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ABSTRACT

Microcontroller Units (MCUs) in edge devices are resource con-
strained due to their limited memory footprint, fewer computation
cores, and low clock speeds. These limitations constrain one from
deploying and executing machine learning models on MCUs. To fit,
deploy and execute Convolutional Neural Networks (CNNs) for any
IoT use-case on small MCUs, a complete design flow is required.
Resource Constrained Edge - Neural Networks (RCE-NN) is the name
given to our proposed design flow, with a five-stage pipeline that de-
velopers can follow for executing CNNs on MCUs. In this pipeline,
the initial model architecture and training stage consists of four
well-defined tasks on model size, workload, operations and quanti-
zation awareness, which maps the desired CNN as captured in an
executable specification to a resource-constrained MCU’s specifi-
cation. The next quantization and conversion stage reduces model
size, saves memory, and simplifies calculations without much im-
pact on the accuracy. In the third stage, the quantized version of the
model is translated into a c-byte array since the MCUs lack native
file-system support. The translated c-byte array is fused with the
main program of an IoT use-case and binaries are built using tech-
niques from the fourth stage. Finally, the method presented in the
last deployment stage is used to flash the built binaries onto MCUs,
as this method allows the memory of the MCU to be fully utilized
by the CNN and its operations. We evaluated RCE-NN using eight
popular MCU boards. The results show that, when users realize all
five pipeline stages, they can fit, deploy and execute multiple CNNs
across multiple open-source MCU boards. The RCE-NN pipeline
components quantize and compress the CNNs to 1/ 10" of their
original size, enabling the CNNs to fit on MCUs with no or minimal
loss in performance, both after quantization and compression, and
also during runtime.

CCS CONCEPTS

« Computing methodologies — Machine learning; - Computer
systems organization — Embedded hardware;
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1 INTRODUCTION

In the past few years, CNNs have been used as the principal ap-
proach to solving a variety of significant problems in cyber security
[27], smart wearables [26], localization [29, 30], resilient commu-
nication [17], consumer electronics [19], computer vision [28, 31],
etc. Although CNNs are renowned for their excellent performance,
they are also computationally intensive, consuming hundreds of
MB of memory and MFLOPS of computing power [20, 32].

An edge device is an embedded system with a small microcon-
troller unit (MCU) as its brain [18]. The Arduino Nano, an 8-bit
ATmega328 microcontroller with a 16 MHz clock, 2 kB of SRAM
and 32 kB of ISP flash memory, and the NUCLEO-F303K8, a 32-bit
ARM Cortex-M4 microcontroller with a 72 MHz clock and 64 kB of
flash memory, are two examples of small MCU boards. Many such
MCU boards do not provide hardware support for floating-point
operations, and billions of such tiny boards have been deployed in
the world. Before deploying such an MCU-based edge device for
any IoT use-case, the IoT application code data is burnt onto an
MCU’s flash memory, leaving only a few kB for storing the feature
extractor code, trained CNN, and associated sensor data [22, 25].
After burning the code and deploying the MCU for a use-case, the
only writable memory available is limited to a few kBs which is not
sufficient to hold even a single feature vector.

