
ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Dynamic Buffer Sizing for Out-of-Order Event Compensation for

Time-Sensitive Applications

WOLFGANG WEISS, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Austria

VÍCTOR J. EXPÓSITO JIMÉNEZ, VIRTUAL VEHICLE Research GmbH, Austria

HERWIG ZEINER, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Austria

Today’s sensor network implementations often comprise various types of nodes connected with different

types of networks. These and various other aspects influence the delay of transmitting data and therefore of

out-of-order data occurrences. This turns into a crucial problem in time-sensitive applications where data

must be processed promptly and decisions must be reliable.

In this paper, we were researching dynamic buffer sizing algorithms for multiple, distributed and independent

sources, which reorder event streams, thus enabling subsequent time-sensitive applications to work correctly.

To be able to evaluate such algorithms, we had to record datasets first. Five novel dynamic buffer sizing

algorithms were implemented and compared to state-of-the-art approaches in this domain. The evaluation

has shown that the use of a dynamic time-out buffering method is preferable over a static buffer. The higher

the variation of the network or other influences in the environment, the more necessary it becomes to use

an algorithm which dynamically adapts its buffer size. These algorithms are universally applicable, easy

to integrate in existing architectures, and particularly interesting for time-sensitive applications. Dynamic

time-out buffering is still a trade-off between reaction time and out-of-order event compensation.

CCS Concepts: • Networks → Sensor networks; • Software and its engineering → Distributed
systems organizing principles; • Information systems → Temporal data.

Additional Key Words and Phrases: Out-of-Order Event Compensation, Time-Sensitive Applications, Dis-

tributed Systems, Event Processing, Multi-Source Event Data Fusion.

This research was funded by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and

Technology (BMK) within the framework of a sponsorship under the projects “Collaborative Robotics” (CollRob) and “Multi-

Dimensional Sensor Data Time Series Analysis” (MUST). This research was partly funded by the Comet Project “Dependable,

secure and time-aware sensor networks” (DeSSnet). DeSSnet is funded within the context of COMET - Competence Centers

for Excellent Technologies by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and

Technology (BMK), the Federal Ministry for Digital and Economic Affairs (BMDW), and the federal states of Styria and

Carinthia. The programme is conducted by the Austrian Research Promotion Agency (FFG). Research leading to these

results has received funding from the EU ECSEL Joint Undertaking under grant agreement no. 737459 (project Productive4.0)

and from the partners’ national funding authorities FFG on behalf of the Federal Ministry for Climate Action, Environment,

Energy, Mobility, Innovation and Technology (BMK) and the Federal Ministry of Education, Science and Research (BMBWF).

Moreover, the authors would like to acknowledge the financial support of the COMET K2 – Competence Centers for

Excellent Technologies Programme of the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation

and Technology (BMK), the Federal Ministry for Digital and Economic Affairs (BMDW), the Austrian Research Promotion

Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG). An earlier version of this article

[23] appeared in the Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security 2017.

Authors’ addresses: Wolfgang Weiss, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Steyrergasse 17, Graz, 8010,

Austria, wolfgang.weiss@joanneum.at; Víctor J. Expósito Jiménez, VIRTUAL VEHICLE Research GmbH, Inffeldgasse 21a,

Graz, 8010, Austria, victor.expositojimenez@v2c2.at; Herwig Zeiner, JOANNEUM RESEARCH Forschungsgesellschaft mbH,

Steyrergasse 17, Graz, 8010, Austria, herwig.zeiner@joanneum.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

https://doi.org/10.1145/3410403

1

mailto:herwig.zeiner@joanneum.at
mailto:wig.zeiner@joanneum.at
mailto:permissions@acm.org
mailto:ermissions@acm.org
https://doi.org/10.1145/3410403

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:2 W. Weiss et al.

ACM Reference Format:
Wolfgang Weiss, Víctor J. Expósito Jiménez, and Herwig Zeiner. 2020. Dynamic Buffer Sizing for Out-of-Order

Event Compensation for Time-Sensitive Applications. ACM Trans. Sensor Netw. 1, 1, Article 1 (January

2020), 23pages.https://doi.org/10.1145/3410403

1 INTRODUCTION

Internet of Things applications are on the rise as they accelerate digital transformations many

industries may benefit from. As a result, the number of connected devices and Internet of Things

networks increase with the consequence that also the volume of generated data increases. In

addition, end users expect timely and accurate results from connected applications.

Technically, sensor networks and Internet of Things applications can be built upon multiple,

independent, and distributed nodes generating and processing data. In applications used today it is

no longer sufficient to store data and retroactively process it. Data needs to be processed online and

decisions must be made near real-time. To be able to do so, a processing agent, such as an event

processing engine, collects the event streams from different sources and processes them. This raises

a couple of issues, mainly introduced by various delays, e.g. when detecting events, transferring

events to its destinations, or processing events. Suppose you are searching for a pattern of event

A being followed by event B, with each event coming from a different source in a distributed

system. This requires that all delays are either zero or of constant length, otherwise it is likely

that out-of-order events occur. These are events which arrive too late, e.g. in our example event A
occurred before event B but arrived after event B in the event processing engine. Event processing

is order and time-sensitive and therefore assumes temporally correct ordered event streams to be

able to create correct results.

One prominent mechanism for reordering events is to use time-out buffering. Thereby, events are

delayed in a buffer until they reach a preset time-out. Events arriving after the time-out cannot be

reordered. As the transmission time of events varies (like the travelling time of cars on a highway at

the rush hour and off-peak times), it gets necessary to dynamically adapt the buffer size accordingly.

This keeps the buffer time overall on a useful lower level, while relieving the system engineer

who designs and implements sensor network applications from the burden to exactly preconfigure

a time-out buffer. Instead, the engineer just needs to configure basic parameters in which the

algorithms operate. Dynamic buffer sizing algorithms calculate the buffer time from the incoming

event stream. Depending on the sizing strategy of the algorithm and the chosen parameters, the

resulting buffer time is usually higher than the minimum necessary (subsequently referred to as

“overfitting buffer time”), which has negative effects on the reaction time. As there occur a

number of unpredictable outliers of delayed events, and also the desire to keep the buffer time

low, it can still happen that not all out-of-order events can be compensated (subsequently

referred to as “not compensated events”). This also defines the trade-off space in which these

algorithms operate.
We evaluated dynamic buffer sizing algorithms for multiple and distributed sources, which

reorder event streams, enabling subsequent time-sensitive applications to work correctly. These

buffer algorithms are able to deal with varying temporal delays. After the taxonomy of [14], this

project can be classified as a data related fusion aspect dealing with data inconsistency, where the

data inconsistency refers to as disordered data. In the domain of sensor measurement fusion this is

often called “out-of-sequence measurements”. We stay in the domain of event based systems and

event processing, where the literature refers to this problem as “out-of-order events” (cf. [8, 9,

19]).

1.1 Outline

In this paper we want to find answers to the following questions: Is there a dynamic time-out

https://doi.org/10.1145/3410403

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:3

buffering method which is preferred over a static buffer? Is a dynamic time-out buffering method

1:4 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

applicable to fuse data from multiple distributed and independent sources for time-sensitive appli-

cations? The expectations for a dynamic buffer are high. The buffer should be as small as possible

while ensuring that all incoming events can be fully reordered. The buffer should adapt itself to

environmental conditions and changes of these conditions, such as varying transmission delays or

other influences.

We build upon previously published results [23] and extend it in several ways: More datasets

were recorded and a deeper analysis of the datasets is provided here. The algorithms were improved

and two new algorithms were added. A much deeper analysis of the algorithms is provided in this

project, where all datasets were applied.

Based on this project we are making following contributions:

(1) Five novel buffer sizing algorithms: novel algorithms have been implemented which

dynam- ically calculate the buffer time through derived properties of the current

environmental situation.

(2) Datasets for the evaluation of out-of-order compensation algorithms: 21 datasets

containing more than 500,000 events were recorded. These datasets are suitable for the

evaluation of out-of-order event compensation algorithms. All datasets were made open

source under a Creative Commons license.

(3) Evaluation of the algorithms: a detailed evaluation was carried out to compare the

implemented algorithms by using the open source datasets.

