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The integration of multiple data sources is a common problem in a large variety of applications. Traditionally,

handcrafted similarity measures are used to discover, merge, and integrate multiple representations of the

same entity—duplicates—into a large homogeneous collection of data. Often, these similarity measures do

not cope well with the heterogeneity of the underlying dataset. In addition, domain experts are needed to

manually design and configure such measures, which is both time-consuming and requires extensive domain

expertise.

We propose a deep Siamese neural network, capable of learning a similarity measure that is tailored to the

characteristics of a particular dataset. With the properties of deep learning methods, we are able to eliminate

the manual feature engineering process and thus considerably reduce the effort required for model construc-

tion. In addition, we show that it is possible to transfer knowledge acquired during the deduplication of one

dataset to another, and thus significantly reduce the amount of data required to train a similarity measure.

We evaluated our method on multiple datasets and compare our approach to state-of-the-art deduplication

methods. Our approach outperforms competitors by up to +26 percent F-measure, depending on task and

dataset. In addition, we show that knowledge transfer is not only feasible, but in our experiments led to an

improvement in F-measure of up to +4.7 percent.
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1 DUPLICATE DETECTION

The need to integrate multiple data sources into a single dataset is present in many application
areas. A major challenge that arises during the integration process emerges from the fact that
records from different data sources often contain duplicate entries, i.e., several entries that refer
to the same real-world entity. These duplicates, implying poor data quality, can directly affect
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downstream operations, e.g., causing low customer satisfaction in customer-relationship-
management, incorrect stock-keeping, or overfitting of machine learning methods.

Resolving this issue requires the detection of such duplicates, which is well studied, also un-
der the terms entity resolution, record linkage, and several others [14, 21, 43]. Typically, duplicate
detection refers to the task of identifying duplicates within a single dataset, while record linkage
refers to the detection of matching records across datasets. Conceptually, the two tasks are very
similar, and we perform experiments for both. For ease of exposition, we speak of duplicate de-
tection throughout the article. Duplicate detection is commonly divided into two subtasks: (i) the
identification of duplicate candidates, and (ii) the classification of these candidates as duplicates
and non-duplicates. The problem of subsequently eliminating these duplicates, known as data fu-
sion [6], is not addressed in this work. Since most deduplication approaches depend heavily on the
performance of the similarity measure used to assess the similarity between the processed entities,
its selection or creation plays a crucial role and must be performed with great care.

So far, a wide variety of similarity measures have been proposed [14], each with its own
strengths and weaknesses. As each of these proposed similarity measures takes its own individual
approach in quantifying the similarity of two entity representations, they are often highly domain-
dependent, making it difficult to conduct deduplication by relying on just one of these traditional
measures. Therefore, several similarity measures, such as Levenshtein [37] or Jaro-Winkler [58],
are often combined to capture the underlying characteristics of the processed entities. While this
combination offers more flexibility, it is often difficult to sufficiently adapt the traditional similarity
measures to the characteristics of the underlying entities.

To address this issue, there are essentially two possible solutions: either a custom-made simi-
larity measure is designed manually, or a similarity measure can be learned by applying machine
learning techniques. The main disadvantage of manually designing a similarity measure is that it
requires extensive domain expertise, which makes it difficult and time-consuming. The alterna-
tive approach is to leverage machine learning techniques to learn a new similarity measure that is
tailored specifically to the entities of a specific domain.

As is the case for most traditional machine learning techniques for duplicate detection, such as
Support Vector Machines (SVMs) [5, 12] or decision trees [20, 55], the main bottleneck lies in their
dependence on manual feature engineering. Due to the costs associated with extensive manual
feature engineering, it is, in practice, often limited to the creation of feature vectors consisting
of various traditional similarity measures, which are ultimately used to train a selected classi-
fier. Although good results might be achieved by combining a number of similarity measures and
weighting them optimally, this approach is still bound by the limitations of traditional similar-
ity measures, which were developed for specific domains or data types. Overall, both the manual
feature engineering process as well as the manual creation of similarity measures requires consid-
erable amounts of time and effort and is therefore undesirable. It should also be noted that most
machine learning techniques require large amounts of training data to train a classifier of suffi-
cient quality. It can therefore be stated that both approaches have their disadvantages with regard
to manual labor costs. While the bulk of time for manually creating a custom similarity measure is
spent on iterating different design ideas, the majority of time spent on learning a custom similarity
measure is used for annotating training data and designing a set of useful features.

To alleviate both issues, we propose SNNDedupe, a deep neural network that is based on the
architecture of a Siamese neural network (SNN) [8], and combine it with a transfer learning ap-
proach. Using this architecture, we learn a specific similarity measure for a given dataset by letting
the neural network automatically adapt to and capture the idiosyncrasies of the respective dataset.
Thus, we overcome the limitations of traditional similarity measures, which often lack sufficient
adaptability when applied to unintended data. At its core, the proposed SNN architecture consists
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of two identical subnetworks that are connected via an energy function. We selected this architec-
ture as the basis for our approach, as it has been successfully applied to learn similarity functions
in various areas [35, 42]. By using deep learning techniques, we are able to automatically discover
promising features, thus eliminating both the costly manual feature engineering and the required
domain knowledge needed for this task. In our experiments, we compare SNNDedupe with the
SVM-based approach of Christen [13] and the DeepMatcher [41] system. We show that we are able
to learn a competitive similarity measure that enables a state-of-the-art duplicate classification.

As annotating vast amounts of training data is in practice often infeasible, we investigate the be-
havior of SNNDedupe under different amounts of training data. To reduce the amount of training
data and thus, the associated effort for their generation, we focus on the design and implementa-
tion of a knowledge transfer [32] between deduplication networks. In doing so, we address what
is often perceived as the Achilles’ heel of many machine learning approaches, namely, their de-
pendence on large amounts of training data. This objective is reflected primarily in the design of
the network, as it is tailored to support knowledge transfer at the attribute-level. In a nutshell, the
core idea that makes knowledge transfer possible is to process the entities at their attribute level.
This decision provides the ability to learn and transfer the properties of each attribute’s semantic
domain (e.g., band names, book titles). By combining character embeddings and BLSTM layers, we
create a dedicated embedding for each attribute. Thus, representation learning takes place at the
attribute level, resulting in embeddings for each attribute domain, which can informally be inter-
preted as knowledge about the processed attributes. This compressed domain knowledge, which
accumulates in the weight matrices of the network layers, can then be transferred by initializing
the attribute weights of a deduplication network that operates on a different dataset. This trans-
fer can be carried out whenever the source and target domains of the corresponding attribute are
either the same or sufficiently similar.

Our experiments show not only how a knowledge transfer affects the training of our network
but also that it is possible to increase classification performance and reduce the amount of neces-
sary new training data by transferring parts of the already acquired knowledge. In addition, we
investigate how much improvement can be achieved over learning without prior knowledge and
to what extent the training data can be reduced while maintaining a good result.

In particular, we make the following contributions:

• We present SNNDedupe, an SNN network architecture for deduplication that facilitates
knowledge transfer. To achieve both competitive deduplication performance and knowl-
edge transfer, it combines character embeddings as studied by DeepMatcher with DeepER’s
architectural design.

• We show how to transfer previously learned knowledge to support the deduplication of
other datasets.

• We analyze the impact of transfer learning strategies on the performance of the neural
network.

• We compare our system with the state-of-the-art of related work.

The remainder of this article is organized as follows: In Section 2, we discuss related work.
Section 3 introduces SNNs and presents the overall structure of our neural network, as well as its
unique characteristics. We introduce the concept of knowledge transfer and how it relates to our
experiments in Section 4. Section 5 is dedicated to introducing the datasets and gold standards for
our experiments. In Section 6, we present our experimental results and Section 7 concludes the
article.
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2 RELATED WORK

Related work can be classified according to the degree of supervision and whether transfer learning
represents a key element of the respective approach. In the following, we therefore discuss the
related work that does not involve transfer learning according to its supervision approach, which is
divided into the following categories: supervised, unsupervised, and semi-supervised approaches.
Thereafter, we separately discuss work that supports the concept of transfer learning.

