skip to main content
research-article

Comparison of Common Ground Models for Human--Computer Dialogue: Evidence for Audience Design

Published:27 April 2021Publication History
Skip Abstract Section

Abstract

Common ground processes [26] can improve performance in communication tasks [72, 42, 43, 24], and understanding these processes will likely benefit human--computer dialogue interfaces. However, there are multiple proposed theories with different implications for interface design. Fusaroli and Tylén [40] achieved a direct comparison by designing two models: one based on alignment theory and the other based on complementarity theory that encapsulated interpersonal synergy and audience design. The current research used these models, extending them to differentiate between interpersonal synergy and audience design. Few studies have tested multiple common ground models against tasks representative of envisioned human--computer interaction (HCI) applications. We report on four such tests, which allowed examination of generalizability of findings. Results supported the complementarity models over the alignment model, and were suggestive of the audience design variant of complementarity, providing guidance for HCI design that differs from contemporary approaches.

References

  1. A. H. Anderson, M. Badger, E. G. Bard, E. Boyle, G. Doherty, S. Garrod, S. Isard, J. Kowto, J. McAllister, J. Miller, C. Sotillo, H. S. Thompson, and R. Weinert. 1991. The HCRC Map task corpus. Language and Speech 34, 4 (1991), 351--366. DOI: DOI:https://doi.org/10.1177/002383099103400404Google ScholarGoogle ScholarCross RefCross Ref
  2. Daniel Angus, Andrew Smith, and Janet Wiles. 2012. Conceptual recurrence plots: Revealing patterns in human discourse. IEEE Transactions on Visualization and Computer Graphics 18, 6 (2012), 988--997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Daniel Angus, Andrew Smith, and Janet Wiles. 2012. Human communication as coupled time series: Quantifying multi-participant recurrence. IEEE Transactions on Audio, Speech, and Language Processing 20, 6 (2012), 1795--1807.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Parks Associates. 2018. Penetration of smart speakers with voice assistants will reach 47% of U.S. broadband households by 2022. Retrieved October 10, 2018 from http://parksassociates.com/blog/article/pr-09272018.Google ScholarGoogle Scholar
  5. Rachel Baker and Valerie Hazan. 2011. DiapixUK: Task materials for the elicitation of multiple spontaneous speech dialogs. Behavior Research Methods 43, 3 (2011), 761--770. DOI: DOI:https://doi.org/10.3758/s13428-011-0075-yGoogle ScholarGoogle ScholarCross RefCross Ref
  6. Reuben M. Baron and David A. Kenny. 1986. The moderator--mediator variable distinction in social the moderator--mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51, 6 (1986), 1173--1182. DOI: DOI:https://doi.org/10.1037/0022-3514.51.6.1173arxiv:4Google ScholarGoogle ScholarCross RefCross Ref
  7. Timo Baumann, Casey Kennington, Julian Hough, and David Schlangen. 2017. Recognising conversational speech: What an incremental ASR should do for a dialogue system and how to get there. In Dialogues with Social Robots. Springer, 421--432.Google ScholarGoogle Scholar
  8. D. Bernard and A. Arnold. 2019. Cognitive interaction with virtual assistants: From philosophical foundations to illustrative examples in aeronautics. Computers in Industry 107 (2019), 33--49.Google ScholarGoogle ScholarCross RefCross Ref
  9. Reihane Boghrati, Joe Hoover, Kate M. Johnson, Justin Garten, and Morteza Dehghani. 2017. Conversation level syntax similarity metric. Behavior Research Methods 50, 3 (2017), 1055--1073. DOI: DOI:https://doi.org/10.3758/s13428-017-0926-2Google ScholarGoogle ScholarCross RefCross Ref