There are a few other facts which constrain executing CNNs
on MCU-based edge devices [24, 25]. Firstly, the memory footprint
(SRAM, FLASH and EEPROM) is limited to a few MB. Next, the
computation core (commonly a single ARM Cortex-M CPU) runs
only up to a few hundred MHz resulting in low operations per
second. Next, is the absence of native filesystem support. Finally, it
has an inability to perform parallel processing due to the absence of
multiple execution units. However, given the potential of building
intelligent IoT applications for edge analytics using CNN, there
is a strong need for a mechanism which allows IoT applications
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to fit, deploy and execute CNNs on edge devices. We therefore
present Resource Constrained Edge - Neural Networks (RCE-NN), our
proposed design flow with a five-stage pipeline, that developers can
follow for executing CNNs on resource-constrained edge devices.
In this work, we address the challenges from both the algorithm
and the device perspectives. At the device level, the CNN execution
capabilities of these MCUs are improved by optimizing the low-
level computation kernels to achieve performance improvements
and a reduced memory footprint when executing CNN workloads,
enabling MCUs to handle larger and complex CNNs. Also, the algo-
rithm level design and optimization of CNNs are presented in this
work concerning the targeting MCU platform by network architec-
ture exploration. Both these hardware and software co-optimization
components for executing multiple CNNs on multiple small MCUs
are designed as a five-stage pipeline. Our main contributions in
this paper are: (i) We provide a complete design flow which is the
RCE-NN'’s five-stage pipeline, that developers can follow for exe-
cuting CNNs for any IoT use-case on small MCUs. Our pipeline
also provides the necessary components for building an end-to-
end CNN optimizing compiler; (ii) We provide third-party library
independent kernel optimization tasks that are applicable across
a wide range of MCUs for guaranteeing no runtime performance
bottlenecks; (iii) Out of the dozens of post-training quantization
techniques studied, we have selected the best-suited choices for
MCUs and small CPUs and summarised their benefits. This pro-
vides readers with a guideline for selecting the best use-case and
edge device-aware quantization technique; (iv) Lastly, we provide
a practical method to fuse the optimized version of the CNN along
with the main program of the IoT use-case, followed by the best
deployment method for maximum utilization of the full program
space (flash) of the MCU only for the CNN and its operations.

2 RELATED WORK

The MCU hardware platform has recently become an attractive
target to run models due to TensorFlow Micro and MCU-targetted
optimized kernels from CMSIS [9]. In this domain of enabling learn-
ing for resource-constrained devices, the authors in [8] have imple-
mented a tree-based algorithm, called Bonsai, for efficient prediction
on IoT devices. High accuracy predictions were obtained in mil-
liseconds even on slow microcontrollers and were able to fit in a
kB of memory. Similarly, ProtoNN, a k-Nearest Neighbor (KNN)
inspired algorithm with several orders lower storage and prediction
complexity was proposed in [2] to address the problem of real-time
and accurate prediction on resource-scarce devices. Both [8] and
[2] are tailored prediction algorithms that can fit in resource-scarce
devices and show superior performance. However the design flow
used by them cannot be applied for executing other CNN based
applications on resource-constrained devices.

Another set of articles proposes compression techniques to re-
duce the size of the model’s weights using quantization and weight
pruning techniques, resulting in a reduction of both model size and
inference time without considerable accuracy loss. CONDENSA
[7] is a system for users to programmatically compose simple op-
erators to build complex model compression strategies. Given a
strategy and a user-provided objective, CONDENSA automatically
infers desirable sparsity ratios. Two new compression methods that

jointly leverage weight quantization and the distillation of larger
networks was proposed in [13]. Both methods were validated on
convolutional and recurrent architectures, and have demonstrated
that their method reaches similar accuracy levels to full-precision
models while providing up to an order of magnitude compression.
In [7, 13] and other similar articles proposing compressing [3, 4]
and optimization [1, 5, 9, 10, 21, 23] techniques do not include
an MCU-aware CNN tuning step, a C byte array conversion after
model quantization and conversion, a way in which the model can
be fused with the main program of the IoT application, or a method
for how the binaries for the final model and IoT app are generated
and deployed on MCUs.

3 RCE-NN: FIVE-STAGE PIPELINE

We propose a five-stage pipeline which helps to execute neural
networks on resource-constrained IoT edge devices. Our proposed
RCE-NN’s design flow contains a complete stepwise pipeline with
hardware and software co-optimization at different stages of the
pipeline. As shown in Figure 1, there are multiple components at
each stage to implement the application design flow and execution
on small MCUs. Before training any model for an IoT edge device,
the techniques we provided in Stage One should be used for an
MCU-aware CNN architecture design. Next, after performing direct
training or quantization-aware training using the technique we
provided, the model should go through any one of the post-training
quantization schemes from Stage Two to obtain a quantized version
of the actual model. Then the quantized model is translated into
a C byte array using the command we provided in Stage Three. In
Stage Four, we add the translated model to the root of the project
directory along with the necessary files that should be fused within
the IoT application. In the same stage, binaries are generated from
the project’s source file system and loaded into the MCU’s flash
memory via the serial port using the technique from Stage Five.

