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ABSTRACT

Deep learning is emerging as a promising technique for building

predictive models to support code-related tasks like performance

optimization and code vulnerability detection. One of the critical

aspects of building a successful predictive model is having the

right representation to characterize the model input for the given

task. Existing approaches in the area typically treat the program

structure as a sequential sequence but fail to capitalize on the rich

semantics of data and control low information, for which graphs

are a proven representation structure.

We present Poem1, a novel framework that automatically learns

useful code representations from graph-based program structures.

At the core of Poem is a graph neural network (GNN) that is spe-

cially designed for capturing the syntax and semantic information

from the program abstract syntax tree and the control and data

low graph. As a departure from existing GNN-based code model-

ing techniques, our network simultaneously learns over multiple

relations of a program graph. This capability enables the learning

framework to distinguish and reason about the diverse code rela-

tionships, be it a data or a control low or any other relationships

that may be important for the downstream processing task.

We apply Poem to four representative tasks that require a strong

ability to reason about the program structure: heterogeneous device

mapping, parallel thread coarsening, loop vectorization and code

vulnerability detection. We evaluate Poem on programs written in

OpenCL, C, Java and Swift, and compare it against nine learning-

based methods. Experimental results show that Poem consistently

outperforms all competing methods across evaluation settings.
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1 INTRODUCTION

Over the last two decades, machine learning has emerged as a viable

means for constructing heuristics for various program-related tasks

including code optimization [54]. There is now ample evidence

showing that machine-learned heuristics can outperform hand-

tuned approaches [10].

A key challenge for applying machine learning to programs is

that it requires programs to be represented as a sequence of numer-

ical values (such as the number and type of instructions) that serve

as inputs to a machine learning model. Traditionally, such program

representations were determined by experts through trials and er-

rors. However, since programs are syntactically unbounded graph

structures and that there is an ininite number of these potential

features, inding the right features is a non-trivial task.

More recent studies have leveraged the advances in deep learning

(DL) to model and reason about code structures [19ś21, 33, 36, 65,

66]. Compared to classical machine learning approaches, DL has the

advantage of not requiring expert involvement to manually tune

representations for program structures; instead, it automatically

captures and determines them from training samples [6].

Existing DL-based approaches for program modeling typically

utilize recurrent neural networks (RNN), like the long short-term

memory (LSTM) or a variant of it, to model code structures [20, 33].

Such approaches work by treating source code and its structure ś

for example, the abstract syntax tree (AST) ś as a sequence of tokens.

However, LSTM is designed for processing a sequential sequence

[35] and is ill-suited for capturing the program control and data

lows ś which should be better represented as a graph instead of

a sequence of tokens. As a result, prior methods only capture the

shallow, textual structure of the source code and fail to capitalize

on the rich and well-deined semantics of the program structure.

To better model the complex data and program structures ś which

were traditionally represented as graph structures in compilers for

code analysis ś we need an approach that could directly operate on

and learn from the graph representation of the code. Doing so will

https://doi.org/10.1145/3410463.3414670
https://doi.org/10.1145/3410463.3414670


allow the learning framework to preserve and reason about much

of the control and data low information that is essential for many

program-related tasks.

The irst efort in this direction is the recent work presented in

[13], which employs a vanilla graph neural network (GNN) to learn

representations from the graph representation of the AST or the

control-data low graphs (CDFGs). This is achieved by propagating

information along the graph edges deined in a graph adjacency

matrix. While there may exist multiple code relationships (edges)

among any given node pair, their approach only captures the graph

connectivity, leaving the graph edges as untyped. As such, it cannot

tell if a direct connection between two nodes is a control or a data

low, neither distinguish other relationships like order for non-

commutative operations. Intuitively, such information would be

essential for characterizing the program behavior for many code-

related tasks. By ignoring the diferent relationships, their GNN

approach gives marginal improvement or even worse performance

compared to the LSTM alternatives [13].

We present Poem, a better approach for modeling code struc-

tures. Poem operates on graph representations of the program with

the capability to learn and aggregate multiple code relationships.

It is designed to maintain sequential information like token order

and operand values when trading sequential representation for

graph representations. Poem automatically extracts such informa-

tion from the AST and the CDFGs. It then combines and abstracts

the extracted information to generate a numerical feature vector

that captures much of the essential information of the syntax and

semantics of the target program. We use the generated embeddings

as an input to a standard neural network to support downstream

processing tasks like code optimization and vulnerability detection.

As a departure from prior work [11ś13], Poem uses graphs to

represent both the syntactic and semantic information of programs

and employes graph-based learning methods to learn to reason over

multiple graph structures. With Poem, syntax information is en-

coded from the AST and IR nodes. To maintain much of the sequen-

tial syntactic and semantic information, we augmented the AST

with additional edges. These edges allow us to encode sequential

syntactic relationships (e.g., łtoken before/after") and semantic rela-

tionships (e.g., łvariable last used here", łthis statement is guarded

by an if condition"). In addition to the AST, we also record the

control and data low information from the CDFG. Intuitively, infor-

mation collected from the source code is language-dependent but

agnostic to compiler implementations. By contrast, data collected

from the IR captures much of the lower-level, language-agnostic but

compiler-speciic information that could not be directly obtained

from the source code. By combining such information, we improve

the generalization ability of the learning framework, as diferent

tasks may require knowledge at diferent levels.

Unlike [13] that it only uses an adjacency matrix to encode the

node connectivity of the AST or CDFG, we encode diferent node re-

lationships, e.g., whether it is a child-parent connection on the AST

or a data low edge in the CDFG, in diferent matrices and relation

graphs. At the core of Poem is a novel graph neural network that

can learn over multiple relationships (or edge types) simultaneously.

By representing the input program as multiple relation graphs with

explicit control and data lows or syntactic information, Poem cap-

tures a greater range of intra-program relations than prior graph

representations. A key advantage of Poem is that it uses a learnable

function to aggregate information for individual relation graphs.

As the aggregation function is tuned for each relation graph, it can

capture each speciic code relationship more precisely. This richer

set of relationships improves the model’s ability in learning useful

program representation, which in turns leads to better performance

of downstream processing tasks. We show that Poem is highly ef-

fective in learning abstracted code representations, allowing us to

solve various tasks with performance better than state of the arts.

