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ABSTRACT

In order to make better use of deep reinforcement learning in the
creation of sensing policies for resource-constrained IoT devices,
we present and study a novel reward function based on the Fisher
information value. This reward function enables IoT sensor devices
to learn to spend available energy on measurements at otherwise
unpredictable moments, while conserving energy at times when
measurements would provide little new information. This is a highly
general approach, which allows for a wide range of use cases with-
out significant human design effort or hyperparameter tuning. We
illustrate the approach in a scenario of workplace noise monitoring,
where results show that the learned behavior outperforms a uni-
form sampling strategy and comes close to a near-optimal oracle
solution.

CCS CONCEPTS

« Computer systems organization — Sensor networks; « Com-
puting methodologies — Machine learning algorithms.

KEYWORDS

internet of things, deep reinforcement learning, adaptive sensing,
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1 INTRODUCTION

A fundamental use case in the Internet of Things (IoT) is to rep-
resent a phenomenon of the real world with an estimation or pre-
diction model informed by measurements done by IoT sensing
devices. When the phenomenon is measured and predicted over
time, the sensor devices therefore need to decide when they should
make a measurement. More frequent measurements often allow
for more accurate predictions; however, to spend their constrained
resources as frugally as possible, sensor devices should avoid acquir-
ing, processing, and transmitting measurements which are already
accurately and confidently predicted by the representation model.

Generally, the optimal placement of measurements depends on
the phenomenon to be observed. In noise monitoring of working
environments, for example, measurements during nights or holi-
days are less relevant and more predictable than those during office
hours. An optimal sensing strategy may also depend on the local
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environment and situation of each sensor individually, such as its
energy budget. Learning these strategies is a complex task, which
may also vary with each use case and specific sensor instance, due
to local differences. We therefore see a need for more autonomy
through learning, so sensor devices can exhibit appropriate behav-
ior for their specific situation without human guidance [1-4].

Reinforcement learning (RL) is one way to achieve such indi-
vidual autonomous behavior. It has proven suitable for sequential
decision-making under uncertainty, and has been applied in IoT and
wireless sensor networks for a variety of problems [5-10]. Current
approaches, however, focus on generic performance measures, such
as maximum duty cycle or optimal network traffic. Such metrics
can be useful if they are well correlated with the goals the system
should achieve, but such correlation is not guaranteed, and their
optimization may diverge from optimizing the true goals of the
system.

Instead, we consider a system in which a continuous prediction
is made of a phenomenon only sporadically measured by the IoT
device in its entirety. The goal is not to measure as frequently as
possible, as in optimizing duty cycle or network activity; the goal is
to make the prediction as accurate as possible. Therefore, we want
to make the IoT device learn how to schedule measurements so
that they contribute in times when the prediction is unconfident
or inaccurate, contributing optimally to the quality of the overall
prediction.

For that, we define a novel reward function inspired by the
work of Kho et al. [11] that is based on the Fisher Information
of the observed phenomena. This constitutes a novel and general
approach for the application of RL in IoT that can be applied to a
wide variety of use cases. Results show that the learned policies
outperform uniform sampling for a case study with regard to model
quality, and come close to oracle solutions.

In Sect. 2, we will outline related work, before defining our
system setup and problem in Sect. 3. We then present our prediction
model and evaluation criteria in Sect. 4, which is the basis for
the frugal operation policy presented in Sect. 5. We close with an
evaluation of our results and a discussion.
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2 RELATED WORK

Adaptive sampling addresses the problem of when, where, or what
to sample, subject to some sampling budget constraints. This corre-
sponds to, respectively, monitoring temporally-varying, spatially-
varying, or multiple data types-varying environmental fields. Within
the context of adaptive sampling, a large number of prior works
have applied RL for power management of constrained, wireless
sensors. In energy-harvesting sensors, one objective may be to
increase the number of samples while maintaining perpetual oper-
ation [6-9]. These works use tabular methods, such as SARSA or
Q-learning, in which the state and action spaces are discrete and
small enough to express the value function in tabular form. Other
works [5, 12] use linear functions to approximate power-managing
policies. Most of the previous works include energy directly in the
reward function, while work in [10] proposes a utilitarian reward
function that maximizes a system’s utility based on the achieved
duty cycle.