3.1 Stage One: Architecture and Training

We provide model architecture and training as stage one. In the
context of the RCE-NN pipeline, the components from this stage
perform the task of mapping the desired functionality, as captured
in an executable specification, to resource-constrained system com-
ponents. For example, the design constraints related to hardware
size, power, performance, and monetary cost are satisfied. Our
approach for model architecture and training consists of four well-
defined tasks on model size, workload, operations and quantization
awareness.

3.1.1 Model Size. Models to run at the edge must fit within
the target device’s memory alongside the IoT application both at
the runtime and as a binary. One possible method for fitting is
to create a smaller model using fewer and smaller layers. In most
use-cases, small models lead to under-fitting. Therefore, for the
majority of real-life problems, a larger model suits well where the
number of input features and outputs are already decided based on
the use-cases. Hence, we explored other areas to look into where
optimizations to the model size can be applied. We provide a list of
tasks as a summary of our findings to reduce model size. Below we
provide the list of tasks;
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Figure 1: Architecture and Components of RCE-NN’s Five-stage pipeline: Design flow to fit deploy and execute CNNs on small MCU’s at the IoT edge.

« Task1: Limit the number of neurons in the hidden layers since
the memory requirements, model size and computational
complexity grows exponentially with it.

Task2: Multiple variations of the model for the same use-
case should be evaluated experimentally for acceptable la-
tency and accuracy, matching resource capabilities (espe-
cially memory) of the MCU in the edge device.

Task3: Pruning edges with negligibly small weights should
be performed to achieve a lower count on model parameters.
Task4: A combination of max pooling or global average pool-
ing layers can be used as an alternative to fully connected
layers.

Task5: Activation function simplification; Since most MCU’s
do not have built-in floating-point capabilities, realizing func-
tions such as tanh and sigmoid is expensive. The accuracy
of these functions could be sacrificed to a reasonable level,
reducing the inference time and model size.

Perform an advanced level of optimizations using hardware-
oriented model approximation methods [3]. Here, a given
CNN should be analyzed in the context of numerical resolu-
tion used in representing weights and outputs of convolu-
tional and fully connected layers.

3.1.2 Workload. The complexity and size of the model impacts
the workload (larger models will lead to increased processor work-
load). Denser models result in a higher duty cycle, hence the MCU’s
processor spends more time working and less time idle resulting in
elevated power consumption and heat output. In this section, we
analyzed the linear algebraic properties of CNNs and proposed rec-
ommendations (without influencing the inference results) to reduce
the computational workloads of CNNS, so it can comfortably run
within the resources of edge devices. Our proposed methods apply
globally, i.e, not biased towards local performance optimizations for
a single operation as in many previous works. Below, we provide
the list of methods used to reduce workloads:

« Input data reduction; when the sampling rates of sensors
are high, an inference cannot be made by the MCU from
the acquired data within a sampling interval. In such scenar-
ios, computationally inexpensive low pass filters should be
applied to reduce the volume of data, which also improves

the quality of the data (reduced noise), and allows a suffi-
cient time interval to perform inferencing and also reduce
workload.

Boost the CNN algorithm using hardware accelerators, e.g.,
co-processing units and field-programmable gate arrays (FP-
GAs), while also reducing the theoretical number of basic
operations needed for CNN computation.

Limit the number of threads initialized by CNNs for compu-
tation.

Perform low-level optimization of convolution operations
using [10]. This method adds flexibility in searching for the
best implementation of a specific convolution workload on a
particular architecture and allows us to optimize the whole
computation graph by choosing proper data layouts between
operations to eliminate unnecessary data layout transforma-

tion overheads.

Analyze the linear algebraic properties of the CNN designed
for a particular use-case, and apply algorithms such as Strassen
Gaussian elimination, Winograd’s minimal filtering [16], etc.
to reduce the computational workload, resulting in increased

available memory.