We demonstrate the beneits of Poem by applying it to four

representative tasks that require a strong ability to reason about

the program structure at diferent levels: heterogeneous device

mapping, GPU thread coarsening, loop vectorization and code vul-

nerability detection. We evaluate Poem on benchmarks written in

OpenCL, C, Java and Swift. We compare Poem against a wide range

of machine-learning techniques. Experimental results show that

Poem consistently outperforms competing methods across tasks

and programming languages, by giving stronger performance im-

provement and demonstrating a better generalization ability across

evaluation tasks.

This paper makes the following contributions:

• It presents the irst graph-based learning framework2 that

can simultaneously model multiple edge types of the pro-

gram graph (Section 2);

• It demonstrates how to usemultiple graphs to represent both

the syntactic and semantic structures of programs to support

graph-based deep learning (Section 2.3);

• It is the irst work showing how a general graph-based learn-

ing framework can be developed to deliver consistently bet-

ter performance over LSTM-based alternatives across a range

of code-related tasks (Section 4).

2 OUR APPROACH

Poem is designed to operate on graph representations of the AST

extracted from the source code, and the CDFG obtained from the

compiler IR. As we will show later in the paper, Poem can adapt to

diferent programming languages, hardware platforms and tasks.

2.1 Overview of Poem

Figure 1 depicts the architecture of Poem. It takes as input the

program source code. It irst uses a source rewriter extended from

[20] to normalize the identiiers. Next, it builds the AST and CDFG

using standard compiler passes. We extend the standard AST with

additional edges to carry data and control low information at the

source code level (Section 2.3). The AST and CDFG are presented as

directed multigraphs, where statements, identiiers, and immediate

values are vertices, and a direct relationship (e.g., parent-child, data

or control low, etc.) between two vertices is recorded as an edge.

As there may exist multiple relationships (or edges) among a pair

of vertices, we use a relation graph to record a speciic type of

relationships. In this work, we wish to capture 10 relationships

from the AST and CDFG (Section 2.3), leading to 10 relation graphs.

The vertex connectivity of a relation graph is represented as a

program graph matrix (Section 2.4).

2Code and data are available at: [https://github.com/yeguixin/POEM.]

https://github.com/yeguixin/POEM
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Figure 1: Poem operates on the program graphmatrices and

vertex representations derived from the AST and CDFG. It

uses the Poem-GNN to extract useful program representa-

tions (i.e., graph embeddings), which are encoded as vec-

tors of numerical values. The embedding vectors and the op-

tional auxiliary input are concentrated and normalized and

passed to the decision network for a given prediction task.

The Poem-GNN takes in the program matrices and initial vertex

(or node) representations to learn program representations called

embeddings that are represented as a vector of numerical values.

Like [20], the user can also optionally supply auxiliary inputs to give

additional information about runtime parameters. We concentrate

the graph embeddings and ancillary data to form a ixed-length fea-

ture vector, which is irst normalized and then passed to a heuristic

model (based on a standard fully-connected, dense neural network)

to make a prediction. Poem-GNN and the dense network are trained

together so that the graph representation is tuned for the task.

Unlike [13] that is only able to model the node connectivity, we

extend the GNN to model multiple edge types (e.g., control, data,

jump, token sequence, etc.). This capability allows Poem to distin-

guish diferent relationships of the code, whether it is an if branch

or a function call. In Section 4, we show that our approach con-

sistently outperforms prior methods that are based on the vanilla

GCN [13] or LSTM [20].

Table 1: Code relationships considered in this work

Source Relationships

AST ASTChild, NextToken, ComputedFrom, GuardedBy, Jump, Las-

tUse, LastLexicalUse

IR Sequential-IR low, data low, and control low

Roadmap. The remaining of this section is organized as follows.

We describe how we extract the AST and CDFG in Section 2.2.

From Sections 2.3 to 2.5, we explain how to model and encode the

diferent code relationships in Sections 2.3-2.5. Finally, we describe

our multi-relational graph neural network from Sections 2.6 to 2.8.

2.2 AST and CDFG Construction

We construct the AST from the standardized source code using a

compiler front-end parser (e.g., Clang for C).We construct the CDFG

from the compiler IR after applying standard compiler data-low

analysis and optimizations like dead-code elimination, constant

propagation, and common subexpression elimination. An AST con-

tains syntax nodes and syntax tokens. The former corresponds

to nonterminals in the language grammar, e.g., an if statement

(IfStmt) and function names; and the latter corresponds to termi-

nals like literals and constant values. The CDFG captures semantic

information that relects standard compiler transformations. Fig-

ures 2(b) and 2(c) respectively show the LLVM IR and the extracted

CDFG for the OpenCL kernel (after source code rewritten) given in

Figure 2(a). To simplify the IR, we replace identiiers with its type.

For example, %4 at lines 3 and 5 of Figure 2(b) will be replaced with

its data type i32.

2.3 Code Relationships

We record ten relationships from the AST and the IR, listed in Table

1. These include relationships that can be directly obtained from

the CDFG, like the sequential order of the IR instructions, and the

control and data low. We also augment the AST with six additional

edges, described as follows.

A standard AST has just one type of edges, i.e., the ASTChild

edge that connects the children nodes with their parents. To capture

additional syntax and data and control low information of the AST,

we introduce six additional edges to the AST, following the method

described in [7]. The additional edges are essential because they

maintain local sequence order such as the ordering of variable

use and operations. As the AST edges do not induce an order on

children of a syntax node, we add NextToken edges to connect each

syntax token to its successor. This edge is used to capture the order

of opcode and operands for statements. For each assignment, � =

���� , we connect � to all variable tokens occurring in expression,

���� , using ComputedFrom edges. We connect each AST token of

a variable to the variable’s enclosing guard expressions using a

GuardedBy edge. For example, for the if statement in Figure 2(a),

we add a GuardedBy edge from b to the AST node corresponding to

d > 0. We use a Jump edge to connect variables that have control

dependencies. The GuardedBy and Jump edges allow us to record the

relation of diverging control low. We connect all uses of the same

variable using LastUse edges to capture the use of variables, where



1 __kernel void A(__global uint4* a, __global uint4*

b) {

2 unsigned int d = get_local_id (0);

3 if (d > 0) {

4 b[d] = a[d] + a[d + 1];

5 } else {

6 b[d] = 0;

7 }

8 }

(a) An example OpenCL kernel

1 define void @A(i32 ,i32) {

2 %3 = tail call i64 @get_local_id(i32 0)

3 %4 = trunc i64 %3 to i32

4 %5 = icmp eq i32 %4

5 %6 = and i64 %3

6 br i1 %5, label %15, label %7

7 ...