The target audience of this paper are algorithm researchers in the field of distributed computing,

and engineers in the field of sensor networks and Internet of Things applications. They benefit as

follows:

(1) Researchers who design and implement algorithms for out-of-order event compensation.

They benefit from the existing algorithms and their evaluation. They are free to use the

datasets to evaluate their implementations.

(2) Engineers who design and implement sensor networks or Internet of Things systems which

have a time-sensitive aspect in their application. They benefit from the description of the

problem and its influencing factors. They know which temporal properties need to be con-

sidered. They can select a suitable algorithm for their use case and know how to configure

it.

The next section gives an introduction on the background of this domain and lists the require-

ments. An overview of existing and related work in the field of out-of-order event processing and

compensation is given in Section3. The content of the dataset for evaluating the buffer algorithms

dealing with out-of-order events is discussed in Section4. Section5describes the buffer algorithms,

and the results of the evaluation is discussed in detail in Section6. A reflection of the results and

the initial research questions is given in Section7and, finally, Section8concludes this paper.

2 BACKGROUND

Subsequently we give an introduction on the technical background of this problem domain. After-

wards we list two use cases where out-of-order events occur and where temporally correct ordered

event streams are essential to guarantee correct results. Finally, this leads to a list of requirements

which must be fulfilled by the algorithms and the recorded datasets.

2.1 Technical Background

The distributed nature of sensor networks and Internet of Things applications raises a couple of

problems which were already investigated in general in distributed computing research (cf. [5]).

Important aspects here are that there is no global clock, and that the program execution is concurrent.

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:5

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

No global clock means that there is not a single global notion of correct time, but a shared idea of

time is a prerequisite for temporally close coordination between nodes. Local clocks of nodes can

be synchronized but inaccuracies remain.

Figure1illustrates a generic architecture of a distributed and event based system, which also

represents the reference architecture of this project. This system contains various distributed

components in spatially separated locations. Sensors are the devices which analyse its

environment, and sensor processing nodes process the raw sensor data and deliver enriched data

to its consumers through the connected computer network. Sensor processing nodes are

intelligent devices which store their state, and have a synchronized clock. Consumers of event

data can be end user devices, or other processing nodes which further combine and process

information. Sensors at a remote place or on a mobile platform may not be able to be

permanently online. Therefore they have a sensor cache which forwards the events whenever

the network or energy level allows it. This architecture also reflects new computing paradigms

such as fog / edge computing which employs data processing near the device or user, and no

longer only centralized in the cloud [26].

An event stream is referred to a set of associated events which might be temporally totally

ordered, meaning there is a well-defined timestamp order within the stream. An event processing
agent is a software component which collects and processes the events. As a result it emits

derived events based on the processing logic. An event pattern is a template which defines one or

more event combinations, e.g. A not followed by B within two time units (cf. [8]).

Fig. 1. The reference architecture of this project which is event-driven and distributed. Sensor processing

nodes do the processing of raw sensor data and deliver enriched data over the network. Sensor caches are

optionally deployed for remote or mobile platforms. All data processing nodes have their own synchronized

clock.

With the possibility of being always online and the need to get instant results and notifications, it

has become necessary to process data timely. One option is to use an event processing engine. Event
processing (or complex event processing) is the computation that performs operations on events

from possibly various sources. An important fact is that event processing is order and time-sensitive

and therefore assumes temporally correct ordered event streams to be able to create correct results.

Consequences of not correctly ordered event streams are:

• False negative: no event detected when an event should have been detected.

1:6 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

• False positive: detected an event when no event should have been detected.

• Wrong calculations: a wrong value is calculated when using a temporal sliding window.

An example: an event processing agent searches for matches of the event pattern “A followed by
B followed by C within 3 time units” in an event stream. If the input stream has out-of-order

events, as illustrated in figure2, then the event processing agent will not be able to match the event

pattern defined above. In this case, event C with timestamp 13 and event A with timestamp 16

arrived too late. After reordering the event stream based on the assigned timestamps (see figure3),

the event processing agent is able to match the event pattern and create derived events.

Fig. 2. An event stream containing out-of-order events (C-13 and A-16).

Fig. 3. The correctly reordered event stream allowing the detection of the pattern “A followed by B followed

by C within 3 time units”.

2.2 Use Cases

Two use cases from different domains are presented where temporally correct ordered event streams

are essential to guarantee correct results. In the first use case, we illustrate an example to monitor

an industry facility based on a sensor network. A central processing node autonomously makes

decisions to stop the facility in the case of a failure. In the second use case, a connected car is

informed by other vehicles and has to decide on which lane it should drive in order to avoid an

upcoming obstacle.

The first use case utilizes a sensor network to monitor an industrial facility to detect a leakage

of pressurized air supplies. Leakage is typically 10-20% of the supply on an annual average, even

in well-maintained systems. The sensors in this example measure the pressure, temperature and

vibration of pipelines and other system facilities. Early detection of air leakages can save electrical

energy which is used for the pressurized air generation. The sensors are spread over the area of

the industry plant and are connected for cost reasons via a wireless network. A central processing

node receives the data from the distributed nodes, analyses it, and decides if a leakage happened

and where it is. As there are many interferences in this kind of harsh environment, it is possible

that event data is affected by some delays when transmitted from the sensor to the fusion centre.

We can assume that the system is in normal operation mode when the pressure value reported

by sensor A (mounted at the beginning of the system) corresponds with the pressure value reported

by sensor B (mounted somewhere else in the system). Meaning, when the pressure in sensor A

increases, then the pressure in sensor B must also increase. If these values do not correspond, we

can assume that there is a leakage somewhere and the system must be maintained. In the case of an

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:7

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

out-of-order event from sensor B, a false positive would be detected and a wrong decision would

be taken at the fusion centre.

The second use case is based on the domain of connected cars. Imagine there is a multi-lane road

with two cars driving side by side in the same direction. The cars scan the road in front of them

and report important observations to the cars behind them over a wireless ad hoc network. The car

in the right lane in front of the convoy recognizes a person on the street who is 200 meters in front

of it. At a speed of 80 km/h this will not require any immediate action, but this occurrence should

be reported to the other cars by alerting them: Event 1 (car 1, right lane, person on the lane,
200m). The leading car on the left lane receives this event and reports that its lane is free for the

next 300 meters: Event 2 (car 2, left lane, lane is clear, 300m). The person moves on, causing the

cars to report the following events: Event 3 (car 1, right lane, person on the lane, 175m), and

another report by the car on the left lane: Event 4 (car 2, left lane, lane is clear, 300m). The

person reaches the left lane: Event 5 (car 2, left lane, person on the lane, 150m). Now, the right

lane is free: Event 6 (car 1, right lane, lane is clear, 300m).

The vehicles following car 1 and car 2 must ensure to process these events timely and in the

correct temporal order to react fast and adequately. If the events are in correct temporal order, they

can infer the following information: The right lane is clear for the next 300 meters, while on the

left lane there is a person in a distance of 150 meters, and there is a person moving from right

to left. This example illustrates a use case where the order of events is of significant importance

and where a minimum delay is required for further actions. This use case also has multiple event

producers which work independently of each other.

2.3 Requirements

Derived from the above described use cases and the technical environment where those systems

operate, we can specify the following requirements for out-of-order event compensation algorithms:

Deal with varying transmission delays: nodes can be deployed on various network types

such as wired, wireless, or mobile networks. This in turn can be a local network or the

public internet. All of this influences the transmission time of data packets from the origin

to their destination.

Work with varying event frequency: events can be produced periodically but also

sporadically when a certain condition has occurred.

Independent nodes: nodes in an Internet of Things application may have no awareness of

each other.

3 RELATED WORK

Our research is focused on detecting and compensating temporal out-of-order occurrences of

event data in distributed systems. In practice it is a combination of different topics where someone

has to deal with the characteristics of distributed systems, such as network delays, clocks and

partial system failures. In this context, it is also a method for multi-sensor data fusion [14]. The

problems which arise when dealing with events in time and space was recently discussed in [11].

