
Brief Announcement: Efficient Distributed Algorithms for
Convolutional Neural Networks

Rui Li
lirui@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Yufan Xu
yf.xu@utah.edu

University of Utah
Salt Lake City, Utah, USA

Aravind Sukumaran-Rajam
a.sukumaranrajam@wsu.edu
Washington State University
Pullman, Washington, USA

Atanas Rountev
rountev@cse.ohio-state.edu

Ohio State University
Columbus, Ohio, USA

P. Sadayappan
saday@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

ABSTRACT
Several efficient distributed algorithms have been developed for
matrix-matrix multiplication: the 3D algorithm, the 2D SUMMA
algorithm, and the 2.5D algorithm. Each of these algorithms was
independently conceived and they trade-off memory needed per
node and the inter-node data communication volume. The convo-
lutional neural network (CNN) computation may be viewed as a
generalization of matrix-multiplication combined with neighbor-
hood stencil computations. We develop communication-efficient
distributed-memory algorithms for CNNs that are analogous to the
2D/2.5D/3D algorithms for matrix-matrix multiplication.

CCS CONCEPTS
• Theory of computation→Distributed algorithms; Parallel
algorithms.

KEYWORDS
distributed algorithms; neural networks; communication optimiza-
tion
ACM Reference Format:
Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sa-
dayappan. 2021. Brief Announcement: Efficient Distributed Algorithms
for Convolutional Neural Networks. In Proceedings of the 33rd ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’21), July
6–8, 2021, Virtual Event, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3409964.3461828

1 INTRODUCTION
The design of efficient distributed-memory parallel algorithms is
much more challenging than shared-memory parallel algorithms. A
number of recent research efforts have focused on utilizing shared-
memory parallelism for Convolutional Neural Networks (CNN)
[3, 9, 11, 16, 17] and high-performance library implementations
are also available from vendors, e.g., oneDNN from Intel [12] and
cuDNN from Nvidia [4]. However, only very simple and restricted
schemes have been implemented for distributed-memory parallel
systems [1, 6, 10, 13]. This is in contrast to matrix-matrix multipli-
cation, for which a number of communication-optimal distributed-
memory parallel algorithms have been developed, including the 3D
SPAA ’21, July 6–8, 2021, Virtual Event, USA
2021. ACM ISBN 978-1-4503-8070-6/21/07. . . $15.00
https://doi.org/10.1145/3409964.3461828

algorithm [2, 5, 7], the 2D SUMMA algorithm [15], and the 2.5D
algorithm [14].

In this paper, we synthesize efficient distributed-memory algo-
rithms for CNN:

Out [!,",# ,ℎ] = In[!, %,&!# + ' ,&ℎℎ + (] ∗ Ker [", %, ' , (]
whereOut is the output feature map, In is the input feature map,Ker
is the kernel; ! indexes the batch dimension, " the output feature, %
the input feature, ℎ,# the vertical and horizontal pixel index, and
' , (the vertical and horizontal stencil index; &! and &ℎ are strides.

Our key insight is that prior work on analytical modeling of data
movement for tile-size optimization for CNN on shared-memory
parallel systems [8] can be adapted for synthesis of communication
efficient distributed-memory algorithms. The synthesis involves
two steps: (1) formulation and solution of a 2-level tile-size opti-
mization problem under a virtual global-memory model (Sec. 2.1),
and (2) synthesis of initial data distribution and inter-processor
collective communication schedule on a logical multi-dimensional
processor view with a partitioned memory address space (Sec. 2.2).
for (b = 0 ; b < Nb ; n++)
for (h = 0 ; h < Nh ; h++)
for (w = 0 ; w < Nw; w++)
for (k = 0 ; k < Nk ; k++)
for (c = 0 ; c < Nc ; c ++)
for (r = 0 ; r < Nr ; r ++)
for (s = 0 ; s < Ns ; s ++)

Out [n] [k] [w] [h] +=
In [n] [c] [w+ r] [h+s] ∗ Ker [k] [c] [r] [s]