  10. R. S. Bolia, W. T. Nelson, M. A. Ericson, and B. D. Simpson. 2000. A speech corpus for multitalker communications research.The Journal of the Acoustical Society of America 107, 2 (2000), 1065--1066. DOI: DOI:https://doi.org/10.1121/1.428288Google ScholarGoogle Scholar
  11. Holly P. Branigan, Robin J. Lickley, and David McKelvie. 1999. Non-linguistic influences on rates of disfluency in spontaneous speech. In Proceedings of the 14th International Conference of Phonetic Sciences. 387--390.Google ScholarGoogle Scholar
  12. Holly P. Branigan, Martin J. Pickering, and Alexandra A. Cleland. 2000. Syntactic co-ordination in dialogue. Cognition 75, 2 (2000), B13--B25. DOI: DOI:https://doi.org/10.1016/S0010-0277(99)00081-5Google ScholarGoogle ScholarCross RefCross Ref
  13. Holly P. Branigan, Martin J. Pickering, Jamie Pearson, and Janet F. McLean. 2010. Linguistic alignment between people and computers. Journal of Pragmatics 42, 9 (2010), 2355--2368. DOI: DOI:https://doi.org/10.1016/j.pragma.2009.12.012Google ScholarGoogle ScholarCross RefCross Ref
  14. Holly P. Branigan, Martin J. Pickering, Jamie Person, Janet F. McLean, and Clifford I. Nass. 2003. Syntactic alignment between computers and people: The role of belief about mental states. Brain 28, 9 (2003), 186--191. Retrieved from http://www.psy.ed.ac.uk/people/martinp/pdf/branigan-cogsci-03.pdfGoogle ScholarGoogle Scholar
  15. Susan E. Brennan. 1998. The grounding problem in conversations with and through computers. In Social and Cognitive Approaches to Interpersonal Communication. Susan R. Fussell and Roger J. Kreuz (Eds.), Lawrence Erlbaum, Hillsdale, NJ, 201--225.Google ScholarGoogle Scholar
  16. Susan E. Brennan, Alexia Galati, and Anna K. Kuhlen. 2010. Two minds, one dialog: Coordinating speaking and understanding. In Psychology of Learning and Motivation. Brian E. Ross (Ed.), Vol. 53, Elsevier, 301--344.Google ScholarGoogle Scholar
  17. Carsten Brockmann, Amy Isard, Jon Oberlander, and Michael White. 2005. Modelling alignment for affective dialogue. In Proceedings of the Workshop on Adapting the Interaction Style to Affective Factors at the 10th International Conference on User Modeling. 1--5.Google ScholarGoogle Scholar
  18. Michael J. Burtscher, Johannes Wacker, Gudela Grote, and Tanja Manser. 2010. Managing nonroutine events in anesthesia: The role of adaptive coordination. Human Factors 52, 2 (2010), 282--294. DOI: DOI:https://doi.org/10.1177/0018720809359178Google ScholarGoogle ScholarCross RefCross Ref
  19. Hendrik Buschmeier, Kirsten Bergmann, and Stefan Kopp. 2009. An alignment-capable microplanner for natural language generation. In Proceedings of the 12th European Workshop on Natural Language Generation. 82--89. DOI: DOI:https://doi.org/10.3115/1610195.1610207Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Abhizna Butchibabu, Christopher Sparano-Huiban, Liz Sonenberg, and Julie Shah. 2016. Implicit coordination strategies for effective team communication. Human Factors 58, 4 (2016), 595--610. DOI: DOI:https://doi.org/10.1177/0018720816639712Google ScholarGoogle ScholarCross RefCross Ref
  21. Herbert H. Clark. 1994. Managing problems in speaking. Speech Communication 15, 3-4 (1994), 243--250. DOI: DOI:https://doi.org/10.1016/0167-6393(94)90075-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Herbert H. Clark. 1996. Using Language. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  23. Herbert H. Clark and Susan E. Brennan. 1991. Grounding in communication. In Perspectives on Socially Shared Cognition. L. Resnick, J. Levine, and S. Teasley (Eds.). American Psychological Association, Washington, DC, 127--149. DOI: DOI:https://doi.org/10.1037/10096-006Google ScholarGoogle Scholar