With respect to battery-powered sensors, the main objective is
to minimize energy consumption by reducing the number of sam-
ples while maintaining an acceptable level of service. For example,
Dias et al. [13] use a Q-learning algorithm to learn an adaptive
sampling policy to minimize power consumption while not miss-
ing environmental changes. They define the action space to be a
range of possible sampling intervals, and the reward function to be
proportional to the amount of energy saved, subject to a constraint
that the difference between consecutive measurements is less than
a threshold value. Cobb et al. [14] apply RL to learn a sampling
policy on accelerometer data on lions and show that it is feasible
to achieve a reconstruction accuracy of 51 % with 73% reduction
in energy consumption. They propose a reward function based on
the sampling rate and data variance, then test tabular Q-learning,
Deep Q-learning with NN, and Deep Q-learning with LSTM. They
also present a heuristic sampling algorithm that outperforms these
RL methods. However, they argue that using a heuristic algorithm
would be restrictive and not very adaptable.

We observe an increasing attention in IoT towards incorporat-
ing prediction models with adaptive sampling, i.e., model-driven
adaptive sampling. Ling et al. [15] address adaptive sampling when
predicting an environmental field by presenting an adaptive GP
planning framework. They integrate planning and learning by fram-
ing the problem as a Bayesian sequential decision with a value
function. However, they do not derive an exact planning policy due
to the uncountable set of candidate measurements, and thus large
possible sequences of posterior GPs. Instead, they use a Lipschitz-
continuous reward function to derive an asymptotically-optimal
policy. They evaluate their framework, among others, on a simu-
lated energy-harvesting task in which a rover harvests wind en-
ergy while exploring a polar region. Muttreja et al. [16] model
sensor data using sparse Gaussian processes and propose an active-
learning based sampling algorithm. The objective of the sampling
algorithm is to maintain the model confidence within pre-specified
bounds while minimizing energy consumption. Similarly, Monteiro
et al. [17] combine a data prediction model with adaptive sampling,
where they build a model based on an extension of Holt’s Method.
The algorithm greedily samples until it keeps the prediction error
under a threshold value. Most similar to our work are those that
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use Gaussian processes in each sensor for prediction models and
Fisher information as a basis for the sampling algorithms [11, 18].
In contrast to our work, where we use a learned sampling policy,
these works use manually fine-tuned sampling algorithms.

In a somewhat different setting, some other works use variance-
based adaptive sampling without prediction models [19-21]. They
manually designed sampling algorithms that adjust the sampling
rate according to the variation in the environment. Salim et al. [22]
propose an algorithm that uses analysis of variance with Fisher
test to adapt the sensing frequency according to the environmental
variation.

3 SYSTEM SETUP

The system in our case study measures the noise levels in a working
environment, and we study the operation of a single conceptual
sensor device. The data that is the basis for the case study was
collected using a commercial system and is further detailed in [23].
The noise levels are aggregated as so-called equivalent continuous
sound levels L pcq, which is a standard indicator used for noise
measurement [24]. For this case study, we select time slots with a
length of 15 minutes. This seems an appropriate resolution for use
cases where the working environment should be evaluated. This
means there are 96-time slots during a day, or 672 per week.

Often, we are not just interested in measuring a phenomenon,
such as the noise levels here. We rather want a model of the phe-
nomena which can predict or estimate noise levels based on ex-
planatory variables, even when the IoT device has not recently
made measurements, providing a service as close as possible to
a continually-monitoring sensor. For many application use cases,
such predictive power is more useful than only retrospective log-
ging: A noise monitoring application can for instance recommend
silent workplaces, or detect significant outliers in noise correspond-
ing to what is usual. A forecast model implies uncertainty; we do
not expect it to represent only points of actual observations, but
estimated values that correspond to the actual ones with some cer-
tainty. This different view on an IoT sensing system allows us to
optimize the behavior of a sensing device. When its energy bud-
get is constrained so that it can only sample a subset of the time
slots, the sensor device must be strategic about which time slots to
observe. The hypothesis—which we confirm in this paper—is that
once the sensor device selects the time slots to sample wisely, it can
produce prediction models with high accuracy and high certainty
with only a subset of possible observations. Intuitively speaking,
the sensor should only spend energy on observations that are “inter-
esting” with respect to the prediction model, where the prediction
is uninformed or unconfident. The challenge is developing such a
sampling policy that can anticipate time slots worth covering.