Listing 1: CNN loops
for (b t = 0 ; b t < Nb ; b t +=Tb)
for (h t = 0 ; h t < Nh ; ht +=Th)
for (wt = 0 ; wt < Nw; wt+=Tw)
for (k t = 0 ; k t < Nk ; k t +=Tk)
for (c t = 0 ; c t < Nc ; c t +=Tc)

CNNTile (bt , ht , wt , kt , c t) ;

Listing 2: CNN with single-level tiling

2 BACKGROUND
Consider the CNN computation shown in Listing 1. Listing 2 shows
a single-level tiled code for the computation, where five of the loops
are tiled (excluding the stencil dimensions Nr and Ns, which are
usually small prime numbers like 3, 5, 7 and are not tiled). In prior
work [9], it was shown that the volume of data movement for the
sequential execution of the tiled CNN code on a system with a

single-level memory hierarchy could be analytically modeled as a
function of the tile sizes and fast-memory capacity) as:
cost = *#*$*!*ℎ + *$*%*&*'*!*ℎ*#/(+!+ℎ+#)+
#% (&!+! + *& − 1) (&ℎ+ℎ + *' − 1)*!*ℎ*$/(+!+ℎ+$)
(&!+! + *& − 1) (&ℎ+ℎ + *' − 1)+#+% ++!+ℎ+#+$+
&'+$+% ≤),+(≤ *(, , ∈ {!,",# ,ℎ, %}

(1)

The five tile loops in Listing 1 are fully permutable, and for each
permutation, an analytical cost expression can be derived [9]. How-
ever, many permutations have exactly the same cost expression.
Specifically, it can be shown (under some conditions) that the per-
mutation of the outer four tile loops does not change the cost [9].
Further, the three indexes !, ℎ,# are equivalent with respect to the
data reuse characteristics and can be treated as a composite index
that ranges over the product of the three indices. In the treatment
below, we will use +bhw to represent +#+ℎ+! , and these tile loops
will always be treated as a contiguous band.

2.1 Parallel CNN: Global Virtual Memory
First, we consider data-movement optimization for CNN for a par-
allel system with - processors, each with private local memory of
capacity) , and a shared virtual global memory. Each processor
can perform copy-in or copy-out of blocks of tensors to/from the
virtual global memory to local memory. All computations are per-
formed on data present in local memory, interspersed with data
movement of blocks of data between local memory and the virtual
global memory.

Listing 3: Local loop schedule with c as the innermost tiling
loop
for kt = 0 :Wk/ Tk
for b t = 0 :Wb/ Tb
for wt = 0 :Ww/Tw
for ht = 0 :Wh/ Th
for c t = 0 :Wc/ Tc
/ / l o a d In , Ker t i l e from g l o b a l memory ;
/ / when l o a d i n g In , a l s o l o a d t h e " ha l o "
for r = 0 : Nr
for s = 0 : Ns
for po in t l o op s k , b , w, h , c

Out [b t ∗Tb+b , k t ∗Tk+k ,
wt ∗Tw+w, ht ∗Th+h] +=

In [b t ∗Tb+b , c t ∗ Tc+c ,
)! (wt ∗Tw+w)+ r ,)ℎ (h t ∗Th+h)+ s] ∗

Ker [k t ∗Tk+k , c t ∗ Tc+c , r , s]
/ / s t o r e (upda t e) Out t i l e t o g l o b a l memory

The CNN iteration space of size *# × *$ × *% × *ℎ × *! × *& × *' is
partitioned into - equal individual work-partitions of size.# ×.$ ×
.% ×.ℎ ×.! × *& × *' per processor. The intersection of any pair
of work-partitions is empty, and the union of all work-partitions
covers the full iteration space. Each processor is responsible for
executing the iteration-space points within its work-partition. But
the available local memory may be insufficient to simultaneously
hold all the data needed for executing its entire work-partition.
Hence the work-partition is executed as a sequence of smaller
+# × +$ × +% × +ℎ × +! × *& × *' tiles, whose data footprints fit

within the available per-processor memory) . The work-partition
and the iteration space are related as follows:

- ∗
∏

.(=
∏

*(, , ∈ {!, %,",ℎ,#} (2)

We first address the following optimization problem: Given a
CNN with problem-size parameters *# , *$, *% , *ℎ , *! , *& , *' ,
and a parallel machine with - processors with local memory) per
processor, find the optimal values for.# ,.$,.% ,.ℎ ,.! , and +# ,
+$, +% , +ℎ , +! so that the total volume of data moved between the
virtual global memory and the local memories is minimized.