8 %16 = phi i32 [%14, %7], [zeroinitializer , %2]

9 %17 = %1, i64 %6

10 store %16, %17

11 ret void

12 }

(b) LLVM IR
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(c) Control and data low graph (CDFG)
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(d) AST with additional data and control low edges

Figure 2: A standardized OpenCL kernel (a), and its corre-

sponding LLVM IR (b), CDFG (c) and augmented AST (d).

a special case is variables in if statement and we connect such

type of variables using LastLexicalUse edges. For instance, for

the if statement in Figure 2(a), we would link the two occurrences

of d: one in the loop head, the other in the loop body. Figure2(d)

shows the resulting AST after processing the OpenCL kernel given

in Figure2(a), which is augmented with the additional edges.

Finally, for each graph edge, we also add a respective backward

edge (by transposing the adjacency matrix), doubling the number of

edges and edge types. These backward edges help with propagating

information across Poem-GNN (Section 2.6) and make the model

more expressive.

2.4 Program Graph Matrices

We convert the augmented AST and CDFG to separated relation

graphs - one graph for each of 10 relationships given in Table 1. A

relation graph is a directed graph,� = (� , �), that contains the AST

or IR node (vertices), � , and edges �, that indicates the existence

of a given relationship between two vertices, such as data, control

and ASTChild, etc. We use an adjacency matrix to recode the edge

connections of each relation graph, 10 matrices in total. A value of

1 for matrix element ��, � , represents there exists a direct connection

or relation from node � to node � , while a value of 0 indicates the

two nodes are not directly connected.

2.5 Vertex Representations

To capture the syntactic and semantic meanings of the relation

graph vertices, we map every instructions (e.g., AST nodes like

ParamDecl, IfStmt and IR opcodes), constant, and variable to a

vector representation by lookup in a ixed size embedding table.

To do so, we irst construct a vocabulary of frequently appeared

words from the training corpus, where we store the AST and IR

extracted from training programs. As variable and function names

and constant values can be of an arbitrary length, we encode them

as tokens (i.e., letters, symbols and numbers [0-9]). During the

model deployment stage, if a word of the input program is not

presented in the vocabulary, it will be encoded at the token level.

Once the vocabulary is constructed, we apply word2vector [43]

to map each word and token of the vocabulary to an embedding

space of integer values. The word2vector model is trained on train-

ing benchmarks of the target programming language and compiler

IR. Training is largely independent of the optimization task, whose

goal is to map individual words to a point in a latent multidimen-

sional space where words that are frequently appeared together are

mapped to integer values close to each other in the space. Doing

so allows us to capture much of the syntactic relation of language

constructs. For example, it allows the model to learn that an if

statement must precede an else statement. In this work, we map

each of the tokens and words in the vocabulary to a single ixed-

length embedding vector of 100 features. This vector captures many

characteristics of the code, such as syntax and shadow semantic

similarities.

2.6 Poem-GNN: A Multi-Rational Graph Neural
Network

The adjacency matrices and vertex embeddings of relation graphs

are passed to the Poem-GNN tomap the inputs to a one-dimensional

embedding of 100 features. The Poem-GNN consists of several

stacked GNN embedding layers based on the multi-layer perception
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Figure 3: Using Poem-GNN to learn vertex embeddings. The initial vertex embeddings are generated using word2vec (Sec-

tion 2.5), which are then iteratively updated during the learning process (a) by aggregating information across neighbors and

information from other relation graphs for the same vertex (b).

(MLP) network, so that it can incorporate higher degree neighbor-

hoods across relation graphs. We choose MLP because it is proven

to be efective in learning embeddings for directed graphs [61], but

other neural network architectures (like GRU [17]) can also be used.

We use an AutoML tool [4] to search for the optimal number of

embedding layers from training data (see also Section 4.5.1).

2.6.1 Neighborhood aggregation. Each embedding layer follows a

neighborhood aggregation scheme (Figure 3b), where the � dimen-

sional representation vector, ℎ� , of a graph vertex, � , is computed

by recursively aggregating and transforming the representation

vectors of its neighboring nodes. Vertices are initialized with the

embeddings given by word2vec (Section 2.5) and then exchange

information by transforming their current state and sending it as a

message to all neighbours in the graph. At each vertex, messages

are aggregated and then used to update the associated node rep-

resentation at the next embedding layer (referred to as the next

iteration) [58]. The added backward edges (Section 2.3) enable back-

wards propagation of information. After repeating this process of

updating vertex states for a ixed number of iterations a readout

function (Section 2.6.3) is used to aggregate the vertex representa-

tions to a single numerical vector across multiple relation graphs

to be used as the program representation.

2.6.2 Multi-relation modeling. One of the novel aspects of the

Poem-GNN is that it can propagate and aggregate information

across multiple relation graphs, being it control and data at the

IR or AST. As illustrated in Figure 3a, we achieve this by irst

using learnable, relation-speciicMLP layers,���ℓ , to compute new

graph states of individual relation graphs through neighborhood

aggregation. Speciically, we use a feed-forward neural network

to implement neighborhood aggregation for communicating the

neighbor embeddings to the reference vertex (Figure 3b). We then

apply a MLP-based aggregation function, ������� , to aggregate

and update states for identical AST or IR nodes (locating using

the matrix indices) across relation graphs. Note that our current

implementation aggregates information of AST and CDFG relation

graphs as two separate groups as there is often no one-to-one

mapping between AST and IR nodes after applying standard code

transformations. However, the embeddings learned for the AST and

CDFG will be aggregated during the readout stage.

Formally, we use forward propagation to update the state, ℎ�� ,

for vertex, � , of a relation graph as:

ℎ�+1� := � (������� (
∑

ℓ

∑

(�,�)∈�ℓ

���ℓ (ℎ
�
� ))) (1)

where �ℓ are the directed edges between a node pair, �, and � , and

���ℓ is a relation-graph-speciic message propagation function.