An overview of our process is illustrated in Fig. 1.! The sen-
sor takes a noise measurement during a 15-minute time slot and
stores the observed value. As a prediction model, we use a Gauss-
ian process (GP) with explanatory variables as inputs. Given the
explanatory variables and the output of the Gaussian process, the
sensor then chooses the number of time steps to sleep before the
next measurement; this decision-making is the frugal policy 7. It
outputs a; = 1 to observe the immediate next time slot, or a; = 2

Data and code is available at https://github.com/Abdulmajid-Murad/adaptive-sensing
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Figure 1: Overview of the system and the sensor operation.

to hop over one-time slot, and so on. The higher a;, the longer
the sensor device can stay in sleep mode. After the sensor wakes
up, it makes a measurement, and the GP is updated with the latest
observation to make a new prediction.

The policy 7 is the result of reinforcement learning, encoded as
a neural network. We will detail this step in Sect. 5.1. Training a
reinforcement learning agent is a computationally intensive phase
and hence best executed on a server with sufficient computational
resources, for instance, as part of the device management. The train-
ing step requires training data as input, both for the reinforcement
step that creates the policy and to train an initial version of the
Gaussian process as a prediction model. For that, we use two weeks
of data that the sensor collected uniform sampling before going
into frugal mode.

To be explicit, a sample during the frugal policy has the following
three purposes:

e The data point provides an entirely accurate measurement
for that time period.

o The data point provides a training point for the refinement
of the Gaussian process for future predictions.

o The data point provides a training point for the refinement
of the RL policy.

In the following, we have a close look at the Gaussian process
as a prediction model, the use of RL for building the frugal policy
and especially the design of the reward function.

4 GAUSSIAN PROCESSES AS PREDICTORS

We use a Gaussian process (GP) as a representation model of the
monitored phenomenon [25]. The GP produces a Bayesian proba-
bilistic model of the monitored phenomenon over a period of time
by predicting a Gaussian distribution over possible measurements
with expected value 1, and variance +o?2 at every time slot.
Figure 2 shows the estimation of noise levels of a GP over several
days. The blue line shows the true value, the red line shows the
mean of the GP’s estimation, and the red shading indicates the
standard deviation of the GP’s estimation. The GP is trained on the
observations of the true value marked with filled circles until ¢;,04.
Until that time, the GP’s estimation works as an interpolation be-
tween the observations, deviating from occasional outliers. Beyond
tnow, the GP’s estimation works as a forecast. As the uncertainty
of the GP increases, the variance becomes larger after t,,04.
Before using the GP for estimation, it must be trained with a
training dataset D = {X, y}, which consists of measurement col-
lectiony =[y1 y2 ... yn]7,and their corresponding inputs

loT ’20, October 6-9, 2020, Malmé, Sweden

65 —— True value thow Prediction interval (£0)
—— Predicted mean u; ® Observations y;
o
Z 60
°
>
5]
- 55
@
@
©
Z 50
S
o
G as
40
03-18 00 03-18 12 03-19 00 03-19 12 03-20 00 03-20 12 03-21 00
Time

Figure 2: Gaussian Process regression applied to the noise
monitoring and performing short-term prediction

X=[x1 x2 xN]7. Every entry of the input xy is a feature
vector that consists of measurement time and other explanatory
variables [23]. The GP produces a prediction distribution based
on similarity with training examples, where similarity is defined
by the kernel function. In our case, we chose the commonly used
Matern kernel function, which is a generalization of the radial basis
function (RBF kernel):

K = 2ui (vwd) &, () @
mat(xl’xj)—o-matr(v) ( Vp) v( Vp) (1)
Where d = [|x; — x| is the Euclidean distance between the two
measurement points x; and xj. The kernel’s parameters 62, p, and
v can be hand-tuned or estimated by maximizing the likelihood of
the observations in the training dataset. I is the gamma function,
and K, is the Bessel function. Due to its finite differentiability,
the Matern kernel is better able to capture a phenomenon than
RBF. The Bessel and gamma functions are derived from the Fourier
transform of a finite positive measure. The measure is a stochastic
differential equation of Laplace type that works well in more than
one dimension.