Supervised Approaches. Apart from traditional similarity measures [14], efforts have been made
to learn similarity measures using a range of supervised machine learning techniques. Systems
based on these techniques require tagged training data from which they learn to perform a specific,
well-defined task. For duplicate detection, this task is to classify a particular entity pair as either
duplicate or non-duplicate.

Both Christen [12] as well as Bilenko and Mooney [5] address this problem by using a SVM.
Bilenko and Mooney propose two similarity measures that are learned using two different machine
learning techniques [5]. The first uses the Expectation-Maximization (EM) algorithm to learn a
variant of the edit distance measure with affine gaps, the second is based on the vector space
model and trained using a SVM. They were able to show that the learned similarity measures can
be adapted to the underlying dataset, resulting in better system performance.

Another approach developed by Christen [13], also uses SVMs to train a classifier for detecting
duplicates. Their feature engineering step consists of choosing and calculating different traditional
similarity measures between the attribute values of each record pair. The resulting values are then
combined into a feature vector, which is used to train the classifier. In addition to SVM-based
systems, other studies have investigated the use of decision trees [20, 55].

More recently, DeepER [19] and DeepMatcher [41] have been introduced. Both systems use deep
neural networks specifically developed for the entity matching task. The core idea of DeepER is
to generate a vector representation for each of the compared tuples, projecting them from a sym-
bolic into a high-dimensional embedding space. To this end, DeepER first uses word embeddings
to translate the individual attribute values of the processed tuple into their corresponding vector
representation. Subsequently, these attribute vectors are concatenated and form the final vector-
based tuple representation. Using this representation, the network is trained so that similar tuples
are drawn to each other, while unequal tuples repel each other. An interesting architectural char-
acteristic of DeepER’s network is that vector representations are established for both the entire
tuple and each of its attributes. Generating the tuple representation has the advantage that the
generated tuple embeddings can be used by downstream applications, such as clustering. Unfor-
tunately, a major disadvantage of this approach is the use of word embeddings as the smallest unit
for constructing the attribute and in turn tuple embeddings. This design decision makes the system
susceptible to out-of-vocabulary (OOV) words, that is, words that are missing in the used word
embeddings. By operating at the word level, it becomes significantly more difficult to adequately
handle subword structures such as misspellings or common substrings.

In addition to conducting a design space exploration, DeepMatcher [41] extends the architecture
of DeepER and adds various attribute summarization techniques. In contrast to DeepER, Deep-
Matcher operates by calculating similarity measures between the attribute pairs of the compared
tuples. The resulting similarities are then aggregated into one similarity vector, which constitutes
the basis of their classification. In their work, Mudgal et al. [41] show that the use of character
embeddings can lead to significant performance improvements, especially when dealing with un-
common words or dirty data.

Despite its similar architecture, our proposed network differs in some aspects from the existing
work. While our basic idea of calculating an embedded representation for the processed tuples is
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similar to that of DeepER, our approach differs in the processing of the individual attribute values.
While DeepER uses word embeddings to compute the vector representation of each attribute, our
architecture operates by splitting each attribute value into its characters, which are then mapped
to a vector representation by using character embeddings. As discussed by Mudgal et al., the choice
of word versus character-level embeddings is critical, due to the implications of OOV tokens [41].
The use of word-level embeddings reduces the mapping of a token to its vector representation to
a lookup in an embedding matrix. If this lookup fails because the processed token is unknown,
then a predefined “unknown vector” is usually used instead of a pre-trained token embedding. Be-
cause values occurring in tables can often not be matched to pre-trained word embeddings, such
as Word2Vec [39] or GloVe [49], the use of word-level embeddings is not optimal for the dedu-
plication task. To mitigate this issue, retrofitting techniques, such as those employed by DeepER,
can be used to generate approximations of OOV words. This can be implemented, for example, by
calculating an average embedding of co-occurring word embeddings. However, the calculation of
such approximations causes the meaning of multiple word embeddings to be mixed, so that the
meaning of the generated interpolation of an OOV word embedding is at best a diffuse represen-
tation of the missing word. By using the suggested character embeddings, the need for retrofitting
techniques is eliminated, as any word can be created by a combination of individually learned
character embeddings.

Another effort to reduce the OOV problem is made by the fastText approach introduced in
Bojanowski et al. [7]. It complements any word embedding by additionally including all n-gram
embeddings that can be generated from the processed word. When compared to the lookup proce-
dure of word embeddings, this approach drastically reduces OOV words as it is able to represent
each OOV word as the combination of its individual n-gram embeddings. However, as stated by
the authors, fastText usually utilizes a range of 3- to 5-grams in its creation of word vector repre-
sentations. Depending on the granularity of the used n-grams, some of them may not be known
during the generation of the individual word vector representations, so that for each unknown
n-gram a specific “unknown vector” is used instead.

With our model, we take an even more generic approach by training an embedding for each
character in the ASCII table, further reducing the granularity from n-grams to character embed-
dings. By replacing n-grams with character embeddings, we further mitigate the OOV problem as
we are able to construct any word embedding from its individual character embeddings. In addi-
tion to reducing the number of lookup errors, the size of the embedding matrix is also significantly
reduced. Drawing on the findings of Mudgal et al. [41], the use of character embeddings allows
us to overcome DeepER’s limitations by being able to handle character-level issues, such as mis-
spellings and common substrings. Looking, for example, at the duplicate pair (“hibrid theory,”
“hybrid theory”), which differs only in a single character, it is likely that a lookup of the word
“hibrid” will return the “unknown vector,” as it has never been encountered before.

We aim to learn an embedding for each individual attribute by combining the character embed-
dings into a vector representation of the underlying entity (much like the original DeepER). The
compressed entity representation is then altered during the training process to the effect that sim-
ilar entities are located closer together than dissimilar ones. Unlike the other systems, we are not
trying to classify record pairs directly into duplicates and non-duplicates but concentrate on learn-
ing an entity representation that allows us to classify on the basis of simple distance measures, such
as the Euclidean distance. As a consequence, this method could also be used as a distance measure
in other applications, such as clustering.

With Termite, the authors of Reference [22] propose a system that allows the execution of
queries across multiple structured and unstructured data sources. In a nutshell, the system trans-
forms structured and unstructured data into a common embedding space where it can be used to
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retrieve related data points regardless of their origin and schema. Because the authors are mainly
interested in identifying related entities across heterogeneous data sources, they address a problem
different from ours. Although they also use an SNN architecture, they focus on learning a concept
of relatedness between entities, which can be interpreted as a more relaxed case of deduplication,
where it is sufficient for the entities to be similar, but do not necessarily correspond to the same
real-world entities. Another difference to our work is that the authors consider both structured
and unstructured data sources and do not explore the concept of transfer learning.

Unsupervised Approaches. In contrast to supervised methods, unsupervised techniques sim-
plify the process of duplicate detection by not requiring labeled training data to achieve the desired
classification. In this case, clustering algorithms, such as k-means or farthest-first clustering, were
used to group together duplicate and non-duplicate entity pairs in clusters [20, 25, 28]. To this end,
the required parameter k, which determines the number of clusters to be created, is often set to
a value of two or three. A value of two clusters (k=2) corresponds to the categories “duplicate”
and “non-duplicate,” while a value of three (k=3) considers an additional category with the name
“possible duplicates.” Although cluster-based approaches can often be less accurate than their su-
pervised counterparts [25], they are still useful for real-world applications, as sufficient training
data is usually not available and has to be created with great effort.

Semi-Supervised Approaches. Algorithms that follow the principle of Active Learning form a
subset of semi-supervised learning methods. The core of this principle is to enable the algorithm to
query an external information source to resolve particularly challenging or hard-to-decide training
cases. Sarawagi et al. designed a duplicate detection system that follows this principle [50]. The
system works by having difficult-to-classify duplicate pairs evaluated by a user. The information
gained is then fed back into the training process, creating a new and enhanced model. The iteration
of this procedure allows the repeated improvement of the model until it is finally able to identify all
entities as either duplicates or non-duplicates. A similar system was created by Tajada et al. [55].
It relies on decision trees to detect duplicate entity pairs.