Listing 3 shows one possible permutation for the tiled loops
within a node; / : ! denotes the integers from / to ! − 1 inclusive.

The total data movement volume for this loop is given by Eq. 3.
cost =.#.$.!.ℎ +.$.%*&*'.!.ℎ.#/(+!+ℎ+#)+
.#.% (&!+! + *& − 1) (&ℎ+ℎ + *' − 1).!.ℎ.$/(+!+ℎ+$)
(.0 : 1 = (&!+! + *& − 1) (&ℎ+ℎ + *' − 1)+#+% ++!+ℎ+#+$+
&'+$+% ≤) ; 1 ≤ +(≤ .(≤ *(, , ∈ {!,",# ,ℎ, %}; Equation 2

(3)
We proceed by formulating the following modified optimization

problem that we can solve analytically, and use that solution to
generate an efficient solution for Eq. 3. The main change from Eq. 3
to Eq. 4 is the simplification of the cost function and the memory
capacity constraint by dropping the small *& − 1 and *' − 1 terms.
Further, as discussed earlier, we replace +#+ℎ+! by a new variable
+bhw and.#.ℎ.! by a new variable.bhw . In addition, it is easy
to see that an optimal solution would have +% = 1, so we exclude
this variable from Eq. 4. We denote the memory capacity in Eq. 4 by
)* ; the relation between)* and the actual per-processor memory
capacity will be established later.

costL =.$.bhw + *$*%*bhw
-

(*&*'

+bhw
+ &!&ℎ

+$
)

(.0 : 1* = +bhw+$ ≤)* ; 1 ≤ .% ≤ *% ;
1 ≤ +(≤ .(≤ *(, , ∈ {bhw,"}; -.bhw.$.% = *bhw*$*%

(4)

We first observe that any optimal solution to Eq. 4 will satisfy
(.$ = +$ and.bhw = +bhw) or (.% = *%) (5)

We must have either that.% = *% or.% < *% . Suppose.% <
*% for some optimal solution. Consider the term.$.#ℎ! in the
function to be optimized in Eq. 4. Since.% < *% and.$.%.bhw- =
$%*bhw , an increase in.% and a decrease in.$ or.#ℎ! could
maintain this equality and could decrease the cost in Eq. 4, keeping
all other variables the same. Thus, in an optimal solution with
.% < *% it must be the case that +$ =.$ and +#ℎ! =.#ℎ! .

The following analysis considers two cases, based on Eq. 5.
Case 1:.% = *%
The arithmetic-mean geometric-mean inequality can be applied to
find the following two solutions to the optimization problem in
Eq. 4, depending on whether or not)* ≤ *$*bhw/- .
Case 1a: If)* ≤ *$*bhw/- , the optimal cost is achieved when
+$ =

√
+#)!)ℎ
,$,%

and +bhw =
√

+#,$,%
)!)ℎ

. The cost is

cost∗L0 = *$*bhw/- + 2*$*%*bhw
-

√
&'&!&ℎ

)*
(6)

Condition Cost
*$*bhw/- ≥)* *$*bhw/- + 2,&,',bhw

-

√
,$,%)!)ℎ

+#

)* ≥ (,&,',bhw
-)2/3 (*&*'&!&ℎ)1/3

and *$*bhw/- <)*
3(,&,',bhw

-)2/3 (*&*'&!&ℎ)1/3

)* < (,&,',bhw
-)2/3 (*&*'&!&ℎ)1/3

and *$*bhw/- <)*
)* + 2,&,',bhw

-
√
+#

√
&'&!&ℎ

Table 1: Summary of optimal solutions for Eq. 4 for tile loop
permutations with % as the innermost tiling loop.