Additionally, we added a periodic kernel function to model the
periodicity in the environmental variable.
2sin?( %i)
—) ()

2
Kper(xi,xj) = Oper €XP (_ 2

Where ¢ is the length scale, 62 is the variance, and p is the period of
the kernel. Again, these parameters can be hand-tuned or estimated
by maximizing the likelihood. The resulting overall kernel is a
combination of the Matern and the periodic kernels.

K(xi,xj) = Kmar (%1, %) + Kper (xi,X;) 3

4.1 Evaluating Prediction Models

To assess the quality of the representation model generated by a
GP, we can use the root mean square error (RMSE) between the
predicted mean p; and the true values y; over a period of time T.

RMSET = | % D (e = ye)? @)
T

However, the RMSE metric overlooks an important feature of
a Bayesian probabilistic model, which is its prediction interval
ial?. In other words, a prediction should be both accurate and
confident. Therefore, we want a metric that also quantifies the
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Figure 3: Comparison of two different predictive models.
The top model has a less certain predictions with FI = 167.84,
and RMSE = 1.42. The bottom model has more certain predic-
tion with FI = 1111.73, and RMSE = 0.70.

uncertainty represented by the model. Figure 3 shows two different
GP predictive distributions of noise levels over one day. The lower
model was built with more observations, resulting in more certain
predictions with smaller uncertainty 0't2 (or higher precision 6%2)

As a metric for the certainty of a model over a time period T we
can take the precision mean:

1 1
FI = — — 5
R 0

This metric is called Fisher information, and has been used in many
previous works in the field WSN for data fusion, sensor selection,
or adaptive sensing [11, 26-28].

5 FRUGAL OPERATION MODE

In the frugal operation mode, the sensor device only has a limited
energy budget over a period T. We assume that the sensor can make
no more than N observations in T, and each observation costs a
constant amount of energy. By executing a policy, the sensor device
decides which time slots will be sampled.

A straightforward sampling policy is uniform sampling, in which
a time period T is divided by N equidistant measurements. Figure 4
shows a GP prediction model fitted from 100 observations dis-
tributed uniformly over a one-week period. It results in an RMSE of
0.94 and an FI of 4826.50. This approach provides a steady flow of
information, but may result in samples being taken where the pre-
diction is already confident and accurate, and therefore sufficient
without the sample.

To gain an understanding of the potential optimal sampling, Kho
et al. [11] describe greedy optimal adaptive sampling. It is an offline
oracle solution that requires knowledge of future observations and
is hence not usable during operation, but establishes a near-optimal
baseline. (The authors also outline an optimal solution, which is
computationally unfeasible, even offline.) Greedy optimal adaptive
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Figure 4: GP model updated with uniform non-adaptive sam-
pling, having FI = 4826.50, and RMSE = 0.94
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Figure 5: GP model updated with an offline oracle sampling,
having FI = 7331.03, and RMSE = 0.85

sampling greedily allocates samples based on the mean FI gain over
a day. Figure 5 shows the same GP prediction model, again fitted
with 100 observations. When trained with observations with this
oracle policy, the GP’s RMSE is reduced to 0.85 compared to that of
one trained with samples from the uniform policy; additionally, the
uncertainty is reduced, i.e., the predictor has a higher FI of 7331.03.
This is a considerable improvement over the uniform policy.

5.1 Deep Reinforcement Learning Policies

The sampling policies described above outline the task for a rein-
forcement learning agent in the system: it should learn a sampling
policy that is close to the optimal one, but without using knowledge
of the future.

Figure 6 illustrates the process of training a reinforcement learn-
ing agent to learn an adaptive sampling task, which is based on the
IoT Sensor Gym [29]. Generally, a reinforcement learning task is
modeled as a Markov decision process M = (S, A, P, R, y), where
S is the set of the problem’s states; A is the set of actions an agent
can take; P is the states’ transition probability; R : S — R is the
reward function; and y € (0,1) is a discount factor. In our case
study, at each time ¢, the state (s; € S) consists of: the GP’s future
prediction (yi‘, O';L) over a prediction horizon h; the battery level
By; and the explanatory variables X?, which consist of weekday,
time of day, and whether a given day is a holiday.

