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ABSTRACT

We present a randomized 𝑂 (𝑚 log
2 𝑛) work, 𝑂 (polylog𝑛) depth

parallel algorithm for minimum cut. This algorithm matches the

work bounds of a recent sequential algorithm by Gawrychowski,

Mozes, and Weimann [ICALP’20], and improves on the previously

best parallel algorithm by Geissmann and Gianinazzi [SPAA’18],

which performs 𝑂 (𝑚 log
4 𝑛) work in 𝑂 (polylog𝑛) depth.

Our algorithm makes use of three components that might be of

independent interest. Firstly, we design a parallel data structure

that efficiently supports batched mixed queries and updates on

trees. It generalizes and improves the work bounds of a previous

data structure of Geissmann and Gianinazzi and is work efficient

with respect to the best sequential algorithm. Secondly, we design

a parallel algorithm for approximate minimum cut that improves

on previous results by Karger and Motwani. We use this algorithm

to give a work-efficient procedure to produce a tree packing, as in

Karger’s sequential algorithm for minimum cuts. Lastly, we design

an efficient parallel algorithm for solving the minimum 2-respecting

cut problem.
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1 INTRODUCTION

Minimum cut is a classic problem in graph theory and algorithms.

The problem is to find, given an undirected weighted graph 𝐺 =

(𝑉 , 𝐸), a nonempty subset of vertices 𝑆 ⊂ 𝑉 such that the total

weight of the edges crossing from 𝑆 to 𝑉 \ 𝑆 is minimized. Early

approaches to the problem were based on reductions to maximum

𝑠-𝑡 flows [16, 17]. Several algorithms followed which were based on

edge contraction [21, 25, 30, 31]. Karger was the first to observe that

tree packings [32] can be used to find minimum cuts [23]. In partic-

ular, for a graph with 𝑛 vertices and𝑚 edges, Karger showed how to

use random sampling and a tree packing algorithm of Gabow [11]

to generate a set of 𝑂 (log𝑛) spanning trees such that, with high

probability, the minimum cut crosses at most two edges of one

of them. A cut that crosses at most 𝑘 edges of a given tree is

called a 𝑘-respecting cut. Karger then gives an 𝑂 (𝑚 log
2 𝑛)-time

algorithm for finding minimum 2-respecting cuts, yielding a ran-

domized 𝑂 (𝑚 log
3 𝑛)-time algorithm for minimum cut. Karger also

gives a parallel algorithm for minimum 2-respecting cuts in 𝑂 (𝑛2)
work and 𝑂 (log3 𝑛) depth.

Until very recently, these were the state-of-the-art sequential

and parallel algorithms for the weighted minimum cut problem. A

new wave of interest in the problem has recently pushed these fron-

tiers. Geissmann and Gianinazzi [14] design a parallel algorithm

for minimum 2-respecting cuts that performs 𝑂 (𝑚 log
3 𝑛) work in

𝑂 (log2 𝑛) depth. Their algorithm is based on parallelizing Karger’s

algorithm by replacing a sequential data structure for the so-called

minimum path problem, based on dynamic trees, with a data struc-

ture that can evaluate a batch of updates and queries in parallel.

Their algorithm performs just a factor of 𝑂 (log𝑛) more work than

Karger’s sequential algorithm, but substantially improves on the

work of Karger’s parallel algorithm.

Soon after, a breakthrough from Gawrychowski, Mozes, and

Weimann [12] gave a randomized 𝑂 (𝑚 log
2 𝑛) algorithm for mini-

mum cut. Their algorithm achieves the𝑂 (log𝑛) speedup by design-
ing an 𝑂 (𝑚 log𝑛) algorithm for finding the minimum 2-respecting

cuts, which was the bottleneck of Karger’s algorithm. This is the

first result to beat Karger’s seminal algorithm in over 20 years.

An open question posed by Karger was whether a deterministic

algorithm can achieve an 𝑂

(
𝑚1+𝑜 (1)

)
runtime. This was recently

resolved in the affirmative by Li [26] by derandomizing the con-

struction of the spanning trees.

In our work, we combine ideas from Gawrychowski et al. and

Geissmann and Gianinazzi with several new techniques to close

the gap between the parallel and sequential algorithms. Our contri-

bution can be summarized by:

Theorem 1.1. The minimum cut of a weighted graph can be com-

puted with high probability in𝑂 (𝑚 log
2 𝑛) work and𝑂 (log3 𝑛) depth.
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We achieve this using a combination of results that may be of

independent interest. Firstly, we design a framework for evaluating

mixed batches of updates and queries on trees work efficiently

in low depth. This algorithm is based on parallel Rake-Compress

Trees (RC trees) [1]. Roughly, we say that a set of update and query

operations implemented on an RC tree is simple (defined formally

in Section 3) if the updates maintain values at the leaves that are

modified by an associative operation and combined at the internal

nodes, and the queries read only the nodes on a root-to-leaf path and

their children. Simple operation sets include updates and queries

on path and subtree weights.

Theorem 1.2. Given a bounded-degree RC tree of size 𝑛 and a sim-

ple operation set, after 𝑂 (𝑛) work and 𝑂 (log𝑛) depth preprocessing,

batches of 𝑘 operations from the operation-set, can be processed in

𝑂 (𝑘 log(𝑘𝑛)) work and𝑂 (log𝑛 log𝑘) depth. The total space required
is 𝑂 (𝑛 + 𝑘𝑚𝑎𝑥 ), where 𝑘𝑚𝑎𝑥 is the maximum size of a batch.

This result generalizes and improves on Geissmann and Giani-

nazzi [14] who give an algorithm for evaluating a batch of 𝑘 path-

weight updates and queries in Ω(𝑘 log2 𝑛) work.
Next, we design a faster parallel algorithm for approximating

minimum cuts, which is used as an ingredient in producing the

tree packing used in Karger’s approach (Section 4). To achieve this,

we design a faster sampling scheme for producing graph skeletons,

leveraging recent results on sampling binomial random variables,

and a transformation that reduces the maximum edge weight of

the graph to 𝑂 (𝑚 log𝑛) while approximately preserving cuts.

Lastly, we show how to solve the minimum 2-respecting cut

problem efficiently in parallel, using a combination of our new

mixed batch tree operations algorithm and the use of RC trees to

efficiently perform a divide-and-conquer search over the edges of

the 2-constraining trees (Section 5).

Theorem 1.3. The minimum 2-respecting cut of a weighted graph

with respect to a given spanning tree can be computed in 𝑂 (𝑚 log𝑛)
work and 𝑂 (log3 𝑛) depth with high probability.

Application to the unweighted problem. The unweighted min-

imum cut problem, or edge connectivity problem was recently

improved by Ghafarri, Nowicki, and Thorup [15] who give an

𝑂 (𝑚 log𝑛 + 𝑛 log4 𝑛) work and 𝑂 (polylog𝑛) depth randomized

algorithm which uses Geissmann and Gianinazzi’s algorithm as

a subroutine. By plugging our improved algorithm into Ghafarri,

Nowicki, and Thorup’s algorithm, we obtain an algorithm that runs

in 𝑂 (𝑚 log𝑛 + 𝑛 log2 𝑛) work and 𝑂 (polylog𝑛) depth w.h.p.

2 PRELIMINARIES

Model of computation. We analyze algorithms in the work-depth

model using fork-join parallelism. A procedure can fork another

procedure call to run in parallel and then wait for forked procedures

to complete with a join. Work is defined as the total number of

instructions performed by the algorithm and depth (also called

span) is the length of the longest chain of sequentially dependent

instructions [6]. The model can work-efficiently cross simulate the

classic CRCWPRAMmodel [6], and the more recent Binary Forking

model [7] with at most a logarithmic-factor difference in the depth.

Randomness. We say that a statement happens with high probabil-

ity (w.h.p) in 𝑛 if for any constant 𝑐 , the constants in the statement

can be set such that the probability that the event fails to hold is

𝑂 (𝑛−𝑐 ). In line with Karger’s work on random sampling [22], we

assume that we can generate 𝑂 (1) random bits in 𝑂 (1) time. Since

some of the subroutines we use require random Θ(log𝑛)-bit words,
these take𝑂 (log𝑛) work to generate. The depth is unaffected since

we can always pre-generate the anticipated number of random

words in parallel at the beginning of our algorithms.

Our algorithms are Monte Carlo, i.e., correct w.h.p. but run in

a deterministic amount of time. We can use Las Vegas algorithms,

which are fast w.h.p. but always correct, as subroutines, because any

Las Vegas algorithm can be converted into a Monte Carlo algorithm

by halting and returning an arbitrary answer after the desired time.