Note that������� and���ℓ are learnable functions, that are up-

dated during the training process. The initial vertex state, ℎ0� , is

created using the word2vec embedding method described in Sec-

tion 2.5. It is worth noting that the vertex representation get more

reined and global as the number of iterations increases.

2.6.3 Result readout. Once we have performed the neighbourhood

aggregation procedure for a ixed number of times (determined

by the number of embedding layers), we will obtain a new set

of embeddings for each vertex. Through this process, the vertex

knows more about their own information (features) and that of

neighbouring nodes. This creates an even more accurate represen-

tation of the relation graphs. To represent the input AST and CDFG,

we use a readout function to concatenate graph representations

across all the neighborhood aggregation iterations and embedding

layers, to form a single numerical vector, ℎ� , as the global program

representation of all (� = 10) relation graphs, �� :

ℎ� = CONCAT

(

�
∑

�=1

({

ℎ
(� )
�,�

|� ∈ ��

})

|� = 0, 1, . . . , �

)

(2)

where � = 0, 1, ..., �, is the neighborhood aggregation iterations. This

readout function produces the global embedding for all relation

graphs, given individual vertex embeddings.

2.6.4 Alternative modeling approaches. A naïve alternative to our

approach is to apply a standard GNN to individual relation graphs

and then concatenate the embedding outcomes of individual graphs.

However, this approach does not allow information to be exchanged

during each neighborhood aggregation iteration. In Section 4.5.2,

we show that this approach gives poor learning performance. As

a result, simply applying the GNN presented in [13] to multiple

relation graphs does address the issues of learning multiple code

relations. We have also considered the recently proposed Relational



Graph Convolutional Network (RGCN) [50] as it can model dif-

ferent relationships through multi-edge encoding. However, the

RGCN has a signiicant drawback ś the number of parameters

drastically increases for larger graphs. This increase in parameters

can lead to overitting, especially when the number of training

samples is limited. Poem sidesteps this problem by restricting the

relation-speciic learnable function to a smaller subgraph of the

entire program. Furthermore, unlike the RGCN that only operates

on a single graph, Poem also supports information aggregation

of the distinct AST and CDFG. In Section 4.5.2, we show that our

approach outperforms the RGCN alternative.

2.7 Graph Embeddings

The graph embedding vector, produced by the Poem-GNN, together

with any auxiliary data is irst normalized to a range of 0 and 1 by

the normalization layer. Normalization is essential as it prevents

the range of single feature being a factor in its importance. The

normalized feature vector is then fed to the dense network for

downstream processing (Figure 1), e.g., classiication. This inal

feature vector captures many characteristics of the code, such as

semantic similarities, control and dependence lows, combinations,

and analogies.

2.8 Train the Poem-GNN

We train the Poem-GNN and the dense network together using

back-propagation. Training is performed on batched training sam-

ples where each sample contains a ground-truth label. We use the

standard cross-entropy loss as the objective function. This function

is shown to be a good it for sigmoid and softmax activation func-

tions (both are also standard functions for classiication) [64] used

by Poem. It is deined as:

L� = −

�
∑

�=1

��,����(�0, �) (3)

where � is the number of classes (i.e., running the code on the

CPU or GPU), � takes a binary value (0 or 1) that indicates if label

� is the correct classiication for training sample � , and � is the

predicted probability for sample � to be of class � .

3 EXPERIMENTAL SETUP

To demonstrate the beneit of Poem, we use it to tune performance

optimization heuristics for OpenCL and C programs. To evaluate

the generalization ability of Poem in modeling program structures,

we also apply it to detect code vulnerabilities for C, Java and Swift.

In total, we apply Poem to four case studies and compare it with nine

prior machine-learning-based approaches (including models using

hand-crafted features) across eight distinct hardware platforms. In

some cases, we also compared to expert-tuned heuristic models.

Note that we use the same model structure for Poem across tasks.

Table 2 lists the machine learning models used in the evaluation.

3.1 Case Study 1: Heterogeneous Mapping

The problem. In this task, we wish to build a predictive model to

determine if the CPU or the GPU gives faster performance for a

given OpenCL kernel.

Table 2: Machine learning methods used in evaluation

Approach Code repre-

sentation

Model Use cases

Grewe et al.

[30, 53]

Manual fea-

tures

Decision Tree Case study 1

DeepTune

[20]

Source code to-

ken sequence

LSTM Case studies 1-3

Inst2vec [12] LLVM IR

tokens

LSTM Case studies 1-2

GNN-AST [13] AST Vanilla GNN Case studies 1-3

GNN-CDFG

[13]

CDFG Vanilla GNN Case studies 1-3

Magni et al.

[42]

Manual fea-

tures

Neural Net-

works

Case study 2

NeuroVectorizer

[33]

Token sequence LSTM + Re-

inforcement

learning

Case study 3

uVuldeepecker

[66]

AST Bidirectional-

LSTM

Case study 4

Lin et al. [40] AST Bidirectional-

LSTM

Case study 4

Poem AST + CDFG multi-

relational

GNN

Case studies 1-4

Methodology. We use the dataset of [20], which provides labeled

CPU/GPU instances for 256 OpenCL kernels extracted from seven

benchmark suites. The data were collected on two CPU-GPU plat-

forms: one with an Intel Core i7-3820 CPU and and AMDTahiti 7970

GPU, and the other has an Intel Core i7-3820 CPU and an NVIDIA

GTX 970 GPU. By varying dynamic inputs, this dataset consists of

680 labeled instances on each platform. The compilation of some

kernels ended with the presence of errors. We have manually ixed

those broken OpenCL kernels to use the entire dataset. We apply

10-fold cross-validation train and test a model. This means we train

a model on six benchmark suite and test the trained model on the

remaining suite. We repeat this process ten times (folds), with each

of the seven suites used exactly once as the testing data. The CDF

diagram in Figure 4 shows the distribution for the number of AST

nodes and branches for kernels in this dataset. For this dataset,

over 50% of the kernels have more than 100 AST nodes, and over

75% of the kernels have one or more branches. Since the dataset in

[20] is small, it may not provide suicient training samples for a

deep learning method. To evaluate on a larger training dataset, we

use DeepSmith, an OpenCL program synthesizer [19], to generate

12,000 valid and compilable OpenCL kernels as additional training

data for deep-learning-based competing methods and Poem. This

second experiment was performed on our GPU platform that uses

a 3.2 GHz 6-core Xeon E5-2667 CPU and an NVIDIA Titan XP GPU.