  24. Herbert H. Clark and Meredyth A. Krych. 2004. Speaking while monitoring addressees for understanding. Journal of Memory and Language 50, 1 (2004), 62--81. DOI: DOI:https://doi.org/10.1016/j.jml.2003.08.004Google ScholarGoogle ScholarCross RefCross Ref
  25. Herbert H. Clark and Catherine R. Marshall. 1981. Definite reference and mutual knowledge. In Elements of Discourse Understanding. A. K. Joshi, B. L. Webber, and I. A. Sag (Eds.). Cambridge University Press, Cambridge, 10--63.Google ScholarGoogle Scholar
  26. Herbert H. Clark and Edward F. Schaefer. 1989. Contributing to discourse. Cognitive Science 13, 2 (1989), 259--294. DOI: DOI:https://doi.org/10.1016/0364-0213(89)90008-6Google ScholarGoogle ScholarCross RefCross Ref
  27. Herbert H. Clark and D. Wilkes-Gibbs. 1986. Referring as a collaborative process.Cognition 22, 1 (1986), 1--39. DOI: DOI:https://doi.org/10.1016/0010-0277(86)90010-7Google ScholarGoogle Scholar
  28. Moreno I. Coco and Rick Dale. 2014. Cross-recurrence quantification analysis of categorical and continuous time series: An R package. Frontiers in Psychology 5, (2014), 1--14. DOI: DOI:https://doi.org/10.3389/fpsyg.2014.00510Google ScholarGoogle Scholar
  29. Moreno I. Coco, Rick Dale, and Frank Keller. 2017. Performance in a collaborative search task: The role of feedback and alignment. Topics in Cognitive Science 10 (2017), 55--79. DOI: DOI:https://doi.org/10.1111/tops.12300Google ScholarGoogle ScholarCross RefCross Ref
  30. Benjamin R. Cowan, Holly P. Branigan, Mateo Obregón, Enas Bugis, and Russell Beale. 2015. Voice anthropomorphism, interlocutor modelling and alignment effects on syntactic choices in human--computer dialogue. International Journal of Human Computer Studies 83, C (2015), 27--42. DOI: DOI:https://doi.org/10.1016/j.ijhcs.2015.05.008Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rick Dale, Riccardo Fusaroli, Nicholas D. Duran, and Daniel C. Richardson. 2014. The self-organization of human interaction. In Psychology of Learning and Motivation, Vol. 59, 43--84.Google ScholarGoogle ScholarCross RefCross Ref
  32. Rick Dale, Alexia Galati, Camila Alviar, Pablo Contreras Kallens, Adolfo G. Ramirez-Aristizabal, Maryam Tabatabaeian, and David W. Vinson. 2018. Interacting timescales in perspective-taking. Frontiers in Psychology 9 (2018), 1278.Google ScholarGoogle ScholarCross RefCross Ref
  33. Rick Dale and Michael J. Spivey. 2006. Unraveling the dyad: Using recurrence analysis to explore patterns of syntactic coordination between children and caregivers in conversation. Language Learning 56, 3 (2006), 391--430. DOI: DOI:https://doi.org/10.1111/j.1467-9922.2006.00372.xGoogle ScholarGoogle ScholarCross RefCross Ref
  34. Asaf Degani, Claudia V Goldman, Omer Deutsch, and Omer Tsimhoni. 2017. On human--machine relations. Cognition, Technology & Work 19, 2--3 (2017), 211--231.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. David DeVault. 2008. Contribution tracking: Participating in task-oriented dialogue under uncertainty. Ph.D. Dissertation. Rutgers, The State University of New Jersey, New Brunswick, NJ , .Google ScholarGoogle Scholar
  36. Nicholas D. Duran and Rick Dale. 2014. Perspective-taking in dialogue as self-organization under social constraints. New Ideas in Psychology 32 (2014), 131--146*.Google ScholarGoogle ScholarCross RefCross Ref
  37. Jens Edlund, Joakim Gustafson, Mattias Heldner, and Anna Hjalmarsson. 2008. Towards human-like spoken dialogue systems. Speech Communication 50, 8-9 (2008), 630--645. DOI: DOI:https://doi.org/10.1016/j.specom.2008.04.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ute Fischer, Lori McDonnell, and Judith Orasanu. 2007. Linguistic correlates of team performance: Toward a tool for monitoring team functioning during space missions. Aviation Space and Environmental Medicine 78, 5 Suppl (2007), B86--B95.Google ScholarGoogle Scholar
