

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-26T11:55:35Z

Some rights reserved. For more information, please see the item record link above.

Title Edge2Train: A framework to train machine learning models
(SVMs) on resource-constrained IoT edge devices

Author(s) Sudharsan, Bharath; Breslin, John G.; Ali, Muhammad Intizar

Publication
Date 2020-10-06

Publication
Information

Sudharsan, Bharath, Breslin, John G., & Ali, Muhammad
Intizar. (2020). Edge2Train: A framework to train machine
learning models (SVMs) on resource-constrained IoT edge
devices. Paper presented at the 10th International Conference
on the Internet of Things (IoT 2020), Malmö, Sweden, 05-09
October, doi:10.1145/3410992.3411014

Publisher Association for Computing Machinery (ACM)

Link to
publisher's

version
https://doi.org/10.1145/3410992.3411014

Item record http://hdl.handle.net/10379/16849

DOI http://dx.doi.org/10.1145/3410992.3411014

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Edge2Train: A Framework to Train Machine Learning Models
(SVMs) on Resource-Constrained IoT Edge Devices

Bharath Sudharsan∗, John G. Breslin∗, Muhammad Intizar Ali§
∗Confirm SFI Research Centre for Smart Manufacturing, Data Science Institute, NUI Galway, Ireland

{bharath.sudharsan,john.breslin}@insight-centre.org
§ School of Electronic Engineering, Dublin City University, Ireland, ali.intizar@dcu.ie

ABSTRACT
In recent years, ML (Machine Learning) models that have been
trained in data centers can often be deployed for use on edge de-
vices. When the model deployed on these devices encounters un-
seen data patterns, it will either not know how to react to that
specific scenario or result in a degradation of accuracy. To tackle
this, in current scenarios, most edge devices log such unseen data
in the cloud via the internet. Using this logged data, the initial ML
model is then re-trained/upgraded in the data center and then sent
to the edge device as an OTA (Over The Air) update. When applying
such an online approach, the cost of edge devices increases due to
the addition of wireless modules (4G or WiFi) and it also increases
the cyber-security risks. Additionally, it also requires maintain-
ing a continuous connection between edge devices and the cloud
infrastructure leading to the requirement of high network band-
width and traffic. Finally, such online devices are not self-contained
ubiquitous systems. In this work, we provide Edge2Train, a frame-
work which enables resource-scarce edge devices to re-train ML
models locally and offline. Thus, edge devices can continuously
improve themselves for better analytics results by managing to
understand continuously evolving real-world data on the fly. In
this work, we provide algorithms for Edge2Train along with its
C++ implementations. Using these functions, on-board, offline SVM
training, inference, and evaluation has been performed on five pop-
ular MCU boards. The results show that our Edge2Train-trained
SVMs produce classification accuracy close to that of SVMs trained
on high resource setups. It also performs unit inference for values
with 64-dimensional features 3.5x times faster than CPUs, while
consuming only 1/350𝑡ℎ of the energy that CPUs consume.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Computer
systems organization → Embedded hardware;

KEYWORDS
IntelligentMicrocontrollers, EmbeddedC, Real-timeMachine Learn-
ing, Self-learning IoT Edge.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoT ’20, October 6–9, 2020, Malmö, Sweden
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8758-3/20/10. . . $15.00
https://doi.org/10.1145/3410992.3411014

ACM Reference Format:
Bharath Sudharsan∗, JohnG. Breslin∗, Muhammad Intizar Ali§. 2020. Edge2Train:
A Framework to Train Machine Learning Models (SVMs) on Resource-
Constrained IoT Edge Devices. In Proceedings of 10th International Confer-
ence on the Internet of Things, Malmö, Sweden, October 6–9, 2020 (IoT ’20),
8 pages.
https://doi.org/10.1145/3410992.3411014

1 INTRODUCTION
During the past few years, ML models have been used as the prin-
cipal approach to solve a variety of real-world problems across
domains such as cyber security [27], smart wearables [26], voice lo-
calization [16, 17], resilient wireless communication [14], consumer
electronics [18, 19], etc. Such models exhibit superior performance
only when they are trained using a massive, high-quality dataset
with data fields containing a variety of patterns. In the real-world,
every new scene generates a fresh, unseen data pattern [20]. When
the model deployed in edge devices sees such fresh patterns which
were not exposed during training, it will either not know how to
react to that specific scenario, or lead to false or less accurate results.
Also, a model trained using data from one context will not produce
the expected results when deployed in another context, and it is
not feasible to train multiple models for multiple environments
and contexts. Hence, a solution is needed to enable edge devices
to continuously improve themselves, by learning from the fresh
real-world data patterns they see after their deployment.