3.1.3 Operations. When designing a CNN to run on edge de-
vices, only a limited subset of operations can be used for keeping
the operational costs low, which impacts the designed CNN’s ar-
chitecture. Hence, to execute CNNs on MCUs by reducing oper-
ations, without impacting the architecture, we recommend using
the weight factorization approach, which significantly reduces the
memory footprint of models by optimizing the parameter space
of the fully connected layers and also reduces the overall number
of operations needed while improving the inference time. We also
recommend another method [1], which is to find a sparse repre-
sentation of the fully connected layers and use separate filters to
separate the convolutional kernels, reducing the number of param-
eters and convolutional operations required to execute a CNN.

3.1.4 Quantization-Aware Training. Here we select and give a
brief overview of a method that can be practically realized on CNNs
trained for small MCUs. Also, it falls in line (matches up) with other
pipeline stages and their components while providing higher accu-
racy than post quantization training schemes. We first consider the



quantized weights in full precision representation to simulate and
inject quantization error [6] into training, thus enabling the weights
to be optimized against quantization errors. This quantization er-
ror is modeled using fake quantization nodes, which simulates the
effect of quantization in both forward and backward passes. These
fake quantization operations are added to all required locations
in the model by rewriting the training graph (by creating a fake
quantized training graph).

For the majority of use cases, this method significantly improves
the latency-versus-accuracy tradeoffs. In cases when performance
is not improving, then the user should directly train model and
perform post-training quantization using any of the methods we
provide in Section 3.2.1 since it is broadly applicable to all models
and does not require training data during quantization.

3.2 Stage Two: Quantization and Conversion

After performing direct training or quantization-aware training,
the model should go through any of the post-training quantization
schemes we provide, followed by its conversion into a FlatBuffer.

3.2.1 Post-training Quantization. The quantize and train scheme
from Section 3.1.4 required model modifications, in terms of adding
fake quantization nodes. In contrast, in this section we quantize the
existing pre-trained model by reducing the precision of the model’s
weights to save memory and simplify calculations often without
much impact on accuracy. From the multiple available techniques
to choose from, a summary of schemes which suits MCUs and small
CPU devices are provided along with their benefits.

Weight-only quantization: Out of the various weight-only
quantization schemes studied, a simple approach we provide is to
just reduce the weight’s precision in the network from a float to
8-bit precision by using any command-line tool, without requiring
validation data (which reduces the model size by at least four times).
RCE-NN realizes the most efficient approach to quantize the CNN’s
weight w to a Q-bit fixed-point number quant(w), by using the
quantization function (Eqn. 1).

quant(w) = clip[_lsl)(2_(Q_1).round(w.2(Q_1))) (1)

Here clip|_y,1)(x) = max(a, min(x, b)), and the corresponding
INT-Q representation of a CNN’s weights is W = quant (w).2(Q~1.
The same Eqn. 1 is applied to any activation values as well. In this
work, RCE-NN converts the weights and activations to an Int-8
data type since they are the most natural type to fit in 32-bit MCU
registers.

Weights and activations quantization: Similar to weights,
activations alone can also be quantized to 8-bits with almost no
accuracy loss. We studied multiple techniques and found out that
Symmetric per-channel, Asymmetric per-layer, and Asymmetric
per-channel are well-suited techniques to quantize both weights
and activations. We recommend users to select Per-channel quan-
tization with asymmetric ranges over other techniques since it
provides close-to-floating point accuracy for a wide range of net-
works. RCE-NN quantizes both weights and activations to Int-8
values. Hence the convolution in CNNs takes the following form:

Plw,x) =229 X wix; = 272Q@ D gpw,x)  (2)
ieD

In Eqn. 2, D is the number of input channels, ¢ is CNN’s convo-
lution operation, and ¢(W, X) is an accumulator containing high
precision values, in our case, Int-32 for Int-8 operands. We used
this method to convert the CNN’s weights and activations to 8-bit
integers. For CNNss, the inference time improves after quantization
since the inference is carried out using integer-only arithmetic. We
selected this Int-8 quantization method since it outperforms the
Fine-Grained Quantization (FGQ) method (2 bits for weight quanti-
zation) and Incremental Network Quantization (INQ) method (5-bit
weight floating-point activation) by preserving accuracy, while also
providing run-time improvements.

Float16 quantization: Here, we quantize the original CNN’s
Float32 weights and activations to Float16 values. Users can use
this Float16 quantization when they want to achieve reasonable
compression rates without loss of precision. Also, Float16 models
run on small CPUs without modification.