  39. Riccardo Fusaroli, Joanna Raczaszek-Leonardi, and Kristian Tylén. 2014. Dialog as interpersonal synergy. New Ideas in Psychology 32, 1 (2014), 147--157. DOI: DOI:https://doi.org/10.1016/j.newideapsych.2013.03.005Google ScholarGoogle ScholarCross RefCross Ref
  40. Riccardo Fusaroli and Kristian Tylén. 2016. Investigating conversational dynamics: Interactive alignment, interpersonal synergy, and collective task performance. Cognitive Science 40, 1 (2016), 145--171. DOI: DOI:https://doi.org/10.1111/cogs.12251Google ScholarGoogle ScholarCross RefCross Ref
  41. Shaun Gallagher and K. Miyahara. 2012. Neo-pragmatism and enactive intentionality. In Action, Perception and the Brain. J. Schulkin (Ed.). Palegrave-Macmillan, Basingtoke, 117--146.Google ScholarGoogle Scholar
  42. Darren Gergle, Robert E. Kraut, and Susan R. Fussell. 2004. Language efficiency and visual technology: Minimizing collaborative effort with visual information. Journal of Language and Social Psychology 23, 4 (2004), 491--517. DOI: DOI:https://doi.org/10.1177/0261927X04269589Google ScholarGoogle ScholarCross RefCross Ref
  43. Darren Gergle, Robert E. Kraut, and Susan R. Fussell. 2013. Using visual information for grounding and awareness in collaborative tasks. Human--Computer Interaction 28, 1 (2013), 1--39. DOI: DOI:https://doi.org/10.1080/07370024.2012.678246Google ScholarGoogle Scholar
  44. Felix Gervits, Kathleen Eberhard, and Matthias Scheutz. 2016. Team communication as a collaborative process. Frontiers in Robotics and AI 3, (2016), 1--14. DOI: DOI:https://doi.org/10.3389/frobt.2016.00062Google ScholarGoogle Scholar
  45. Jamie C. Gorman, Nancy J. Cooke, Polemnia G. Amazeen, and Shannon Fouse. 2012. Measuring patterns in team interaction sequences using a discrete recurrence approach. Human Factors 54, 4 (2012), 503--517. DOI: DOI:https://doi.org/10.1177/0018720811426140Google ScholarGoogle ScholarCross RefCross Ref
  46. Jamie C. Gorman, Terri A. Dunbar, David Grimm, and Christina L. Gipson. 2017. Understanding and modeling teams as dynamical systems. Frontiers in Psychology 8, (2017), 1--18. DOI: DOI:https://doi.org/10.3389/fpsyg.2017.01053*Google ScholarGoogle Scholar
  47. Stephen J. Guastello. 2017. Nonlinear dynamical systems for theory and research in ergonomics. Ergonomics 60, 2 (2017), 167--193. DOI: DOI:https://doi.org/10.1080/00140139.2016.1162851Google ScholarGoogle ScholarCross RefCross Ref
  48. Andrew Hampton. 2013. Spatialized Audio and Landmarks in Team Navigation. Ph.D. Dissertation. Wright State University.Google ScholarGoogle Scholar
  49. Andrew Hampton, Valerie L. Shalin, F. Eric Robinson, Brian D. Simpson, Victor Finomore, Jeffrey Cowgill, Thomas Moore, Terrence Rapoch, and Robert Gilkey. 2012. The impact of spatialized communications on team navigation. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 56, (), 463--467. DOI: DOI:https://doi.org/10.1177/1071181312561045Google ScholarGoogle ScholarCross RefCross Ref
  50. Patrick G. T. Healey, Matthew Purver, and Christine Howes. 2014. Divergence in dialogue. PloS One 9, 2 (2014), e98598. DOI: DOI:https://doi.org/10.1371/journal.pone.0098598Google ScholarGoogle ScholarCross RefCross Ref
  51. William S. Horton and Richard J. Gerrig. 2005. The impact of memory demands on audience design during language production. Cognition 96, 2 (2005), 127--142. DOI: DOI:https://doi.org/10.1016/j.cognition.2004.07.001Google ScholarGoogle ScholarCross RefCross Ref
  52. William S. Horton and Boaz Keysar. 1996. When do speakers take into common ground?Cognition 56, 1 (1996), 91--117.Google ScholarGoogle Scholar