Nowadays, to achieve high inference accuracy, edge devices log
unseen data in the cloud via the internet. Using this logged data,
the initial model is re-trained and upgraded in data centers and
then sent to the edge device as an over-the-air (OTA) update. When
employing such an online approach, firstly, the cost of edge devices
increases due to wireless module addition, while also increasing
the cyber-security risks and power consumption. Expensive edge
devices are also prone to security issues such as theft or vandalism
[27]. Finally, such online devices are not self-contained ubiquitous
systems and depend on the internet and cloud services to perform
re-training and also inferences [24]. Hence, the solution that enables
continuous learning edge devices has to follow an offline learning
approach.

An edge device is an embedded system with a small micro-
controller unit (MCU), which acts as its brain [15]. The Arduino
Nano, an 8-bit ATmega328 micro-controller with a 16 MHz clock,
2 kB of SRAM and 32 kB of ISP flash memory, and the NUCLEO-
F303K8, a 32-bit ARM Cortex-M4 micro-controller with a 72 MHz
clock and 64 kB of flash memory, are examples of small MCU boards.
In such MCU-based edge devices, firstly, the memory footprint

https://doi.org/10.1145/3410992.3411014
https://doi.org/10.1145/3410992.3411014

Figure 1: Architecture and components of Edge2Train: training models on resource-scarce MCUs at the IoT edge.

(SRAM, FLASH and EEPROM) is limited to a few MB. Next, the
computation core (commonly a single ARM Cortex-M CPU) only
runs up to few hundred MHz, resulting in low operations per sec-
ond. Next is the absence of native filesystem support. Finally, there
is the issue of its inability to perform parallel processing due to the
absence of multiple execution units. These constraints on MCUs
restrict the execution of any ML-based tasks on MCU-based edge
devices [22, 25]. To the best of our knowledge, our work presented
in this paper is one of the few recent novel approaches enabling a
model’s training tasks on MCUs. Our proposed Edge2Train frame-
work enables offline training of models on resource-scarce edge
MCUs. Our main contributions in this paper can be summarised as:

• We provide the functions for Edge2Train, which are realized
through C++ implementations of our algorithms. Using these
functions, users can train models (SVMs) offline on MCUs
using live data from their IoT use cases. These functions also
enable on-board inference and model evaluations.

• The implementation blocks of our Edge2Train fuse with the
device’s IoT application to continuously improve analytic
results by training using the evolving real-world data.

2 EDGE2TRAIN FRAMEWORK
We propose an Edge2Train framework that enables MCUs at the
IoT edge to learn from a new data pattern it sees after deployment.
Initially, the MCU of the edge device will execute the use case’s IoT
application loaded into its memory. This IoT application follows a
routine, starting with acquiring sensor data using onboard peripher-
als (I2C, SPI, etc.), converting it into a model-understandable array,
and feeding it to the deployed model. In the next step of the routine,
the model stored in the MCU is executed to obtain an output array
containing the inference results of the model. In the final step, the
model’s output array is used to generate actuation commands (OPC,
PWM, etc.) to interact with the real-world applications the edge
device is interfaced with.

In the background, Edge2Train monitors this IoT application’s
routine to compute feedback for each actuation. If the feedback
is satisfactory, this routine is not disturbed. If not, a training set
is generated by stitching the model’s input and output array for

the unsatisfactory actuation with the ground truth which was ob-
tained by performing real-world observations. When sufficient
training sets are generated, then the Train-on-Demand Block of
the framework trains the model using the training sets and updates
the existing model. Figure 1 gives an overall architecture of IoT
applications on edge devices fused with our framework. The four
blocks of Edge2Train are:

i IO Block: This block acquires sensor data using on-board
peripherals (I2C, SPI, etc.), converts it into a model under-
standable array and feeds it to the input layer of the model.
Based on the model’s output array, this block generates actu-
ation commands, which are continuous control signals (OPC,
PWM, etc.) that interact with real-world applications.

ii Closed-Loop Feedback Block: This block monitors the IoT
application routine from the background for computing feed-
back of each actuation. The output of this block is the ground
truth, computed by observing how accurately the actuation
commands control the real-world application.

iii Data Stitching Block: This block locally builds a new dataset
for providing it to the Train-on-Demand Block for training.
The dataset is built by stitching the model’s input and output
array for the unsatisfactory actuation with the ground truth
computed by the Closed-loop Feedback Block.

iv Train-on-Demand Block: When the current model is un-
able to achieve adequate actuation accuracy, the Data Stitch-
ing Block starts generating training sets. When sufficient
training sets are generated, this block leverages our C++
Edge2Train library to set up, train and evaluate a new model,
which is an update for the existing model.