Tree contraction. Parallel tree contraction is a technique devel-

oped to efficiently apply various operations over trees in logarithmic

parallel depth [29], and was also later applied to dynamic trees [2].

Tree contration consists of a set of rake and compress operations.

The rake operation removes a leaf vertex and merges it with its

parent. The compress operation removes a vertex of degree two and

replaces its two incident edges with a single edge joining its neigh-

bors. Miller and Reif [29] observed that rakes and compresses can

be applied in parallel as long as they are applied to an independent

set of vertices. They describe a random-mate technique that ensures

that any tree contracts to a single vertex in 𝑂 (log𝑛) rounds w.h.p.,
and using a total of 𝑂 (𝑛) work in expectation. Gazit, Miller, and

Teng [13] give a deterministic version with the same bounds, and

Blelloch et al. [7] give a version that works in the binary-forking

model. Miller and Reif’s algorithm applies to bounded-degree trees,

but arbitrary-degree trees can typically be handled by converting

them into bounded-degree trees. For a rooted tree, the root is never

removed, and is the final surviving vertex.

Rake-compress trees. The RC tree [1, 2] of a tree 𝑇 encodes a

recursive clustering of 𝑇 corresponding to the result of tree con-

traction, where each cluster corresponds to a rake or compress (see

Figure 1). A cluster is defined to be a connected subset of vertices

and edges of the original tree. Importantly, a cluster can contain

an edge without containing its endpoints. The boundary vertices

of a cluster 𝐶 are the vertices 𝑣 ∉ 𝐶 such that an edge 𝑒 ∈ 𝐶 has

𝑣 as one of its endpoints. All of the clusters in an RC tree have at

most two boundary vertices. A cluster with no boundary vertices

is called a nullary cluster (generated at the top-level root cluster),

a cluster with one boundary is a unary cluster (generated by the

rake operation) and a cluster with two boundaries is binary cluster

(generated by the compress operation). The cluster path of a binary

cluster is the path in 𝑇 between its boundary vertices. Nodes in

an RC tree correspond to clusters, such that a node is the disjoint

union of its children.

The leaf clusters of the RC tree are the vertices and edges of the

original tree, which are nullary and binary clusters respectively.

Note that all non-leaf clusters have exactly one vertex (leaf) cluster

as a child. This vertex is that cluster’s representative vertex. The

recursive clustering is then defined by the following simple rule:

Each rake or compress operation corresponds to a cluster, such

that the operation that deletes vertex 𝑣 from the tree defines a

cluster with representative vertex 𝑣 whose non-leaf subclusters

are all of the clusters that have 𝑣 as a boundary vertex. Clusters

therefore have the useful property that the constituent clusters of
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a parent cluster 𝐶 share a single boundary vertex in common—the

representative of𝐶 , and their remaining boundary vertices become

the boundary vertices of 𝐶 .

In this paper we will be considering rooted trees. In this case the

root of the tree is also the representative of the top level nullary

cluster of the RC-tree, e.g. vertex e in Figure 1. Non-leaf binary

clusters have a binary subcluster whose cluster path is above the

representative vertex in the input tree, which we will refer to as the

top cluster, and a binary subcluster whose cluster path is below the

representative vertex, which we call the bottom cluster. We will also

refer to the binary subcluster of a unary cluster as the top cluster

as its cluster path is also above the representative vertex. In our

pseudocode, we will use the following notation. For a cluster 𝑥 :

𝑥 .𝑣 is the representative vertex, 𝑥 .𝑡 is the top subcluster, 𝑥 .𝑏 is the

bottom subcluster, 𝑥 .𝑈 is a list of unary subclusters, and 𝑥 .𝑝 is the

parent cluster.

Compressed path trees. For a weighted (unrooted) tree 𝑇 and a

set of marked vertices 𝑉 ⊂ 𝑉 (𝑇 ), the compressed path tree is a

weighted tree 𝑇𝑐 on some subset of the vertices of 𝑇 including 𝑉

with the following property: for every pair of vertices (𝑢, 𝑣) ∈ 𝑉 ×𝑉 ,
the weight of the lightest edge on the path from 𝑢 to 𝑣 is the same

in𝑇 and𝑇𝑐 . The compressed path three𝑇𝑐 is defined as the smallest

such tree. Alternatively, the compressed path tree is the tree𝑇 with

all unmarked vertices of degree less than three spliced out, where

each spliced-out path is replaced by an edge whose weight is the

lightest of the weights on the path it replaced. It is not hard to

show that 𝑇𝑐 has size less than 2|𝑉 |. Compressed path trees are

described in [5], where it is shown that given an RC tree for the

tree 𝑇 and a set of 𝑘 marked vertices, the compressed path tree can

be produced in 𝑂 (𝑘 log(1 + 𝑛/𝑘)) work and 𝑂 (log2 𝑛) depth w.h.p.

Gawrychowski et al. [12] define a similar notion which they call

“topologically induced trees”, but their algorithm is sequential and

requires 𝑂 (𝑘 log𝑛) work (time).

Karger’s minimum cut algorithm. Karger’s algorithm for min-

imum cuts [23] is based on the notion of 𝑘-respecting cuts. Karger’s

algorithm is the following two-step process.

(1) Find𝑂 (log𝑛) spanning trees of𝐺 such that w.h.p., theminimum

cut 2-respects at least one of them

(2) Find, for each of the aforementioned spanning trees, the mini-

mum 2-respecting cut in 𝐺

Karger solves the first step using a combination of random sampling

and tree packing. Given a weighted graph 𝐺 , a tree packing of 𝐺 is

a set of weighted spanning trees of 𝐺 such that for each edge in

𝐺 , its total weight across all of the spanning trees is no more than

its weight in 𝐺 . The underlying tree packing algorithms used by

Karger have running time proportional to the size of the minimum

cut, so random sampling is first used to produce a sparsified graph,

or skeleton, where the minimum cut has size Θ(log𝑛) w.h.p. The
sampling process is carefully crafted such that the resulting tree

packing still has the desired property w.h.p.

Given the skeleton graph, Karger gives two algorithms for pro-

ducing tree packings such that sampling Θ(log𝑛) trees from them

guarantees that, w.h.p., the minimum cut 2-respects one of them.

The first approach uses a tree packing algorithm of Gabow [11].

The second is based on the packing algorithm of Plotkin et al. [33],

and is much more amenable to parallelism. It works by performing

𝑂 (log2 𝑛) minimum spanning tree computations. In total, Step 1 of

the algorithm takes 𝑂 (𝑚 + 𝑛 log3 𝑛) time.

For the second step, Karger develops an algorithm to find, given

a graph 𝐺 and a spanning tree 𝑇 , the minimum cut of 𝐺 that 2-

respects𝑇 . The algorithm works by arbitrarily rooting the tree, and

considering two cases: when the two cut edges are on the same

root-to-leaf path, and when they are not. Both cases use a similar

technique; They consider each edge 𝑒 in the tree and try to find

the best matching 𝑒 ′ to minimize the weight of the cut induced

by the edges {𝑒, 𝑒 ′}. This is achieved by using a dynamic tree data

structure to maintain, for each candidate 𝑒 ′, the value that the cut
would have if 𝑒 ′ were selected as the second cutting edge, while

iterating over the possibilities of 𝑒 and updating the dynamic tree.

Karger shows that this step can be implemented sequentially in

𝑂 (𝑚 log
2 𝑛) time, which results in a total runtime of 𝑂 (𝑚 log

3 𝑛)
when applied to the 𝑂 (log𝑛) spanning trees.

3 BATCHED MIXED OPERATIONS ON TREES

The batchedmixed operation problem is to take an off-line sequence

of mixed operations on a data structure, usually a mix of queries and

updates, and process them as a batch. The primary reason for batch

processing is to allow for parallelism on what would otherwise be a

sequential execution of the operations. We use the term operation-

set to refer to the set of operations that can be applied among the

mixed operations. We are interested in operations on trees, and our

results apply to operation-sets that can be implemented on an RC

tree in a particular way, defined as follows.

Definition 3.1. An implementation of an operation-set on trees

is a simple RC implementation if it uses an RC representation of the

trees and satisfies the following conditions.

(1) The implementation maintains a value at every RC cluster that

can be calculated in constant time from the values of the chil-

dren of the cluster,

(2) every query operation is implemented by traversing from a leaf

to the root examining values at the visited clusters and their

children taking contant time per value examined, and using

constant space, and

(3) every update operation involves updating the value of a leaf

using an associative constant-time operation, and then reeval-

uating the values on each cluster on the path from the leaf to

the root.

Note that every operation has an associated leaf (either an edge

or vertex). Also note that setting (i.e., overwriting) a value is an

associative operation (just return the second of the arguments).