The author lists typical influencing factors why delays occur. As an alternative solution he suggest

that applications should be able to deal with inaccurate data.

Out-of-order compensation can be solved by using different handling approaches. For example,

buffer-based approaches in which a buffer is used to sort the incoming events by their timestamp

or sequence ID. Following this approach, the authors in [19] use a K-slack buffer approach where

the buffer length (K) is continuously recalculated and adjusted according to the amount of detected

out-of-order events and the delay of these events. This system does not use a local or global clock

•

•

•

1:8 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

but instead derives the current time from incoming events. The buffer size (the K value) is calculated

by analysing all previous delay measurements and adding a safety margin on top of it which is

calculated by the standard deviation and pre-defined scaling factor. Omitting a dedicated clock and

the derivation of the current time has a considerable disadvantage as the event transmission has a

delay on its own, which may also depend on the payload of the event itself. In our approach we rely

on a dedicated clock synchronization mechanism. However, their approach has given us a basis

to design some of our algorithms, but with improvements on the buffer size calculation. In [21],

the same authors extend their work on low-latency constraint systems and look at the question

of how out-of-order events can be compensated by using the different delays between hosts in

distributed systems, thereby choosing the best route of compensating for the delays to guarantee

the correct event order. Another approach is given in [17] in which the authors handle the out-of-

order problems by using parallel query models. In this case, the approach also introduces different

dropping ratios. According to the results, the latency can be reduced in more than one order of

magnitude with a 1% dropping ratio in comparison with the K-slack approach. Unfortunately, our

research is focused on keeping as many events as possible and the usage of dropping ratios to

improve the latency is not taken into account.

An Adaptive, Quality-drive K-slack (AQ-K-slack) is another K-Slack based approach that is

shown along the publications [12, 13] in which Ji et al. are able to reduce the latency more than 50%

compared to the standard K-slack approach. In contrast to our approach that is generally applicable

and independent of the successive computation logic in which the distribution of the transmission

delays are investigated to calculate the buffer size, the authors introduce an error model for query

results in which the window coverage metric is bounded to the windowing function.

Although our research is focused on buffer-based approaches, there are two more common

ways to handle this issue: speculation-based and punctuation-based. Speculation-base uses revision

techniques when an out-of-order event is reached to recalculate the previous handled events

affected by this out-of-order event. This kind of approach may be highly CPU intensive especially

when many out-of-order events are detected due to this revision technique. A good example is

given in [20] in which the authors combine speculation and buffer-based in their solution. On the

other hand, in a punctuation-based [4, 15] approach, special tuples are included in the data stream

to determine if an out-of-order event is reached. For example, Ji et al. in [15] include a timer-driven

punctuation which is propagated by the query operators and used to monitor query latency and

detect operator failure.

Another method is given in [2, 9] in which the authors developed an open source system for

complex event processing called ETALIS1. They incorporate an out-of-order semantic that is used

to describe the event pattern as a set of rules which allow to detect and compensate the out-

of-order event. According to the evaluation, it is able to improve the memory consumption in

cases of high out-of-order event rates and heavy computing. Unlike our work, this out-of-order

events compensation mechanism is integrated in the complex event processing engine and not

an independent component as we desire. The articles [16, 25] introduce a new method to handle

out-of-order events. They use a new kind of structure that not only stores the current instance

status, but also the previous one. The algorithm stores prevent instances until the amount of current

event time unit, window length and K length is less than the highest time unit received. If this

happens, the system will be able to safely purge this event. The K value (the buffer size) is a static

and predefined constant. In our project, we don’t just store the previous event but all events in a

limited time window which allows us to dynamically adapt the buffer size.

1https://code.google.com/archive/p/etalis/

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:9

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A prerequisite to deal with time in a distributed system is to agree on a common notion of time,

and here clock synchronization comes into play. One of the simplest ways to synchronize clocks is

Christian’s algorithm [6] which is basically a request/response method that depends on a single

server and the request round-trip time. The Network Time Protocol (NTP) [18] is well known

and widely used. It synchronizes the clocks in a predefined interval, but clocks may drift on their

own, and the synchronization process has some inaccuracies too. A more advanced variant is the

Precision Time Protocol (PTP) [1, 7]. It is made to provide high precision, but it is limited for local

networks with a few subnetworks. There are also other variants which do not need a central server,

such as vector clocks [22]. Thereby all nodes send the clock vector to each other to calculate the

current time.

4 DATASETS

This section introduces the datasets which have been recorded and generated with the purpose

to evaluate out-of-order event compensation algorithms. We distinguish between datasets which

were recorded using real devices and real networks, and those which were synthetically generated

in the lab. The recorded datasets were created using standard commercial devices, networks, and

protocols commonly used in Internet of Things applications aiming to resemble real world use

cases. Several sessions were carried out to cover the influence of different parameters of payload

and network types. The synthetically generated datasets simulate the influence of the network in a

predefined way. All datasets were made open source and are available for download on our GitHub

site2.

4.1 Dataset Considerations

The recorded datasets (D-1 to D-5 and S-7 to S-10) were designed to resemble the behaviour and

architecture of an Internet of Things use case, where many nodes are connected over a network.

Each node continuously sends text-based messages to a common destination in a predefined interval

over HTTP/1.1. The event producers (clients) were various kinds of Android smartphones, running

a customized application which is optimized for efficient event generation. Two Windows PCs

were also used as event producers for the WLAN datasets running the same code base. The sessions

were recorded using either the internal wireless network after the IEEE 802.11 standard (WLAN), or

the public cell phone network (UMTS) of different providers. Details of the hardware and software

configuration of the used devices are provided on our GitHub site for the Datasets.

The synthetically generated datasets (G-1 to G-12) were created without a real network but

instead by simulating different network behaviours in the computer. Twelve sessions were carried

out with different network delay variations and also variations in the frequency of producing

events. This results in datasets allowing us to get a better understanding of how dynamic buffer

algorithms work and how to adapt their behaviour under various conditions.

A common way to produce a temporally correct ordered time-series event stream in a distributed

system with independent event producers is to assign timestamps to events and to use this attribute

to sort the event stream, requiring that the clocks of all nodes in the system are synchronized.

The Network Time Protocol (NTP) [18] was evaluated for this purpose. An NTP client is already

included in Android, but this operating system does not allow to intervene in the synchronization

process without root permissions, which makes this variant useless for our approach. A simpler

variant is the Simple Network Time Protocol (SNTP), but evaluations revealed that it is too imprecise

for our use case. For this reason, we have implemented our own solution which is inspired by the

synchronisation process of the Precision Time Protocol (PTP) [1]. Thereby the event producers’

2https://github.com/JR-DIGITAL/ooo-dataset

1:10 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

request the server time via HTTP/1.1 and then calculate the time difference to their internal clock. To

get a properly synchronized clock, the actual implementation queries the server ten times and then

calculates the median offset to the server time. This synchronization mechanism is automatically

carried out before the start of each session.

Temporal aspects play an important role in our work and therefore we collected several time-

stamps to be able to fully reproduce the temporal occurrence of the event streams for later eval-

uations. Figure4illustrates the whole chronological process starting from the event producer’s

detection of an event until it receives the response from the server. The following timestamps are

involved:

Detection time (𝑑𝑡): the time when the event producer (client) detects an event.

Client send time (𝑐𝑠𝑡): the time when the message leaves the event producer.

Server receive time (𝑠𝑟𝑒𝑐𝑡): the time when the server receives the event.

Server response time (𝑠𝑟𝑒𝑠𝑡): the time when the internal processing of the server is

finished and it sends the response to the event producer.

Client receive time (𝑐𝑟𝑡): the time when the event producer receives the response from

the server.

The following relevant durations can be derived from these timestamps:

• Message preparation time: the duration between the event producer’s detection of an event
and its sending of the message to the server (cst − dt).

• Server processing time: the duration the server needs to process the message (srest −
srect).

• Transmission time: (𝑡𝑡) the duration between the event is detected until it reaches the server

(srect − dt).

• Network round-trip time: (𝑅𝑇𝑇) the duration where the message is on the network (srect
− cst)
+(crt − srest).