Over the years, many crowd-based systems have been proposed, which also fall into the category
of semi-supervised systems [1, 17, 23, 56]. One of these systems, CrowdER [57], pursues a hybrid
approach to entity resolution seeking to narrow the gap between purely machine-based and purely
human approaches. This is done through a two-step heuristic approach using a machine-based
approach to reduce the search space and then presenting possible matches to a human audience
for evaluation. Another recently introduced system is CloudMatcher [27], which was introduced
as a fast, easy-to-use, scalable, and highly available service for entity matching.

Transfer Learning. In addition to the methods discussed so far, there are approaches in which
transfer learning plays an essential role. In their approach, the authors of Reference [46] focus on
reducing labeling costs through adaptive sharing of learned structures between scoring problems,
involving more than two data sources. To this end, they define the problem of Multi-Source Sim-
ilarity Learning, which explicitly focuses on entity resolution with more than two data sources.
Furthermore, their approach is based on similarity vectors composed of traditional similarity met-
rics that are used to train an entity resolution that is confined to linear classification models. In
contrast, we concentrate on one (deduplication) or two (record linkage) data sources, learn a similar-
ity measure that is specifically tailored to the underlying dataset, and use a non-linear classification
method by means of a neural network.

The deep learning-based approach of Kasai et al. [33] focuses on low resource consumption and,
to this end, combines transfer learning with active learning components. Like earlier approaches,
the authors turned to fastText embeddings, which contain subword information, to translate the
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processed tuples into a common embedding space, thus reducing the OOV problem. While this
approach produces fewer OOV cases, our approach employs character embeddings, which are even
more fine-grained, and almost completely avoid the OOV problem. Furthermore, the authors base
their classification on similarity vectors and use a negative log-likelihood loss in conjunction with a
softmax function, while our architecture is based on SNNs and therefore employs a contrastive loss
function between vector representations of the processed entities. For knowledge transfer, they
train all parameters of their network on the source dataset and use them to classify the entities of
the target dataset. We follow the same approach for training, but transfer only the learned attribute
representations and retrain the upper layers on the target dataset for fine-tuning.

Instead of an SNN architecture, the authors of Reference [59] suggest the use of a hierarchical
neural network that combines character and word-level representations as well as attention mech-
anisms. While they use the same intuition, their approach differs in some aspects from ours. In
particular, they extensively use type information from a knowledge base to pre-train the attribute-
level EM and type matching models in an offline process. Thus, the use of a knowledge base be-
comes an essential part of their approach, which is not a prerequisite in ours. For training, they
employ a log loss function that, in contrast to our contrastive loss, does not account for class
imbalances in the training data.

The approach proposed in this article leverages two key concepts. The application of SNN to
recognize similarities between various entities and the trend of automatic feature learning, which
was pioneered by the deep learning community. Due to its design, this type of network is partic-
ularly suitable for learning distance measures between two entities, which is why we decided to
exploit its features for duplicate detection.

3 PROPOSED APPROACH

Duplicate detection is a fundamental task in the field of data quality and data cleansing that has
been extensively studied over the years [21]. Research has analyzed different methods that span
all necessary steps [14]:

(1) Normalize data,
(2) Index and retrieve candidates of matching records,
(3) Compare the retrieved candidates,
(4) Classify them as matches or non-matches,
(5) Evaluate the entire process.

We contribute to Steps 3 and 4 by introducing a deep neural network capable of learning a
similarity measure that is tailored to the idiosyncrasies of a particular dataset. Using this tailor-
made, learned measure, we are able to classify entities with high accuracy as “duplicates” or “non-
duplicates.” For Steps (1), (2), and (5), we employ standard techniques as described in Reference
[14].

Similarity Measures. Because similarity measures are an integral part of the deduplication pro-
cess, we briefly introduce the most important concepts. Traditionally, similarity measures are cho-
sen w.r.t. the underlying attribute’s type [15]. For instance, if the field is of type Date, then the
measure should consider a similarity in years to be more important than just in months or days. In
our experiments, we treat all attributes as alphanumerics, as it is the most general type. Thus, here
we consider only string similarity measures. These can be subdivided into (a) edit-based, (b) token-
based, (c) hybrid, and (d) phonetic measures. Measures of type (a) are based on edit-operations,
such as Levenshtein [37] or Jaro-Winkler [58], whereas measures of type (b) tokenize the strings
and compare the sets of tokens—Dice [18] and Jaccard [31] being two examples. Type (c) measures
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are typically a combination of (a) and (b), with MongeElkan [40] serving as a good example. Last,
Type (d) measures, such as Soundex [47], are ideal for words that sound similar as they transform
syllables into characters that represent that sound.

In this section, we present the architecture, loss function, and training details of our approach.
Section 3.1 introduces the general intuition and overall architecture of Siamese neural networks.
Then, Section 3.2 gives a detailed description of the subnet architecture. The loss function and its
mode of operation is presented in Section 3.3. Finally, we present the training procedure and its
parameters in Section 3.4.

3.1 Siamese Neural Networks

When detecting duplicates, it is often the case that standard similarity measures are difficult to
choose and cannot be sufficiently adapted to the complex characteristics of the underlying dataset.
This difficulty becomes evident upon a closer look at the circumstances in which these measures
are used. For example, a similarity measure that is designed to compare first names is clearly un-
suitable for comparing timestamps but also other string-types, such as street-addresses, should be
compared differently. Moreover, similarity measures are use-case driven. For instance, it strongly
depends on the respective use case whether it makes more sense to compare two timestamps with
regard to their syntactical or their chronological similarity. Even within the values of a particu-
lar domain, the chosen similarity measure may not be equally suitable for all encountered values.
As such, an address column might contain both street and postbox addresses for which a case-
based similarity measure might work best. Finally, it is often quite difficult, even for experts, to
find a good weighting of the various attribute similarities to determine an overall similarity score
of two input-records. It is, for example, not always clear whether first names are generally more
important than city names when comparing customer records.

The SNN architecture was first introduced by Bromley et al. [8] to verify signatures on credit-
cards. Since then, it has been used in many different areas, such as one-shot learning [35] as well as
recognizing textual [45] and facial similarities [11]. As Siamese networks have already been shown
to work well in areas where similarities between different entities need to be evaluated [38, 45], we
chose this type of network to address the task of duplicate detection. Due to the twin architecture
of these networks, they are particularly well suited to identify differences and similarities between
the considered entities.

We intend to learn a similarity measure directly from the raw data, thus skipping the traditional
feature engineering step required in other machine learning approaches. For this purpose, the
network is trained by exposing it to both positive as well as negative example pairs. In our case,
a training example consists of two tuples t1 and t2, and a corresponding binary label Y , which
indicates whether the tuples refer to the same (Y = 1) or different real-world entities (Y = 0). In
turn, a tuple consists of several attributes a1, . . . ,an , which are individually preprocessed and
passed to the subnets. The architectural details of the subnets are explained in more detail in
Section 3.2.

In training the network, we aim to learn a function capable of mapping the input values into
a lower dimensional embedding space, where a simple distance measure, such as the Euclidean
distance, can be used to estimate the semantic similarity between the two tuples. The learned
function should be able to position similar tuples close to each other within the embedding space,
while different tuples should be positioned further apart. During training, we therefore use the
positive examples to reduce the distance between known duplicates as much as possible, while
using the negative examples to maximize the distance between known non-duplicates. The final
function should yield a distance value that is very close to zero if two tuples are duplicates, and a
value close to one otherwise.
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Fig. 1. Overview of the SNN architecture.

An SNN consists of two identical subnetworks S1 and S2, which are interconnected via a common
energy function E. Since both subnets are identical in all aspects, this also means that they share
a common weight or parameter matrixW . By sharing the model parameters between the subnets,
both networks calculate the same function, thus making the learned similarity measure symmetric.