For simple RC implementations, all operations take time (work)

proportional to the depth of the RC tree since they only follow a

path to the root taking constant time at each cluster. Although the

simple RC restriction may seem contrived, most operations on trees

studied in previous work [2, 3, 35] can be implemented in this form,

including most path and subtree operations. This is because of a

useful property of RC trees, that all paths and subtrees in the source

tree can be decomposed into clusters that are children of a single

path in the RC tree, and typically operations need just update or

collect a contribution from each such cluster.
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(b) A recursive clustering of the tree produced by tree contraction. Clus-

ters produced in earlier rounds are depicted in a darker color.
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(c) The correspondingRC tree. Unary clusters (from rakes) are shown as filled circles, binary clusters as rectangles,

and the finalize (nullary) cluster at the root with two concentric circles. The leaf clusters are labeled in lowercase,

and the composite clusters are labeled with the uppercase of their representative.

Figure 1: A tree, a clustering, and the corresponding RC tree [1].

Example. As an example, consider the following two operations

on a rooted tree (the first an update, and the second a query):

• addWeight(𝑣,𝑤) : adds weight𝑤 to a vertex 𝑣

• subtreeSum(𝑣) : returns the sum of the weights of all of the

vertices in the subtree rooted at 𝑣

Algorithm 1 The subtreeSum query.

1: procedure subtreeSum(𝑣)

2: 𝑤 ← 0

3: 𝑥 ← 𝑣; 𝑝 ← 𝑥.𝑝

4: while 𝑝 is binary do

5: if (𝑥 = 𝑝.𝑡 ) or (𝑥 = 𝑝.𝑣) then
6: 𝑤 ← 𝑤 + 𝑝.𝑏.𝑤 + 𝑝.𝑣.𝑤 +∑𝑢∈𝑝.𝑈 𝑢.𝑤

7: 𝑥 ← 𝑝 ; 𝑝 ← 𝑥.𝑝

8: return 𝑤 + 𝑝.𝑣.𝑤 +∑𝑢∈𝑝.𝑈 𝑢.𝑤

These operations can use a simple RC implementation by keeping

as the value of each cluster the sum of values of all its children.

This satisfies the first condition since the sums take constant time.

Single-edge clusters in the RC tree start with the initial weight of

the edge, while single-vertex clusters start with zero weight. An

addWeight(𝑣,𝑤) adds weight 𝑤 to the vertex 𝑣 (which is a leaf

in the RC tree) and updates the sums up to the root cluster. This

satisfies the third condition since addition is associative and takes

constant time. The query can be implemented as in Algorithm 1,

where 𝑥 .𝑤 is the weight stored on the cluster 𝑥 . It starts at the leaf

for 𝑣 and goes up the RC tree keeping track of the total weight

underneath 𝑣 . Note that 𝑥 will never be a unary cluster, so if not

the representative or top subcluster of 𝑝 , it is the bottom subcluster

with nothing below it in this cluster. Observe that subtreeSum

only examines values on a path from the start vertex to the root

and the children along that path. Each step takes constant time

and requires constant space, satisfying the second condition. The

operations-set therefore has a simple RC implementation.

3.1 Batched mixed operations algorithm

We are interested in evaluating batches of operations from an

operation-set on trees with a simple RC implementation. In partic-

ular, we prove Theorem 1.2.

Proof sketch of Theorem 1.2. The preprocessing just builds

an RC tree on the source tree, and sets the values for each cluster

based on the initial values on the leaves. This can be implemented

with the Miller-Reif algorithm [29], in the binary forking model [7],

or deterministically [13]. All take linear work and logarithmic depth

(w.h.p for the randomized versions). Our algorithm for each batch

is then implemented as follows:

(1) Timestamp the operations by their order in the sequence.

(2) Collect all operations by their associated leaf, and sort within

each leaf by timestamp. This can be implemented with a single

sort on the leaf identifier and timestamp.

(3) For each leaf use a prefix sum on the update values to calculate

the value of the leaf after each operation, starting from the

initial value on the leaf.
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operation list

sorted input operations. . . . . . . . . . . .

. . .

t 0 t 1 t 5 t 12

t 0 t 1 t 5 t12

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

t 0 t 2 t 3 t 7
t 0 t 4 t 6 t 15

V: 0 V: 2 Q: 0 V: 5

0 +2 Q +3

V: 6 V: 8 V: 10

t t

V: 10 Q: 8Q: 8 V: 11 Q: 10 V: 15 V: 18

V: 1 V: 3 Q: 1 V: 6 V: 5 V: 8 V: 10 Q: 6

t 12 t 15

V: 21

t t

V: 10 Q: 8 Q: 6

p vp bp t

p

Figure 2: Merging the operation lists for a binary cluster consisting of addWeight and subtreeSum operations. Values in the

operation sequence, denoted V : 𝑣 , are computed by aggregating the latest values of the children at the given timestamp. For

example, at 𝑡6 in 𝑝, the algorithm adds 3 from 𝑝.𝑡 at 𝑡2, 10 from 𝑝.𝑏 at 𝑡6, and 2 from 𝑝.𝑣 at 𝑡1. Queries, denoted Q : 𝑞, are updated

at each level by using the latest values of the children. For example, to update the query at 𝑡3, it takes the current value of 1

from 𝑝.𝑡 at 𝑡3, then adds the weight of 5 from 𝑝.𝑏 at 𝑡0, and the weight of 2 from 𝑝.𝑣 at 𝑡1, as per Algorithm 1.

(4) Initialize each query using the value it received from the prefix

sum. We now have a list of operations on each leaf sorted by

timestamp. For each update we have its value, and for each

query we also have its partial evaluation based on the value. We

prepend the initial value to the list, and call this the operation

list. An operation list is non-trivial if it has more than just the

initial value.

(5) For each level of the RC tree starting one above the deepest,

and in parallel for every cluster on the level for which at least

one child has a non-trivial operation list:

(a) Merge the operation lists from each child into a single list

sorted by timestamp.

(b) Calculate for each element in the merged operations list,

the latest value of each child at or before the timestamp.

This can be implemented by prefix sums.

(c) For each list element, calculate the value at that timestamp

from the child values collected in the previous step.

(d) For queries, use the values and/or child values to update

the query.

This algorithm needs to have children with non-trivial operation

lists identify parents that need to be processed. This can be imple-

mented by keeping a list of all the clusters at a level with non-trivial

operation lists left-to-right in level order. When moving up a level,

clusters that share the same parent can be combined. An illustration

of the merging process is depicted in Figure 2 using the operations

from Algorithm 1.

We first consider why the algorithm is correct. We assume by

structural induction (over subtrees) that the operation lists contain

the correct values for each timestamped operation in the list. This is

true at the leaves since we apply a prefix sum across the associative

operation to calculate the value at each update. For internal clusters,

assuming the child clusters have correct operation lists (values for

each timestamp valid until the next timestamp, and partial result of

queries), we properly determine the operation lists for the cluster.

In particular for all timestamps that appear in children we promote

them to the parent, and for each we calculate the value based on

the current value, by timestamp, for each child.

We now consider the costs. The cost of the batch before process-

ing the levels is dominated by the sort which takes𝑂 (𝑘 log𝑘) work

and𝑂 (log𝑘) depth. The cost at each level is then dominated by the

merging and prefix sums which take𝑂 (𝑘) work and𝑂 (log𝑘) depth
accumulated across all clusters that have a child with a non-trivial

operation list. If the RC tree has depth𝑂 (log𝑛) then across all levels
the cost is bounded by 𝑂 (𝑘 log𝑛) work and 𝑂 (log𝑛 log𝑘) depth.
The total work and depth is therefore as stated. The space for each

batch of size 𝑘 is bounded by the size of the RC tree which is 𝑂 (𝑛)
and the total space of the operation lists at any two adjacent levels,

which is 𝑂 (𝑘). □

3.2 Path updates and path/subtree queries

We now consider implementing mixed operations consisting of

updating paths, and querying both paths and subtrees. We will use

these in Sections 3.3 and 5. In particular we wish to maintain, given

a weighted rooted tree 𝑇 = (𝑉 , 𝐸), a data structure that supports
the following operations.

• AddPath(𝑢, 𝑣,𝑤 ): For 𝑢, 𝑣 ∈ 𝑉 adds𝑤 to the weight of all edges

on the 𝑢 to 𝑣 path.

• QuerySubtree(𝑣): Returns the lightest weight of an edge in the

subtree rooted at 𝑣 ∈ 𝑉 ,
• QueryPath(𝑢, 𝑣): For 𝑢, 𝑣 ∈ 𝑉 , returns the lightest weight of an
edge on the 𝑢 to 𝑣 path.