We proiled all benchmarks from the DeepTune dataset to obtain

the ground-truth label on this platform.

Competitivemethods. For this case study, we compare Poemwith

ive machine-learning models. These include Grewe et al. [30] that

uses hand-tuned features, and DeepTune [20] that uses LSTM to

extract code representations from source code token sequence. We

also compare to Inst2vec [12], a LSTM-based model that operates on
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Figure 4: Cumulative distribution functions (CDF) for the

number of AST nodes (a) and branches (b) in the DeepTune

OpenCL kernel dataset [20].

a graph representation of the LLVM IR. For graph models, we com-

pare to the two GNN variants presented in [13] ofers GNN-CDFG

and GNN-AST which operate on the CDFG and AST respectively.

Like all prior work, for this case study, we use two dynamic val-

ues, the workgroup size and the host-device memory transfer size,

both are available to the OpenCL runtime, as the auxiliary inputs

(or features) to all predictive models. Results of this case study is

presented at Section 4.1.

3.2 Case Study 2: Thread Coarsening

The problem. This task builds a model to determine how many

parallel threads should be merged together to achieve faster exe-

cution time. This is a problem known as determining the thread

coarsening factor for OpenCL [42]. Here, we wish to build a model

to determine for each kernel, which of the six coarsening factors, 1,

2, 4, 8, 16, and 32, should be used for a given kernel (where a factor

of 1 means no coarsening).

Methodology. We replicate the setup of [13, 20, 42] by testing

each approach using the labeled dataset given in [42]. This dataset

contains 17 OpenCL kernels extracted from three benchmark suites.

The data were collected from ive distinct GPU platforms: AMD HD

5900, AMD Tahiti 7970, NVIDIA GTX 480, and NVIDIA K20c. We

also extended our evaluation to NVIDIA Titan XP by proiling the

same OpenCL kernels on this GPU architecture. Like [20], we use

leave-one-out cross-validation for this task because the benchmark

set is small. This works by selecting one benchmark for testing

and using the remaining ones for training. This task is designed to

evaluate if our approach can efectively support transfer learning

[60], a technique for reusing the knowledge learned from one task

to speed up the learning for another task.

Competitivemethods.We compare Poem against three approaches:

Magni et al. [42] that uses hand-tuned features, DeepTune, Inst2vec,

and GNN-CDFG and GNN-AST presented in [13]. To apply trans-

fer learning, we irst train an initial deep learning model on the

dataset given in [20]. We then use transfer learning to ine-tune

the trained model on training data used for this task. Fine-tuning is

done by simply copying the learned parameters of case study one

to initialize the model and then training the model as normal using

cross-validation. Note that for this task, the OpenCL kernel is the

Table 3: Dataset for vulnerability detection.

Source Language #samples #positive samples

C 156,668 78,334
SARD & NVD

Java 60,242 30,121

GitHub
C 10,400 5,200

Swift 4,124 2,062

sole input and coarsening factor is the predicted output. Results of

this case study are presented in Section 4.2.

3.3 Case Study 3: Loop Vectorization

The problem. This task targets the classic compiler optimization

problem of loop vectorization. It aims to build a predictive model to

determine the optimal vectorization factor (VF) and the interleaving

factor (IF) for individual loops. The irst parameter determines how

many instructions to pack together from diferent loop iterations,

while the latter decides the stride of the memory accesses of the

packed instructions. Prior work has shown that the two parame-

ters can have a substantial impact on the resulting vectorization

performance[33, 45]. We consider 35 combinations of VF (1, 2, 4, 8,

16, 32, 64) and IF (1, 2, 4, 8, 16), which are found to be useful in [33].

Methodology. We use LLVM version 9.0 as the compiler. We con-

igure the VF and IF on a per loop basis by placing the LLVM/-

Clang vectorization directives, e.g., loop vectorize_width(VF)

interleave_count(IF). We replicate the evaluation of NeuroVec-

torizer [33], by using the 6,000 synthetic loops generated from

the LLVM vectorization test set to train a model and then test the

trained model on hand-written programs from MiBench [32] and

PolyBench [29]. Our evaluation platform uses an 3.6 GHz Intel Core

i7 CPU with 64GB RAM.

Competitive methods. We compare Poem against three super-

vised learningmodels (DeepTune and the two GNN variants in [13]),

as well as Polly [31], a LLVM-based code vectorizer based on

the polyhedral model. In addition to these, we also compare to

NeuroVectorizer [33], a recently proposed reinforcement-learning-

based approach. NeuroVectorizer irst learns the program repre-

sentations through LSTM. The representations are then used by a

reinforcement learner to search for the best coniguration until a

convergence threshold is met. Due to the nature of reinforcement

learning, NeuroVectorizer can incur signiicant search overhead. It

takes minutes to search for the vectorization coniguration for a

single loop on our evaluation platform. By contrast, our approach

takes less than 100ms (including constructing the relation graphs)

to make a prediction. The results are presented in Section 4.3.

3.4 Case Study 4: Vulnerability Detection

The problem. In this task, we build a model to detect if a given

source code snippet contains one of the 2019 CWE top-25 most

dangerous software errors [26] at the function level.

Methodology. As summarized in Table 3, we use a dataset of

231,434 samples with source languages in C, Java and Swift, where



half of the samples are vulnerable code. The vulnerable code sam-

ples are collected from the standard vulnerable code databases,

including the national vulnerability database (NVD), common vul-

nerabilities and exposures (CVE) and open datasets collected from

GitHub. The vulnerable-free samples are obtained by applying the

corresponding patch to the vulnerable code. We apply 10-fold cross-

validation to train and test a predictive model (see also Section 3.1

for how we perform cross-validation).

Competitive methods. For this case study, we compare Poem

against two state-of-the-art deep-learning-based vulnerability de-

tection models: uVuldeepecker [66] and Lin et al. [40]. Results of

this case study is presented in Section 4.4.