Condition Cost
*$*bhw/- ≥)* and *&*'*$*%/- ≥)*
and &!&ℎ*%*bhw/- ≥)*

min(,&,bhw
- , ,&,'

- , ,',bhw
-)

+2,&,',bhw
-

√
,$,%)!)ℎ

+#

)* ≥ (,&,',bhw
-)2/3 (*&*'&!&ℎ)1/3

and (*$*bhw/- <)* or
&!&ℎ*%*bhw/- <)* or *&*'*$*%/- <)*)

3(,&,',bhw
-)2/3 (*&*'&!&ℎ)1/3

)* < (,&,',bhw
-)2/3 (*&*'&!&ℎ)1/3

and (*$*bhw/- <)* or &!&ℎ*%*bhw/- <)*
or *&*'*$*%/- <)*)

)* + 2,&,',bhw
-
√
+#

√
&'&!&ℎ

Table 2: Summary of optimal solutions for Eq. 4 considering
all possible tile loop permutations.
Case 1b: If)* > *$*bhw/- , the optimal cost is achieved when
+$ =

√
,&,bhw)!)ℎ

-,$,%
and +bhw =

√
,&,bhw,$,%

-)!)ℎ
. The cost is

cost∗L1 = *$*bhw/- + 2*$*%*bhw
-

√
-*&*'&!&ℎ
*$*bhw

(7)

Case2: +$ =.$,+bhw =.bhw,.% < *%
The Karush–Kuhn–Tucker conditions can be applied to find the

following two solutions to the optimization problem in Eq. 4.
Case2a: If)* > *$*bwh and)* ≥ (,&,',bhw

-)2/3 (*&*'&!&ℎ)1/3,
the optimal cost is achieved when +$ = (,&,',bhw

-,$,%
)1/3 (&!&ℎ)2/3

and +bhw = (,&,',bhw
-)!)ℎ

)1/3 (*&*')2/3. The cost is

cost∗L2 = 3(*$*%*bhw
-

)2/3 (*&*'&!&ℎ)1/3 (8)

Case2b: If)* > *$*bwh and)* < (,&,',bhw
-)2/3 (*&*'&!&ℎ)1/3,

the optimal cost is achieved when +$ =
√

+#)!)ℎ
,$,%

and +bhw =√
+#,$,%
)!)ℎ

. The cost is

cost∗L3 =)* + 2*$*%*bhw
-
√
)*

√
&'&!&ℎ (9)

Combining the analysis from Case 1 and Case 2, and considering
the relationship between different subcases, the solution to the
optimization problem in Eq. 4 is summarized in Table 1.

The optimal solution to the modified optimization problem in
equation (4) relates to the actual optimization problem of interest,
Eq. 3, as follows:

• A valid efficient solution to Eq. 3 can be obtained by setting
)* =)− 1

2 (32 (
√
922 + 4)− 32)), where2 =

√
&!&ℎ*&*' .

• By setting)* =) , the cost functions in Table 1 are lower
bounds on the lowest possible costs for any valid tile sizes.

The analysis for other tile loop permutations is similar, and the
results are presented in Table 2.
2.2 Distributed CNN: Partitioned Memory
In this subsection, we show how the tiled solution from Sec. 2.1 can
be used to construct an efficient algorithm for CNN for a distributed-
memory parallel system with a fully partitioned memory: each

processor has a local memory capacity). and can communicate
with other processors only through explicit inter-processor com-
munication operations.

With the global memorymodel used in Sec. 2.1, the local memory
capacity in each processor ()) only needs to be sufficient to hold
the data-footprints (slices of accessed data in the three tensors) of a
tile, with blocks of data being moved between local memory and the
virtual global memory in between successive tiles. In a distributed-
memory parallel system, in addition to holding the data-footprints
of the currently executed tile, all elements of the three tensors must
also be held in the local memory of one or more processors.