St = [}1? O';l Bt X?] (6)

In response to receiving the state s;, the agent takes an action
(a; € A = (1, h)) which is the index for the next time step to make
a sample, i.e., sleep a; time slots. The environment, then, transits to
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Figure 6: Architecture for training a model-driven sampling
policy with reinforcement learning

anew state according to the transition probability (p(s’|s, a) Vs, s’ €
S, a € A), and the agent receives a reward ry = R(s;) according to
the reward function R, explained later in detail. By interacting with
the environment, the agent learns a policy 7 : S — A, which can
be evaluated using the value function of a state V7’ (s):

V7 (s) =R(s) + /s p(sls. m(s)V7(s")ds’ ™

By learning, the agent tries to find a behavior policy that maximizes
the value for all states; there exist a variety of learning algorithms
in RL [30], which intend to produce such policies. In this paper,
we use a policy gradient algorithm, specifically Proximal Policy
Optimization (PPO) [31]. In PPO, policies (1ry) are represented by
deep neural networks, parameterized by 6, which can produce
actions for any state from a continuous state space. Compared to
tabular methods such as SARSA or Q-learning, which are sometimes
seen in literature applying RL to IoT, PPO eliminates the need for
manual state-space discretization, allowing for better generalization
and potentially less hand-tuning by the user.

5.2 Information-Based Reward Function

A key requirement for a successful application of reinforcement
learning is to design a reward function that frames the goal of an
application and guides the learning towards a desirable behavior.
However, many goals are difficult to translate into scalar values or
are intractable to learn. To overcome this difficulty, many of the
previous works use reward shaping, which is a way of incorpo-
rating domain knowledge by rewarding easily quantified subgoals
to accelerate learning, such as energy-based reward [8, 9, 12, 13].
Although effective in specific domains, energy-based rewards can
be restrictive and may lead to undesired emergent behavior in new
domains, such as high variance in duty cycle which is not appro-
priate for IoT nodes. This is because energy is only a resource to be
managed, not a goal to be optimized. In our previous work [10], we
addressed this issue by introducing a utilitarian reward function
that maximizes the utility of a system by rewarding it for high duty
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cycles. This means, a system gets more reward the more samples it
manages to take, no matter if these samples are valuable or not.
The reward functions outlined above only utilize metrics that are
more or less correlated with the application goal, but not identical
to it. In our setting, the system’s goal is to construct a model that
represents the underlying phenomenon as closely as possible. Since
the sensor has a limited sampling budget, and not all samples are
valuable, the objective of the reinforcement learning agent is to
select the most informative observations concerning the represen-
tation model. Therefore, we design a new reward function that
reflects this goal, i.e., rewarding the agent based on the informa-
tion content of its selected observations. By doing so, we judge the
agent’s performance by the metric that we are trying to maximize,
and there is a good alignment between maximizing reward and the
true goal of the system. Our hypothesis is that this leads to a better
performance of the device, as it will learn to spend its constrained
energy budget where it has the best-expected effect. Going back to
Sect. 4.1 where we defined the metric for the prediction model, we
see that the proposed metric can also work as a reward function.
At the end of a period of time T, a day in our case, the RL agent
receives a reward based on the quality of the representation model,
which is fitted by observations selected by the agent. The quality
of the model is abstracted by the mean Fisher information over T:

Rer) =3 ®

T t

where % is the prediction confidence at point t. Accordingly, we

propose tto use the Fisher information directly as a reward function.
Fisher information does not depend on unobserved samples as
compared to the RMSE, and decodes the application goal into a
scalar value that is easy to learn. Hence, it eliminates the need for
reward shaping, and it can be applied to large, scalable applications
without requiring a system-specific knowledge.

6 EVALUATION RESULTS

After training approximately 120 RL agents with different hyperpa-
rameters, we tested their performance over a different one-week
period. Figure 7 shows a GP prediction model with observation
selected using an RL agent. The GP trained on data chosen using
an RL sampling policy achieved a better information gain (FI =
7274.84) and a lower RMSE (RMSE = 0.86) compared to the uniform
sampling, and approaches the near-optimal policy implemented by
the oracle.