We implement this framework as a C++ library that can be
leveraged by developers during the programming phase of their
MCUs for their use case. The library files with its program functions
that enable offline training on MCUs are described in Section 3. In
Section 3.3, we provide an example use case on how Edge2Train
can be used to build an offline, self-learning HVAC control system
that provides superior thermal comfort. Finally, in Section 4, we
perform an end-to-end evaluation of Edge2Train.

2

3 FRAMEWORK IMPLEMENTATION
When users want their edge devices to learn from a new data
pattern it sees after deployment, they just need to call the functions
we provide in the C++ Edge2Train library. These functions fuse
our framework with their existing IoT applications, enabling edge
MCUs to re-train themselves offline, for continuous improvement.

3.1 File System of Edge2Train
The entire framework is implemented in Fl1- Edge2Train, a single .h
file shown in Figure 2. This file contains five functions that setup an
SVM, train the SVM, evaluate the trained SVM, and use real-time
data to carry out inferencing using the trained SVM. As shown in
Figure 2, the Fl1 file uses operators from the Fl2- all_ops_resolver
file to run the model and uses the Fl3- micro_interpreter file for
initializing the interrupter to load the model and pass variables.
The Fl2 and Fl3 files are imported from TensorFlow Micro library.

3.2 Edge2Train C++ Library
In this section, we provide and explain the algorithms of the five
functions that constitute our C++ Edge2Train library 1. These func-
tions are:

i Fn1- SVM Setup: Sets up the parameters that tune the SVM.
These parameters are sent by the IoT application, to tune the
SVM for the task specified for the edge device.

ii Fn2- SVM Train: This function uses the newly built training
set to train SVMs offline on MCUs.

iii Fn3- SVM Infer: When sensor data is fed to this function, it
calls the newly trained SVM, performs classifications, and
sends the results to the IoT application.

iv Fn4- SVM Eval: Evaluate the classification accuracy of the
MCU-trained SVM.

v Fn5- Kernel: Produce implicit dot products of two values. On
MCUs, it is used during training SVMs and while inferring
using trained SVMs.

First we provide and explain the Fn2- SVM Train function of
Edge2Train that uses Algorithm 1 to train SVMs on MCUs. The
novelty of this algorithm is that it optimizes the training method
of SVMs to enable training on resource-constrained MCUs. This
optimization also speeds up the algorithm on large training sets
while ensuring that there is convergence even under degenerate
conditions. We perform this optimized training of SVMs on MCUs
by leveraging Sequential Minimal Optimization (SMO) [11] since
it consumes minimal MCU resources while adapting and scaling
efficiently to diverse real-world applications. In this work, we use
an SVM to compute a linear classifier as shown in Eqn. 1. Since, we
are training a binary classification SVM, we will classify 𝑦 = 1 if
𝑓 (𝑥) ≥ 0 and 𝑦 = -1 if 𝑓 (𝑥) < 0.

𝑓 (𝑥) =
𝑚∑
𝑖=1

𝛼𝑖𝑦𝑖 (𝑥𝑖 , 𝑥) + 𝑏 (1)

We find the bounds L and H using Eqn. 2 and Eqn. 3, such that
𝐿 ≤ 𝛼 𝑗 ≤ 𝐻 holds in order for 𝛼 𝑗 to satisfy 0 ≤ 𝛼 𝑗 ≤ 𝐶 , where 𝛼𝑖
and 𝛼 𝑗 are the Lagrange multipliers chosen to optimize the training
process. To choose, we iterate over all 𝛼𝑖 , where 𝑖 = 1, 2...𝑚. During
1Code available at https://github.com/bharathsudharsan/Edge2Train

Algorithm 1 To train SVMs on MCUs using SMO.
Input:

C: Regularization parameter.
alphaTol: Numerical tolerance.
max passes: Max # of times to iterate over 𝛼 ′𝑠 .
(x(1), y(1)),..,(x(m), y(m)) is Training set (x_train & y_train).

Output:
𝛼 ∈ 𝑅𝑚 : Lagrange multipliers used during inference.
𝑏 ∈ 𝑅: Threshold.