• QueryEdge(𝑒): Returns𝑤 (𝑒)
To implement these, we first implement the simpler operations

AddPath’(𝑣,𝑤 ), which adds weight𝑤 to the path from 𝑣 to the root;

andQueryPath’(𝑢, 𝑣), which requires that 𝑣 be the representative

vertex of an ancestor of 𝑢 in the RC tree. The more general forms

can be implemented in terms of these with a constant number of

calls given the lowest common ancestor (LCA) in the original tree

for AddPath and in the RC tree for QueryPath.

Lemma 3.2. The AddPath’, QuerySubtree, QueryPath’, and

QueryEdge operations on bounded degree trees can be supported

with a simple RC implementation.

Proof sketch. Our simple RC implementation for combining

values, AddPath’, and QuerySubtree is given in Algorithm 2.

The other two operations can be found in the full version of our

paper [4]. The value of each vertex (leaf) in the cluster is the total

weight added to that vertex by AddPath’. The value for each unary
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Figure 3: When a binary cluster joins its children, all ad-

dPaths’ that originated in the vertex, bottom, or unary sub-

clusters will affect all of the edges in the top cluster path.

Here, 𝑤 ′ = 𝑤𝑣 +𝑤𝑏 +𝑤𝑢 = 6 weight is added to edges on the

top cluster path due to addPath operations from below.

Algorithm 2 AddPath’ and QuerySubtree.

1: procedure 𝑓unary(𝑤𝑣, (𝑚𝑡 , 𝑙𝑡 , 𝑤𝑡 ),𝑈 )

2: 𝑤′ ← 𝑤𝑣 +
∑
𝑢∈𝑈 𝑢.𝑤

3: 𝑚𝑢 ← min𝑢∈𝑈 𝑢.𝑚

4: return (min(𝑚𝑡 , 𝑙𝑡 + 𝑤′,𝑚𝑢 ), 𝑤𝑡 + 𝑤′)
5: procedure 𝑓binary(𝑤𝑣, (𝑚𝑡 , 𝑙𝑡 , 𝑤𝑡 ), (𝑚𝑏 , 𝑙𝑏 , 𝑤𝑏 ),𝑈 )

6: 𝑤′ ← 𝑤𝑣 + 𝑤𝑏 +
∑
𝑢∈𝑈 𝑢.𝑤

7: 𝑚𝑢 ← min𝑢∈𝑈 𝑢.𝑚

8: return (min(𝑚𝑡 ,𝑚𝑏 ,𝑚𝑢 ),min(𝑙𝑡 + 𝑤′, 𝑙𝑏 ), 𝑤𝑡 + 𝑤′)
9: procedure AddPath’(𝑣, 𝑤)

10: 𝑣.value← 𝑣.value + 𝑤

11: Reevaluate the 𝑓 ( ·) on path to root.

12: procedureQuerySubtree(𝑣)

13: 𝑤 ←∞; 𝑙 ←∞
14: 𝑥 ← 𝑣; 𝑝 ← 𝑥.𝑝

15: while binary 𝑝 do

16: if (𝑥 = 𝑝.𝑡 ) or (𝑥 = 𝑝.𝑣) then
17: 𝑤′ ← 𝑝.𝑏.𝑤 + 𝑝.𝑣.𝑤 +∑𝑢∈𝑝.𝑈 𝑢.𝑤

18: 𝑙 ← min(𝑙 + 𝑤′, 𝑝.𝑏.𝑙)
19: 𝑚 ← min(𝑚,𝑝.𝑏.𝑚,min𝑢∈𝑝.𝑈 𝑢.𝑚)
20: 𝑥 ← 𝑝 ; 𝑝 ← 𝑥.𝑝

21: 𝑤′ ← 𝑝.𝑣.𝑤 +∑𝑢∈𝑝.𝑈 𝑢.𝑤

22: return min(𝑙 + 𝑤′,𝑚,min𝑢∈𝑝.𝑈 𝑢.𝑚)

cluster consists of:𝑚, the minimum weight edge in the cluster; and

𝑤 , the total weight of AddPaths’ originating in the cluster. For each

binary cluster we separate the minimum weights on and off the

cluster path. In particular, the value of each binary cluster consists

of: 𝑚, the minimum weight edge not on the cluster path; 𝑙 , the

minimum edge on the cluster path due to all AddPath’ originating

in the cluster; and𝑤 , the total weight of AddPaths’ originating in

the cluster. The 𝑓
binary

and 𝑓unary calculate the values for unary and

binary clusters from the values of their children. We initialize each

vertex with zero, and each edge 𝑒 with (𝑚 = 0, 𝑙 = 𝑤 (𝑒),𝑤 = 0).
It is a simple RC implementation since (1) the 𝑓 (·) can be com-

puted in constant time, (2) the queries just traverse from a leaf on a

path to the root (possibly ending early) only examining child val-

ues, taking constant time per level and constant space, and (3) the

update just sets a leaf using an associative addition, and reevaluates

the values to the root.

We argue the implementation is correct. Firstly we argue by

structural induction on the RC tree that the values as described

in the previous paragraph are maintained correctly by 𝑓
binary

and

𝑓unary. In particular assuming the children are correct we show

the parent is correct. The values are correct for leaves since we

increment the value on vertices with AddPath’, and initialize the

edges appropriately. To calculate the minimum edge weight of a

unary cluster 𝑓unary takes the minimum of three quantities: the

minimum off-path edge of the child binary cluster, the overall min-

imum edge of any of the child unary clusters, and, importantly,

the minimum edge on the cluster path of the child binary cluster

plus the AddPath’ weight contributed by the unary clusters and

the representative vertex (i.e., min(𝑚𝑡 , 𝑙𝑡 +𝑤 ′,𝑚𝑢 )). This is correct
since all paths from those clusters to the root go through the clus-

ter path, so it needs to be adjusted. The off-path edges and child

unary clusters do not need to be adjusted since no path from the

representative vertex goes through them. The minimum weight is

therefore correct. The total AddPath’ weight is correct since it just

adds the contributions.

For binary clusters we need to separately consider the minimum

off- and on-path edges. For the off-path edges the parts that are off

the cluster path are the off-path edges from the two binary children,

plus all edges from the unary children (i.e., min(𝑚𝑡 ,𝑚𝑏 ,𝑚𝑢 )). For
the on-path edges both the top and bottom binary clusters con-

tribute their on-path edges. The on-path edges from the bottom

binary cluster do not need to be adjusted because no vertices in the

cluster are below them. The on-path edges from the top binary clus-

ter need to be adjusted by the AddPath’ weights from all vertices

in the bottom cluster, all vertices in unary child clusters, and the

representative vertex since they are all below the path (this sum is

given by𝑤 ′). See Figure 3. The minimum of the resulted adjusted

top edge and bottom edge is then returned, which is indeed the

minimum edge on the path accounting for AddPaths’ on vertices

in the cluster.

QuerySubtree(𝑣) accumulates the appropriateminimumweights

within a subtree as it goes up the RC tree. It starts at the node for

which 𝑣 is its representative vertex. As with the calculation of val-

ues it needs to separate the on-path and off-path minimum weight.

Whenever coming as the upper binary cluster to the parent,Query-

Subtree needs to add all the contributing AddPath’ weights from

vertices below it in the parent cluster (the representative vertex,

the lower binary cluster and the unary clusters, see Figure 3) to

the current minimum on-path weight. A minimum is then taken

with the lower on-path minimum edge to calculate the new mini-

mum on-path edge weight (Line 18). The off-path minimum is the

minimum of the current off-path minimum, the minimum off-path

edge of the bottom cluster and the minimums of the unary clusters
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(Line 19). Once we reach a unary cluster we are done since for a

unary cluster all subtrees of vertices within the cluster are fully

contained within the cluster. The final line therefore just determines

the overal minimum for the subtree rooted at 𝑣 by considering the

on-path edges adjusted by AddPath’ contributions, the off-path

edges, and all edges in child unary clusters. □

Corollary 3.3. Given a bounded-degree tree of size 𝑛, any se-

quence of 𝑘 AddPath, QuerySubtree, QueryPath, and QueryEdge

operations can be evaluated in𝑂 (𝑛 +𝑘 log(𝑛𝑘)) work,𝑂 (log𝑛 log𝑘)
depth and 𝑂 (𝑛 + 𝑘) space.

Proof. The LCAs required to convert AddPath to AddPath’

and QueryPath to QueryPath’ can be computed in 𝑂 (𝑛 + 𝑚)
work, 𝑂 (log𝑛) depth, and 𝑂 (𝑛) space [34]. The rest follows from
Theorem 1.2 and Lemma 3.2. □

3.3 Improving previous results

Using our batched mixed operations on trees algorithm, we can

improve previous results on finding 2-respecting cuts. In particular

we can shave off a log factor in the work of Geissmann and Giani-

nazzi’s parallel algorithm [14], and we can parallelise Lovett and

Sandlund’s sequential algorithm [27].