Figure 1 provides a conceptual overview of the network structure and illustrates all key com-
ponents. As input, the network expects an entity pair in the form of two tuples and the corre-
sponding label, which serves as the optimization target. More specifically, each tuple is provided
to the network in an attribute-by-attribute fashion. Each of the two subnets thus processes one
tuple of a given entity pair. Viewed from a conceptual level (see Figure 1) both input tuples pass
through three network layers and eventually end up in the last layer as two reduced vectors of
fixed dimensionality (Ent1, Ent2). The two resulting vectors serve as inputs to an energy function,
which calculates a scalar value that can be interpreted as a similarity estimate. Next, we explain
the structure of the two subnets (S1, S2) in detail.

3.2 Neural Network Model

This section contains a detailed description of the subnet architecture and an explanation of our
design decisions. During the development phase, we experimented with different network archi-
tectures, exploring different layer depths, pooling layers, and attention mechanisms. In the follow-
ing, we describe the architecture that achieved the best results.

As input, each subnetwork receives one of the tuples t1 or t2. These tuples consist of attribute
values A = (t[a1], . . . , t[an]) that belong to a specific domain D = (d1, . . . ,dn ). Since our inten-
tion is to transfer knowledge between two networks, the tuples are fed to the network attribute
by attribute. The reasons for this approach are explained in Section 4. Although a domain can
be categorized by its data type, for example, d1 can be of type integer or string, we are more in-
terested in the semantic content of each domain. For instance, attributes belonging to a specific
domain represent street names, while attributes from another domain represent movie titles. The
core idea is to use neural networks to learn the characteristic data distribution of each domain,
using all domain attributes as training data. Once the weight matrices of the individual domains
have been formed as a result of the network training, they can be transferred to another network.
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Assuming that movies are often based on books, it is plausible to use the weight matrix of a book
title attribute from network N1 to initialize the weight matrix of a movie title attribute in network
N2 to perform knowledge transfer.

Examining the attributes of a particular domain, we find that they are often very different in
length. For example, the street name “A Street” is relatively short, while “Newport Pagnell Mo-
torway Services Areajunction 14 15 M1” is rather long. Since the network design has to deal with
these varying attribute lengths, this affects both the structure as well as the building blocks used
to construct the network.

Although it is possible to use 1D Convolutional Neural Networks (CNNs) [26] to process sequen-
tial data streams of varying lengths (x1, . . . ,xt ), our architecture uses Recurrent Neural Networks
(RNNs) [26] for the sequential processing of the attribute values. Unfortunately, simple RNNs suf-
fer from the vanishing [3] or exploding [48] gradient problem and are therefore difficult to train.
Due to this limitation, we decided to use Long Short-Term Memory (LSTM) networks [30], which
are an extension of RNNs that mitigate these problems. We arrange two LSTM networks according
to the Bidirectional RNN architecture of Schuster and Paliwal [51], forming a bidirectional LSTM

network (BLSTM). A BLSTM network essentially consists of two LSTM networks that process the
transferred character embeddings of a given attribute in opposite directions. The first network
processes the input sequence from left to right, while the second processes the input sequence
from right to left. Processing the input sequence from both sides allows us to consider context
information from future and past states. The final results of both networks are then concatenated
and forwarded to the subsequent network layer.

As shown in Figure 1, we use an embedding layer (Emb1... |A |) as the first layer of each subnet.
As discussed in Section 2, we feed each attribute value character by character into the network,
building a character embedding for each character used within the attributes. We decided to pro-
cess the attributes on a character basis, in the hope that this enables the network to learn how to
cope with character level issues, such as transposed numbers, misspellings, or shared character se-
quences. Such effects are particularly prevalent in attribute domains with many name variants and
ambiguities, such as last names, company names, product names, and brands. These embeddings
are utilized both by the subsequent BLSTM layer and during our knowledge transfer experiments,
where they are used to transfer the underlying character distribution of the attribute domains.
We employ the BLSTM architecture described above as the next network layer. Since we use one
BLSTM network per attribute, the structure of the network ultimately depends on the number
of existing attributes in a tuple. This decomposition is what allows us to automatically learn a
condensed representation of the underlying attribute domain for each attribute separately.

As discussed in more detail in Section 4, the knowledge accumulated in both the weight matrices
of the attribute embeddings (Emb1... |A |) and BLSTM layers (BLSTM1... |A |) shall be transferred to
another deduplication network, operating on a different dataset. Each BLSTM network generates a
fixed-length vector (Vec1... |A |), which represents a compressed version of the currently processed
attribute. These vectors are then concatenated by a Concat layer, thus forming a compressed rep-
resentation of the entire tuple. The resulting tuple representation is then passed through a fully
connected (FC) layer, enabling the network to learn relationships between the individual attributes
of the constructed tuple.The resulting tuple embeddings (Ent1, Ent2) are then passed to the energy
function whose results are used to calculate the gradients for the backpropagation step.

The noise that occurs in entities of structured data sources is often caused by typos or spelling
variations in their attribute values. By leveraging character embeddings as well as end-to-end
network training, we are able to learn that even though two entities differ in some characters,
they still represent the same entity. This is achieved by adjusting the weights of the network
during backpropagation so that the FC layer causes different weights to be assigned to character
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embeddings of common characters than to those that differ. In this way, the FC layer generates an
entity representation that reduces or increases the distance of duplicate or non-duplicate entity
pairs in the latent space despite the presence of noise.

The individual dimensions of our model are as follows: The dimensionality of the character
embeddings is 32. Our LSTM layer has 128 dimensions, and the FC layer has 64 dimensions. The
details of our loss function are discussed in the next section.

3.3 Loss Function

The general intuition of our system is to train a neural network NW (X ) that is able to project the
given tuples into a low-dimensional embedding space. In this space, duplicate and non-duplicate
tuple pairs can be distinguished by using simple distance measures, such as the Euclidean distance
or other more complex measures [10]. Learning in this context means adapting the weights of NW

so that the calculated loss is minimized. The goal of the mapping is to place similar tuples close
to each other in the embedding space while dissimilar tuples are placed further apart. To learn
a function with these properties, we use the contrastive, energy-based loss function presented in
Hadsell et al. [29]. As described in the last section, both tuples are passed through the network
yielding one embedding vector (Ent1, Ent2) for each tuple. If we choose the Euclidean distance as
energy function EW (Ent1, Ent2) = ‖Ent1 − Ent2‖, then the general definition of the loss function
is

L (EW ,Y ) = YLD (EW (Ent1, Ent2)) + (1 − Y )LND (EW (Ent1, Ent2)). (1)

The dependence of the energy function on the parameter values of the network is expressed by the
W in the definition. At its core, the loss function consists of the terms LD (EW ) and LND (EW ), which
ensure that similar inputs receive a low energy value whereas unequal inputs receive a higher
one. In their work, Hadsell et al. motivate the intuition behind these terms with the behavior of
mechanical springs, where LD brings similar embedding vectors closer together and LND repels
different vectors [29]. If we define the two terms as follows:

LD (EW ) =
1

2
(EW )2, (2)

LND (EW ) =

{
1
2 (m − EW )2 if EW < m,
0 otherwise,

(3)

then the result is the following loss function:

L (EW ,Y ) = Y
1

2
(EW )2 + (1 − Y )

(
1

2
max(0,m − EW )

)2
. (4)

The value m in this definition is a margin value, which controls that only tuple pairs within the
specified margin contribute to the loss function. In addition, Hadsell et al. emphasize the meaning
of the LND term, which makes it possible to take dissimilar tuples as well as similar tuples into
account when minimizing EW , thus enabling a more optimized solution.

Duplicate detection often involves highly skewed datasets containing many more non-
duplicates than duplicates. We introduce the weightsWD andWND , which allow us to weigh the loss
terms LD and LND differently. In this way, we can control how strong duplicates or non-duplicates
contribute to the calculated loss. Extending Equation (4) with the weight parametersWD andWND

yields our final loss function:

L (EW ,WD ,WND,Y ) =WDY
1

2
(EW )2 +WND (1 − Y )

(
1

2
max(0,m − EW )

)2
. (5)

We used the duplicate to non-duplicate ratio of the respective training set to determine appro-
priate weights (WD ,WND) for the loss function. Because we generated our datasets with a duplicate,
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non-duplicate ratio of 1 to 10 (described in Section 5.3), we adopt these settings also for the weight
parametersWD andWND . In cases where it is difficult to estimate the parameter values forWD and
WND , they can be determined by means of hyperparameter optimization [4, 52].