• Full processing time (𝑓 𝑝𝑡): this includes the preparation time of the message, network
round- trip time and server processing time (crt − dt).

Fig. 4. Chronological sequence from detecting an event until the response is received by the event producer

(client).

These datasets allow us to use two different ways to identify an event as an out-of-order event.

The first is by using the sequence ID, which allows to identify out-of-order events per each event

•
•
•
•

•

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:11

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

producer. Assuming we have an event stream of e1, e2, ..., en to be correct when it is sorted in

1:12 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

−

+ ≤

≤ ≤

≤ +
≤

ascending order by the sequence ID ei.sid < ei 1.sid, (1 i < n), where 𝑖 is the order when the event

was received in the fusion centre. We can identify an out-of-order event 𝑒𝑗 if there is an event

𝑒𝑖 with ei .sid > ej .sid. Although the fusion centre received it in the following order 1 i < j n.

The second approach is of greater interest in a distributed system with multiple event producers.

A temporal property is used to reorder the event stream. Such a temporal property can be the

detection time 𝑑𝑡 which is generated by the event producer. Therefore we assume an event stream

e1, e2, ..., en, (1 i < n) to be correct, when it is sorted in ascending order by the detection time

ei.dt ei 1.dt, where 𝑖 denotes the order when the event was received in the fusion centre. An out-of-

order event 𝑒 𝑗 can be identified if there is an event 𝑒𝑖 with ei .dt > ej .dt. Although the fusion

centre received it in the following order 1 ≤ i < j ≤ n.

4.2 Analysis

An overview of all recorded datasets is given in this document in tables1and2and the details can

be found in the supplemental online document. The datasets were recorded in 21 sessions, with

each session lasting 600 seconds. The datasets D-1 to D-5 have been done over the public cell phone

networks (UMTS) of different providers with 7–9 clients. In these datasets, the clients sent events

to the server in intervals of 500 ms. In each session we used a different predefined net payload

between 0 bytes and 10 KiB. This results in a bandwidth for each client between 0.5 KiB/s and 21.4

KiB/s, and a bandwidth on the server between 4.1 KiB/s and 150 KiB/s. The out-of-order events,

detected by using the detection time, range between 16.08 % and 34.14 % of the total events for each

dataset.

For the sessions S-7 to S-10 we used our local WLAN during working hours. The interval time

between events was set to 200 ms. This results in a bandwidth for the clients between 7 KiB/s and

53 KiB/s, and for the server between 69 KiB/s and 534 KiB/s. Detected out-of-order events range

between 19.69 % and 28.32 % of the total events for each dataset.

The synthetically generated datasets (G-1 to G-12) were created using different functions for

varying the network delay within a given range. Also the frequency of producing events varied

between the datasets. All datasets were created on a single computer where the functions were

simulated. No payload was added to these datasets as the network delays were simulated, and a

payload would have no influence there anyway. The client side data rate for the datasets with a

constant event producing frequency (datasets G-1 to G-8) is 1.3 KiB/s and 13 KiB/s for the server.

In the datasets G-9 to G-12 the data rate varies on the client side between 0.03 KiB/s and 2.6 KiB/s,

and on the server side between 0.3 KiB/s and 26 KiB/s. The number of out-of-order events in the G

datasets ranges between 18.16 % and 81 % of the total number of events per dataset. The higher the

bandwidth of simulated network delays, the higher are the detected out-of-order events.

The amount of out-of-orders events in the WLAN datasets (S-8 to S-10) is always higher than

the amount in UMTS datasets (D-1 to D-5). This might be because of the lower interval of 200 ms

of sending events in the WLAN dataset. The median and mean of the full processing time (crt dt)
in the UMTS datasets is always higher than the median and mean in the WLAN dataset. Figures of

each dataset can be found in the online supplemental document which gives more insight into the

behaviour over the session’s duration. The transmission times for each event of a session including

the detected out-of-order events are illustrated, as well as the frequency of event and out-of-order

event occurrences.

5 ALGORITHMS

Seven different algorithms for out-of-order event compensation have been implemented in Java.

Six of them dynamically recalculate the buffer time and one uses a static buffer which is used

for comparison purposes. These dynamic buffer size algorithms are novel as, to the best of our

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:13

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

+

Table 1. An overview of the recorded datasets describing the number of clients, used network, the payload,

and the resulting data rates.

ID Clients Network Interval (ms) Net Payload (Bytes) Gross Payload (Bytes) Events Server

KiB/sec
Clients KiB/sec

D-1 8 UMTS 500 0 265 9600 4.14 0.52

D-2 9 UMTS 500 512 1409 10800 24.77 2.75

D-3 8 UMTS 500 1024 1365 9600 21.33 2.67

D-4 7 UMTS 500 2048 2426 8400 33.17 4.74

D-5 7 UMTS 500 10240 10929 8400 149.42 21.35

S-7 10 WLAN 200 512 1409 30000 68.80 6.88

S-8 10 WLAN 200 1024 1365 30000 66.65 6.67

S-9 10 WLAN 200 2048 2426 29915 118.13 11.85

S-10 10 WLAN 200 10240 10929 29999 533.64 53.36

G-1 10 Simulated 200 0 265 30000 12.94 1.29

G-2 10 Simulated 200 0 265 30000 12.94 1.29

G-3 10 Simulated 200 0 265 30000 12.94 1.29

G-4 10 Simulated 200 0 265 30000 12.94 1.29

G-5 10 Simulated 200 0 265 30000 12.94 1.29

G-6 10 Simulated 200 0 265 30000 12.94 1.29

G-7 10 Simulated 200 0 265 30000 12.94 1.29

G-8 10 Simulated 200 0 265 30000 12.94 1.29

G-9 10 Simulated 10000 - 100 0 265 30057 0.26 - 25.88 0.026 - 2.59

G-10 10 Simulated 10000 - 100 0 265 30058 0.26 - 25.88 0.026 - 2.59

G-11 10 Simulated 100 - 10000 0 265 29502 25.88 - 0.26 2.59 - 0.026

G-12 10 Simulated 100 - 10000 0 265 29503 25.88 - 0.26 2.59 - 0.026

Table 2. The analysis of the recorded datasets describing the number of out-of-order events and a summary

of the processing times.

ID Clients Network
OoO Events

Number Percentage
Full Processing Time

Min Q1 Median Mean Q3 Max Std Dev
D-1 8 UMTS 1544 16.08% 59 139 162 181.1 190 4738 103.9

D-2 9 UMTS 3666 33.94% 81 137 167 185.8 205 3680 115.6

D-3 8 UMTS 3277 34.14% 74 132 157 182.7 187 5616 183.8

D-4 7 UMTS 2302 27.40% 77 145 165 193.4 203 3300 116.5

D-5 7 UMTS 1584 18.86% 154 250 271 288.9 304 1911 83.7

S-7 10 WLAN 7535 25.12% 11 24 32 46.5 50 1522 49.9

S-8 10 WLAN 5908 19.69% 15 27 37 48.4 50 872 47.1

S-9 10 WLAN 7880 26.34% 15 29 39 52.6 54 3385 94.1

S-10 10 WLAN 8495 28.32% 46 75 92 103.7 114 1379 51.3

G-1 10 Simulated 23968 79.89% 101 302 503 500.9 699 901 229.7

G-2 10 Simulated 5449 18.16% 476 488 500 500.5 513 527 14.4

G-3 10 Simulated 6328 21.09% 29 300 526 525.7 751 1018 260.4

G-4 10 Simulated 9034 30.11% 24 301 526 525.4 750 999 260.2

G-5 10 Simulated 20305 67.68% 22 128 243 300.6 427 995 208.5

G-6 10 Simulated 21099 70.33% 22 129 244 300.8 429 991 209.0

G-7 10 Simulated 8498 28.33% 251 275 691 500.6 726 752 225.6

G-8 10 Simulated 6652 22.17% 251 342 500 500.6 659 750 159.8

G-9 10 Simulated 24347 81.00% 101 302 500 500.9 701 902 230.9

G-10 10 Simulated 8096 26.93% 448 488 501 500.7 513 554 14.4

G-11 10 Simulated 23764 80.55% 81 301 501 501.1 702 901 230.7

G-12 10 Simulated 10406 35.27% 447 488 501 500.6 513 554 14.5

knowledge, we are not aware that they were already presented elsewhere. All algorithms use the

detection time (𝑑𝑡) to identify out-of-order events, as this is a suitable solution with multiple

event producers in a distributed system. Incoming events are kept in the buffer until dt
buffertime is reached and are emitted after this period. If the buffer time is too small to

correctly reorder an event, then it is marked as uncompensated and will be emitted

1:14 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

immediately. The dynamic buffer

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:15

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

∗
+

(∗) + +
+

w
i

.n

.
(tti ∗

wi)

algorithms continuously recalculate the buffer size based on the transmission times of the incoming

events. The aim of a dynamic buffer is to adapt its buffer size according to the current environmental

situation e.g. the varying transmission delays. This should allow to keep the buffer time as small as

possible while reordering all incoming events. Subsequently we discuss the buffer size calculation

of each proposed algorithm.