Initialize 𝛼𝑖 = 0,∀𝑖, 𝑏 = 0, 𝑝𝑎𝑠𝑠𝑒𝑠 .
function SVM Train (C, alphaTol, max passes, Training set)
while (passes < max passes) do

num_changed_alphas = 0.
for i = 1 to m do
Calculate Ei = 𝑓 (𝑥𝑖) - 𝑦𝑖 . Use Eqn. 1.
if ((𝑦𝑖𝐸𝑖 < −𝑎𝑙𝑝ℎ𝑎𝑇𝑜𝑙 && 𝛼𝑖 < 𝐶) || (𝑦𝑖𝐸𝑖 > 𝑎𝑙𝑝ℎ𝑎𝑇𝑜𝑙 &&
𝛼𝑖 > 0)) then

Randomly select 𝑗 ≠ 𝑖 .
Calculate 𝐸 𝑗 = 𝑓 (𝑥 𝑗)𝑦 𝑗 . Use Eqn. 1.
Save old 𝛼 ′𝑠: 𝛼𝑜𝑙𝑑

𝑖
= 𝛼𝑖 ,𝛼𝑜𝑙𝑑𝑗

= 𝛼 𝑗 .
Compute L and H. Use Eqn. 2 or 3.
if (L == H) then

Continue to next i.
Compute 𝜂. Use Eqn. 4.
if (𝜂 >= 0) then

Continue to next i.
Compute and clip new value for 𝛼 𝑗 . Use Eqn. 5 and 6.
if (𝛼 𝑗𝛼𝑜𝑙𝑑𝑗

< 105) then
Continue to next i.

Determine value for 𝛼𝑖 . Use Eqn. 7.
Compute 𝑏1 and 𝑏2. Use Eqn. 8 and 9.
Compute b. Use Eqn. 10.
num changed alphas = num changed alphas + 1.

end if
end for
if (num changed alphas == 0) then

passes = passes + 1.
else

passes = 0.
end while

this iteration, if 𝛼𝑖 does not satisfy the Karush-Kuhn-Tucker (KKT)
conditions, we select 𝛼 𝑗 randomly from the remaining𝑚 − 1 𝛼 ′𝑠
followed by joint optimization of 𝛼𝑖 and 𝛼 𝑗 .

If y𝑖 ≠ 𝑦 𝑗 , 𝐿 =𝑚𝑎𝑥 (0, 𝛼 𝑗 − 𝛼𝑖), 𝐻 =𝑚𝑖𝑛(𝐶,𝐶 + 𝛼 𝑗 − 𝛼𝑖) (2)

If y𝑖 = 𝑦 𝑗 , 𝐿 =𝑚𝑎𝑥 (0, 𝛼𝑖 + 𝛼 𝑗 −𝐶), 𝐻 =𝑚𝑖𝑛(𝐶, 𝛼𝑖 + 𝛼 𝑗) (3)

The 𝛼 𝑗 is found using Eqn. 5, where the value of 𝜂 and 𝐸𝑘 is
found out using Eqn. 4. If 𝛼 𝑗 is found outside the L and H bounds,
it is clipped using the Eqn. 6. Using this 𝛼 𝑗 , the value of 𝛼𝑖 is found
out using Eqn. 7 where 𝛼 (𝑜𝑙𝑑)

𝑗
is the value of 𝛼 𝑗 before optimization

by Eqn. 5 and Eqn. 6.

𝜂 = 2(𝑥𝑖 , 𝑥 𝑗) − (𝑥𝑖 , 𝑥𝑖) − (𝑥 𝑗 , 𝑥 𝑗) and 𝐸𝑘 = 𝑓 (𝑥𝑘) − 𝑦𝑘 (4)
3

https://github.com/bharathsudharsan/Edge2Train

Algorithm 2 To infer using the MCU trained SVM.
Input:
x_train[][D]: Training set used to train SVM. D is feature

dimen.
setsize: The size of test set.
y_train[]: Training set’s true output.
x_test[D]: Test set input. Trained SVM will infer for this array.
var_alphas[i]: Lagrange multipliers obt using Algorithm 1.
alphaTol: Numerical tolerance received from Fn1- SVM Setup.

Output:
classifications: Inferences provided by MCU trained SVM.

function SVMInfer (x_train[][D], y_test, D, setsize, skip)
initialize classifications = 0.

for i = 0 to setsize
if ((!skip && var_alphas[i] != 0) || (skip && var_alphas[i]
> alphaTol)) then
classifications += var_alphas[i] * y_train[i] * Kernel
(x_test, x_train, D). Use Kernel fn from Algorithm 3.

return classifications.