Geissmann and Gianinazzi find 2-respecting cuts by first finding

an 𝑂 (𝑚) sequence of mixed AddPath and QueryPath operations

for each of𝑂 (log𝑛) trees. They show how to find each sequence in

𝑂 (𝑚 log𝑛) work and𝑂 (log𝑛) depth On each set they then use their
own data structure to evaluate the sequence in 𝑂 (𝑚 log

2 𝑛) work
and𝑂 (log2 𝑛) depth, for a total of𝑂 (𝑚 log

3 𝑛) work and𝑂 (log2 𝑛)
depth across the sets. Replacing their data structure with the result

of Corollary 3.3 improves their results to 𝑂 (𝑚 log
2 𝑛) work.

Lovett and Sandlund significantly simplify Karger’s algorithm

by first finding a heavy-light decomposition—i.e., a vertex disjoint

set of paths in a tree such that every path in the tree is covered by

at most 𝑂 (log𝑛) of them. It then reduces finding the 2-respecting

cuts to a sequence of AddPath and QueryPath operations on

the decomposed paths induced by each non-tree edge, for a to-

tal of 𝑂 (𝑚 log𝑛) operations. Using Geissmann and Gianinazzi’s

𝑂 (𝑛 log𝑛) work 𝑂 (log2 𝑛) algorithm for finding a heavy-light de-

composition [14, Lemma 7], and the result of Corollary 3.3 again

gives an 𝑂 (𝑚 log
2 𝑛) work, 𝑂 (log2 𝑛) depth algorithm.

4 PRODUCING THE TREE PACKING

We follow the general approach used by Karger to produce a set

of 𝑂 (log𝑛) spanning trees such that w.h.p., the minimum cut 2

respects at least one of them. We have to make several improve-

ments to achieve our desired work and depth bounds. At a high

level, Karger’s algorithm works as follows.

(1) Compute an 𝑂 (1)-approximate minimum cut 𝑐

(2) Sample the edges of 𝐺 with probability Θ(log𝑛/𝑐)
(3) Use the tree packing algorithm of Plotkin [33] to generate a

packing of 𝑂 (log𝑛) trees
In this section, we provide a high-level overview of the tools re-

quired to parallelize this algorithm. The details are deferred to the

full paper [4].

4.1 A parallel version

Step 2 is trivial to parallelize, as the sampling can be done indepen-

dently in parallel. The sampling procedure produces an unweighted

multigraph with𝑂 (𝑚 log𝑛) edges, and takes𝑂 (𝑚 log
2 𝑛) work and

𝑂 (log𝑛) depth.
In Step 3, Plotkin’s algorithm consists of 𝑂 (log2 𝑛) sequential

minimum spanning tree (MST) computations on a weighting of the

sampled graph, which has 𝑂 (𝑚 log𝑛) edges. Naively this would

require𝑂 (𝑚 log
3 𝑛) work, but we can use a trick of Gawrychowski

et al. [12]. Since the sampled graph is a multigraph sampled from

𝑚 edges, the MST algorithm only cares about the lightest of each

parallel edge, which can be maintained in 𝑂 (1) time since the

weights change by a fixed amount each iteration. Using Cole, Klein,

and Tarjan’s linear-work MST algorithm [9] results in a total of

𝑂 (𝑚 log
2 𝑛) work in 𝑂 (log3 𝑛) depth w.h.p.

The only nontrivial part of parallelizing the tree production is

actually Step 1, computing an 𝑂 (1)-approximate minimum cut. In

the sequential setting, Matula’s algorithm [28] can be used, which

runs in linear time on unweighted graphs, and on weighted graphs

in𝑂 (𝑚 log
2 𝑛) time. To the best of our knowledge, the only known

parallelization of Matula’s algorithm is due to Karger and Mot-

wani [24], but it takes 𝑂 (𝑚2/𝑛) work. We show how to compute

an approximate minimum cut in 𝑂 (𝑚 log
2 𝑛) work and 𝑂 (log3 𝑛)

depth, which allows us to prove the following.

Theorem 4.1. Given a weighted graph, in 𝑂 (𝑚 log
2 𝑛) work and

𝑂 (log3 𝑛) depth, a set of 𝑂 (log𝑛) spanning trees can be produced

such that the minimum cut 2-respects at least one of them w.h.p.

4.2 Parallel 𝑂 (1)-approximate minimum cut

We achieve our bounds by improving Karger’s algorithms and

speeding up several of the components. We use the following com-

bination of ideas, new and old.

(1) We extend a 𝑘-approximation algorithm of Karger [21] to work

in parallel, allowing us to produce an 𝑂 (log𝑛)-approximate

minimum cut in low work and depth.

(2) We use a faster sampling technique for producing Karger’s

skeletons for weighted graphs. This is done by transforming

the graph into a graph that maintains an approximate minimum

cut but has edge weights each bounded by𝑂 (𝑚 log𝑛), and then
using binomial random variables to sample all of the multiedges

of a particular edge at the same time, instead of separately.

(3) We show that the parallel sparse 𝑘-certificate algorithm of

Cheriyan, Kao, and Thurimella [8] for unweighted graphs can

be modified to run on weighted graphs

(4) We show that Karger and Motwani’s parallelization of Matula’s

algorithm can be generalized to weighted graphs

(5) We use the log𝑛-approximate minimum cut to allow the algo-

rithm to make just 𝑂 (log log𝑛) guesses of the minimum cut

such that at least one of them is an 𝑂 (1) approximation.

Parallel 𝑘-approximate minimum cut. Karger describes an

𝑂 (𝑚𝑛2/𝑘 log𝑛) time sequential algorithm for finding a cut in a

graph within a factor of 𝑘 of the optimal cut [21]. It works by ran-

domly selecting edges to contract with probability proportional to

their weight until a single vertex remains, and keeping track of the
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component with smallest incident weight (not including internal

edges) during the contraction.

His analysis shows that in a weighted graph with minimum cut

𝑐 , with probability 𝑛−2/𝑘 , the component with minimum incident

weight encountered during a single trial of the contraction algo-

rithm implies a cut of weight at most 𝑘𝑐 , and therefore, running

𝑂 (𝑛2/𝑘 log𝑛) trials yields a cut of size at most 𝑘𝑐 w.h.p.

Although Karger’s contraction algorithm is easy to parallelize

using a parallel minimum spanning tree algorithm, keeping track

of the incident component weights is trickier. To overcome this

problem, we show that we can use our batched mixed operation

framework from Section 3 to simulate the sequential contraction

process efficiently. Specifically, we show that that the following

operations have a simple RC implementation.

• SubtractWeight(𝑣 ,𝑤 ): Subtract weight𝑤 from vertex 𝑣

• JoinEdge(𝑒): Mark the edge 𝑒 as “joined”

• QueryWeight(𝑣): Return the weight of the connected compo-

nent containing the vertex 𝑣 , where the components are induced

by the joined edges

With this tool, it is straightforward to simulate the contraction

process, then we obtain the following lemma.

Lemma 4.2. For a weighted graph, a cut within a factor of 𝑘 of

the minimum cut can be found w.h.p. in 𝑂 (𝑚𝑛2/𝑘 log2 𝑛) work and
𝑂 (log2 𝑛) depth.

Setting𝑘 = log𝑛 therefore gives a log𝑛 approximation in𝑂 (𝑚 log
2 𝑛)

work and 𝑂 (log2 𝑛) depth.
Transformation to bounded edge weights. For our algorithm

to be efficient, we require that the input graph has small integer

weights. Karger [20] gives a transformation that ensures all edge

weights of a graph are bounded by 𝑂 (𝑛5) without affecting the

minimum cut by more than a a constant factor. For our algorithm

𝑂 (𝑛5) would be too big, so we design a different transformation

that guarantees all edge weights are bounded by 𝑂 (𝑚 log𝑛), and
only affects the weight of the minimum cut by a constant factor.

Lemma 4.3. There exists a transformation that, given an integer-

weighted graph 𝐺 , produces an integer-weighted graph 𝐺 ′ no larger
than𝐺 , such that𝐺 ′ has edge weights bounded by𝑂 (𝑚 log𝑛), and the
minimum cut of 𝐺 ′ corresponds to an 𝑂 (1)-approximate minimum

cut in 𝐺 .