3.4 Training Details

We use backpropagation to determine the gradient of the loss function with respect to the weights
W . We update the weights by employing Adaptive Moment Estimation (Adam) [34], which is ca-
pable of computing adaptive learning rates for each parameter. We kept the default settings for the
optimizer at α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. Due to the weight sharing between S1

and S2, the gradients of both networks behave additively, so that we use the summed gradient con-
tributions of both subnets while updating the weights. For training, we use batch sizes of 16 and
32. The margin on the loss function was set to a value of 1. To initialize the weights of each layer,
we use the Xavier initialization scheme as presented in Reference [24]. To counteract overfitting
of the network, we employ dropout regularization for each time step of the LSTM by setting the
dropout value to 0.1 [53]. We trained the network until convergence, which in our case required
between 10–15 epochs. For the implementation of the model, we used the Keras Framework using
Tensorflow as its backend. All models were trained using an Nvidia Titan X Pascal GPU.

Training a model took between 30 min and 24 h, depending on the dataset size. For all datasets
that were categorized as small in Table 1, we performed a 10-fold cross-validation. We initially
divided the entire dataset into a training and a test set at a ratio of 70 to 30 percent, using the
training set to perform a 10-fold cross-validation. For each fold, we selected the model from the
epoch with the best F-measure on the cross-validation’s test data to make a prediction on the
previously separated test set. We use these predictions to report on the average precision, recall,
and F-measure over all 10 folds.

Since the datasets categorized as large in Table 1 were too large for a full cross-validation, we
employed a different evaluation scheme. We divided the corresponding datasets according to a
ratio of 3:1:1 into training, validation, and test sets. We then trained on the training set and used the
validation set to select the model from the epoch with the best F-measure, which we used to make
a prediction on the test set. In this scenario, we report the best precision, recall, and F-measure on
the test set. For the entire model, we used rectified linear units (RELUs) as our activation function.

4 KNOWLEDGE TRANSFER

To reduce the amount of data needed to train neural networks, it is our goal to transfer already
learned knowledge between networks. As pointed out by Jialin Pan and Yang [32], transfer learning
addresses this by allowing domains, tasks, and distributions used in training and test to be differ-
ent. According to their proposed categorization, we identify our case of knowledge transfer as
“Transductive Transfer Learning.” While for us the task of duplicate detection always remains un-
changed, we change the underlying domain by switching from detecting duplicates on one dataset
(e.g., Movies) to detecting duplicates on a different dataset (e.g., CDs). Thus, knowledge transfer
makes it possible to train models for which this would not have been possible due to insufficient
training data.

As in other areas, the available datasets for duplicate detection differ greatly in terms of labeled
training data. On the one hand, there are datasets that contain a large number of already labeled
duplicate pairs; on the other hand, there are datasets that contain almost no labeled pairs. Our
central idea is therefore to exploit this imbalance by training a neural network on a dataset with
a large number of duplicate pairs and transferring the acquired knowledge to the classification of
duplicates, where the dataset contains significantly fewer training examples.
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Because we learn to deduplicate entities, which are represented as tuples, the tuple attributes
and their domains are of vital importance. As described in Section 3.2 a crucial step in our dedupli-
cation approach is to learn the characteristic data distribution for each attribute domain individ-
ually. This is achieved by the network design shown in Figure 1. Here, the critical part is making
use of individual embedding and BLSTM layers for each attribute. By deliberately separating the
individual attributes, the domain knowledge gained during training accumulates in the weight
matrices of the dedicated embedding and BLSTM layers. This effect allows us to transfer the do-
main knowledge for specific attributes individually. For example, we can choose to transfer only
the knowledge of specifically selected attribute domains, which can give us an advantage in the
target domain. Formally, the knowledge transfer can be defined as follows:

Knowledge Transfer & Domain Compatibility: Given two neural networks—
a source network N1 and a destination network N2—as well as their associated
training data T1 and T2. We define knowledge transfer as the transfer of selected
weight matrices from N1 to N2. To this end, we train N1 using T1 and transfer
the gained knowledge to N2 before training it on T2. In addition, we define that
two attribute domains—a source attribute domain DS and a destination attribute
domain DT —are domain-compatible to each other, if they are either equal (DS =

DT ) (e.g., both street names) or structurally similar (DS ≈ DT ) to each other (e.g.,
book title and movie title).

Although we assign compatible attribute domains manually in our experiments, similarity
search techniques such as LSH Ensemble or BML can be used to find compatible attribute do-
mains suitable for knowledge transfer [44, 60]. Systems such as DeepAlignment [36] can also be
used to automatically determine a corresponding domain mapping. This aspect is outside the scope
of this article.

Technically, we perform a knowledge transfer by using both the weight matrices of the embed-
ding and the BLSTM layers in N1 to initialize compatible attribute domains in N2. As a result, we
are able to train N2 even if T2 contains much fewer training examples than T1 (|T2 | � |T1 |). This
method is often referred to as “fine tuning” the network. Note that the knowledge accumulating
in the weight matrices of the FC layer (W ) during the training process is specific to the entities
being compared (e.g., books or movies), not the attributes (e.g., name, zipcode). For this reason,
the weights of the FC layer are not easily transferable for deduplication of other entities, such as
cars or hotels. While the the learned attribute representations can be reused for the deduplication
of other entities, the knowledge of how to combine the individual attribute representations into
a vector-based representation of the processed entities must be relearned for the specific entities
being deduplicated. To transfer the maximum available knowledge, this process can be performed
for multiple attribute domains coming from different source networks. For example, it is possi-
ble to transfer weights from several different source networks to corresponding attributes of a
target network. For instance, assuming two previously trained source networks N1 and N2, it is
possible to transfer a weight matrix for art titles from N1 and a weight matrix for a location do-
main from N2 to a target network N3. The elegance of attribute-based knowledge transfer lies
in the fact that over time a steadily growing repository of weight matrices for a wide range of
attribute-domains accumulates. In case only some attributes are domain-compatible during knowl-
edge transfer, the remaining attribute values could be initialized with weights from the repository.
In addition, one could try to learn the weight matrices for a particular domain completely unsuper-
vised through the use of encoder-decoder architectures, which would allow the repository to be
easily extended. By following this protocol, it is now possible to combine knowledge from multiple
different source networks to initialize as many attributes of the target network as possible with
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pre-trained weights. Finally, it should be noted, that the transferred weight matrices can be used to
initialize multiple attribute domains of the target network, if a domain meets the above mentioned
requirements.

5 DATA AND GOLD-STANDARD

In this section, we give a brief overview of the used datasets (Section 5.1), their preprocessing
(Section 5.2), and describe our process for creating non-duplicate pairs (Section 5.3).

5.1 Datasets

Identifying and evaluating solutions to problems existing in the real world requires the use of real-
world datasets. Since the proposed method can be used to find duplicates both within the same
dataset (duplicate detection) and between different datasets (record linkage), we test it on datasets
for both tasks. The main difference between the two scenarios is that duplicate detection aims
to find all duplicates within a single dataset, whereas record linkage seeks to uncover duplicates
across multiple datasets. Given two relationsA and B of sizes n andm, respectively, the process of
duplicate detection produces candidate pairs in O ((n +m)2), whereas in a record linkage scenario,
the number of pairs that need to be evaluated are in O (n ·m). Therefore, the two scenarios differ in
that deduplication creates more non-duplicate candidate pairs, which can result in more duplicates
being misclassified, which in turn can negatively impact classification results. Although the record
linkage scenario can also be mapped to a deduplication scenario, we have deliberately refrained
from doing so to reflect the evaluation setup of the competitor approaches.