When calculating 𝜂 we use a kernel function K, from Algorithm 3
to obtain inner products for values.

𝛼 𝑗 = 𝛼 𝑗 −
𝑦𝑖 (𝐸𝑖 − 𝐸 𝑗)

𝜂
(5)

𝛼 𝑗 =


H if 𝛼 𝑗 > 𝐻
𝛼 𝑗 if 𝐿 ≤ 𝛼 𝑗 ≤ 𝐻

𝐿 if 𝛼 𝑗 < 𝐿
(6)

𝛼𝑖 = 𝛼𝑖 + 𝑦𝑖𝑦 𝑗 (𝛼 (𝑜𝑑𝑑)
𝑗

− 𝛼 𝑗) (7)
After optimizing 𝛼𝑖 and 𝛼 𝑗 , we select the threshold 𝑏 such that

the KKT conditions are satisfied for the 𝑖𝑡ℎ and 𝑗𝑡ℎ values. The KKT
conditions here are used to check if the optimized values converge
to the defined optimal point. If the optimized 𝛼𝑖 is not at the bounds
0 < 𝛼𝑖 < 𝐶 , then Eqn. 8 is used to calculate the threshold, and the
thus-found threshold is 𝑏1. This threshold 𝑏1 forces the SVM to
output 𝑦𝑖 when the input is 𝑥𝑖 . Similarly, if 0 < 𝛼 𝑗 < 𝐶 then Eqn. 9
is used to calculate the threshold, the threshold found is 𝑏2.

b1 = b -E𝑖 − 𝑦𝑖 (𝛼𝑖 − 𝛼 (𝑜𝑑𝑑)
𝑖

) (𝑥𝑖 , 𝑥𝑖) − 𝑦 𝑗 (𝛼 𝑗 − 𝛼𝑜𝑑𝑑𝑗
) (𝑥𝑖 , 𝑥 𝑗) (8)

b2 = b -E𝑗 − 𝑦𝑖 (𝛼𝑖 − 𝛼 (𝑜𝑑𝑑)
𝑖

) (𝑥𝑖 , 𝑥 𝑗) − 𝑦 𝑗 (𝛼 𝑗 − 𝛼 (𝑜𝑑𝑑)
𝑗

) (𝑥 𝑗 , 𝑥 𝑗) (9)
In cases when both new𝛼 ′𝑠 are at the bounds, then all the thresholds
between b1 and b2 satisfy the KKT conditions. So, in such cases,
the threshold 𝑏 is (𝑏1 + 𝑏2)/2. Hence the complete equation for 𝑏
is given as Eqn. 10.

𝑏 =


𝑏1 if 0 < 𝛼𝑖 < 𝐶

𝑏2 if 0 < 𝛼 𝑗 < 𝐶
𝑏1+𝑏2

2 otherwise
(10)

We use a kernel function Kwhenever an inner product is required
during training or inferring using SVMs on MCUs. We substitute
a kernel 𝐾 (𝑥 (𝑖), 𝑥) in place of the inner product. We provide this
kernel function in Algorithm 3.

After training, users can next call the Fn4- SVM Eval. This func-
tion uses our Algorithm 4 to evaluate the classification accuracy of

Algorithm 3 Kernel for SVM during training and inferring on
MCUs.

Input:
x[], y[]: The values for which sum of the products is needed.
D: Feature dimension.

Output:
sum: Dot products of input.

function Kernel (x, y, D)
initialize sum = 0

for i = 0 to D do
sum += x[i] * y[i].

return sum.

the MCU trained SVM. The accuracy here is the ratio of the number
of correct classifications to the total number of input samples. To
conserve the MCU’s Flash memory (very limited), we do not use
additional metrics such as the F1 score, Matthews Correlation Co-
efficient (MCC), confusion matrix, etc. The Algorithms 3 and 4 are
the standard C++ implementations of the methods used in Deep
Learning frameworks for computing dot products and accuracy.
Finally, when users want to use their MCU trained SVM to perform
onboard offline inference, they just need to call the Fn- SVM Infer
and pass their sensor readings. This function uses our Algorithm 2
to infer for the input values.

Algorithm 4 To find SVM classification accuracy on MCUs.
Input:

x_test[][D]: Test set input. D is feature dimension.
y_test[]: Test set’s true output.
setsize: The size of test set.

