USA: ACM, 2015.

[16] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and T. Hoefler,

“Red-Blue Pebbling Revisited: Near Optimal ParallelMatrix-MatrixMultiplication,”

in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC19), Nov. 2019.

[17] E. D. Demaine and Q. C. Liu, “Red-blue pebble game: Complexity of computing

the trade-off between cache size and memory transfers,” in Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, 2018, pp. 195–204.

[18] V. Elango et al., “Data access complexity: The red/blue pebble game revisited,”

Tech. Rep., 2013.

[19] A. Olivry, J. Langou, L.-N. Pouchet, P. Sadayappan, and F. Rastello, “Automated

derivation of parametric data movement lower bounds for affine programs,” in

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2020, pp. 808–822.

[20] X. Zhang, J. Xiao, and G. Tan, “I/O lower bounds for auto-tuning of convolutions

in CNNs,” 2020.

[21] M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick, “Communication lower

bounds and optimal algorithms for programs that reference arrays–part 1,” arXiv
preprint arXiv:1308.0068, 2013.

[22] J. Demmel and A. Rusciano, “Parallelepipeds obtaining HBL lower bounds,” arXiv
preprint arXiv:1611.05944, 2016.

[23] J. Demmel and G. Dinh, “Communication-optimal convolutional neural nets,”

arXiv preprint arXiv:1802.06905, 2018.
[24] G. Dinh and J. Demmel, “Communication-optimal tilings for projective nested

loops with arbitrary bounds,” arXiv preprint arXiv:2003.00119, 2020.
[25] J. E. Savage, “Extending the hong-kung model to memory hierarchies,” in Inter-

national Computing and Combinatorics Conference. Springer, 1995, pp. 270–281.

[26] Q. Liu, “Red-blue and standard pebble games : Complexity and applications in

the sequential and parallel models,” 2018.

[27] G. Kwasniewski, T. Ben-Nun, A. N. Ziogas, T. Schneider, M. Besta, and T. Hoe-

fler, “On the parallel I/O optimality of linear algebra kernels: Near-optimal LU

factorization,” 2020.

[28] L. N. Pouchet, “PolyBench: The Polyhedral Benchmark suite,” 2016. [Online].

Available: https://sourceforge.net/projects/polybench

[29] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler, “Stateful

dataflow multigraphs: A data-centric model for performance portability on het-

erogeneous architectures,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, ser. SC ’19, 2019.

[30] J. Keasler and USDOE, “Livermore unstructured lagrange explicit shock

hydrodynamics,” 9 2010. [Online]. Available: https://www.osti.gov//servlets/purl/

1231396

[31] M. Baldauf, A. Seifert, J. Förstner, D. Majewski, and M. Raschendorfer, “Opera-

tional convective-scale numerical weather prediction with the COSMO model:

Description and sensitivities.” Monthly Weather Review, 139:3387–3905, 2011.
[32] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data movement is all

you need: A case study on optimizing transformers,” 2020.

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” in Proceedings of the IEEE, 1998, pp. 2278–2324.
[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” 2017.

[35] R. Sethi, “Complete register allocation problems,” in STOC, 1973.
[36] W. J. Paul and R. E. Tarjan, “Time-space trade-offs in a pebble game,” Acta Infor-

matica, vol. 10, no. 2, pp. 111–115, Jun 1978.

[37] P. W. Dymond and M. Tompa, “Speedups of deterministic machines by synchro-

nous parallel machines,” Journal of Computer and System Sciences, vol. 30, no. 2,
pp. 149–161, 1985.

[38] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of sorting and

related problems,” CACM, Sep. 1988.

[39] P. A. Papp and R. Wattenhofer, “On the hardness of red-blue pebble games,”

in Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2020, pp. 419–429.

[40] D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds for distributed-

memory matrix multiplication,” Journal of Parallel and Distributed Computing,
vol. 64, no. 9, pp. 1017 – 1026, 2004.

[41] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5D matrix

multiplication and LU factorization algorithms,” in Euro-Par 2011 Parallel
Processing, ser. Lecture Notes in Computer Science, E. Jeannot, R. Namyst, and

J. Roman, Eds. Springer Berlin Heidelberg, 2011, vol. 6853, pp. 90–109. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-23397-5_10

[42] J. Demmel et al., “Communication-optimal parallel recursive rectangular matrix

multiplication,” in IPDPS, 2013, pp. 261–272.
[43] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Communication-optimal

parallel and sequential Cholesky decomposition,” SIAM Journal on Scientific
Computing, vol. 32, no. 6, pp. 3495–3523, 2010.