Parallel weighted sampling. We combine recent results on sam-

pling binomial random variables [10] and parallel alias table con-

struction [19] to perform samples from 𝐵(𝑛′, 1/2) in𝑂 (log𝑛′) time

w.h.p., and from 𝐵(𝑛′, 𝑝) in 𝑂 (log2 𝑛′) time w.h.p., for any 𝑛′ ≤ 𝑁
after 𝑂 (𝑁 1/2+𝜀 ) work preprocessing and 𝑂 (log𝑁 ) depth. Since
we preprocess the graph to have weights at most 𝑂 (𝑚 log𝑛), this
requires no more than 𝑂 (𝑚) work in preprocessing.

This does not immediately give the desired bounds, since it takes

𝑂 (log2 𝑛) work per edge when sampling from 𝐵(𝑛, 𝑝), and our algo-
rithm samples the graph𝑂 (log log𝑛) times. However, only the first

sample of the graph needs to be this expensive. In Karger’s algo-

rithm, and by extension, our algorithm, subsequent samples always

halve 𝑝 in each iteration, and hence we can use subsampling and

only require random variables from 𝐵(𝑛, 1/2). This means that we

can perform up to 𝑂 (log𝑛) rounds of subsampling in 𝑂 (𝑚 log
2 𝑛)

total work, instead of 𝑂 (𝑚 log
3 𝑛) work.

Sparse certificates. A sparse 𝑘-connectivity certificate of a graph

𝐺 = (𝑉 , 𝐸) is a graph 𝐺 ′ = (𝑉 , 𝐸 ′ ⊂ 𝐸) with at most 𝑂 (𝑘𝑛) edges,
such that every cut in𝐺 of weight at most 𝑘 has the same weight in

𝐺 ′. We show that the sparse certificate algorithm of Cheriyan, Kao,

and Thurimella [8] for unweighted graphs can be easily extended

to weighted graphs, with the following result.

Lemma 4.4. A sparse 𝑘-connectivity certificate for a weighted,

undirected graph can be found in 𝑂 (𝑘𝑚) work and 𝑂 (𝑘 log𝑛) depth.

Parallelizing Matula’s algorithm. Matula [28] gave a linear

time sequential algorithm for (2+𝜀)-approximate edge connectivity

(unweighted minimum cut). It is easy to extend to weighted graphs

so that it runs in𝑂 (𝑚 log𝑛 log𝑊 ) time, where𝑊 is the total weight

of the graph. Using standard transformations to obtain polynomially

bounded edge weights, this gives an𝑂 (𝑚 log
2 𝑛) algorithm. Karger

and Motwani [24] gave a parallel version of Matula’s unweighted

algorithm that runs in𝑂 (𝑚2/𝑛) work. A slight modification to this

algorithm makes it work on weighted graphs in 𝑂 (𝑑𝑚 log(𝑊 /𝑚))
work and𝑂 (𝑑 log𝑛 log𝑊 ) depth, where𝑑 is theminimumweighted

degree of the graph.

Lemma 4.5. Given a weighted graph with minimum weighted-

degree 𝑑 and total weight𝑊 , an𝑂 (1)-approximate minimum cut can

be found in 𝑂 (𝑑𝑚 log(𝑊 /𝑚)) work and 𝑂 (𝑑 log𝑛 log𝑊 ) depth.

Parallel𝑂 (1)-approximate minimum cut. The final ingredient
needed to produce the parallel minimum cut approximation is a

trick due to Karger. Recall that to produce the skeleton graph, the

sampling probability must be inversely proportional to the weight

of the minimum cut, which paradoxically is what we are trying to

compute. This issue is solve by using doubling. The algorithmmakes

successively larger guesses of the minimum cut and computes the

resulting approximation. It can then use Karger’s sampling the-

orem (Lemma 6.3.2 of [20]) to verify whether the guess was too

high. To minimize the work, we use Lemma 4.2 to first produce a

𝑂 (log𝑛)-approximation to the minimum cut, which allows us to

make just𝑂 (log log𝑛) guesses such that one of them will be correct

to within a factor two.

Our algorithm proceeds by making these𝑂 (log log𝑛) guesses in
parallel. For each, we sample a corresponding skeleton graph and

compute aΘ(log𝑛) certificate, since, by the sampling theorem, until

we have made the correct guess, the minimum cut in the skeleton

will have weight 𝑂 (log𝑛) w.h.p. This then guarantees that we can

run our version of parallel Matula’s algorithm in𝑂 (𝑛 log𝑛 log log𝑛)
work, since, after producing the certificate, the total weight of the

graph is at most 𝑂 (𝑛 log𝑛), and the minimum weighted degree is

no more than 𝑂 (log𝑛). Taking every ingredient together allows us

to conclude the following lemma.

Lemma 4.6. Given a weighted, undirected graph, the weight of an

𝑂 (1)-approximateminimum cut can be computed w.h.p. in𝑂 (𝑚 log
2 𝑛)

work and 𝑂 (log3 𝑛) depth

5 FINDING MINIMUM 2-RESPECTING CUTS

We are given a connected, weighted, undirected graph 𝐺 = (𝑉 , 𝐸)
and a spanning tree 𝑇 . In this section, we will give an algorithm
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that finds the minimum 2-respecting cut of 𝐺 with respect to 𝑇 in

𝑂 (𝑚 log𝑛) work and 𝑂 (log3 𝑛) depth.
Our algorithm, like those that came before it, finds the minimum

2-respecting cut by considering two cases. We assume that the tree

𝑇 is rooted arbitrarily. In the first case, we assume that the two tree

edges of the cut occur along the same root-to-leaf path, i.e. one is a

descendant of the other. This is called the descendant edges case. In

the second case, we assume that the two edges do not occur along

the same root-to-leaf path. This is the independent edges case.

Since we are going to use RC trees, we require that 𝐺 have

bounded degree. Note that any arbitrary degree graph can easily be

ternarized by replacing high-degree vertices with cycles of infinite

weight edges, resulting in a graph of maximum degree three with

the same minimum cut, and only a constant-factor larger size in

terms of edges, which our bounds depend on.

5.1 Descendant edges

We present our minimum 2-respecting cut algorithm for the de-

scendant edges case. Let 𝑇 be a spanning tree of a connected graph

𝐺 = (𝑉 , 𝐸) of degree at most three, and root𝑇 at an arbitrary vertex

of degree at most two. The rooted tree is therefore a binary tree.

We use the following fact. For any tree edge 𝑒 ∈ 𝑇 , let 𝐹𝑒 denote

the set of edges (𝑢, 𝑣) ∈ 𝐸 (tree and non-tree) such that the 𝑢 to 𝑣

path in 𝑇 contains the edge 𝑒 . Then the weight of the cut induced

by a pair of edges {𝑒, 𝑒 ′} in 𝑇 is given by

𝑤 (𝐹𝑒Δ𝐹𝑒′) = 𝑤 (𝐹𝑒 ) +𝑤 (𝐹𝑒′) − 2𝑤 (𝐹𝑒 ∩ 𝐹𝑒′),

where Δ denotes the symmetric difference between the two sets.

For each tree edge 𝑒 , our algorithm seeks the tree edge 𝑒 ′ that
minimizes𝑤 (𝐹𝑒Δ𝐹𝑒′), which is equivalent to minimizing

𝑤 (𝐹𝑒′) − 2𝑤 (𝐹𝑒 ∩ 𝐹𝑒′).

To do so, it traverses𝑇 from the root while maintaining weights on

a tree data structure that satisfies the following invariant:

Invariant 1 (Current subtree invariant). When visiting 𝑒 =

(𝑢, 𝑣), for every edge 𝑒 ′ ∈ Subtree(𝑣), the weight of 𝑒 ′ in the dynamic

tree is𝑤 (𝐹𝑒′) − 2𝑤 (𝐹𝑒 ∩ 𝐹𝑒′)

The initial weight of each edge 𝑒 is therefore𝑤 (𝐹𝑒 ). Maintaining this

invariant as the algorithm traverses the tree can then be achieved

with the following observation. When the traversal descends from

an edge 𝑝 = (𝑤,𝑢) to a neighboring child edge 𝑒 = (𝑢, 𝑣), the
following hold for all 𝑒 ′ ∈ Subtree(𝑣):
(1) (𝐹𝑒 ∩ 𝐹𝑒′) ⊇ (𝐹𝑝 ∩ 𝐹𝑒′), since any path that goes through 𝑝 and

𝑒 ′ must pass through 𝑒 .

(2) (𝐹𝑒 ∩ 𝐹𝑒′) \ (𝐹𝑝 ∩ 𝐹𝑒′) are the edges (𝑥,𝑦) ∈ 𝐹𝑒′ such that 𝑒 is a

top edge of the path 𝑥 − 𝑦 in 𝑇 (i.e., 𝑒 is on the path from 𝑥 to 𝑦

in 𝑇 , but the parent edge of 𝑒 is not).