We also take a more detailed look at the progress of training
and how the reward function guides the agents to reach their goals.
Figure 8 shows smoothed learning curves of four sampled agents,
trained with different hyperparameters. The x-axis shows the num-
ber of training episodes experienced so far, and the y-axis shows the
corresponding reward achieved in each episode. The original curves
are in shaded colors, while the smoothed versions are on top in solid
colors. After sufficient episodes, all four agents reach near-optimal
policies that achieve rewards close to the oracle solution.

7 DISCUSSION

The results show that using the mean Fisher information as a reward
function is effective in learning desirable policies. To investigate
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Figure 7: GP model fitted with observations selected using
an RL sampling policy, collecting information value of FI =
7274.84, and RMSE = 0.86

the effectiveness and constraints of using this reward function,
we can take a close look at its definition in (5). Most important
for IoT in a setting where taking samples is energy-intensive, the
reward function does not depend on unobserved samples, only on
the confidence of the resulting model over a period of time. Because
model confidence can only come about when measurements taken
at similar moments have low variance, we assume the model is close
to correct when it is confident. This assumption may occasionally
be unfounded in outlier moments, but measuring and hoping for an
outlier which is, by definition, unlikely to occur, is not intelligent
or desirable behavior.

The main contribution of our paper regards the development
of the frugal policy, which is encoded as a neural network. This
network can be easily implemented on IoT hardware. For example,
one exemplar of a good performing policy was a network with
4 hidden layers with 32 neurons and ReLU activation functions.
We have implemented this network on an Arduino NANO 33 BLE
Sense, where it only requires 5+1 ms to evaluate. Compared with the
estimated execution time to measure, aggregate, calculate and send
noise data, this overhead is acceptable. The compiled flash memory
consumption was 115 KB (11 %) and the RAM Memory was 50 KB
(20 %). With regards to the GP, learning involves an inversion of
the kernel matrix, which has an asymptotic complexity of O(n®),
where n is the number of training examples. However, the GP can
be trained off-device before deployment, so it doesn’t have to store
its history of measurements. Additionally, sparse online GP can be
exploited to train incrementally without retaining the entire model
when new data are observed [32]. Furthermore, there are many
model approximations or approximate GP inference with cheaper
complexity that can be utilized such as Nystrom approximation [33],
FITC approximation [34], or variational sparse GP [35].

In general, finding good values for hyperparameters can be chal-
lenging during training. In our setting, we first required suitable
types and parameters for the kernels of the GP. We found these
through optimization by maximizing the likelihood of the data,
using the GPy framework [36]. Secondly, we had to dimension
the environment’s parameters, such as energy capacity, prediction
horizon, range and resolution for states and actions. For that, we
used an iterative process of tuning with randomized values. Finally,
learning an RL policy can be unstable due to the algorithm’s sensi-
tivity to hyperparameters and their intricate interplay. Hence only
a subset of the policies performs well, and not all of them are useful.
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Figure 8: Smoothed learning curves of four agents, where
the episode reward is the collected Fisher information.

This, however, is not a problem since the training takes place on a
device management server, and we can choose the best performing
policy before deployment.

8 CONCLUSION

In this work, we have introduced a novel reward function for learn-
ing adaptive sensing policies with deep reinforcement learning. This
reward function is based on the mean Fisher information value of a
probabilistic model of an environmental phenomenon. The model is
fitted with observations selected by the learning agent. Using a case
study of workplace noise monitoring, we demonstrated that this
reward function led to a learned sampling policy that outperforms a
uniform strategy and is close to a near-optimal oracle solution. Our
results indicate that using this information-based reward function
along with policies approximated by neural networks can achieve
more generalization and autonomy in IoT applications. Finally, we
discussed the implementations and the constraints of the proposed
framework. While the presented work uses a case study with a
temporally-varying phenomenon, it can be applied in a wide range
of adaptive sensing applications. Overall, this approach leads to
an increased level of autonomy in IoT by reducing manual design
effort through information-driven behavior learning.

ACKNOWLEDGEMENTS

We would like to thank Finn Julius Stephansen-Smith and Amund
Askeland for their implementation of the neural network.