5.1 Static Buffer Algorithm (SBA)

This algorithm uses a static, predefined buffer time. The Static Buffer Algorithm is included for

comparison purposes to be able to evaluate the differences to other algorithms.

5.2 Buffer Sizing based on single Transmission Time (BSTT)

A dynamic value of the buffer time is necessary to achieve a better performance even when there

are several changes to the network delay. Therefore, this algorithm uses the transmission time

(𝑡𝑡) of the latest event and adapts the buffer size with an increase factor or decrease factor. The

transmission time is the duration when the event was detected until it was received in the fusion

centre. The increaseFactor and decreaseFactor define to which extent the buffer size will be

changed. Additionally an offset is used which is a constant value and defines a safety margin for the

buffer size. And the threshold, which is also a constant, damps the reduction of the buffer size.

The algorithm

works as follows: if tt offset is greater than the currentBufferTime, then the buffer time will be
increased: newBufferTime = currentBufferTime increaseFactor offset. Respectively, if tt
offset is smaller than the currentBufferTime threshold, then the buffer size will be decreased as
follows: newBufferTime = currentBufferTime decreaseFactor. Thereby the reduction of the
buffer size is damped by the threshold.

5.3 Buffer Sizing based on Transmission Time Weighted Average (BSTTWA)

This algorithm also uses a sliding window of predefined length containing 𝑛 transmission

times to calculate a baseline of the overall network delay. In this case we use a weighted

mean with exponentially decreasing weights and add an offset.

bufferTime =

wi =

i=1
n
i=1

.
n − i

Σ2

+ offset (1)

(2)

5.4 Buffer Sizing based on Transmission Time Difference (BSTTD)

In the best case, such a buffer has to compensate only the variation of changes in the environment

over time. Assuming that all delays were of constant length, there would be no out-of-order event.

However, those delays are not guaranteed, especially in wireless networks or in networks with

a shared medium. Therefore we calculate the maximum difference of transmission times over a

sliding window of a predefined length and add an offset.

bufferTime = (max (tt) − min(tt)) + offset (3)

5.5 Buffer Sizing based on Transmission Time Difference and Average (BSTTDA)

This buffer algorithm combines the calculation of an average with the transmission time difference.

The average of transmission times gives a longer term baseline measure of the delays, and the

transmission time difference adds the currently known delay variance. The calculations are done

n

1:16 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

,̧

bufferTime =
n

 1 .
n

i=1

over a sliding window of predefined length, and an offset is added to these values as a safety margin.

1 .
n

5.6 Buffer Sizing based on Kalman Filter (BSKF)

The Kalman filter [24] is an algorithm which is able to predict the next value of a measurement

through a given series of previous measurements. It estimates parameters of interest based on

indirect, inaccurate and uncertain observations such as measurements from sensors. This is com-

monly used e.g. to track objects based on noisy data. The process model of a Kalman filter uses the

combination of two equations:

Xk = Ak-1 · Xk-1 + Bk-1 · uk-1 + wk-1 (5)

where 𝑋 is the state vector with the variables of the system, 𝐴 is the matrix that defines the

system,

𝐵 is the control vector for each input in 𝑢 vector, and 𝑤 is the noise model vector. The

second part, which defines the algorithm, is the following equation:

Zk = Hk · Xk + vk (6)

where 𝑍 is the measurement prediction, 𝐻 is the transformation matrix, and 𝑣 is the noise

measure- ment vector. In this buffer algorithm, the Kalman filter is used to predict the next

transmission time (𝑡𝑡predicted), based on previous observations. An offset is added to the

predicted value as a safety margin:

bufferTime = ttpredicted + offset (7)

For the realisation of this algorithm we use the implementation of the Kalman filter of the Apache

Commons Math project3.

5.7 Dynamic K-Slack Buffer Sizing (KSLACK)

The original K-Slack algorithm [3] did not define a dynamic adaptation of the buffer size. Later a

dynamic adaptation of 𝐾 was proposed in [19]. This dynamic buffer sizing algorithm was

imple- mented for the comparison of our proposed algorithms. We omitted the derivation of

the clock from incoming events since we already have a synchronized and stable clock. The buffer

size (in the paper referenced as 𝐾𝑑) is the maximum transmission time of all observations plus

an offset. The offset is an added safety margin which is the product of the standard deviation 𝜎 of

all transmission delays and a scaling factor 𝜆. The scaling factor must be defined in advance.

bufferTime = max [e.tt] + (𝜎 ∗ 𝜆) (8)

5.8 Experimental Setup

𝜎
= n −

1

i=1

(ei.tt − e.tt)2 (9)

To find the optimal parameters for a buffer sizing algorithm is a difficult task as each algorithm

has different parameters and each parameter influences the behaviour in a different way. Figure5

illustrates this exemplary with the algorithms SBA, BSTTWA, and BSTTDA on dataset S. An

evaluation of all parameters for all algorithms can be found in the supplemental online document.

For a set of initial values for the parameters we suggest to record a sample data set with around

5,000 events. Then calculate the full processing duration for all events. This is the duration when

the

tti + (max (tt) − min(tt)) + offset (4)

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:17

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

3http://commons.apache.org/proper/commons-math/

http://commons.apache.org/proper/commons-math/

1:18 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

a 100 b 100 c 100

95
Dataset

95

s−7

90 s−8 90

s−9

s−10
85 85

Dataset
95

s−7

s−8 90

s−9

s−10
85

Dataset

s−7

s−8

s−9

s−10

80

d
1200

250 500 750 1000

Buffer time (ms)

80

e
1200

250 500 750 1000

Offset (ms)

80

f
1200

250 500 750 1000

Offset (ms)

800

400

0

250 500 750 1000

Buffer time (ms)

Dataset

s−7

s−8

s−9

s−10

800

400

0

250 500 750 1000

Offset (ms)

Dataset

s−7

s−8

s−9

s−10

800

400

0

250 500 750 1000

Offset (ms)

Dataset

s−7

s−8

s−9

s−10

Fig. 5. Influence of algorithm parameters on the resulting compensated out of order events and the buffer

time for dataset S. Algorithm SBA with the parameter “buffer time” (a, d), algorithm BSTTWA with the

parameter “offset” (b, e), and algorithm BSTTDA with the parameter “offset” (c, f).

event occurred in the real world until it was received at the processing node which fuses events

(event receive time - event occurrence time). Based on this we suggest the following starting values:

For all algorithms: the initial buffer time is mainly to avoid the cold start problem and it can be

set to: 98th percentile of full processing duration * 5

Static Buffer Algorithm (SBA)
buffer time: 98th percentile of full processing duration * 6

Buffer Sizing based on single Transmission Time (BSTT)

offset time: 98th percentile of full processing duration * 3

threshold to decrease the buffer 100 ms

increase factor: 2

decrease factor: 0.99

Buffer Sizing based on Transmission Time Weighted Average (BSTTWA)
number of samples (size of the sliding window): 100;

offset time: 98th percentile of full processing duration * 4

Buffer Sizing based on Transmission Time Difference (BSTTD)
number of samples (size of the sliding window): 600;

offset time: 98th percentile of full processing duration * 2

Buffer Sizing based on Transmission Time Difference and Average (BSTTDA)
number of samples (size of the sliding window): 600;

offset time: 98th percentile of full processing duration

Buffer Sizing based on Kalman Filter (BSKF)
offset time: 98th percentile of full processing duration * 4

Turn off the control and noise vectors.