For the task of duplicate detection, we compare our approach with that of Christen [13], which
is essentially based on the classification of feature vectors created on the basis of the compared
entities. To this end, they use an SVM classifier with various hyperparameters. We use the same
datasets as Christen, which can be found on our website.1 The details of the individual datasets
can be found in Table 1 and in the brief descriptions below.

Table 1. Datasets Used for Our Experiments

Dataset #dpl #ndpl #records class
Deduplication

Restaurants 112 1,120 864 small
Census 376 3,760 841 small
CD 300 3,000 9,763 small
Cora 64,578 179,125 1,879 large
Movies 14,190 141,900 39,180 large
Record linkage

BeerAdvo-RateBeer 68 382 544 small
iTunes-AMA 132 407 933 small
DBLP-Scholar 5,473 54,730 66,879 large
DBLP-ACM 2,224 22,240 4,910 large
WMT-AMA 1,157 11,570 24,628 large
AMA-GOOG 1,300 13,000 4,589 large

• CD: Entries of audio CDs with descriptive attributes, such as artist, title, tracks, genre, and
year.

1https://hpi.de/naumann/projects/repeatability/duplicate-detection/knowledge-transfer-for-duplicate-detection.html.
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• Census: Based on real data and generated by the U.S. Census Bureau, it contains a single
attribute with a record value, called “text.” This dataset contains two relations “A” and “B,”
and could also be used for record linkage, i.e., linking the two relations. Like Christen,
we treat it as a typical single-relation dataset and try to find duplicates instead of linking
matches.

• Cora: Bibliographic records of machine learning publications, it includes reference infor-
mation, such as authors, title, and year.

• Movies: Result of merging two different datasets, such that real-world duplicates are avail-
able. The information provided is limited to actors and movie titles.

• Restaurants: Mixed dataset of two other relations, based on the Fodor’s and Zagat’s restau-
rant guides. This corresponds to the Fodor-Zagat dataset in Reference [41].

For the record linkage task, we compare our approach with the reported performance metrics
of the DeepMatcher system, and therefore use the same datasets as Mudgal et al. [41] (see Table 1).
Though DeepMatcher can be configured with a number of different architectural variants, their
comparison shows that, apart from the hybrid variant, the RNN variant is superior to the other
architectural variants in terms of performance. When comparing the RNN with the hybrid vari-
ant, it turns out that the former is on average only 1.5% F-measure points worse, which does not
constitute a clear superiority of the hybrid variant. For this reason, and because the RNN archi-
tecture of DeepMatcher comes closest to our approach, we focused on comparing our approach
to the RNN variant of DeepMatcher. We do not compare our approach on their Home, Electronics,
and Tools datasets, as those are not publicly available. All other datasets can be obtained from the
Magellan Data Repository [16], which contains not only statistics about each dataset but also a
detailed description of how they were created.

Except for the BeerAdvo-RateBeer and iTunes-AMA datasets, which already contained non-
duplicate pairs, we had to generate them for all other datasets according to the process outlined
in Section 5.3. Statistics about the number of duplicate (#dpl) and non-duplicate (#ndpl) pairs, the
total number of records (#records) as well as a categorization into small and large datasets (class)
can be found in Table 1. We categorized datasets that contain fewer than 4,500 labeled tuple pairs
(#dpl + #ndpl) as small datasets and those with more than 4,500 labeled tuple pairs as large datasets.

5.2 Data Preprocessing

We kept preprocessing to a minimum to not alter the input data too drastically from its original
raw state. As such, we first lower-cased all input characters, which not only helped the network
to generalize better but also reduced the size of the embedding layers.

We then normalized any Unicode characters so that, e.g., accents and umlauts are translated into
their respective ASCII characters, using the normalize function of the Python unicodedata package.
For example, the German ö was replaced by the combination oe, whereas other characters, such as
é or ç, were simply replaced with the letters e and c. This normalization further reduced the size
of the embedding layers.

In a final step, we translated each ASCII character into its corresponding ASCII numeric repre-
sentation, which served as input for the network. To speed up network training, we truncated the
values of the description attribute of the AMA-GOOG dataset after 1,000 characters.

5.3 Selecting Duplicate and Non-duplicate Pairs

The gold standards that are available for most of the datasets in Section 5.1 each contain a list of
record pairs that uniquely identify duplicate record pairs. In case this set is not transitively closed,
we additionally create all transitive pairs and call this extended set DPL. For most datasets, the
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number of existing duplicates represents only a small subset of all possible tuples. To train and test
a classifier, we also require a number of negative examples, i.e., non-duplicate pairs. Unfortunately,
a random pairing of tuples most likely results in non-duplicate tuple pairs that exhibit a very
low similarity in their attribute values, which in turn makes them easily distinguishable from
true duplicates. This does not reflect the challenges of a real-world matching process, hence it
is necessary to create non-duplicate pairs of greater similarity, making it harder for the model
to classify them. Since training and testing with hard to distinguish non-duplicates comes much
closer to a realistic matching scenario, we rely on blocking techniques [14, 21] to generate non-
duplicate pairs that are harder to distinguish from real duplicates. In practice, to speed up duplicate
detection, blocking methods are typically used to divide datasets into disjoint subsets, called blocks,
according to a predefined partitioning key. To avoid false negatives, usually multiple partition keys
are defined. It is important to select the partition key with great care, as it controls not only the
size and number of blocks but also how similar the individual data records within each block are.

We perform a simple blocking by using each attribute of the currently processed dataset as a
partitioning key. In case an attribute is multi-valued, we first divide it into its individual values and
use those for blocking. Very unique attributes, which would lead to many single-record blocks, are
split into n-grams of 6 to 10 characters, depending on the length of the attribute, and then used as
partition keys. As a result, we obtain several blocks, within which we create the cross-product of
all contained data records, and thus form data record pairs that are then combined into a common
dataset. After making sure that there are no known duplicate pairs in the resulting dataset, we
refer to it as NDPL.

The NDPL dataset is, therefore, the set of all record pairs that can be formed within all blocks
and does not include duplicate pairs. To achieve a reasonably balanced training set, we ensured
that the ratio of DPL to NDPL is 1:10 by randomly selecting pairs from the NDPL dataset. An
exception to this is the Cora dataset, where we were unable to maintain the ratio of 1:10 without
overly relaxing the blocking strategy.

6 EXPERIMENTS

This section presents the results of our experiments. In Section 6.1, we discuss the results achieved
by training the SNN from scratch, while in Section 6.2, we present how transfer learning helped
to further improve the results. For details about the training process and its parameters, please see
Section 3.4.

6.1 Learning from Scratch

As a first experiment, we train the network on each of the datasets listed in Table 1 and report
the achieved precision, recall, and F-measure values. To see how our approach performs against
deduplication systems that use manual feature engineering, we compare ourselves to the SVM-
based system of Christen [13]. As pointed out by Ebraheem et al., DeepMatcher is an extension of
DeepER [19], hence in the record linkage case we compare ourselves with DeepMatcher.

6.1.1 Duplicate Detection. As seen in Table 2, we surpass the SVM-based approach in all cases,
sometimes even dramatically as in the case of the Cora dataset where we reach an F-measure of
99.24 percent. On average, we manage to exceed the SVM approach by +5.9 and +23.7 percentage
points in precision and recall, corresponding to an average improvement of +15.8 percentage points
in F-measure. We attribute the increase in performance to the possibility of training the network in
an end-to-end fashion. For example, the character embeddings are trained together with the actual
task, and, in contrast to manually created features, can be adapted according to the propagated
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Table 2. Performance Comparison for Deduplication
Datasets

Dataset SNNDedupe SVM [13]
P R F1 P R F1

Restaurants 96.5 100 98.2 97.3 75.8 84.1
Census 88.7 94.6 91.5 87.5 75.1 80.8
Cora 99.3 99.2 99.2 82.2 71.8 76.4
CD 91.8 84.0 87.4 – – –
Movies 93.1 85.7 89.2 – – –

Table 3. Performance Comparison for Record Linkage Datasets

Dataset SNNDedupe DeepMatcher [41]
P R F1 P R F1

BeerAdvo-RateBeer 74.9 74.3 73.1 59.1 92.9 72.2
iTunes-AMA 93.8 93.0 92.9 92.0 85.2 88.5
DBLP-Scholar 94.8 91.9 93.3 93.2 92.7 93.0
DBLP-ACM 98.4 98.0 98.2 97.1 99.5 98.3
WMT-AMA 61.6 60.8 61.2 70.9 64.6 67.6

AMA-GOOG 90.6 82.1 86.1 69.5 52.6 59.9

error. In this way, the entire network is tuned to the task at hand, which is difficult to accomplish
with an SVM approach that works with a number of predefined features.