3.5 Performance Report

To measure execution time for case studies 1-3, we run each test

case repeatedly until the 95% conidence bound per model per input

is smaller than 5%. For case study 4, we report the accuracy, and

the false-positive and the false-negative rates. A false positive is

when the model predicts a code snippet has a vulnerability while

it does not, and a false-negative is when the model fails to detect

a vulnerable code sample. For code vulnerability detection, we

would like to achieve high accuracy with low false-positive and

false-negative rates.

We report the geometric mean across experimental runs or test

cases. The geometric mean is widely considered to be more ro-

bust and meaningful than the arithmetic mean for performance

measurements [27].

3.6 Implementation and Training Settings

We implement Poem on Tensorlow v1.8. To build the AST, we use

Clang [2] for OpenCL, C and Swift, and ANTLR [1] for Java. To

extract the CDFG, we use LLVM [3] for OpenCL, C and Swift, and

Soot [5] for Java.

All deep learning models were trained in an end-to-end fashion

using minibatch stochastic gradient descent (SGD) and the Adam

optimizer [37]. For fair comparison, we use NNI [4], an AutoML

tool to determine the training hyper-parameters, including the

learning rate and batch size unless these are given in the published

implementation. We train the models using two NVIDIA GTX 1080

GPUs. Note that we set aside 1/10th of the training data to use for

validation during the training process. Training terminates when

the loss does not improve within 20 consecutive training epochs,

or reaches a 99% accuracy on the valuation set, or meets the ter-

mination criteria given in the published implementation. For each

model, we use the coniguration that yields the best results on the

validation set. Because we use the geometric mean instead of the

arithmetic mean and as the deep learning models are initialized

with random weights, performance numbers can deviate from the

source publications.

4 EXPERIMENTAL RESULTS

In this section, we irst present results for the four case studies de-

scribed in Section 3, showing that Poem outperforms all alternative

methods in each task. We then provide a detailed analysis of the

working mechanism of Poem.
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Figure 5: Speedups (geometric mean) over a GPU-only base-

line for heterogeneousmapping (case study 1). Poem outper-

forms alternative methods on both platforms.
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Figure 6: Prediction accuracy for heterogeneous mapping

(case study 1). Poem gives the highest prediction accuracy.

4.1 Case Study 1: Heterogeneous Mapping

Figure 5 shows the performance improvement. Results on NVIDIA

GTX 970 and AMD Tahiti 7970 was obtained on the DeepTune

dataset, while results on NVIDIA Titan XP were obtained by irst

training the models on additional synthetic OpenCL kernels and

then testing the trained model on hand-written kernels from the

DeepTune dataset. The baseline is a GPU-only strategy that always

uses the GPU for kernel execution. As we report the geometric

mean, the speedup number can deviate from the sour publications.

For this case study, Poem outperforms all other approaches on

all platforms. On NVIDIA GTX 970, we observe small performance

improvement over the GPU-only baseline for all methods. On this

platform, Poem gives the best overall speedup of 1.32, albeit its

improvement is relatively small. By contrast, the beneit of using

the right device on the AMD Tahiti 7970 GPU is larger. On this

platform, Poem achieves a mean speedup of 1.8x, which translates

to an improvement of 13% over the second-best model, GNN-CDFG.

All deep-learning models beneit from additional training data on

the NVIDIA Titan XP platform, where Poem delivers the highest

mean speedup of 2.6x.

If we look at the prediction accuracy in Figure 6, we see that Poem

also delivers the highest accuracy on all platforms; albeit Poem gives

modest accuracy improvement on the DeepTune dataset because

the number of training samples is small. However, when using a

larger training dataset, it is able to boost the prediction accuracy

from 82% to 89% over DeepTune and Inst2vec. We note that on the

AMD platform, for most of the cases that Poem mispredicts, the

diference in performance between the GPU and the CPU is small.

As a result, such a misprediction has little impact on the overall
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Figure 7: Performance of thread coarsening (case study 2).

Poem is the only method that gives an overall speedup.

performance. Overall, Poem delivers the highest mean speedup and

prediction accuracy across all evaluation platforms and datasets.

4.2 Case Study 2: Thread Coarsening

Figure 7 shows the speedup for thread coarsening over a baseline

that uses a coarsen factor of 1 (i.e., no coarsening). In this task, we

apply transfer learning to port the deep learning model trained

for case study 1 (using the DeepTune dataset) to predicting thread

coarsening . Poem is the onlymodel that consistently delivers perfor-

mance improvement across GPU platforms, albeit the improvement

is modest. The modest improvement is expected as a theoretically

perfect predictor would only achieve a mean speedup of 1.28x. The

GNN variants deliver poor performance for this task, leading to

overall slowdown on three out of ive evaluation platforms. Deep-

Tune gives marginal improvements on two GPU platforms, but its

performance is far from Poem on these platforms. Notably, on Tesla

K20c, Poem and Inst2vec are the only predictive models that give a

speedup. On HD5900 and Titan XP, Poem gives an overall speedup

of over 1.2x, improving DeepTune by 20%. Overall, Poem achieves

consistently higher speedups when compared to that of other meth-

ods. This experiment shows Poem can efectively support transfer

learning when the training corpus is small.

4.3 Case Study 3: Loop Vectorization

Figure 8 shows the speedup for predicting loop vectorization con-

igurations. The baseline is the LLVM default loop vectorization set-

ting. Machine learning-based methods outperform the polyhedral-

based Polly optimizer for all test loops except for L3, where Poem

still gives better performance than Polly. GNN and DeepTune match

or outperform NeuroVectorizer on several high-speedup test cases

(L8, L9, L10), despite that NeuroVectorizer incur signiicantly more

expensive compile-time overhead. However, GNN and DeepTune

give no performance improvement or even slow down over LLVM

ł-O3" for several loops, including L3, L7, and L11. After having a

close examination of these cases, we found that these loops con-

tain a branch with the loop body that does not captured by Deep-

Tune and the simply graph representation used by GNN. Poem

gives or matches the best performance for all test cases, except for

L11. For L11, the performance of Poem is not far from the best-

performing model (i.e., NeuroVectorizer). Overall, Poem gives an

average speedup of 2.10x, leading to 13% improvement over Neu-

roVectorizer. The performance of Poem translates into 96% of the
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Figure 8: Speedup over the LLVM default loop vectorizer

(case study 3).Poem delivers the highest overall speedup and

is the best-performing model for most of the testing loops.