Therefore, to maintain the current subtree invariant, when the al-

gorithm visits the edge 𝑒 , it need only subtract twice the weight

of all 𝑥 − 𝑦 paths that contain 𝑒 as a top edge. This can be done

efficiently by precomputing the sets of top edges. There are at most

two top edges for each path 𝑥 − 𝑦, and they can be found from

the LCA of 𝑥 and 𝑦 in 𝑇 . We need not consider tree edges since

they will never appear in 𝐹𝑒′ . By maintaining the aforementioned

invariant, the solution follows by taking the minimum value of

𝑤 (𝐹𝑒 ) +QuerySubtree(𝑣) for all edges 𝑒 = (𝑢, 𝑣) during the tra-

versal. As described, this algorithm is entirely sequential, but it

can be parallelized using our batched mixed operations on trees

algorithm (Corollary 3.3).

The operation sequence can be generated as follows. First, the

weights 𝑤 (𝐹𝑒 ) for each edge can be computed using the batched

mixed operations algorithm (Corollary 3.3) where each edge (𝑢, 𝑣)
of weight𝑤 creates an AddPath(𝑢, 𝑣,𝑤 ) operation, followed by a

QueryEdge(𝑒) for every edge 𝑒 ∈ 𝑇 . This takes 𝑂 (𝑚 log𝑛) work
and 𝑂 (log2 𝑛) depth. The LCAs required to compute the sets of

top edges can be computed using the parallel LCA algorithm of

Schieber and Vishkin [34] in𝑂 (𝑚) work and𝑂 (log𝑛) depth in total.
By computing an Euler tour of the tree 𝑇 (an ordered sequence of

visited edges) beginning at the root, the order in which to perform

the tree operations can be deduced in𝑂 (𝑛) work and𝑂 (log𝑛) depth.
Each edge in the Euler tour generates an AddPath operation for

each of its top edges, followed by aQuerySubtree operation. Note

that each edge is visited twice during the Euler tour. The second

visit corresponds to negating the AddPath operations from the

first visit. The solution is then the minimum result of all of the

QuerySubtree operations. Since there are a constant number of

top edges per path, and𝑂 (𝑚) paths in total, the operation sequence

has length 𝑂 (𝑚). Using Corollary 3.3, we arrive at the following.

Theorem 5.1. Given a weighted, undirected graph𝐺 and a rooted

spanning tree 𝑇 , the minimum 2-respecting cut of 𝐺 with respect to

𝑇 such that one of the cut edges is a descendant of the other can be

computed in in 𝑂 (𝑚 log𝑛) work and 𝑂 (log2 𝑛) depth w.h.p.

5.2 Independent edges

The independent edge case is where the two cutting edges do not fall

on the same root-to-leaf path. To solve the independent edges prob-

lem, we use the framework of Gawrychowski et al. [12], which is to

decompose the problem into a set of subproblems, which they call

bipartite problems. The key challenge in parallelizing the solution

to the bipartite problem is dealing with the fact that the resulting

trees might not be balanced. The algorithm of Gawrychowski et al.

relies on performing a biased divide-and-conquer search guided by

a heavy-light decomposition [18], and then propagating results up

the trees bottom up. Since the trees may be unbalanced, this can not

be easily parallelized. Our solution is to use the recursive clustering

of RC trees to guide a divide and conquer search in which we can

maintain all of the needed information on the clusters.

Definition 5.2 (The bipartite problem). Given twoweighted rooted

trees 𝑇1 and 𝑇2 and a set of weighted edges that cross from one to

the other, 𝐿 = {(𝑢, 𝑣) : 𝑢 ∈ 𝑇1, 𝑣 ∈ 𝑇2}, the bipartite problem is to

select 𝑒1 ∈ 𝑇1 and 𝑒2 ∈ 𝑇2 with the goal of minimizing the sum of

the weight of 𝑒1 and 𝑒2 plus the weights of all edges (𝑣1, 𝑣2) ∈ 𝐿
such that 𝑣1 is in the subtree rooted at the bottom endpoint of 𝑒1
and 𝑣2 is in the subtree rooted at the bottom endpoint of 𝑒2. The

size of a bipartite problem is the size of 𝐿 plus the size of 𝑇1 and 𝑇2.

Gawrychowski et al. observe that if 𝑇1 and 𝑇2 are edge-disjoint

subtrees of𝑇 , then, assigning weights of −2𝑤 (𝐹𝑒 ) to each edge in𝑇 ,

the solution to the bipartite problem is the minimum 2-respecting

cut such that 𝑒1 ∈ 𝑇1 and 𝑒2 ∈ 𝑇2. The independent edges problem
is then solved by reducing it to several instances of the bipartite
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Figure 4: The bipartite problems are generated by compressing the input tree with respect to the endpoints of the edges whose

endpoints share an LCA, then splitting the tree into the left and right halves.

problem, and taking the minimum answer among all of them. We

will show how to generate the bipartite problems efficiently, and

how to solve them efficiently, both in parallel.

5.2.1 Generating the bipartite problems. The following parallel

algorithm generates 𝑂 (𝑛) instances of the bipartite problem with

total size at most 𝑂 (𝑚). For each edge 𝑒 in 𝑇 , the algorithm first

assigns them a weight equal to −2𝑤 (𝐹𝑒 ). Now consider all non-tree

edges, i.e. all edges 𝑒 ∈ 𝐸, 𝑒 ∉ 𝑇 , and group them by the LCA of

their endpoints in𝑇 . This forms a partition of the𝑂 (𝑚) edges of𝐺 ,
each group identified by a vertex. Each vertex in 𝑇 conversely has

an associated (possibly empty) list of non-tree edges.

For each vertex 𝑣 in 𝑇 with a non-empty associated list of edges,

create a compressed path tree of 𝑇 with respect to the endpoints

of the associated edges and 𝑣 . Finally, for each such compressed

path tree, root it at 𝑣 (the common LCA of the edge endpoints). The

bipartite problems are now generated as follows. For each vertex

𝑣 with a non-empty list of non-tree edges, and the corresponding

compressed path tree 𝑇𝑣 , consider the children 𝑥,𝑦 of 𝑣 in 𝑇𝑣 . The

bipartite problem consists of𝑇1, which contains the edge (𝑣, 𝑥) and
the subtree of 𝑇𝑣 rooted at 𝑥 , and likewise, 𝑇2, which contains the

edge (𝑣,𝑦) and the subtree of 𝑇𝑣 rooted at 𝑦, and 𝐿, the associated

list of non-tree edges. See Figure 4 for an illustration.

Lemma 5.3. Given a tree and a set of non-tree edges, the corre-

sponding bipartite problems can be generated in𝑂 (𝑚 log𝑛) work and
𝑂 (log2 𝑛) depth w.h.p.

Proof. The edge weight values can be computed in the same

way as before using our batched mixed operations on trees algo-

rithm in 𝑂 (𝑚 log𝑛) work and 𝑂 (log2 𝑛) depth. LCAs can be com-

puted using the parallel LCA algorithm of Schieber and Vishkin [34]

in𝑂 (𝑚) work and𝑂 (log𝑛) depth. Grouping the edges by LCA can

be achieved using a parallel sorting algorithm in 𝑂 (𝑚 log𝑛) work
and𝑂 (log𝑛) depth. Together, these steps take𝑂 (𝑚 log𝑛) work and
𝑂 (log2 𝑛) depth. For each group, computing the compressed path

tree takes 𝑂 (𝑚𝑖 log(1 + 𝑛/𝑚𝑖 )) ≤ 𝑂 (𝑚𝑖 log𝑛) work and 𝑂 (log2 𝑛)
depth w.h.p., where𝑚𝑖 is the number of edges in the group. Perform-

ing all compressed path tree computations in parallel and observing

that the edge lists of each vertex are a disjoint partition of the edges

of 𝐺 , this takes at most 𝑂 (𝑚 log𝑛) work and 𝑂 (log2 𝑛) depth in

total w.h.p. □

It remains only for us to show that the bipartite problems can be

efficiently solved in parallel.

5.2.2 Solving the bipartite problems. Our solution is a recursive

algorithm that utilizes the recursive cluster structure of RC trees.

Recall that RC trees consist of unary and binary clusters (and the

nullary cluster at the root, but this is not needed by our algorithm).

Since the bipartite problems are constructed such that trees 𝑇1 and

𝑇2 always have a root with a single child, the root cluster of their

RC trees consists of exactly one unary cluster.