An interesting observation during evaluation was the analysis of the causes for misclassification:
We found that when the network generated classification errors, they were often accompanied by
missing data in at least one of the entity’s attributes. This is a well-known problem in the area
of duplicate detection, and we noticed that it negatively affects the performance of the neural
network. In short, if we decide to replace an empty attribute field with a specific value, then we
change the entities so that they become either more similar or dissimilar. In the worst case, this
process makes the correct classification considerably more difficult. To avoid this problem, we
decided to exclude attributes with missing values from the entity representation that is passed to
the network. Technically, we achieve this by replacing both attribute values in their respective
entities with a fixed value, e.g., zero, and use a corresponding masking layer within the network
to make these values invisible to the network.

6.1.2 Record Linkage. In the case of record linkage, Table 3 shows that we were able to out-
perform our competitor on four out of six datasets. The largest improvement was achieved on the
AMA-GOOG dataset, where we measured an improvement of +26.2 percentage points in F-score
over DeepMatcher. We suspect this large performance increase to be caused by the truncation of
the description attribute during the preprocessing phase, making it easier to learn a better repre-
sentation of the description attribute. In most of the other cases, the performance increase is not as
significant as with the deduplication task; however, we were also able to measure an improvement
of +4.4 percentage points for the iTunes-AMA dataset.

In the case of the WMT-AMA dataset, however, our approach is 6.4 percentage points worse
than DeepMatcher. As mentioned by Mudgal et al., it can sometimes occur that due to inaccurate
extraction methods, some attribute values are not assigned to the intended columns, but to the
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Fig. 2. Performance of SNNDedupe on deduplication datasets for increasing amount of training data (of a
3:1:1 split).

columns of other attributes [41]. Because the WMT-AMA records contain such impurities, our
network architecture struggles to find a good representation for dirty attribute columns, which
is reflected in weaker performance. To address this issue, the deduplication could be performed
on a representation of the entire entity, created by concatenating the individual attribute values.
Using this approach, the network would be able to determine the similarity of two entities in their
entirety, eliminating the issue of incorrect attribute assignments, because entities are no longer
deduplicated on attribute but on entity level. Unfortunately, leaving the attribute level would pro-
hibit the formation of attribute embeddings during the deduplication process, which in turn would
render the envisioned attribute-level knowledge transfer impossible. We have therefore decided
to not proceed accordingly.

Our results are on par with those of DeepMatcher, justifying our design decisions, but in addi-
tion allowing us to perform knowledge transfer. In Section 6.2, we examine the effects of transfer
learning on the networks performance.

6.1.3 Learning with Increasing Training Data. Due to the large number of record pairs that can
arise during duplicate detection, a complete annotation of the entire dataset is usually very cost-
intensive. This raises the question of how SNNDedupe behaves for different amounts of training
data. To answer this question, we train SNNDedupe with an increasing amount of training data,
starting at 5% of the corresponding dataset, and gradually increasing it by 5% increments until we
arrive at utilizing the entire amount of training data. We do this for both the duplicate detection
as well as the record linkage datasets, with results shown in Figures 2 and 3. As both figures show,
the performance of SNNDedupe depends on the complexity of the dataset. While with relatively
simple datasets, such as Cora or DBLP-ACM, an F-measure of 98.6% and 94.89% can be achieved
with only 5–10% of the total training data, it is more difficult to achieve a satisfactory F-measure
with more demanding datasets, such as WMT-AMA, where we obtain an F-measure of 61.2% even
after utilizing all training data.
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Fig. 3. Performance of SNNDedupe on record linkage datasets for increasing amount of training data (of a
3:1:1 split).

Looking at the average performance, it can be seen that SNNDedupe is capable of achieving F-
measure values between 77–81% for deduplication and 59–66% in case of record linkage using just
5–10% of training data. In addition, we observe that for every additional 5% of training data, the
performance increase is significantly stronger in the beginning than later on. Thus, the average
increase in F-Measure for adding 5% additional training data within the first 25% of the dataset
amounts to 3.23% for record linkage and 2.16% for deduplication. In contrast, for every 5% in-
crease in training data within the remaining 75% of the dataset, the average increase in F-measure
measures only 0.56% (deduplication) and 0.75% (record linkage). This indicates that SNNDedupe
is able to provide a good classification performance after using up to 25% of all available training
data. In practice, however, this depends on the individual case as well as on the complexity of
the underlying dataset, which can be seen in the case of iTunes-AMA, where a significant per-
formance increase is also observed later during the transition from 50 to 55% of training data.
Another interesting finding is that the amount of training data used also influences the stability of
predictions. As such, the prediction behavior is relatively stable for datasets with many training
examples, whereas in the case of the Beer dataset, which consists of only 450 training examples,
strong fluctuations in the predictions of SNNDedupe can be observed. In general, SNNDedupe is
able to achieve average F-values of 72.49% (record linkage) and 85.26% (deduplication) by using up
to 25% of the respective training data.

It should be noted that for this experiment, the increase in training data is achieved by adding
randomly selected training examples. The selection of informative training examples is at the core
of active learning approaches and will be the subject of future research.

6.2 Transfer Learning

We examine the effects of transferring selected weight matrices, and thus the knowledge they
contain, from one network to another. Our goal is to explore how knowledge transfer affects the
training process and thus the performance of the network.
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Table 4. Results of Transferring Different Weight Matrices from One Network to Another

Transfer of Embeddings P R F1

Movies.actors −→ CD.artists
Movies.title −→ CD.album

87.1
(−4.7)

94.5
(+10.5)

90.4
(+3.0)

WMT-AMA.title −→ AMA-GOOG.title
WMT-AMA.techdetails −→ AMA-GOOG.description
WMT-AMA.brand −→ AMA-GOOG.manufacturer

90.2
(−0.4)

86.1
(+4.0)

88.1
(+2.0)

Transfer of BLSTMs

Movies.actors −→ CD.artists
Movies.title −→ CD.album

88.3
(−3.5)

87.5
(+3.5)

87.6
(+0.2)

WMT-AMA.title −→ AMA-GOOG.title
WMT-AMA.techdetails −→ AMA-GOOG.description
WMT-AMA.brand −→ AMA-GOOG.manufacturer

89.8
(−0.8)

84.1
(+2.0)

86.8
(+0.7)

Transfer of Embeddings & BLSTMs

Movies.actors −→ CD.artists
Movies.title −→ CD.album

91.9
(+0.1)

92.5
(+8.5)

92.1
(+4.7)

WMT-AMA.title −→ AMA-GOOG.title
WMT-AMA.techdetails −→ AMA-GOOG.description
WMT-AMA.brand −→ AMA-GOOG.manufacturer

91.7
(+1.1)

89.8
(+7.7)

90.7
(+4.6)

6.2.1 Experimental Setup. As explained in Section 3, the network architecture is structured so
that each attribute is processed by a dedicated subnetwork. This allows us to carry out even partial
knowledge transfers by transferring only the weight matrices for specific attributes. The general
experimental setup can be described as a two-step process. First, we take a neural network (N1)
that we previously trained on a source dataset and transfer the knowledge contained in the weight
matrices for specific attributes, to another, untrained network (N2). After the weight transfer is
complete, we train the network N2, which already contains the knowledge of N1 for the transferred
attributes, on a destination dataset. During our experiments, we transfer knowledge between two
network pairs, which each operate on one dataset pair. The first transfer takes place from a network
that has been trained on the Movies dataset to a network that shall be trained on the CD dataset.