We first provide a high-level sketch of the construction of the
distributed-memory parallel CNN algorithm. Given CNN problem
parameters *# , *$, *% , *ℎ , *! , *& , *' , number of processors
(-), and memory). per processor: i) Determine the per-memory
capacity)/ needed to hold the tensors in a distributed manner
to compute available memory for tiles,) =). −)/ ; ii) Use
the reduced capacity) to solve the global-memory optimization
problem discussed in Sec. 2.1 – the same tile schedule will be used
by the processors in the distributed-memory system; iii) Determine
parameters -# , -$, -% , -ℎ , -! to create a logical multi-dimensional
grid for the - processors; iv) Generate the initial data distribution
and the data communication schedule for the multi-dimensional
processor grid.
Parameters for Multi-dimensional Processor Grid: The solu-
tion to the global-memory optimization problem in Sec. 2.1 pro-
vides values for tile sizes +(as a function of problem parameters
and machine parameters. For the distributed-memory CNN algo-
rithms, the - processors are viewed as a logical multidimensional
-# × -ℎ × -! × -% × -$ grid, with -(= *(/.(.

If the solution to the global-memory optimization problem ad-
dressed in Sec. 2.1 corresponds to Case 2, -$ = *$/.$ = *$/+$,
-#-!-ℎ = *#*!*ℎ/(+#+!+ℎ), and -% = -/(-$-#-!-ℎ).

For those solutions derived from Case 1, -% = 1,.% = *% , -$ =
,&
0&

, -#-!-ℎ = ,(,!,ℎ
0(0!0ℎ

,.$ =
√

,&,(,ℎ,!
-

)!)ℎ
,$,%

,.#.!.ℎ =√
,&,(,ℎ,!

-
,$,%
)!)ℎ

The Case 1 solution is analogous to the 2D SUMMA [15] algo-
rithm for distributed matrix-multiplication, and Case 2 corresponds
to the 2.5D [14] and 3D [5] distributed matrix multiplication algo-
rithms; the latter when)* ≥ (,&,',bhw

-)2/3 (*&*'&!&ℎ)1/3 and
the former otherwise.
Initial Data Distribution: For each tensor, one or more of the
five loop indices !, %,",ℎ,# are absent in the indexing expression:
" is absent in In[!, %,&!# + ' ,&ℎℎ + (], !,ℎ,# do not appear in
Ker [", %, ' , (], and % is not used in Out [!,",# ,ℎ]. Therefore, identi-
cal data slices of a tensor will be accessed by all processors along
anymissing loop index. For example, identical slices of Ker [", %, ' , (]
will be accessed by processors that only differ in the processor-grid
coordinates along ! or ℎ or# .

Each processor -#,%,$,ℎ,! accesses a slice of Ker , where the spe-
cific elements accessed by a processor depend on its indices % and
" , but not on !,ℎ,# . There are -% × -$ distinct slices of data, each
with.% × .$ × *& × *' elements and accessed by -# × -ℎ × -!
different processors. The initial distribution of data for Ker has each
of these slices uniformly partitioned along % into smaller sub-slices

of size 0'
-(-ℎ-!

× .$ × *& × *' , distributed over the -# × -ℎ × -!
processors that need to access data in all the sub-slices. A simi-
lar initial distribution strategy is used for In, where the data slice
needed by a processor is partitioned among -$ processors. For
Out, if -% > 1, replication is used instead of disjoint partitioning
across the % dimension in the multi-dimensional processor grid, to
avoid additional data movement compared to that required in the
global-memory solution of Sec. 2.1.
Collective Communication Schedule: Each processor allocates
buffers for storing the elements of In and Ker accessed by a tile.
The sizes of buffers are +# (&!+! + *& − 1) (&ℎ+ℎ + *' − 1) for In
tile and +$*&*' for Ker tile. There is no need for allocate any addi-
tional memory for Out tile because space for the entire accessed
data slice for the tiles is allocated in the initial data distribution.
There is therefore also no need for any inter-processor communi-
cation for Out (until a reduction step at the very end). Execution
proceeds as a sequence of.% tiles with interspersed inter-processor
communication between tiles.