Output:
accuracy: Classification accuracy of MCU trained SVM.

function SVMEval (x_test[][D], y_test[], setsize)
Initialize correct, accuracy, inference = 0.

for i = 0 to setsize do
inference = infer for x_test[i]. Use Algorithm 2.
if (inference == y_test[i]) then
correct = correct + 1.

accuracy = 1.0 * correct / setsize.
return accuracy.

3.3 Fusing IoT applications with Edge2Train
In this section, we provide an example use-case on how Edge2Train
can be used to build an offline, self-learning HVAC control system
that provides superior thermal comfort. Here, we consider a typical
smart building with a sensor-based HVAC control system to con-
trol its internal heating, ventilation, and air conditioning. During
the design time of this HVAC control system, it is programmed
with a standard HVAC control strategy. In many cases, such a
standard/one-size-fits-all HVAC control strategy cannot work well
to provide thermal comfort for many people because every build-
ing/infrastructure has differences (e.g. location, size of a building,
its thermal confinement, etc.). Due to such multiple differences,
every building needs a separate HVAC control strategy to provide

4

Figure 2: IoT application fused with functions of the Edge2Train.

the desired thermal comfort to different people in their respective
buildings. In this section, using Figure 2, we provide and explain a
method to fuse the IoT application of an HVAC control use case with
our Edge2Train. The fusing starts with the Closed-Loop Feedback
Block of Edge2Train. This block monitors the application routine of
the HVAC control system, to compute feedback for each actuation.
If this feedback is satisfactory, the HVAC routine is not disturbed.
Else, a training set is generated by the Data Stitching Block as
shown in Figure 2. When sufficient training sets are generated,
then the Train on Demand (ToD) block trains a model leveraging
the Fl1: Edge2Train file. As explained in Section. 3.2, this file con-
tains functions that setup, train, evaluate, and also use real-time
data to inference using trained SVM. To summarise, when the IoT
application keeps updating its model by training using the gen-
erated training sets, the edge devices can learn the best strategy
to perform tailored control of the HVAC system for any building
types.

Table 1: Specifications of boards chosen to evaluate Edge2Train.

Board MCU &
Board Name

Specification

Bits SRAM Flash Clock
(MHz) FP

#1 nRF52840
Adafruit Feather 32 256kB 1MB 64 ✓

#2 STM32f103c8
Blue Pill 32 20kB 128kB 72 ✗

#3
#4

Adafruit HUZZAH32,
Generic ESP32 32 520kB 4MB 240 ✓

#5 ATSAMD21G18
Adafruit METRO 32 32kB 256kB 48 ✗

4 EVALUATION
In this section, we focus on the end-to-end evaluation of the frame-
work using five MCU-based boards given in Table 1. This evaluation
answers:

• Can Edge2Train be used to train models on a wide variety
of MCU based development boards?

• Can models be trained on MCUs with limited Flash and
SRAM space?

• What is the relationship between a feature vector’s dimen-
sion, training set size, and training time?

• How much time and energy is consumed to train models
and infer using this trained model on MCUs?

4.1 Datasets and Evaluation Procedure
We selected two datasets for which on-board SVM training and
evaluation were performed for the selected devices. From the first
Iris flower 2 dataset, we extracted 100 data fields (feature dimension
of 4), with 50 positive and 50 negative samples of Iris Setosa. We use
such small samples since the MCU boards usually lack EEPROM
(space and cost cutting) or any additional memory units (SD card
modules or external Flash) to store the data fields. Then we trained
a binary classification SVM that distinguishes Iris Setosa from other
flowers based on the input features. The second round of evaluations
was performed using the MNIST database of handwritten digits 3.
Here we extracted 120 data fields (feature dimension of 64) for digit
6 (we chose digit 6 to ensure there would be complications rather
than using 0 or 1), with 60 positive and 60 negative samples. Then
we trained a binary classification SVM that distinguishes digit 6
from other digits, based on the input features. For evaluation, in
addition to the MCU boards from Table 1, a standard Ubuntu laptop
with Intel (R) Core (TM) i7-5500 CPU @ 2.40 GHz was selected
as CPU1 and the CPU2 is a Windows laptop with Intel (R) Core
(TM) i7-8650U CPU @ 1.90 GHz. The same SVM parameters, C
(regularization parameter) = 1, alphaTol (numerical tolerance) =
1e-7, maxIter = 10000 (max # of times to iterate without changing),
linear kernel and same datasets were used across all the MCUs and
CPUs. We also compare the time and energy consumed to train
and inference on MCUs that use our Edge2Train with CPUs that
use Python scikit-learn to perform the same tasks. We calculated
the energy (in Joules) consumed by devices during training and

2https://archive.ics.uci.edu/ml/datasets/iris
3http://yann.lecun.com/exdb/mnist/

5

Table 2: On-board SVM training using Edge2Train: Time and energy consumed to train and infer on MCUs (uses Edge2Train) and CPUs (uses Python
scikit-learn). Flash and SRAM consumed by Edge2Train for various MCU boards.