Table 4: Performance for code vulnerability detection (case

study 4).

Metrics uVuldeepecker Lin et al. POEM

Accuracy 80.0% 88.0% 90.9%

FPR 31.6% 30.5% 3.1%C

FNR 9.4% 7.1% 8.9%

Java

Accuracy 78.3% 72.0% 84.4%

FPR 27.7% 45.4% 20.7%

FNR 15.7% 10.3% 8.1%

Accuracy 77.7% 74% 89.0%

FPR 21.0% 23.2% 19.3%Swift

FNR 23.6% 28.3% 9.9%

2.17x speedup found by exhaustively trying all the vectorization

conigurations considered in this work.

Compared to NeuroVectorizer, Poem also has orders of magni-

tude less compile-time overhead (under a second versus 15 minutes

compile time for the 12 testing loops). This indicates that the repre-

sentation learned by Poem can efectively support the downstream

loop vectorization task. An interesting question is if the embed-

dings learned by Poem can be used to improve the reinforcement

search framework of NeuroVectorizer. We leave this as future work.

4.4 Case Study 4: Code Vulnerability Detection

In this experiment, we apply Poem to detect vulnerabilities of

function-level source code written in C, Java and Swift.

Table 4 reports the higher-is-better accuracy metric and the

two lower-is-better metrics: the false-positive rate (FPR) and the

false-negative rate (FNR). Poem delivers the best accuracy with the

lowest FPR and FNR. On the C dataset, Poem has an accuracy of

over 90.9%, with a low FPR of 3.1%. Poem has a modestly higher

FNR compared to Lin et al., but it has a signiicantly lower FPR

(3.1% vs 30.5%). A low PPR is important as it reduces the developer’s

time in investigating false alarms. For the Java and Swift datasets,

all three approaches have relatively lower accuracy and higher

FPR. This is largely due to the more complex language features like

overriding of an external method. Such information is not captured

by the initial vertex embedding method (word2vec used by the three

methods). Nonetheless, Poem outperforms the other two methods

across language datasets by successfully detecting more vulnerable

code samples with the lowest FPR.
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on AMD Tahiti 7970 as the number of embedding layers
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Figure 10: Implementation variants of Poem on AMD

Tahiti 7970 for heterogeneous mapping. Our implementa-

tion choices of Poem give the best overall performance.

4.5 Model Analysis

4.5.1 Impact of embedding layers. Using heterogeneous mapping

as an example, Figure 9 shows how the performance of Poem

changes on the DeepTune dataset on AMD Tahiti 7970. Increasing

the number of embedding layers (and hence the number of neigh-

borhood aggregation iterations - see Section 2.6) can improve the

performance. However, the accuracy reaches a plateau when using

ive embedding layers and using more than that leads to overitting

and a drop of prediction accuracy on the validation set. The vali-

dation dataset is part of the training data but not the test dataset

which is always not seen at the model design and training stage.

We use the same procedure to determine the optimal number of em-

bedding layers for each task, by comparing the resulting accuracy

on the validation set. We found that using 3 to 5 embedding layers

give a good performance for our tasks and using more embedding

layers would require a larger training dataset.

4.5.2 Impact of implementation choices. In this experiment, we

compare Poem to several variant implementations for performing

heterogeneous mapping on AMD Tahiti 7970. The irst is RGCN

[50] that applies to the 10 code relations described in Table 2.3.

Unlike Poem, RGCN takes in a single adjacency matrix that encodes

all the node connectivities of the AST and CDFG, and the edge is

encoded using a one-hot vector for representing diferent relations.

The second variant, referred to as p-vanilla-AST, operates on a

standard AST (without the additional edges described in Sec. 2.2).

The third variant, referred to as P-AST, operates only on the aug-

mented AST. The fourth variant, referred to as P-CDFG, operates

only on the CDFG. This experiment uses heterogeneous mapping as

a case study and is designed to evaluate the impact of exacting code

information. The inal variant, referred to as P-CONCAT, learns in-

dividual embeddings for each relation graph and then concatenates

the individual embeddings for prediction. This evaluation is also

known as the ablation study [28].

The results are given in Figure 10. While RGCN support mod-

elling of multiple edge relations, it is less efective for modeling a

combined graph from the AST and the CDFG. Its low performance

is largely due to two reasons. Firstly, a simple combination of the

AST and the CDFG, which are two heterogeneous graphs, to it the

RGCN can confuse the learning algorithm. Second, RGCN requires

a large number of learnable parameters and is hard to generalize.

Figure 10 also shows that using the standard AST is inadequate for

capturing the essential program structures. By augmenting the AST

with additional control and data low information, P-AST improves

P-vanilla-AST by 4%. However, using the AST or CDFG alone is

insuicient, as both give an accuracy of less than 75%. P-CDFG cor-

rectly predicts 20 kernels where P-AST fails, while it fails on other

12 kernels where P-AST succeeds. P-CONCAT also gives lower

performance compared to Poem, suggesting that simply combining

the embeddings of relation graphs is less efective. This experiment

suggests that we need to utilize and aggregate the information of

the AST and the CDFG during the learning process. Poem ofers ex-

actly such capabilities, leading the best overall performance. It also

shows that our multi-relational graph learning method improves a

single concatenation strategy.

4.5.3 Embedding visualization. In an attempt to examine the learned

code representation qualitatively, we provide a visualization of the

t-SNE-transformed feature representations [41] extracted by the

Poem-GNN pre-trained on the DeepTune heterogeneous mapping

dataset. The representation exhibits discernible clustering in the

projected 2D space as shown in Figure 11. Note that these clusters

(with two diferent node colors) correspond to the two labels (CPU

and GPU) of the dataset, verifying the model’s discriminative power

across diferent classes for this dataset. As can be seen from the

diagram, the embeddings learned by Poem is more discriminative

than the ones given by other methods, leading to a clearer linear

boundary between the two classes (CPU and GPU).

4.5.4 Training overhead. The time for training Poem is dominated

by training data collection. For case study 1, it took less than 24

hours to proile over synthetic 10,000 benchmarks for labeling the

data. The time in model training and hyper-parameter tuning is

less than 12 hours using two modest NVIDIA 1080 GPUs on 10,000

samples. Since training is only performed once, it is a one-of cost.