REFERENCES

[1] Michele Chincoli and Antonio Liotta. Self-learning power control in wireless

sensor networks. Sensors, 18(2):375, 2018.

Adrian Udenze and Klaus McDonald-Maier. Indirect reinforcement learning

for autonomous power configuration and control in wireless networks. In 2009

NASA/ESA Conference on Adaptive Hardware and Systems, pages 297-304. IEEE,

2009.

Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, and Rajesh K Gupta.

Aces-automatic configuration of energy harvesting sensors with reinforcement

learning. arXiv preprint arXiv:1909.01968, 2019.

[4] Umair Ali Khan and Bernhard Rinner. Online learning of timeout policies for
dynamic power management. ACM Transactions on Embedded Computing Systems
(TECS), 13(4):1-25, 2014.

[5] Faycal Ait Aoudia, Matthieu Gautier, and Olivier Berder. RLMan: an Energy
Manager Based on Reinforcement Learning for Energy Harvesting Wireless
Sensor Networks. IEEE Transactions on Green Communications and Networking,
2(2):1-1, 2018.

[6] Zhou Lei, Hao Tang, Huizi Li, and Qi Jiang. Dynamic power management strategis
for a sensor node optimised by reinforcement learning. Int. J. Computational
Science and Engineering, 13(1), 2016.

[2

—_
A



Information-Driven Adaptive Sensing Based on Deep Reinforcement Learning

(71

&=

=

[10]

(1]

[12

[13

[14]

[15

[16

[17]

(18

[19

[20]

[21

[22

[23

[24]

[25

[26]

[28

[29

Francesco Fraternali, Bharathan Balaji, and Rajesh Gupta. Scaling configuration
of energy harvesting sensors with reinforcement learning. In Proceedings of
the 6th International Workshop on Energy Harvesting & Energy-Neutral Sensing
Systems, pages 7-13. ACM, 2018.

Roy Chaoming Hsu, Cheng Ting Liu, and Wei Ming Lee. Reinforcement learning-
based dynamic power management for energy harvesting wireless sensor net-
work. In International Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems, volume 5579 LNAL Springer, 2009.

Shaswot Shresthamali, Masaaki Kondo, and Hiroshi Nakamura. Adaptive power
management in solar energy harvesting sensor node using reinforcement learning.
ACM Transactions on Embedded Computing Systems (TECS), 16(5s):1-21, 2017.
Abdulmajid Murad, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor.
Autonomous management of energy-harvesting iot nodes using deep reinforce-
ment learning. In 2019 IEEE 13th International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pages 43-51. IEEE, 2019.

Johnsen Kho, Alex Rogers, and Nicholas R Jennings. Decentralized control of
adaptive sampling in wireless sensor networks. ACM Transactions on Sensor
Networks (TOSN), 5(3):1-35, 2009.

Andrea Ortiz, Hussein Al-Shatri, Xiang Li, Tobias Weber, and Anja Klein. Re-
inforcement Learning for Energy Harvesting Decode-and-Forward Two-Hop
Communications. IEEE Transactions on Green Communications and Networking,
1(3):309-319, 2017.

Gabriel Martins Dias, Maddalena Nurchis, and Boris Bellalta. Adapting sampling
interval of sensor networks using on-line reinforcement learning. In 2016 IEEE
3rd World Forum on Internet of Things (WF-IoT), pages 460-465. IEEE, 2016.
Adam Cobb and Andrew Markham. Adaptive sampling of lion accelerometer
data. Oxford, 2016.

Chun Kai Ling, Kian Hsiang Low, and Patrick Jaillet. Gaussian process planning
with lipschitz continuous reward functions: Towards unifying bayesian opti-
mization, active learning, and beyond. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

Anish Muttreja, Anand Raghunathan, Srivaths Ravi, and Niraj K Jha. Active
learning driven data acquisition for sensor networks. In 11th IEEE Symposium on
Computers and Communications (ISCC’06), pages 929-934. IEEE, 2006.

Leonardo C Monteiro, Flavia C Delicato, Luci Pirmez, Paulo F Pires, and Claudio
Miceli. Dpcas: Data prediction with cubic adaptive sampling for wireless sensor
networks. In International Conference on Green, Pervasive, and Cloud Computing,
pages 353-368. Springer, 2017.