Board
Datasets

Training & Unit
Inference Time (ms)

Accuracy
(%)

Training & Unit
Inference Energy (mJ)

Flash & SRAM
Requirement (kB)

CPU1 CPU2 MCU CPU1 CPU2 MCU CPU1 CPU2 MCU MCU

1 Iris Flowers
Features Dim=4

Training set size=100

Handwritten
Digits

Features Dim=64
Training set size=120

1.193, 0.006
2.516, 0.341

1.738, 0.004
2.671, 0.366

33512.0, 0.067
45744.0, 0.5

93.37
91.66

96.67
88.89

90.0
92.85

21.474, 0.108
45.288, 6.308

32.153, 0.074
49.413, 6.771

5864.6, 0.011
8005.2, 0.087

43.889, 12.392
65.488, 76.632

2 226190.0, 0.4
-

83.34
-

39583.2, 0.078
-

30.112, 9.880
53.008 overflow

3 10187.0, 0.031
25326.0, 0.1

86.67
86.12

1782.7, 0.005
4432.0, 0.017

219.165, 21.012
240.545, 85.252

4 9037.0, 0.034
18754.0, 0.1

90.0
83.34

1581.4, 0.005
3281.9, 0.017

219.165, 21.012
240.545, 85.252

5 785607.0, 1.3
-

90.0
-

137481.2, 0.22
-

29.31, 10.650
39.896 overflow

inferring by multiplying the Current (Amperes) rating of MCUs
with its Potential/Voltage (Volts) and task time (seconds). For CPUs,
we used the htop process viewer and powerstat tool to calculate
energy.

4.2 Training and Executing SVMs on MCUs
We uploaded the dataset and our Edge2Train-fused IoT application
on all five MCUs from Table 1 using the Arduino IDE. Then we
powered on each board, connected them to a PC via the serial port
to receive training time and classification accuracy from MCUs.
For both of the selected datasets, the first 70% of data was used to
train the binary classification SVM, the remaining 30% data was
used for evaluation. When we instruct the board to train, the SVM
Setup and SVM Train functions as described in Section 3.2 uses
the Algorithms 1 and 3 to train on the loaded datasets. Next, the
SVM Infer and SVM Eval functions use our Algorithms 2 and 4 to
inference using the test sets and to evaluate (find accuracy of) the
trained SVMs. We tabulated the obtained results in Table 2. From
this, it is apparent that developers can leverage the functions of
Edge2Train for trainingmodels offline using real-time data from any
of their use cases on such small MCU boards. We also estimate that
using Edge2Train, on-board model training can be performed on
thousands of open-source MCU boards supported by Arduino IDE,
which have limited Flash, SRAM, and no floating-point support.

From Table 2, the highest classification accuracy is 96.67% for
the Iris dataset on CPUs and 90.0% on MCUs. For the MNIST digits
dataset, 92.85% on MCUs and 91.66% on CPUs were the highest
accuracies. Although the training time on MCUs was higher than
CPUs, our Edge2Train-trained SVMs produce classification accura-
cies close to those of Python scikit-learn trained SVMs.

4.3 Training and Inference Time
In this section, we compare the training and inference time of SVMs
onMCUs (uses Edge2Train) with standard CPUs (uses Python scikit-
learn). The CPUs we chose for comparison have approximately
1000x times better specifications over the chosen MCUs. In Figure
3 (y-axis in Log scale) we plotted the time consumed by devices to
train and inference for both datasets. We noticed that CPU1 and
MCU4 are the fastest in their respective classes. Although CPU1
has 1000x times better spec, it is only 7.57 seconds faster for Iris,

Figure 3: Comparing training and inference time of SVMs trained using
Edge2Train on MCUs vs Python scikit-learn trained SVMs on CPUs.