3.2.2  Model to FlatBuffer Conversion. This is the second com-
ponent of the second stage which the user has to follow for con-
verting the post-training quantized models into FlatBuffer, using
FlatBuffer’s cross-platform serialization library! or by also using
the TensorFlow Lite converter?. After conversion, the resulting
FlatBuffer format file contains direct data structures of the trained
CNN. This data structure contains information arrays with a graph
consisting of subgraphs, where each subgraph consists of a list of
tensors and operators. After this stage, since the flat buffers of the
CNNss for IoT use-cases are memory-mapped, they can be utilised
directly from disk/flash without any loading or parsing tasks, and
with zero additional memory requirements for accessing the data
(the only memory required to access data is that of the buffer).

3.3 Stage Three: Translation

Most MCUs in edge devices do not have native filesystem support,
hence we convert the quantized version of the trained model into a
C array, and compile it along with the program for the IoT applica-
tion which is to be executed on the edge device. In our pipeline, to
perform this conversion we use a UNIX command as shown in Fig-
ure 2.a, which generates the C source file containing the quantized
model as a char array.

3.4 Stage Four: IoT Application Integration

In stage four, we first provide a method to fuse trained CNNs with
the main program for an IoT use-case. Then, to execute this CNN-
fused-IoT program on MCUs without runtime performance bot-
tlenecks, we provide third-party library independent kernel opti-
mization tasks that are applicable across a wide range of MCUs.
Finally, we will briefly describe a technique to build binaries of
the CNN-fused-IoT program which will be used in the subsequent
deployment stage (Stage Five).

3.4.1 File Structure. Here, we explain how to use the C byte
array (obtained using the technique from Section 3.3) of the trained
model, when the main program of an IoT use-case requires pre-
dictions/inference results. Initially, users have to fit the blocks we
provide in Figure 2.c along with the flow of the main program, in

!https://google.github.io/flatbuffers/flatbuffers_white_paper.html
https://www.tensorflow.org/lite/r1/convert
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Figure 2: a. Translating the trained model into a C byte array. b. Files required to load and execute the model’s C byte array on MCU boards. c. Blocks to
fuse the C byte array of the trained model with the main program in an IoT use-case.

the order shown in Figure 2.c. When the MCU executes our blocks
during the execution of the main program, these blocks will use
the Included Model Files (shown in Figure 2.b) to perform their
intended tasks. We import these Included Model Files from the Ten-
sorFlow Micro library. These files need to be included in the root of
the project along with the model’s C byte array. Below we provide
and describe the blocks to fuse the C byte array of a trained CNN
with the main program for an IoT use-case (i.e. the IoT application
running on MCU-based edge devices):

i Model initialization from C byte array: To initiate the com-
pressed and translated model from the C byte array shown
in Figure 2.a.

Initialize reporter and perform unit test: To invoke the “Unit

Test and Reporter” file to perform a unit test for ensuring

that the entire flow works correctly.

Declare Ops Provider to access model operations: To invoke

the “Ops Provider” file to initialize the operators used by the

model.

iv Ip, op and intm arrays memory pre-allocation: This block

pre-allocates memory for these arrays.
v Interpreter initialization for passing variables: To invoke the
interpreter file for initializing the interrupter to load the
model and pass variables.

Model’s tensors memory allocation: This block allocates the

memory for the model’s tensors.

Ip shape validation: A block to confirm whether the input’s

shape and type are as expected.

viii Real-time data provision to model, model execution, obtain
model’s output tensor and loop inference blocks: After exe-
cuting the previous blocks, the real-time data that the sensors
are seeing is received by the MCU’s peripherals and fed to
the model for inference. Thus, obtained inference results
are the model’s output tensors, which are fed to the main
program of the IoT application. The process as outlined is
looped to obtain continuous inferences for its corresponding
real-time sensor data.
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3.4.2  Kernel Optimization. The general pure C/C++ implemented
reference kernels for MCUs need MCU platform-specific hardware

optimizations for achieving reduced data movement overhead, re-
duced inference time, faster convolution, loop parallelism, temporal
parallelism, improved stability, etc. At the time of writing, according
to the authors, the versions of the best-optimized kernels for MCUs
are provided for implementation in CMSISNN [9]. Other libraries
such as NNPack provide manually optimized CNN operators on
ARM CPUs; likewise Android NN is available for efficient infer-
ence on Android. To the best of our knowledge, such off-the-shelf
libraries cannot optimize kernels of models trained using different
deep learning frameworks and targeted to be deployed on a wide
range of MCUs. In this section, we provide library independent
kernel optimization tasks that are generic across a wide range of
MCUs for guaranteeing no runtime performance bottlenecks.