High-level idea. Recall that the goal is to select an edge 𝑒1 ∈ 𝑇1
and an edge 𝑒2 ∈ 𝑇2 that minimizes their costs plus the cost of

all edges (𝑢, 𝑣) ∈ 𝐿 such that 𝑢 is a descendant of 𝑒1 and 𝑣 is a

descendant of 𝑒2. Our algorithm first constructs an RC tree of 𝑇1,

and weights the edges in 𝑇1 and 𝑇2 by their cost. At a high level,

the algorithm then works as follows. Given a binary cluster 𝑐1
of 𝑇1, the algorithm maintains weights on 𝑇2 such that for each

edge 𝑒2 ∈ 𝑇2, its weight is the weight of 𝑒2 in the original tree

plus the sum of the weights of all edges (𝑢, 𝑣) ∈ 𝐿 such that 𝑢 is

a descendant of the bottom boundary of 𝑐1, and 𝑣 is a descendant

of 𝑒2. This implies that for a binary cluster of 𝑇1 consisting of an

isolated edge 𝑒1 ∈ 𝑇1, the weights of each 𝑒2 ∈ 𝑇2 are precisely

such that 𝑤 (𝑒1) + 𝑤 (𝑒2) is the value of selecting {𝑒1, 𝑒2} as the
solution. This idea leads to a very natural recursive algorithm. We

start with the topmost unary cluster of 𝑇1 and proceed recursively

down the clusters of 𝑇1, maintaining 𝑇2 with weights as described.

When the algorithm recurses into the top binary child of a cluster,

it must add the weights of all (𝑢, 𝑣) ∈ 𝐿 that are descendants of

that cluster to the corresponding paths in 𝑇2. If recursing on the

bottom binary subcluster of a binary cluster, the weights on 𝑇2
are unchanged. When recursing on a unary cluster, since it has no

descendants, the algorithm uses the original weights of 𝑇2. Once

the recursion hits a binary cluster that consists of a single edge 𝑒1, it

can return the solution𝑤 (𝑒1) +𝑤 (𝑒2), where 𝑒2 is the lightest edge
with respect to the current weights on 𝑇2. Lastly, to perform this

process efficiently, the algorithm compresses, using the compressed

path tree algorithm [5], the tree 𝑇2 every time it recurses, keeping

only the vertices that are endpoints of the crossing edges that touch

the current cluster of 𝑇1.

Implementation. We provide pseudocode for our algorithm in

Algorithm 3. Given a bipartite problem (𝑇1,𝑇2, 𝐿), we use the nota-
tion 𝐿(𝐶) to denote the edges of 𝐿 limited to those that are incident
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on some vertex in the cluster 𝐶 . Furthermore, we use 𝑉𝑇2 (𝐿(𝐶)) to
denote the set of vertices given by the endpoints of the edges in

𝐿(𝐶) that are in 𝑇2. The pseudocode does not make the parallelism

explicit, but all that is required is to run the recursive calls in par-

allel. The procedure takes as input a cluster 𝐶 of 𝑇1, a compressed

version of 𝑇2 with its original weights, and 𝑇 ′
2
, the compressed ver-

sion of𝑇2 with updated weights. At the top level, it takes the cluster

representing all of 𝑇1 for the first argument, and the cluster for all

of 𝑇2 for the second and third argument. The Compress function

compresses the given tree with respect to the given vertex set and

its root, and returns the compressed tree still rooted at the same

root. AddPaths(𝑆) takes a set 𝑆 ⊂ 𝐿 of edges and for each one, adds

𝑤 (𝑢, 𝑣) to the root-to-𝑣 path, where 𝑣 ∈ 𝑇2, returning a new tree.

Algorithm 3 Parallel bipartite problem algorithm

1: procedure Bipartite(𝐶 ,𝑇2,𝑇
′
2
, 𝐿)

2: if 𝐶 = {𝑒 } then
3: return 𝑤 (𝑒) + LightestEdge(𝑇 ′

2
)

4: else

5: 𝑇cmp ←𝑇2.Compress(𝑉𝑇2 (𝐿 (𝐶.𝑡 )))
6: 𝑇 ′′

2
←𝑇 ′

2
.AddPaths(𝐿 (𝐶) \ 𝐿 (𝐶.𝑡 ))

7: 𝑇 ′′
cmp
←𝑇 ′′

2
.Compress(𝑉𝑇2 (𝐿 (𝐶.𝑡 )))

8: ans← Bipartite(𝐶.𝑡 ,𝑇cmp,𝑇
′′
cmp

, 𝐿 (𝐶.𝑡 ))
9: for each cluster𝐶′ in𝐶.𝑈 do

10: 𝑇cmp ←𝑇2.Compress(𝑉𝑇2 (𝐿 (𝐶′)))
11: ans← min(ans, Bipartite(𝐶′,𝑇cmp,𝑇cmp, 𝐿 (𝐶′)))
12: if 𝐶 is a binary cluster then
13: 𝑇cmp ←𝑇2.Compress(𝑉𝑇2 (𝐿 (𝐶.𝑏)))
14: 𝑇 ′

cmp
←𝑇 ′

2
.Compress(𝑉𝑇2 (𝐿 (𝐶.𝑏)))

15: ans← min(ans, Bipartite(𝑇cmp,𝑇
′
cmp

, 𝐿 (𝐶.𝑏)))
16: return ans

Since this algorithm creates many copies of𝑇2, we must ensure that

we can still identify and locate a desired vertex given its label. One

simple way to achieve this is to build a static hashtable alongside

each copy of𝑇2 that maps vertex labels to the instance of that vertex

in that copy.

An ingredient that we need to achieve low depth is an efficient

way to update the weights in𝑇2 when adding weights to a collection

of paths. Although RC trees support batch-adding weights to paths,

the standard algorithm does not meet our cost requirements. This

is easy to achieve in linear work and𝑂 (log𝑛) depth by propagating

the total weight of all updates up the clusters, and then propagating

back down the tree, the weight of all updates that are descendants

of the current cluster. See the full version [4] for more details. It

remains to analyze the cost of the Bipartite procedure.

Theorem 5.4. A bipartite problem of size 𝑚 can be solved in

𝑂 (𝑚 log𝑚) work and 𝑂 (log3𝑚) depth w.h.p.

Proof. First, since all recursive calls are made in parallel and

the recursion is on the clusters of 𝑇1, the number of levels of recur-

sion is 𝑂 (log𝑚) w.h.p. We will show that the algorithm performs

𝑂 (𝑚) work in total at each level, in 𝑂 (log2𝑚) depth w.h.p. Ob-

serve first that at each level of recursion, the edges 𝐿 for each

call are a disjoint partition of the non-tree edges, since each re-

cursive call takes a disjoint subset. We will now argue that each

call does work proportional to |𝐿 |. Since 𝑇2 and 𝑇 ′
2
are both com-

pressed with respect to 𝐿, their size is proportional to |𝐿 |. Ad-
dPaths takes linear work in the size of 𝑇2 and𝑂 (log𝑚) depth, and
hence takes 𝑂 ( |𝐿 |) work and 𝑂 (log𝑚) depth. Compress(𝐾) takes
𝑂 ( |𝐾 | log(1 + |𝑇2 |/|𝐾 |)) ≤ 𝑂 ( |𝐾 | + |𝑇2 |) work and𝑂 (log2𝑚) depth
w.h.p.. Since compression is with respect to some subset of 𝐿, all

of the compress operations take 𝑂 ( |𝐿 |) work and 𝑂 (log2𝑚) depth
w.h.p. In total, this is𝑂 ( |𝐿 |) work in𝑂 (log2𝑚) depth w.h.p. at each

level for each call. Since the 𝐿s at each level are a disjoint partition

of the non-tree edges, the total work per level is 𝑂 (𝑚) w.h.p., and
hence the desired bounds follow. □

Since there are 𝑂 (𝑛) bipartite problems of total size 𝑂 (𝑚), solving
them all in parallel yields the following, which, when combined

with Theorem 5.1, proves Theorem 1.3.

Theorem 5.5. Given a weighted, undirected graph𝐺 and a rooted

spanning tree 𝑇 , the minimum 2-respecting cut of 𝐺 with respect

to 𝑇 such that the cut edges are independent can be computed in

𝑂 (𝑚 log𝑛) work and 𝑂 (log3 𝑛) depth w.h.p.

Combining Theorem 4.1 with Theorem 1.3 on each of the 𝑂 (log𝑛)
trees in parallel proves Theorem 1.1.

6 CONCLUSION

We present a randomized 𝑂 (𝑚 log
2 𝑛) work, 𝑂 (log3 𝑛) depth par-

allel algorithm for minimum cut. It is the first parallel minimum

cut algorithm to match the work bound of the best sequential algo-

rithm, making it work efficient. Finding a faster parallel algorithm

for minimum cut would therefore entail finding a faster sequen-

tial algorithm. It remains an open problem to find a deterministic

algorithm for minimum cut, even a sequential one, that runs in

𝑂 (𝑚 polylog𝑛) time.
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