O
v
e
rf

it
ti
n
g
 B

u
ff

e
r

T
im

e
 (

%
)

C
o
m

p
e
n
s
a
te

d
 E

v
e
n
ts

 (
%

)

•

•

•

•

•

•

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:19

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

∗

∗

Dynamic K-Slack Buffer Sizing (KSLACK)
scaling factor: 0.8

initial buffer time: 98th percentile of full processing duration * 4

6 EVALUATION AND RESULTS

The evaluation of the algorithms was carried out with all datasets resulting in 147 individual runs.

The summarized results of all runs are visualized in figures6,7and8. Each individual run of

an algorithm over a dataset is visualized in detail in the supplemental online document. Based

on the parameter evaluation described above, each algorithm was configured individually and

the configuration was kept the same for each run. The following settings where applied to the

algorithms:

Static Buffer Algorithm (SBA)
buffer time: 1000 ms

Buffer Sizing based on single Transmission Time (BSTT)
initial buffer time: 500 ms; threshold to decrease the buffer 100 ms; increase factor: 2; decrease

factor: 0.99; offset time: 500 ms

Buffer Sizing based on Transmission Time Weighted Average (BSTTWA)
number of samples (size of the sliding window): 100; initial buffer time: 750 ms; offset time:

750 ms

Buffer Sizing based on Transmission Time Difference (BSTTD)
number of samples (size of the sliding window): 600; initial buffer time: 750 ms; offset time:

350 ms

Buffer Sizing based on Transmission Time Difference and Average (BSTTDA)
number of samples (size of the sliding window): 600; initial buffer time: 750 ms; offset time:

350 ms

Buffer Sizing based on Kalman Filter (BSKF)
initial buffer time: 750 ms; offset time: 600 ms. The control and noise vectors were disabled.

Dynamic K-Slack Buffer Sizing (KSLACK)
scaling factor: 0.8; initial buffer time: 750 ms.

Dynamic buffer sizing algorithms need to keep the buffer size low while compensating all out-

of-order events. Following metrics were used in the evaluation which reflect these characteristics.

Not compensated events (%): is the percentage ratio of events which the algorithm did

not compensate to all out of order events in a dataset.

notCompensatedEventsPercentage =
notCompensatedEvents

100

 (10)
allOutOfOrderEvents

Overfitting buffer time (%): is the percentage ratio of actual buffer size to the minimal

required buffer size to be able to compensate all events. The overfitting of the buffer time is

caused by the algorithms added safety margin.

overfittingBufferTimePercentage =
 bufferTime

100 (11)
minimumBufferTime

The static buffer algorithm (SBA) is the baseline for all other algorithms. A fixed buffer size of

1000 ms was used. It can achieve good results when the buffer size is set high enough. This is visible

in the results of the synthetic datasets G where it produces throughout good results. But on real

world datasets the static buffer fails, especially on the datasets D-4 and D-5 where it results in a

•

•

•

•

•

•

•

•

•

•

1:20 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

higher number of not compensated events.

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:21

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

2

1.5

1

0.5

0

0 500 1000 1500

Overfitting Buffer Time (%)

Algorithm

SBA

BSTT

BSTTWA

BSTTD

BSTTDA

BSKF

KSLACK

Fig. 6. The result of each algorithm for the dataset D with overfitting buffer time on the x-axis and not

compensated events on the y-axis. Lower values indicate better results.

2

1.5

1

0.5

0

0 400 800 1200

Overfitting Buffer Time (%)

Algorithm

SBA

BSTT

BSTTWA

BSTTD

BSTTDA

BSKF

KSLACK

Fig. 7. The result of each algorithm for the dataset S with overfitting buffer time on the x-axis and not

compensated events on the y-axis. Lower values indicate better results.

⚫

⚫

N
o

t
c
o

m
p

e
n
s
a
te

d
 E

v
e

n
ts

 (
%

)
N

o
t
c
o

m
p

e
n
s
a
te

d
 E

v
e

n
ts

 (
%

)

⚫

⚫

 ⚫

⚫

⚫

 ⚫

⚫

⚫ ⚫

1:22 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

2

1.5

1

0.5

0

0 50 100 150

Overfitting Buffer Time (%)

Algorithm

SBA

BSTT

BSTTWA

BSTTD

BSTTDA

BSKF

KSLACK

Fig. 8. The result of each algorithm for the dataset G with overfitting buffer time on the x-axis and not

compensated events on the y-axis. Lower values indicate better results.

The algorithm “buffer sizing based on single transmission time (BSTT)” uses the transmission

time of the latest event to calculate the optimal buffer size. It performed well on dataset D-5, but

failed on the S datasets, where it produced the highest number of not compensated events in 3

out of 4 cases. It produced good results on the G datasets overall, meaning it can handle various

situations with the exception of a decrease in event occurrence frequency (see also the result on

dataset G-11). The variance of the buffer size is much higher when the variance of the transmission

times in the dataset is high (see also figure9(e)). For example, using the dataset dataset G-1 (dataset

full processing time (𝑓 𝑝𝑡) std dev. 229.7) this algorithm has a standard deviation of the buffer

time of 58.7, in comparison to the algorithm BSTTD which had a standard deviation of the buffer

size of

12.7 in this case. A disadvantage of this algorithm is, that it requires various parameters to be set.

On the other hand, it does not use a sliding window and it is not as badly affected by the cold start

problem as other algorithms.

A weighted average over a sliding window, which gives newly arrived events a higher importance

was the idea of the BSTTWA algorithm. This algorithm achieved good results on the datasets S-7,

S-8, and S-10 in comparison to other algorithms on this dataset. A drawback of this approach is, that

it cannot adapt to sudden and big changes of transmission times of incoming events, as illustrated

in figure9(a). Applied on the datasets G, it is visible that it can handle various changes in the

transmission times, except in the case of dataset G-11. An increase of transmission time variance

could also pose a problem. As visible in the buffer size behaviour in dataset G-5 and G-6, the

difference between buffer size and maximum transmission time decreases when the transmission

time variance gets higher. The transmission time’s mean over a sliding window provides a good

overall measure of the current state of the network. BSTTWA produced useful results on the

⚫
⚫⚫⚫

⚫

N
o

t
c
o

m
p

e
n
s
a
te

d
 E

v
e

n
ts

 (
%

)

⚫

 ⚫

⚫
⚫⚫ ⚫⚫

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:23

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

datasets D and S, but it requires an overall higher offset value.

1:24 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

To calculate the buffer size, the BSTTD algorithm uses the difference between the minimal and

maximal transmission times over a sliding window, as, ideally, all you have to compensate for is the

variance of the transmission time. This algorithm needs a fairly big sliding window to work reliably

and hence suffers especially from the cold start problem. In comparison to other algorithms the

BSTTD implementation achieved throughout good results on the datasets D and S. This algorithm is

perfectly equipped to adapt the buffer size to increasing or decreasing transmission time variances

(see also the results on dataset G-5 and G-6). But at the same time, it fails to adapt the buffer size

when the transmission time increases and the variance stays the same (see also the results on

dataset G-3, G-4, and9(c)). It has the ability to adapt to sudden changes (see also the results on

dataset S-9) and - in comparison to other algorithms - it needs only a fairly small offset value of

350 ms.

A Kalman filter is often used to process noisy sensor data, and therefore we use this approach

as the basis to calculate a suitable buffer size in the BSKF implementation. In the evaluation

experiments, the performance of the BSKF algorithm is below average. The BSKF algorithm also

has a problem when transmission time variances increase, visible on datasets G-5 and G-6. One

positive aspect is that it suffers less from a cold start problem in comparison to competitors which

use a sliding window.

For the comparison of state-of-the-art dynamic buffer sizing algorithms with our proposed

algorithms, the dynamic buffer sizing for K-Slack algorithms, as described in [19], was implemented.