[44] E. Hutter and E. Solomonik, “Communication-avoiding Cholesky-QR2 for rect-

angular matrices,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2019, pp. 89–100.

[45] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz,

“Communication lower bounds and optimal algorithms for numerical linear

algebra,” Acta Numerica, vol. 23, p. 1, 2014.
[46] M. Besta and T. Hoefler, “Accelerating irregular computations with hardware

transactional memory and active messages,” in Proceedings of the 24th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, 2015,
pp. 161–172.

[47] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref, M. Arenas,

M. Besta, P. A. Boncz et al., “The future is big graphs! a community view on

graph processing systems,” arXiv preprint arXiv:2012.06171, 2020.
[48] L. Gianinazzi, P. Kalvoda, A. De Palma, M. Besta, and T. Hoefler, “Communication-

avoiding parallel minimum cuts and connected components,” ACM SIGPLAN
Notices, vol. 53, no. 1, pp. 219–232, 2018.

[49] M. Besta, F. Marending, E. Solomonik, and T. Hoefler, “Slimsell: A vectorizable

graph representation for breadth-first search,” in IPDPS, 2017.
[50] M. Besta, M. Fischer, T. Ben-Nun, D. Stanojevic, J. D. F. Licht, and T. Hoefler,

“Substream-centric maximum matchings on fpga,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 13, no. 2, pp. 1–33, 2020.

[51] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoefler, and

E. Solomonik, “Communication-efficient jaccard similarity for high-performance

distributed genome comparisons,” in 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2020, pp. 1122–1132.

[52] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, “To push or to

pull: On reducing communication and synchronization in graph computations,”

in Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing, 2017, pp. 93–104.

[53] M. Besta, Z. Vonarburg-Shmaria, Y. Schaffner, L. Schwarz, G. Kwasniewski, L. Gi-

aninazzi, J. Beranek, K. Janda, T. Holenstein, S. Leisinger et al., “Graphminesuite:

Enabling high-performance and programmable graph mining algorithms with

set algebra,” arXiv preprint arXiv:2103.03653, 2021.
[54] J. Kepner et al., “Mathematical foundations of the GraphBLAS,” arXiv:1606.05790,

2016.

[55] X. Chen, Y. Han, and Y. Wang, “Communication lower bound in convolution ac-

celerators,” in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 529–541.

[56] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan, Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model. Berlin,

12

https://sourceforge.net/projects/polybench
https://www.osti.gov//servlets/purl/1231396
https://www.osti.gov//servlets/purl/1231396
http://dx.doi.org/10.1007/978-3-642-23397-5_10

Tight I/O Bounds of Statically Analyzable Programs Technical Report, 2021,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 132–146. [Online]. Available:

https://doi.org/10.1007/978-3-540-78791-4_9

[57] “Automatic transformations for communication-minimized parallelization and

locality optimization in the polyhedral model,” in International Conference on
Compiler Construction (ETAPS CC), Apr. 2008.

[58] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly—performing polyhedral

optimizations on a low-level intermediate representation,” Parallel Processing
Letters, vol. 22, no. 04, p. 1250010, 2012.

[59] T. Hoefler and G. Kwasniewski, “Automatic complexity analysis of explicitly

parallel programs,” in Proceedings of the 26th ACM symposium on Parallelism in
algorithms and architectures, 2014, pp. 226–235.

[60] A. Darte, “On the complexity of loop fusion,” in PACT, 1999, pp. 149–157.
[61] V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan, “On

characterizing the data movement complexity of computational DAGs for parallel

execution,” in Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, 2014, pp. 296–306.

13

https://doi.org/10.1007/978-3-540-78791-4_9

	Abstract
	1 Introduction
	2 Background
	2.1 General Approach of Modeling I/O Costs
	2.2 I/O Lower Bounds

	3 Simple Overlap Access Programs
	4 I/O Lower Bounds For Single-Statement SOAP
	4.1 Definitions
	4.2 Bounding SOAP Access Size
	4.3 Input-Output Simple Overlap
	4.4 Bounding Maximal Subcomputation
	4.5 I/O Lower Bounds and Optimal Tiling

	5 Projecting Programs onto SOAP
	5.1 Non-Overlapping Access Sets
	5.2 Equivalent Input-Output Accesses
	5.3 Non-Injective Access Functions

	6 Multi-Statement SOAP
	6.1 SDG Subgraphs
	6.2 SDG I/O Lower Bounds

	7 Evaluation
	7.1 New Lower Bounds

	8 Related Work
	9 Conclusions
	10 Acknowledgements
	References