As a second transfer, we transmit knowledge between a network trained on the WMT-AMA
dataset and a network that we then train on the AMA-GOOG dataset. As discussed in Section 4,
the general assumption made for these transfers is that the data distribution of the transferred
source attribute resembles the data distribution of the destination attribute and is therefore well
suited for the knowledge transfer. With this in mind, we decided for the first transfer to map
the weight matrices of the actor and title attributes of the Movie dataset to the artist and ti-

tle attributes of the CD dataset, respectively. This concrete transfer is reflected in the notation
used in Table 4: datasetsrc .attributesrc −→ datasetdst .attributedst describes from which source at-
tribute (attributesrc ) of the source dataset (datasetsrc ) to which destination attribute (attributedst )
of the destination dataset (datasetdst ) the knowledge transfer is performed. Although we perform
the mapping manually, schema matching research has produced a number of techniques to auto-
mate this step both heuristically and using machine learning approaches [2, 36]. The exploration
of these techniques lies outside the scope of this work.

6.2.2 What to Transfer? The next step is to determine which of the weights are transferred
from one network to the other. As can be seen in Figure 1, each of the subnetworks consists of two
layers, an embedding layer (Emb1... |A |) and a BLSTM layer (BLSTM1... |A |). For our experiment,
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this results in three possible transfer configurations, which are listed in Table 4. First, we transfer
only the weight matrices of the embedding layers, in a second step only the matrices of the BLSTM
layers, and finally, both matrices of the embedding as well as those of the BLSTM layers are trans-
ferred. We structure our experiments in this way, because it allows us to study how each weight
transfer affects the overall result. Once the weight transfer is complete, we train the network on
the destination dataset as described in the previous section. Table 4 reports on precision, recall,
F-measure, and relative improvement over the baseline, which was trained from scratch in the
previous section. The baseline values can thus be found in Tables 2 and 3. The relative improve-
ments over the baseline are shown in parentheses below their corresponding precision, recall, and
F-measure values.

Transfer Embeddings. Regarding the first experiment, in which only the embeddings are trans-
ferred, it is noticeable that an improvement of +3.0 and +2.0 percent compared to the respective
baseline can be observed for both datasets. Upon closer inspection, it can be seen that this im-
provement is mainly driven by an improvement in recall (+10.5/+4.0). These results support our
initial assumption that the network, due to its high flexibility, is actually capable of learning a
similarity measure that correctly identifies more duplicate pairs. It also shows that the knowledge
about certain attribute domains contained within the embeddings can be transferred to other at-
tributes that possess similar domain properties. Attention should also be paid to the circumstance
that in both cases the recall values increase significantly without a severe decrease in precision.
This interaction ultimately leads to the aforementioned improvement of F-measure.

Transfer BLSTM weights. In a second experiment, we transfer only the weight matrices of the
BLSTM layers. Compared to the transfer of the embeddings, there is only a relatively small im-
provement of +3.5 and +2.0 percent in the recall values, while the precision values decrease in both
cases. On careful consideration, this was to be expected as the BLSTM layers were trained together
with the embedding layers and therefore the values of their weight matrices are conditioned on
the specific embeddings that were jointly trained. If the embeddings are not transferred, but ini-
tialized randomly, then the weight matrices of the BLSTM layer also lose a lot of their significance.
Ultimately, this causes the network to perform hardly better than the baseline with +0.2 and +0.7
percent improvement in F-measure.

Transfer Embeddings and BLSTM weights. In the last transfer experiment, we measure the
performance of the network after transferring both the weight matrices of the embedding and the
BLSTM layers. With an improvement of +8.5 and +7.7 percent, the recall values show the greatest
improvement in this experiment. In contrast to the experiment in which only the embeddings were
transferred, however, an improvement in the precision values of +0.1 and +1.1 percent can also be
observed. Even though the improvements in the precision values are small, in combination with
the recall improvements, they ensure that the F-measure values improved by +4.7 and +4.6 percent
compared to the baseline. These results lead us to conclude that the best results can be achieved
when the weight matrices of both the embeddings and the BLSTM layer are transferred jointly.

Overall, the transfer enabled us to improve the total network performance by +4.7 percent from
87.4 to 92.6 percent F-measure for the CD dataset and by +4.6 percent F-measure from 86.1 to 90.7
percent for the AMA-GOOG dataset.

6.2.3 Data Reduction Through Knowledge Transfer. In a final experiment, we investigate to what
extent transfer learning can be used to reduce training data. To this end, we trained the network
on an increasing number of tuple pairs from the AMA-GOOG dataset and recorded the F-scores
achieved with and without knowledge transfer. The knowledge transfer was carried out in the
same way as in the previous transfer experiment (WMT-AMA −→ AMA-GOOG). We transferred
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Fig. 4. Development of the F-measure with and without knowledge transfer.

both the weights of the embedding layers as well as those of the BLSTM layers. Figure 4 shows that
knowledge transfer significantly improves performance when training with a smaller number of
tuple pairs. This performance increase can be clearly observed up to a number of 4,290 tuple pairs
and is less prominent afterwards. Nonetheless, it should be noted that the transfer values always
remain above the values measured without transfer. Considering the graph, it can be observed that
an F-score of 75.0 percent can be achieved when training with 1,430 tuple pairs, if a knowledge
transfer has been carried out beforehand. To achieve the same F-score without knowledge transfer,
one would have to use more than twice as many tuple pairs for training: the required amount of
training data can be significantly reduced through a well-executed knowledge transfer.

7 CONCLUSION AND FUTURE WORK

We introduced a deep Siamese neural network capable of learning a similarity measure between
tuple pairs of specific datasets that can then be used to detect duplicates. Thereby, we eliminate
the manual feature engineering process and thus significantly reduce the effort required for model
building. We compare our approach with two competitors, a more traditional, SVM-based duplicate
detection approach and DeepMatcher, a neural network for entity linking. In duplicate detection,
we were able to outperform our competitor in all cases with performance improvements of up to
22 percent. For entity-linking, we managed to outperform the DeepMatcher system on four out of
six datasets and achieved improvements of up to 26 percent F-measure.

We conceived and implemented a knowledge transfer between two deduplication networks,
which shows that knowledge that accumulates during the training in the weight matrices of one
network can be transferred to another. By transferring the matrices of selected attributes, we suc-
ceeded in increasing the overall network performance by +4.7 and +4.6 percent. This is a signifi-
cant performance increase when compared to the respective baselines. In addition, we showed in
a subsequent experiment that it is possible to reduce the amount of training data by performing
a knowledge transfer. We tested our method on multiple datasets and compare our approach to
other state-of-the-art methods.
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Although we have shown that weight matrices can be transferred from one attribute to another,
attributes for which we do not have pre-trained weight matrices must be initialized randomly,
which is not ideal. This problem becomes particularly serious if the target dataset has a large
number of attributes, but only a few of them can be initialized with pre-trained weight matrices.
In this respect, it would be interesting to investigate whether the knowledge for certain attributes
can also be captured by applying sequence to sequence learning [54]. By doing so, large amounts of
existing data could be leveraged to generate vectors containing information for specific attribute
domains, such as addresses, names, or descriptions. The vectors trained in this way could then
be used to, in an ideal case, initialize all attributes of the target dataset to further improve the
performance of duplicate detection.

While being one of the most widely used network designs, which in our case also resulted in
good network performance, the BLSTM architecture design does not exhibit particularly good
runtime performance. As runtime aspects were not the main focus of this work, it remains to be
investigated whether it is possible to replace the LSTM by more performant GRU cells in the re-
current model to improve the runtime performance without negatively affecting the classification
performance.

Another interesting question worth investigating would be to what extent multitask learning [9]
can be used for duplicate detection. For example, it is conceivable that a network could be adapted
to use multiple loss functions to train special similarity measures between the individual attribute
pairs, while at the same time using these measures to optimize the classification of the individual
entities into duplicate and non-duplicate pairs.
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