Michael A Osborne, Stephen J Roberts, Alex Rogers, and Nicholas R Jennings.
Real-time information processing of environmental sensor network data using
bayesian gaussian processes. ACM Transactions on Sensor Networks (TOSN),
9(1):1-32, 2012.

David Laiymani and Abdallah Makhoul. Adaptive data collection approach for
periodic sensor networks. In 2013 9th International Wireless Communications and
Mobile Computing Conference IWCMC), pages 1448-1453. IEEE, 2013.

Joao Marco C Silva, Kalil Araujo Bispo, Paulo Carvalho, and Solange Rito Lima.
Litesense: An adaptive sensing scheme for wsns. In 2017 IEEE Symposium on
Computers and Communications (ISCC), pages 1209-1212. IEEE, 2017.

Hassan Harb and Abdallah Makhoul. Energy-efficient sensor data collection
approach for industrial process monitoring. IEEE Transactions on Industrial
Informatics, 14(2):661-672, 2017.

Christian Salim, Abdallah Makhoul, Rony Darazi, and Raphaél Couturier. Adap-
tive sampling algorithms with local emergency detection for energy saving in
wireless body sensor networks. In NOMS 2016-2016 IEEE/IFIP Network Operations
and Management Symposium, pages 745-749. IEEE, 2016.

Frank Alexander Kraemer, Faiga Alawad, and Ida Marie Vestggte Bosch. Energy-
accuracy tradeoff for efficient noise monitoring and prediction in working en-
vironments. In Proceedings of the 9th International Conference on the Internet of
Things, pages 1-8, 2019.

ISO 1996-1:2016. Acoustics — description, measurement and assessment of
environmental noise — part 1: Basic quantities and assessment procedures. Inter-
national Organization for Standardization, pages 1-47, 2016.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning, volume 2. MIT press Cambridge, MA, 2006.

Alex Rogers, Rajdeep K Dash, Nick R Jennings, Steven Reece, and Stephen Roberts.
Computational mechanism design for information fusion within sensor networks.
In 2006 9th International Conference on Information Fusion, pages 1-7. IEEE, 2006.
Feng Wang, Xuemei Bai, Bin Guo, and Chen Liu. Dynamic clustering in wireless
sensor network for target tracking based on the fisher information of modified
kalman filter. In 2016 3rd International Conference on Systems and Informatics
(ICSAI), pages 696-700. IEEE, 2016.

Yasin Yilmaz and Xiaodong Wang. Sequential decentralized parameter estimation
under randomly observed fisher information. IEEE transactions on information
theory, 60(2):1281-1300, 2013.

Abdulmajid Murad, Kerstin Bach, Frank Alexander Kraemer, and Gavin Taylor. Iot
sensor gym: Training autonomous iot devices with deep reinforcement learning.
In Proceedings of the 9th International Conference on the Internet of Things, pages
1-4, 2019.

(30]

(31]

(32

[33

(34

[35

[36]

loT ’20, October 6-9, 2020, Malmé, Sweden

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, pages
1-12, 2017.

Lehel Csaté and Manfred Opper. Sparse on-line gaussian processes. Neural
computation, 14(3):641-668, 2002.

Christopher KI Williams and Matthias Seeger. Using the nystrém method to
speed up kernel machines. In Advances in neural information processing systems,
pages 682-688, 2001.

Thang D Bui, Josiah Yan, and Richard E Turner. A unifying framework for gauss-
ian process pseudo-point approximations using power expectation propagation.
The Journal of Machine Learning Research, 18(1):3649-3720, 2017.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian
processes. In Artificial Intelligence and Statistics, pages 567-574, 2009.

GPy. GPy: A gaussian process framework in python. http://github.com/
SheffieldML/GPy, since 2012.


http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

	Abstract
	1 Introduction
	2 Related Work
	3 System Setup
	4 Gaussian Processes as Predictors
	4.1 Evaluating Prediction Models

	5 Frugal Operation Mode
	5.1 Deep Reinforcement Learning Policies
	5.2 Information-Based Reward Function

	6 Evaluation Results
	7 Discussion
	8 Conclusion
	References