This algorithm is easy to configure, as it just needs a scaling factor. For this, some runs with different

values were carried out, and the best option was chosen. This K-Slack algorithm produced on

the Datasets D and S throughout a low number of not compensated events, but at the same time

the buffer size was nearly the highest on all datasets. One big disadvantage is, that it does not

sufficiently decrease the buffer size when the transmission time of the data set decreases. This gets

visible on the synthetic datasets G (see also figure9(f)), and it is an indicator that this algorithm is

not a good choice when a low buffer size is desired.

The idea of the BSTTDA algorithm is to combine the features of the algorithm BSTTD with an

average value. An average over a sliding window provides a good overall measure of the current

transmission time, and then adding the maximum difference of transmission times should also

allow this algorithm to adapt to sudden changes of transmission times. As illustrated in9(b), this

is the case. This algorithm can also handle increasing or decreasing transmission times while the

variance of the transmission times is consistent, see also the results on datasets G-3 and G-4. A

notable characteristic is that it overcompensates increasing transmission time variances, see the

results on datasets G-5 and G-6. Though this algorithm suffers from a cold start problem, it achieved

throughout good results. An advantage is also that it needs a fairly small offset value of 350 ms

(same as for BSTTD). The influence of the size of the sliding window is negligibly small.

We deliberately set the offset values for all algorithms as low as possible to make the limitations of

each algorithm clear. Hence, the key for reordering all out-of-order events in all possible situations is

to give the algorithms enough offset, but this results in high buffer times which might be unwanted.

For situations where the reaction time is more important than compensating all out-of-order events,

the BSTTWA algorithm might be the choice. This algorithm is stable over a long time, neglects

single outliers but still adapts to changes. The advantages of the BSTTDA algorithm are that it can

handle various situations such as changing transmission times and changing transmission time

variances as well as respond to sudden changes in transmission times, while needing only a small

offset value (see also figures9(b) and (d)). These characteristics make this algorithm a good choice

for most applications.

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:25

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Fig. 9. Examples of dynamic buffer sizes: these figures illustrate the buffer size of the algorithm (green line)

and the transmission times for each event represented as a point. Uncompensated out-of-order events are

highlighted in pink. (a) algorithm BSTTWA on dataset S-9 (failed to adapt to environmental changes), (b)

algorithm BSTTDA on dataset S-9 (better adaptation to environmental changes), (c) algorithm BSTTD on

dataset G-8 (failed to adapt to biased sine wave with smaller delay variance), (d) algorithm BSTTDA on

dataset G-8 (good adaptation to biased sine wave with smaller delay variance), (e) algorithm BSTT on dataset

G-6 (good adaptability of the buffer size, but the buffer time variance correlates with the dataset variance), (f)

algorithm KSLACK on dataset G-6 (does not sufficiently decrease the buffer size when the transmission time of

the dataset decreases).

7 DISCUSSION

The original idea of this project was to find dynamic buffer sizing algorithms for multiple, distributed

and independent sources, which allow subsequent time-sensitive applications to work correctly.

The first question was if there is a general applicable event fusion mechanism for multiple and

1:26 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

distributed sources dealing with temporally disordered event streams. We found various related

research covering these topics. Much of this research is application-specific, has certain prerequisites

to event producers e.g. that they know each other, or that knowledge of the system architecture is

available. But this is not applicable in the case of an Internet of Things application where event

producers can be attached and detached whenever necessary. What we need is an out-of-order

event compensation approach which is independent from the source and sink.

The criteria when a dynamic time-out buffer method is preferable to a static buffer are: 1. that the

overall delay is smaller while reordering more out-of-order events, and 2. that it is able to quickly

adapt its buffer size to even sudden environmental changes, e.g. varying transmission delays. The

evaluation has shown that the use of a dynamic time-out buffering method is to be preferred over a

static buffer. The higher the variation of the network or other influences in the environment, the

more necessary it is to use an algorithm which dynamically adapts its buffer size. A forecast for a

suitable buffer size for a static buffer might be difficult and not always applicable. Based on our

findings in the evaluation, we encourage to use the “Buffer Sizing based on Transmission Time

Difference and Average (BSTTDA)” algorithm. It is also clear, that the algorithms BSTTWA, BSTTD,

and BSTTDA outperform the current state-of-the-art algorithm for dynamic K-Slack buffer sizing

(KSLACK).

We can also agree that a dynamic time-out buffering method is applicable and useful to fuse

data from multiple distributed and independent sources for time-sensitive applications. The only

prerequisite is that reasonably accurate and synchronized clocks are available.

One restriction still exists: we cannot guarantee full temporal order. On the one hand, this lies in

the nature of distributed systems, where system crashes or network failures lead to independent

failures. In such a case, parts of the system are isolated which might not be immediately visible

to all other nodes. On the other hand, we have recognized in our recorded evaluation datasets

that it is difficult to estimate the rare outliers with a high transmission time. The use of buffering

algorithms is still a trade-off between reaction time and out-of-order event compensation, but it is

useful in various applications. The varying transmission times of events in the recorded datasets

could stem from bloated buffers in the network, as described by [10]. It should be considered to

compensate these bloated buffers with additional, dynamically, and perhaps growing buffers.

In the introduction we listed two use cases where the usage of such fusion and compensation

mechanisms is essential to guarantee a correctly working system. In general, such a fusion and

compensation mechanism is a prerequisite when a temporally correct ordered event stream is

necessary to guarantee correct results. It becomes more important when additionally one or more

of the following aspects are true: the system is deployed in a distributed fashion, with many event

producers, in distant locations, using low power devices, or networks with limited capacity, or

with high a frequency of updates - just to name a few aspects. Then, the occurrence of out-of-order

events is more likely. Such applications can be machine monitoring systems, Internet of Things

applications, or sensor networks.

8 CONCLUSIONS

Event data fusion in sensor networks and in distributed systems in general is a requirement for

various applications. When it comes to feed the data into time-sensitive applications, it becomes

crucial that the fusion mechanism considers the temporal aspect of events in a sensible way. We

presented two use cases from different domains where temporally correct ordered event streams

are essential to guarantee correct results. The same holds true for a multitude of applications in

the field of distributed systems, where it is likely that out-of-order events can occur. The reasons

for out-of-order events are manifold. It could be the non-deterministic process scheduler in an

operating system, the shared medium of a wireless network, or just the varying time which is

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:27

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

needed to detect a certain event in the real world. In this paper we gave an introduction into this

problem domain, looked at influencing characteristics of distributed systems, enumerated what can

happen when out-of-order events occur, and discussed how to deal with them in general.

We were researching dynamic buffer sizing algorithms for multiple, distributed and independent

sources, which reorder event streams so that subsequent time-sensitive applications work correctly.

To be able to evaluate such algorithms we had to record datasets first, as we did not find a freely

available dataset with all the desired features. Two types of datasets were created, one type which

was recorded using real devices and real networks, while the other type of datasets was synthetically

generated in the lab. These datasets were contributed to the scientific community, allowing them

to evaluate and compare their compensation algorithms.

Five novel algorithms were implemented which dynamically adapt their buffer size based on

different adaptation strategies. These algorithms were evaluated with a state-of-the-art approach for

dynamic K-Slack adaptation, and with a static buffer. The implemented dynamic buffering algorithms

are able to adapt their buffer sizes to environmental changes, such as varying transmission delays

or other influences. The evaluation has shown that the use of a dynamic time-out buffering method

is preferable to a static buffer. The higher the variation of the network or other influences in the

environment, the more necessary it becomes to use an algorithm that dynamically adapts its buffer

size. Based on our findings in the evaluation, we encourage to use the “Buffer Sizing based on

Transmission Time Difference and Average (BSTTDA)” algorithm, as it produced overall good

results in the evaluation. We could also show that this algorithm clearly outperforms the state- of-

the-art approach for dynamic K-Slack buffer sizing. These types of algorithms are universally

applicable, easy to integrate into existing architectures, and particularly interesting for distributed

time-sensitive applications.

Time sensitive event data fusion for multiple, distributed and independent sources builds on time,

and therefore clock synchronization becomes a crucial aspect on sensor networks. Using time-out

methods allows for partial order guarantee, but consequently there is still a trade-off between

reaction time and out-of-order event compensation. Ultimately, it depends on the application use

case how much delay and how much out-of-order events are desired.