» Task 1: Remove excess modules and components inside the
project directory before building, using the technique we
provided in 3.4.3. This reduces the size of the compiled kernel,
and also aids the MCU to boot faster.

Task 2: Group multiple operators together within a single
kernel. Performing this task will improve efficiency due to
better memory locality.

Task 3: Matrix multiplication is a computationally inten-
sive task, yet the most important computation kernel that
needs to be used during convolution operations. In the con-
text of matrix multiplication on MCUs, out of the various
schemes studied, we provide the best optimization methods.
LIBXSMM [5], which goes deep into the assembly code level
for improving small matrix multiplication tasks, should be
used for improving kernel performance. Also, the matrix
multiplication kernel should be implemented with 2x2 ker-
nels to save on the total number of load instructions while
also enabling some data re-usage.

Task 4: The computationally intense convolutions traverse
their operands many times during computation. Hence, man-
aging the layout of the data fed to CNNs is critical for reduc-
ing memory access overheads. We also recommend applying
algorithms to optimize convolution in a single thread (thread
optimization) to reduce memory access overheads.

Task 5: The convolution should be partitioned into disjoint
pieces to achieve parallelism. At the CPU level, off-the-shelf



Figure 3: MCU-based development boards chosen to evaluate RCE-NN.

multithreading solutions such as OpenMP (used by the Intel
MKL-DNN kernel library) are used to achieve parallelism
via shared memory multiprocessing. But for MCUs, such
approaches are not suited. For MCUs, self-customized thread
pooling techniques should be used to reduce overheads while
launching and suppressing threads, to reduce performance
jitters while adding threads. Using such a self-customized
thread pool provides full control of the IoT application while
maintaining performance across different MCU platforms.

3.4.3 Build Binaries. In this Section, we give an overview of a
technique to build binaries and use them during deployment (Stage
Five). Binaries are the machine runnable code that needs to be
generated from the project’s source file system, which we load into
the MCU’s flash memory via the serial port. In our pipeline, to
build the MCU executable binary, the users need to use the GNU
make -f 3 command. By default, the make command compiles for
the host system. Hence the users need to select a target architecture
depending on the target MCU, using the TARGET parameter of the
GNU make command. In the end, the user should ensure that the
binaries do not exceed the MCU’s flash memory size.

3.5 Stage Five: Deployment

In this stage, the binaries are generated from the project’s source file
system using the technique we provided in Section 3.4.3, and should
be ready to be loaded into the MCU’s flash memory via the serial
port. In general, these binaries are loaded into the MCU with the
help of a bootloader, that allows uploading of the compiled binary
for the IoT use case without the need for an external programmer,
but at the cost of consuming memory to occupy the bootloader. To
avoid this and achieve maximum utilization of the full program
space (flash) of the chip only for the CNN and its operations, we
provide a methodology to burn/flash the generated binaries into
the MCU. In our method, it is mandatory not to flash the bootloader
on the MCU. Therefore, to perform the binaries upload/flash task,
our method uses an external In-System Programmer (ISP) or a
ParallelProgrammer, which does not occupy bootloader space and
also avoids the bootloader delay.

3https://www.gnu.org/software/make/manual/make html

Table 1: Specification of boards chosen to evaluate RCE-NN.