The communication for In is as follows. The.% tiles are divided
into -$ groups, each group containing.%/-$ tiles. The first pro-
cessor along the " dimension of the processor grid broadcasts the
elements of In needed for the tiles in the first iteration group. After
.%/-$ steps, the next processor along the " dimension becomes
the originator of data broadcasts for the next.%/-$ steps, and so
on. The communication schedule for Ker is analogous to In, with
the broadcast of data being performed along the !,# ,ℎ dimensions
of the processor grid.
Cost Analysis: The communication cost of the above distributed
CNN algorithm is as follows. Let costI be the initialization cost
(initialization cost for In,Ker and reduction cost for Out). It is equal
to the footprint of the initial data distribution. The communication
cost, costC , is equal to total volume of broadcast data for In and Ker .
The total cost costD = costC + costI .
costI =.#.$.!.ℎ + (&!*! + *& − 1) (&ℎ*ℎ + *' − 1)*#*%/-

+ *&*'*$*%/-
costC =.$.%*&*'.!.ℎ.#/(+!+ℎ+#)+

.#.% (&!+! + *& − 1) (&ℎ+ℎ + *' − 1).1.2.$/(+!+ℎ+$)
(10)

The local memory). in each processor must hold the initial
data layout for all three tensors, and the tile footprints for Ker and
In, giving the following local memory constraint expression:

1. = (&!+! + *& − 1) (&ℎ+ℎ + *' − 1)+#+% + *&*'+$+%

+.#.$.!.ℎ + *&*'*$*%/-
+(&!*! + *& − 1) (&ℎ*ℎ + *' − 1)*#*%/- ≤).

(11)

Let cost,1 be the cost and 1 stated in Equation (3). We can see that
both costD − cost and 13 − 1 equal 1

- (size(In) + size(Ker)), which
is a constant. Thus, the data movement cost of the distributed CNN
algorithm only differs from that of the global-memory solution
Table 2 by a constant.

3 CONCLUSION
This paper presents a new methodology to synthesize efficient
distributed-memory algorithms. The key insight driving this work
is that a two-level tile optimization model can be used to synthesize

efficient distributed-memory algorithms. The methodology was
used to create new distributed algorithms for convolutional neural
networks, analogous to the well known 2D/2.5D/3D distributed
matrix-multiplication algorithms.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Science Foun-
dation through awards 1946752 and 1919122.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. TensorFlow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Ramesh CAgarwal, SusanneMBalle, Fred GGustavson,Mahesh Joshi, and Prasad
Palkar. 1995. A three-dimensional approach to parallel matrix multiplication.
IBM Journal of Research and Development 39, 5 (1995), 575–582.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An
automated end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation. 578–594.

[4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[5] Eliezer Dekel, David Nassimi, and Sartaj Sahni. 1981. Parallel matrix and graph
algorithms. SIAM J. Comput. 10, 4 (1981), 657–675.

[6] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond data and model paral-
lelism for deep neural networks. arXiv preprint arXiv:1807.05358 (2018).

[7] S Lennart Johnsson. 1993. Minimizing the communication time for matrix multi-
plication on multiprocessors. Parallel Comput. 19, 11 (1993), 1235–1257.

[8] Rui Li, Aravind Sukumaran-Rajam, Richard Veras, TzeMeng Low, Fabrice Rastello,
Atanas Rountev, and P Sadayappan. 2019. Analytical cache modeling and tilesize
optimization for tensor contractions. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–13.

[9] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P Sadayappan.
2021. Analytical characterization and design space exploration for optimization
of CNNs. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 928–942.

[10] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[11] Yizhi Liu, YaoWang, Ruofei Yu, Mu Li, Vin Sharma, and YidaWang. 2019. Optimiz-
ing CNN model inference on CPUs. In 2019 USENIX Annual Technical Conference.
1025–1040.

[12] oneDNN 2020. Intel oneAPI Deep Neural Network Library (oneDNN).
https://software.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top/api-based-programming/intel-oneapi-deep-
neural-network-library-onednn.html.

[13] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[14] Edgar Solomonik and James Demmel. 2011. Communication-optimal parallel 2.5D
matrix multiplication and LU factorization algorithms. In European Conference
on Parallel Processing. Springer, 90–109.

[15] Robert A Van De Geijn and Jerrell Watts. 1997. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience 9, 4 (1997),
255–274.

[16] Yao Wang, Xingyu Zhou, Yanming Wang, Rui Li, Yong Wu, and Vin Sharma.
2021. Tuna: A static analysis approach to optimizing deep neural networks. arXiv
preprint arXiv:2104.14641 (2021).

[17] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. Ansor:
Generating high-performance tensor programs for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation. 863–879.