1:28 W. Weiss et al.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

REFERENCES

[1] 2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.

IEEE Std 1588-2008 (July 2008), 1–269.https://doi.org/10.1109/IEEESTD.2008.4579760

[2] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. 2011. A Declarative Framework for Matching
Iterative and Aggregative Patterns against Event Streams. Springer Berlin Heidelberg, Berlin, Heidelberg, 138–

153. https://doi.org/10.1007/978-3-642-22546-8_12

[3] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. 2004. Exploiting K-constraints to Reduce Memory Overhead

in Continuous Queries over Data Streams. ACM Trans. Database Syst. 29, 3 (Sept. 2004), 545–580.https://doi.org/10.

1145/1016028.1016032

[4] Badrish Chandramouli, Jonathan Goldstein, and David Maier. 2010. High-performance Dynamic Pattern Matching

over Disordered Streams. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 220–231.https://doi.org/10.14778/1920841.1920873

[5] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. 2011. Distributed Systems: Concepts and Design
(5th ed.). Addison-Wesley Publishing Company, USA.

[6] Flaviu Cristian. 1989. Probabilistic clock synchronization. Distributed Computing 3, 3 (1989), 146–158.https:

//doi.org/10.1007/BF01784024

[7] John C. Eidson. 2006. Measurement, Control, and Communication Using IEEE 1588 (1st ed.). Springer-Verlag

London,

London, United Kingdom.https://doi.org/10.1007/1-84628-251-9

[8] Opher Etzion and Peter Niblett. 2011. Event Processing in Action (1st ed.). Manning Publications Co., Greenwich,

CT, USA.

[9] Paul Fodor, Darko Anicic, and Sebastian Rudolph. 2011. Results on Out-of-Order Event Processing. Springer Berlin

Heidelberg, Berlin, Heidelberg, 220–234.https://doi.org/10.1007/978-3-642-18378-2_18

[10] Jim Gettys. 2011. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing 15 (2011), 96, 95.https:

//doi.org/doi.ieeecomputersociety.org/10.1109/MIC.2011.56

[11] Pat Helland. 2019. Space Time Discontinuum. Commun. ACM 63, 1 (Dec. 2019), 54–56.https://doi.org/10.1145/3369744

[12] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hackenbroich, and Christof Fetzer. 2015. Quality-

Driven Continuous Query Execution over Out-of-Order Data Streams. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). ACM, New York,

NY,

USA, 889–894.https://doi.org/10.1145/2723372.2735371

[13] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hackenbroich, and Christof Fetzer. 2015. Quality-

driven Processing of Sliding Window Aggregates over Out-of-order Data Streams. In Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems (Oslo, Norway) (DEBS ’15). ACM, New York, NY,

USA, 68–79.https://doi.org/10.1145/2675743.2771828

[14] Bahador Khaleghi, Alaa Khamis, Fakhreddine O. Karray, and Saiedeh N. Razavi. 2013. Multisensor Data Fusion: A

Review of the State-of-the-art. Inf. Fusion 14, 1 (Jan. 2013), 28–44.https://doi.org/10.1016/j.inffus.2011.08.001

[15] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore Johnson, and David Maier. 2008. Out-of-order

Processing: A New Architecture for High-performance Stream Systems. Proc. VLDB Endow. 1, 1 (Aug. 2008), 274–

288. https://doi.org/10.14778/1453856.1453890

[16] M. Li, M. Liu, L. Ding, E. A. Rundensteiner, and M. Mani. 2007. Event Stream Processing with Out-of-Order Data Arrival.

In 27th Int. Conf. on Distributed Computing Systems Workshops. 67–67.https://doi.org/10.1109/ICDCSW.2007.35

[17] G. Mencagli, M. Torquati, M. Danelutto, and T. De Matteis. 2017. Parallel Continuous Preference Queries over Out-of-

Order and Bursty Data Streams. IEEE Transactions on Parallel and Distributed Systems 28, 9 (Sep. 2017), 2608–

2624. https://doi.org/10.1109/TPDS.2017.2679197

[18] David L. Mills. 2010. Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space,
Second Edition (2nd ed.). CRC Press, Inc., Boca Raton, FL, USA.

[19] C. Mutschler and M. Philippsen. 2013. Distributed Low-Latency Out-of-Order Event Processing for High Data Rate

Sensor Streams. In IEEE 27th Int. Symposium on Parallel Distributed Processing. 1133–

1144.https://doi.org/10.1109/ IPDPS.2013.29

[20] Christopher Mutschler and Michael Philippsen. 2013. Reliable Speculative Processing of Out-of-order Event Streams

in Generic Publish/Subscribe Middlewares. In Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems (Arlington, Texas, USA) (DEBS ’13). ACM, New York, NY, USA, 147–

158.https://doi.org/10.1145/ 2488222.2488263

[21] C. Mutschler and M. Philippsen. 2013. Runtime migration of stateful event detectors with low-latency ordering

constraints. In IEEE Int. Conf. on Pervasive Computing and Commun. Workshops. 609–614.https://doi.org/10.1109/

PerComW.2013.6529567

[22] Mukesh Singhal and Ajay Kshemkalyani. 1992. An Efficient Implementation of Vector Clocks. Inf. Process. Lett. 43,

1 (Aug. 1992), 47–52.https://doi.org/10.1016/0020-0190(92)90028-T

https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1007/978-3-642-22546-8_12
https://doi.org/10.1145/1016028.1016032
https://doi.org/10.1145/1016028.1016032
https://doi.org/10.1145/1016028.1016032
https://doi.org/10.14778/1920841.1920873
https://doi.org/10.1007/BF01784024
https://doi.org/10.1007/1-84628-251-9
https://doi.org/10.1007/978-3-642-18378-2_18
https://doi.org/doi.ieeecomputersociety.org/10.1109/MIC.2011.56
https://doi.org/10.1145/3369744
https://doi.org/10.1145/2723372.2735371
https://doi.org/10.1145/2675743.2771828
https://doi.org/10.1016/j.inffus.2011.08.001
https://doi.org/10.14778/1453856.1453890
https://doi.org/10.1109/ICDCSW.2007.35
https://doi.org/10.1109/TPDS.2017.2679197
https://doi.org/10.1109/IPDPS.2013.29
https://doi.org/10.1109/IPDPS.2013.29
https://doi.org/10.1145/2488222.2488263
https://doi.org/10.1145/2488222.2488263
https://doi.org/10.1109/PerComW.2013.6529567
https://doi.org/10.1109/PerComW.2013.6529567
https://doi.org/10.1109/PerComW.2013.6529567
https://doi.org/10.1016/0020-0190(92)90028-T

Dynamic Buffer Sizing for Out-of-Order Event Compensation 1:29

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: January 2020.

[23] Wolfgang Weiss, Víctor Juan Expósito Jiménez, and Herwig Zeiner. 2017. A Dataset and a Comparison of Out-of-Order

Event Compensation Algorithms. In Proceedings of the 2nd International Conference on Internet of Things, Big Data
and Security - Volume 1: IoTBDS,. INSTICC, ScitePress, 36–46.https://doi.org/10.5220/0006235400360046

[24] Greg Welch and Gary Bishop. 1995. An Introduction to the Kalman Filter. Technical Report. Chapel Hill, NC,

USA.

[25] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance Complex Event Processing over Streams. In

Proceedings of the 2006 ACM SIGMOD Int. Conf. on Management of Data (Chicago, IL, USA). ACM, New York, 407–

418. https://doi.org/10.1145/1142473.1142520

[26] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian Kong,

and Jason Jue. 2019. All One Needs to Know about Fog Computing and Related Edge Computing Paradigms.

Journal of Systems Architecture (02 2019).https://doi.org/10.1016/j.sysarc.2019.02.009

Received June 2018; revised June 2020; accepted July 2020

https://doi.org/10.5220/0006235400360046
https://doi.org/10.1145/1142473.1142520
https://doi.org/10.1016/j.sysarc.2019.02.009