MCU & Specification

Board Name .. | EEP Clock
Bits ROM SRAM | Flash (MHz) FP

Board

#1 ATmega328P Arduino s |1kB| 2kB | 3268 | 16

#2 Pro Mini, Nano d
#3 | nRF52840 Adafruit Feather | 32 | - [256kB| IMB | 64 |V
#4 STM32f103c¢8 Blue Pill 32 - 20kB |128kB| 72 |X
#5 Adafruit HUZZAH32,
#6 Generic ESP32 32 - [P20KB| 4MB | 240\
ATSAMD21G18
#7 Adafruit METRO 32 | - | 32kB [256kB| 48 |X
ATmega2560
#8 Arduino Mega 8 |[4kB | 8kB |256kB| 16 |X

4 EVALUATION

We have explained the five-stages of RCE-NN with its hardware and
software co-optimization components that enable us to fit, deploy
and execute multiple CNNs from the laboratory environment on
multiple MCUs. In this section, we focus on the end-to-end eval-
uation of the RCE-NN pipeline, that answers: (i) Can RCE-NN be
used to execute CNNs on various MCU-based development boards?
(ii) How does RCE-NN influence the accuracy and size of models?

4.1 Datasets and Evaluation procedure

We evaluate RCE-NN using eight MCU-based boards, as shown in
Figure 3, with their specifications given in Table 1. We categorize
these boards into two groups, based on their resource constraints.
The first group contains boards 1, 2, 7 and 8. From all of the boards
chosen, the boards with the better resources form the second group
(boards 3, 4, 5 and 6), where the boards 3, 5 and 6 from the second
group support floating-point operations. Having these two groups
of boards, we chose one model per group, aiming to fit and execute
on all boards of that group. For the first group, we designed a CNN
to perform RSS (Received Signal Strength) prediction of BLE signals.
This CNN was designed using the instructions provided in RCE-
NN’s Stage One (Section 3.1) and trained using the BLE RSS [11]
dataset. Then we quantized and converted CNNs using techniques
from Stage Two (Section 3.2). Next, we follow the instructions
provided from Stage Three (Section 3.3) to Stage Five (Section 3.5)
to translate the model into C code, followed by integrating it into
an IoT application and deploying it on all the boards from the
first group. The second group of boards have better FLASH and
SRAM resources, so we designed a CNN with more hidden layers to
perform the RSS prediction of WiFi signals. This CNN was trained
using the kthrss [12] dataset, followed by realizing the instructions
provided in the subsequent pipeline stages (Stages Two to Five).

4.2 Executing CNNs on MCUs

After realizing pipeline Stage Five, the BLE and WiFi RSS prediction
CNNs are loaded on all the boards shown in Figure 3. The boards
from the first group were powered on individually, then multiple
unseen series of BLE RSS data from the finalized datasets were fed
to the input layer of the loaded CNNs via their serial port. For the
second group of boards, unseen series of WiFi RSS data from the



Table 2: Executing CNNs on MCU boards using RCE-NN. CNN size versus performance after pipeline Stage Two. Performance comparisons of actual BLE
and WiFi RSS prediction CNNs with their Quantized versions, Quantized and Converted versions, and Real-time performance when executing on MCU boards.

CNN Size (kB) Evaluation };Zri;rzg;ﬁ; Performa;(:Eozig/In?)U Boards
Datasets Quant &
Actual | Quant Qg:lltv& ‘?\ZX‘S %;2? Conv #1 #2 7 48
MAE

BLE RSS 63.3 15.2 6.0 BLE RSS [11] 4.227014 | 4.227019 | 4.151393 | 4.128201 | 4.128206 | 4.158090 | 4.162391
Prediction BLEBeacon [15] 4.464411 | 4.464414 | 4.527941 | 4.531073 | 4.531071 | 4.543889 | 4.539941

#3 #4 #5 #6
WiFi RSS 148.6 38.0 13.6 kthrss [12] 3.210762 | 3.210761 | 3.209073 | 3.221350 | 3.232757 | 3.206426 | 3.206420
Prediction ' ’ ’ phonelab-wifi [14] | 3.022681 | 3.022679 | 3.032625 | 3.039942 | 3.035064 | 3.035308 | 3.035316

Fig. 4.a. Original Series - BLE Fig. 4.b. Original Series - WiFi
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Figure 4: Executing CNNs on boards after realizing all five pipeline stages:
Plotting BLE and WiFi RSS predictions obtained from MCUs.

finalized datasets was fed to them. The CNNs running on their
respective boards predicted the future RSS values and sent them
via the serial port. We received these predictions from the MCU
boards and used them to calculate the performance (MAE) of the
CNN during its execution on their respective MCUs. This real-
time performance across all the boards is provided in Table 2. For
visualization, in Figure 4, we took two original unseen data series
from the BLE and WiFi datasets, plotted them, and compared them
with the RSS predictions produced by all the MCU boards. Here, the
predicted RSS is sketched in the colors mentioned in the graph’s
legend. The trend/slope of the predicted lines (for all boards) is very
close to the trend of the raw/original series shown.