  53. Nandini Iyer, Eric Thompson, Kelly Stillwagon, Zachariah Ennis, Abbey Willis, and Brian Simpson. 2016. Adaptive speech modifications and its effect on communication effectiveness in complex acoustic environments. The Journal of the Acoustical Society of America 140, 4 (October 2016), 3437. DOI: DOI:https://doi.org/10.1121/1.4971074Google ScholarGoogle ScholarCross RefCross Ref
  54. S. Janarthanam and O. Lemon. 2009. A wizard-of-Oz environment to study referring expression generation in a situated spoken dialogue task. In Proceedings of the 12th European Workshop on Natural Language Generation. 94--97. DOI: DOI:https://doi.org/10.3115/1610195.1610209Google ScholarGoogle Scholar
  55. Holger Kantz and Thomas Schreiber. 2004. Nonlinear Time Series Analysis (2nd ed.). Cambridge University Press. DOI: DOI:https://doi.org/10.1007/s13398-014-0173-7.2Google ScholarGoogle Scholar
  56. Boaz Keysar, Dale J. Barr, Jennifer A. Balin, and Jason S. Brauner. 2000. Taking perspective in conversation: The role of mutual knowledge in comprehension. Psychological Science 11, 1 (2000), 32--38. DOI: DOI:https://doi.org/10.1111/1467-9280.00211Google ScholarGoogle ScholarCross RefCross Ref
  57. Gary Klein, David D. Woods, Jeffrey M. Bradshaw, Robert R. Hoffman, and Paul J. Feltovich. 2004. Ten challenges for making automation a “team player” in joint human--agent activity. IEEE Intelligent Systems 19, 6 (2004), 91--95. DOI: DOI:https://doi.org/10.1109/MIS.2004.74Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. T. Koulouri, S. Lauria, and R. D. Macredie. 2016. Do (and say) as I say: Linguistic adaptation in human--computer dialogs. Human--Computer Interaction 31, 1 (2016), 59--95. DOI: DOI:https://doi.org/10.1080/07370024.2014.934180Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. R. J. Lickley. 2001. Dialogue moves and disfluency rates. In Proceedings of the ISCA Tutorial and Research Workshop (ITRW) on Disfluency in Spontaneous Speech (DiSS'01). 1--4. Retrieved from http://www.isca-speech.org/archive_open/archive_papers/diss_01/dis1_093.pdfGoogle ScholarGoogle Scholar
  60. Max M. Louwerse, Rick Dale, Ellen G. Bard, and Patrick Jeuniax. 2012. Behavior matching in multimodal communication is synchronized. Cognitive Science 36, 8 (2012), 1404--1426. DOI: DOI:https://doi.org/10.1111/j.1551-6709.2012.01269.xGoogle ScholarGoogle ScholarCross RefCross Ref
  61. Norbert Marwan, M. Carmen Romano, Marco Thiel, and Jürgen Kurths. 2007. Recurrence plots for the analysis of complex systems. Physics Reports 438, 5-6 (2007), 237--329. DOI: DOI:https://doi.org/10.1016/j.physrep.2006.11.001Google ScholarGoogle ScholarCross RefCross Ref
  62. Gregory J. Mills. 2014. Dialogue in joint activity: Complementarity, convergence and conventionalization. New Ideas in Psychology 32, 1 (2014), 158--173. DOI: DOI:https://doi.org/10.1016/j.newideapsych.2013.03.006Google ScholarGoogle ScholarCross RefCross Ref
  63. F. Moscoso del Prado Martín and J. Du Bois. 2015. Syntactic alignment is an index of affective alignment: An information-theoretical study of natural dialogue. In Proceedings of the Cognitive Science Society Annual Meeting. 1655--1660.Google ScholarGoogle Scholar
  64. F. Orsucci, R. Petrosino, G. Paoloni, L. Canestri, E. Conte, M. A. Reda, and M. Fulcheri. 2013. Prosody and synchronization in cognitive neuroscience. EPJ Nonlinear Biomedical Physics 1, 1 (2013), 1:6. DOI: DOI:https://doi.org/10.1140/epjnbp13Google ScholarGoogle Scholar
  65. James W. Pennebaker, Ryan L. Boyd, Kayla Jordan, and Kate Blackburn. 2015. The Development and Psychometric Properties of LIWC2015. Technical Report. University of Texas at Austin, Austin, TX. DOI: DOI:https://doi.org/10.1068/d010163Google ScholarGoogle Scholar