5 DISCUSSIONS

Naturally, there is room for future work and further improvement.

We discuss a few points here.

Model interpretability. Machine learning techniques, in general,

have the problem of relying on black boxes. This problem is just as

true for Poem. One way to gain insight into why the model fails to

produce the desired result is to train an interpretable model (or so
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Figure 11: Visualization of the learned program representa-

tions for heterogeneous device mappings. We map the high-

dimensional embedding space to a 2-dimensional space to

aid clarity using t-SNE. The embeddings learned by Poem is

more discriminative than the ones given by other methods,

leading to a clearer boundary between the two classes.

called surrogate models) like linear regressor to approximate the

predictions of the underlying black-box model [49].

Training samples. Deep neural networks typically require a large

volume of training data to learn over. However, there is often a

shortage of benchmarks. Therefore, work on benchmark synthesis

[21] is orthogonal to our approach.

Training overhead. Proiling training benchmarks to generate

training data could be expensive. One way of reducing the training

overhead is to use active learning [46] to only proile and label

training benchmarks that are likely to improve the performance of

the machine-learned model.

Memory footprint. Like all GNN approaches, the memory foot-

print of Poem increases as the graph size increases. However, we can

reduce memory pressure by using sampling methods like Graph-

SAGE for batched training [34], i.e., operating on a subgraph of the

entire program at a time.

Other application domains. We have shown that Poem can be

generalized across a range of tasks. We envision that Poem can

be applied to other applications which are beyond the scope of

this work. It can be applied to detect malicious code by looking for

suspicious and obfuscated patterns. It can be extended to regression-

based problems like predicting the potential speedup for a code

transformation option. A particularly interesting research direction

would be to extend Poem to model the program structure at the

binary level [59] for tasks like program veriication and security.

6 RELATED WORK

Machine learning has demonstrated promises in automating the pro-

cess of decision model construction for various code optimization

tasks [54]. Many prior studies have shown that machine-learned

models can outperform expert-crafted heuristics [9, 14, 15, 23ś

25, 48, 51, 55, 56, 62, 63]. However, a signiicant barrier still exists ś

programs must be represented as a set of features that serve as in-

puts to a machine learning tool. Traditionally, this requires experts’

involvement to extract the crucial elements of the program.

Prior work automated this process of inding code representa-

tions by searching useful information from the compiler IR [38, 44].

These approaches still require experts to manually deine the search

space of a particular compiler IR implementation. As such, they

ofer little help in removing human experts from the loop.

In recent year, deep learning has been employed for modeling

program structures. A key advantage of deep learning is that it can

automatically ind the right feature representations from training

data without human involvement [6]. Prior work for deep learning

on code typically employ recurrent neural networks (RNN) like

LSTM or GRU to extract program representations from token se-

quences. For examples, DeepTune uses LSTM to extract program

representations from tokenrized OpenCL code [20] and Inst2vec

applies LSTM to sequentialized IR graphs [12]. Other work uses

RNNs to summarize representations from the AST [8, 16, 33] or

sparse matrices [65]. While RNN is a proven technique for nat-

ural language processing, it is mainly designed for processing a

sequential sequence [35]. The prolbem for treating source code

as a sequential token sequence is that statements can easily be

separated by hundreds of lines of irrelevant code in sequential

representations. As a result, RNNs are inefective in modeling the

complex program control and data lows - which should be better

represented as a graph structure instead of a sequence of tokens.

A graph representation not only enables the learning framework

to leverage the well-deined program structures but also facilitates

propagating information across the graph in a manner similar to

typical compiler analyses.

An early attempt to use program graph structures for code opti-

mization is presented in [47]. This approach requires careful hand-

tuned features at the basic block level to extract information from

the program graph. To predict an optimization option, it measures

the similarity of the input program graph with the graphs of the

training datasets. This strategy requires the training data graphs

to be shipped with the compiler and hence does not scale well as

the training program size increases. Furthermore, this approach

does not abstract the language semantics and syntax a suiciently

high level, leading to expensive computation complexity for graph

matching. Our approach eliminates the need for manual feature

tuning, with a constant, lower-cost compile overhead, which is

independent of the size of the training set.

Some of the most recent work has employed the recently pro-

posed GNN to model code structures. For example, Miltiadis et al.

[7] use GNN to model the AST to identify the misuse of names. The

recent work presented in [13], which uses the GNN to model the

AST or CFDG for OpenCL program optimization, is most closely

related. This approach uses a vanilla GNN which treat all relation-

ships equally as a single graph edge type, whether it is a node

connection, or a data or control low. This strategy misses much of

the information that could otherwise be captured. Our approach

advances [13] by capturing the diferent relationships within a uni-

ied learning framework. Compared to [13], Poem can leverage a

richer set of information by combining the AST and CFDG, leading

to signiicantly better and more reliable performance. When prepar-

ing the inal version of this paper, we noticed the pre-print version



of ProGraML [18]. This approach also employs a GNN to the pro-

gram’s control and data low graph extracted from the compiler IR.

Our work was conducted independently and perhaps concurrently

to ProGraML. Unlike ProGraML, Poem also utilizes information

available in the AST, and uses individual learnable functions to

model diferent code relationships.

The GNN family includes a diverse class of neural network ar-

chitectures based on recurrent units [39, 57] and convolutional

[22] and attention [52] methods. Poem represents the irst work for

leveraging GNNs to learn over multiple code relationships.

7 CONCLUSION

This paper has presented Poem, a general learning framework for

supporting building machine-learned heuristics for code analysis

and optimization. Poem is designed to automatically extract useful

representations of programs to be used as inputs for machine learn-

ing tools. At the core of Poem is a novel Graph Neural Network

(GNN) that can distinguish and aggregate information from difer-

ent relationships within the program control and data low graph

and the abstract syntax tree. By providing a way to abstract and

aggregate information from a well-structured program graph rep-

resentation, our approach can capture a richer set of syntactic and

semantic information than prior deep-learning-based approaches.

We demonstrate the generalization ability of Poem by applying

it to four representative program optimization and analysis tasks

spanning diferent programming languages. We perform extensive

experiments to compare Poem with state-of-the-art approaches

for each task. Experimental results show that Poem consistently

outperforms prior methods, setting new state-of-the-art results for

these tasks.
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