It is apparent from Figure 4 that after realizing all five pipeline
stages, the trained models can be executed on all the popular MCU
boards shown in Figure 3. We estimate that our RCN-NN pipeline
can be used to fit, deploy and execute multiple CNNs across thou-
sands of open-source MCU boards supported by Arduino IDE.

4.3 CNN Size

Before realizing the components from pipeline Stage 2 (Section.
3.2), the actual BLE RSS prediction CNN size was 63.3 kB, which
exceeds the available memory resource of boards 1, 2, 7 and 8 from
the first group. Similarly, the WiFi RSS prediction CNN size was
148.6 kB, which cannot be fit onto board 4 from the second group.
Therefore, to reduce the size without increasing the Mean Absolute
Error (MAE), we statically quantize the weights and activations
from floating-point to 8-bits of precision. We chose this technique
since 8-bit calculations help RSS prediction CNNs run faster on
MCUs while using less power. It also enables executing of CNNs on
boards 1, 2, 4, 7 and 8 from Table 1 that cannot run floating-point
code, while saving approximately 70% of the memory bandwidth.

It is apparent from Table 2 that the components of Stage Two
quantize and compress the CNNs from 63.3 kB to 6.0 kB and 148.6
kB to 13.6 kB, which enables the CNNs to fit on such small devices
shown in Figure 3 with almost no loss on their performance (MAE)
both after Quantization and Compression and also during run-time.

4.4 CNN Performance

To measure the performance of the RSS prediction models, Mean
Absolute Error (MAE) was used as an evaluation metric. We used
MAE over other metrics (accuracy, mean squared error, F1 score,
etc.) since for RSS signal data, MAE is more robust as it is less
sensitive to fluctuations (outliers). MAE was calculated using Eqn.
3, where zy,, is the true future RSS values, and 2/,; is the mean
of the predicted RSS value. The model running on the boards, used
to predict the RSS of WiFi and BLE, was tested on unused columns
of data from the finalized datasets and was also validated using
new datasets (BLEBeacon [15] for BLE and phonelab-wifi [14] for
WiFi). During execution on MCUs, the CNNs were able to achieve
an MAE of less than 3.23 dBm for WiFi and 4.54 dBm for BLE across
all boards as shown in Table 2.

MAE = AB* = |2
+p

®3)

From Table 2, it can also be noticed that the MAE obtained by
executing CNNs across all boards is the same until its first decimal
point: 4.1 dBm across all boards for BLE RSS dataset, 4.5 dBm
for BLEBeacon, 3.2 dBm for kth_rss, and 3.0 dBm for phonelab-
wifi. From this, it is clear that when RCE-NN’s pipeline is used to
fit, deploy and execute CNNs across various MCU boards, CNNs

perform the same, irrespective of the target MCUs.

- Zk+p|



5 CONCLUSION

We presented RCE-NN, a design flow that contains a five-stage
pipeline with hardware and software co-optimization components
that developers can follow to fit, deploy and execute multiple CNNs
from the laboratory environment on multiple resource-constrained
embedded systems like FPGAs, MCUs, etc. Using our pipeline it will
be possible to fit CNNs into resource-constrained devices and exe-
cute a variety of IoT edge-based applications and use cases (health
monitoring, speech recognition, wake word spotting, gesture recog-
nition, etc.). We evaluated RCE-NN by using its pipeline to execute
CNNs that predict the RSS of WiFi and BLE on eight popular MCU
boards. The pipeline components quantize and compress the CNNs
to 1/10t" of their original size while also preserving accuracy until
its first decimal point across all boards.
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