  66. Pew Research Center. 2014. The Internet of Things Will Thrive by 2025. Technical Report. Retrieved from http://www.pewinternet.org/2014/05/14/internet-of-things/Google ScholarGoogle Scholar
  67. Martin J. Pickering and Simon Garrod. 2004. Toward a mechanistic psychology of dialogue.Behavioral and Brain Sciences 27, 2 (2004), 169--190; discussion 190--226. DOI: DOI:https://doi.org/10.1017/S0140525X04000056Google ScholarGoogle Scholar
  68. W. Quine. 1960. Word and Object. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  69. Neil C. Rabinowitz, Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Ali Eslami, and Matthew Botvinick. 2018. Machine theory of mind. arxiv:1802.07740.Retrieved from http://arxiv.org/abs/1802.07740Google ScholarGoogle Scholar
  70. Joanna Raczaszek-Leonardi. 2016. Multiple systems and multiple time scales of language dynamics: Coping with complexity. Cybernetics and Human Knowing 21, (2016), 37--52.Google ScholarGoogle Scholar
  71. Joanna Raczaszek-Leonardi, Agnieszka Debska, and Adam Sochanowicz. 2014. Pooling the ground: Understanding and coordination in collective sense making. Frontiers in Psychology 5, (2014), 1--13. DOI: DOI:https://doi.org/10.3389/fpsyg.2014.01233Google ScholarGoogle Scholar
  72. David Reitter and Johanna D. Moore. 2014. Alignment and task success in spoken dialogue. Journal of Memory and Language 76 (2014), 29--46. DOI: DOI:https://doi.org/10.1016/j.jml.2014.05.008Google ScholarGoogle ScholarCross RefCross Ref
  73. Griffin D. Romigh, Clayton D. Rothwell, Brandon Greenwell, and Meagan Newman. 2016. Modeling uncertainty in spontaneous speech: Lexical and acoustic features. In Poster Session Presented at the 172nd Meeting of the Acoustical Society of America. Honolulu, HI.Google ScholarGoogle Scholar
  74. Clayton D. Rothwell. 2018. Recurrence Quantification Models of Human Conversational Grounding Processes: Informing Natural Language Human-Computer Interaction. Ph.D. Dissertation. Wright State University.Google ScholarGoogle Scholar
  75. E. Salas, T. L. Dickinson, S. A. Converse, and S. I. Tannenbaum. 1992. Toward an understanding of team performance and training. In Teams: Their Training and Performance, R. W. Swezey and E. Salas (Eds.). Ablex, 3--29.Google ScholarGoogle Scholar
  76. Emanuel A. Schegloff and Harvey Sacks. 2006. Opening up closings. In The Discourse Reader (2nd ed.), Adam Jaworksi and Nikolas Coupland (Eds.). Routledge, New York, NY, 262--271.Google ScholarGoogle Scholar
  77. Michael F. Schober and Susan E. Brennan. 2003. Processes of interactive spoken discourse: The role of the partner. In Handbook of Discourse Processes, Arthur C. Graesser, Morton A. Gernsbacher, and Susan R. Goldman (Eds.). Routledge, 123--164. Retrieved from http://psycnet.apa.org/psycinfo/2003-02476-003Google ScholarGoogle Scholar
  78. John R. Searle. 1990. Is the brain’s mind a computer program?Scientific American 262 (1990), 26--31. Retrieved from http://www.eric.ed.gov/ERICWebPortal/search/detailmini.jsp?_nfpb=true&{_}&ERICExtSearch{_}SearchValue{_}0=EJ409262&ERICExtSearch{_}SearchType{_}0=no&accno=EJ409262$\delimiter“026E30F$nhttp://sils.shoin.ac.jp/{∼}gunji/AI/CR/Is{_}The{_}Brains{_}Mind{_}A{_}Computer{_}Program.pdfGoogle ScholarGoogle Scholar
  79. K. Talamadupula, J. Benton, S. Kambhampati, P. Schermerhorn, and M. Scheutz. 2010. Planning for human--robot teaming in open worlds. ACM Transactions on Intelligent Systems and Technology 1, 2 (2010), 14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Ann Taylor, Mitchell Marcus, and Beatrice Santorini. 2003. The Penn treebank: An overview. In Treebanks: Building and Using Parsed Corpora, A. Abeille (Ed.). 5--22. DOI: DOI:https://doi.org/10.1007/978-94-010-0201-1_1Google ScholarGoogle Scholar
  81. Thora Tenbrink, Elena Andonova, and Kenny Coventry. 2008. Negotiating spatial relationships in dialogue: The role of the addressee. In Proceedings of LONDIAL—The 12th SEMDIAL Workshop. 193--200.Google ScholarGoogle Scholar
  82. Stefanie L. Tomko. 2006. Improving User Interaction with Spoken Dialog Systems via Shaping. Ph.D. Dissertation. Carnegie Mellon University. DOI: DOI:https://doi.org/10.1145/1056808.1056846Google ScholarGoogle Scholar
  83. Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, Vol. 1. Association for Computational Linguistics, 173--180.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. P. Urlings, J. Tweedale, C. Sioutis, N. Ichalkaranje, and L. Jain. 2003. Intelligent agents as cognitive team members. In Human-Centered Computing: Cognitive, Social, and Ergonomic Aspects, , Vol. 3. Don Harris, Vincent Duffy, Michael Smith, and Constantine Stephanidis (Eds.). CRC Press, 355--359.Google ScholarGoogle Scholar
  85. Kristin J. Van Engen, Melissa Baese-Berk, Rachel E. Baker, Arim Choi, Midam Kim, and Ann R. Bradlow. 2010. The wildcat corpus of native- and foreign-accented English: Communicative efficiency across conversational dyads with varying language alignment profiles.Language and Speech 53, Pt 4 (2010), 510--40. DOI: DOI:https://doi.org/10.1177/0023830910372495Google ScholarGoogle Scholar
  86. Sebastian Varges. 2006. Overgeneration and ranking for spoken dialogue systems. In Proceedings of the 4th International Natural Language Generation Conference. 3--5. DOI: DOI:https://doi.org/10.3115/1706269.1706275Google ScholarGoogle ScholarCross RefCross Ref
  87. VoiceLabs.co. 2017. The 2017 Voice Report: Executive Summary. Technical Report. 12 pages.Google ScholarGoogle Scholar
  88. Nigel Ward and Wataru Tsukahara. 1999. A responsive dialog system. In Machine Conversations. Springer, 169--174.Google ScholarGoogle Scholar
  89. Roberto A. Weber and Colin F. Camerer. 2003. Cultural conflict and merger failure: An experimental approach. Management Science 49, 4 (2003), 400--415. DOI: DOI:https://doi.org/10.1287/mnsc.49.4.400.14430Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. 2018. The Microsoft 2017 conversational speech recognition system. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. 5934--5938. DOI: DOI:https://doi.org/10.1109/ICASSP.2018.8461870Google ScholarGoogle Scholar
  91. Yang Xu and David Reitter. 2017. Spectral analysis of information density in dialogue predicts collaborative task performance. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1: Long Papers. 623--633.Google ScholarGoogle ScholarCross RefCross Ref
  92. Yang Xu and David Reitter. 2018. Information density converges in dialogue: Towards an information-theoretic model. Cognition 170 (2018), 147--163.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Comparison of Common Ground Models for Human--Computer Dialogue: Evidence for Audience Design

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computer-Human Interaction
        ACM Transactions on Computer-Human Interaction  Volume 28, Issue 2
        April 2021
        264 pages
        ISSN:1073-0516
        EISSN:1557-7325
        DOI:10.1145/3461620
        Issue’s Table of Contents

        Copyright © 2021 Public Domain

        This paper is authored by an employee(s) of the United States Government and is in the public domain. Non-exclusive copying or redistribution is allowed, provided that the article citation is given and the authors and agency are clearly identified as its source.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 April 2021
        • Accepted: 1 July 2020
        • Revised: 1 June 2020
        • Received: 1 April 2019
        Published in tochi Volume 28, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format