and 7.45 seconds for the MNIST digits datasets when comparing the
CPU1 versus MCU4 training times from Figure 3. Although CPUs
are faster, they cannot be used as IoT edge devices due to their
cost (CPU1 is 200x times more expensive than MCU4), form factor
(5x times more area), and energy consumption (7x times). Since
billions of edge devices are MCU-based, it is feasible to train even
at lesser speeds. Such offline training using Edge2Train reduces the
hardware cost of edge devices since they do not need a wireless
module (4G or WiFi) to receive the updated models from the cloud.
Also when the data for which the model has to be updated is small,
then it does not require data center GPUs for training. It can rather
be trained on the edge, using our framework, without compromis-
ing the model accuracy. Whereas, when comparing the inference
time using Figure 3, MCUs 3 and 4 that used our Edge2Train per-
formed unit inference for the digits data (64-dimensional features)
approximately 3.5x times faster than CPUs.

Next, to explain the relationship between training time, training
set size, and feature dimension, using Edge2Train we trained SVMs
on all five MCU boards by providing training sets of various sizes.
The results are shown in Figure 4. Here we noticed that the training
time grows swiftly with the number of training samples. For the
Iris dataset with 4-dimensional features, MCU4 only took 15.58
seconds to train on 100 samples, whereas, it took 28.24 seconds
to train on the MNIST digits dataset with 64-dimensional features.
Board 5 is the slowest since it only has a 48 MHz clock and does
not have floating-point support. Hence it took 21.39 minutes to
train on 100 samples of the Iris dataset (82x times slower than
MCU4). In such cases, to reduce training time and also to save

6

Figure 4: Training SVMs on MCUs using Edge2Train: Comparing training
set size vs training time for selected datasets.

SRAM, the precision of the data should be reduced. In Figure 4,
sudden peaks are observed when the algorithm consumes more
time to find the optimal hyperplane, and trough points are observed
when the optimal hyperplane is found soon. Hence the on-board
training time does not strictly increase linearly with training set
size.

4.4 SRAM Requirement
The run-time variables generated during training need to be stored
in the SRAM of MCUs. This SRAM space in MCUs is restricted,
since adding more leads to higher power leakage and manufac-
turing costs. From Table 1, the popular open-source boards we
chose have only 20 kB to a max of 520 kB of SRAM which restricts
training models using high feature dimensions and large training
set sizes in a single run. When compiling Edge2Train with IoT ap-
plication for boards, the memory requirements for target boards
are calculated by the compiler. We provide the calculated FLASH
and SRAM requirements for all boards in Table 2. For board 1, Iris
dataset, our Edge2Train fused IoT application and dataset in total
uses only 4.38% of FLASH and 4.84% SRAM. For the digits dataset,
the same board one requires 6.54% and 29.93%. Board 2, for Iris,
uses 23.52% and 49.4%. Here, board 2 cannot train using the dig-
its dataset because SRAM overflowed by 53.008 kB. Similarly for
board 5, SRAM overflowed by 39.896% for the digits. Boards 3 and 4
have the highest memory resources. They have 83.61% free SRAM
space even after loading it with the digits, a 64 dimension features
dataset. In such cases, we can train using a larger training set and
also implement polynomial kernel-based SVMs. From Table 2, we
noticed that when the input feature dimensions increase from 4 to
64, for board 1 the SRAM requirement increase 6x times and FLASH
by 1.4x times. Similarly, 4x times of SRAM and 1x time of FLASH
for boards 3 and 4. It is apparent from Table 2 that Edge2Train can
train models on MCUs with limited Flash and SRAM space. But
when the feature dimensions of datasets are large, then the SVMs
should be trained by providing data in batches.

4.5 Energy Efficiency
In this section, using Figure 5 the energy consumed by MCU boards
to train and inference using Edge2Train is compared with standard
CPUs that use Python scikit-learn to perform the same tasks. The
values used for the plot were calculated by applying the method

Figure 5: Comparing energy consumed to train and infer on MCUs using
Edge2Train vs Python scikit-learn on CPUs.

described in Section 4.1 on the values from Table 2. CPU1 and
MCU4 consumed the least energy to train. From Figure 5 (y-axis in
Log scale) we observed that CPU1 consumed 2x times more energy
to train on the digits dataset (64 dimension features) than to train
on the iris dataset (4 dimension features). Similarly, MCU4 also
consumed 2x times more energy to train on the digits dataset. To
perform a unit inference using 64 dimension digits data, the CPU1
consumed 58x more energy than to inference for a 4-dimension
input, whereas MCU4 only consumed 3.4x times more energy to
infer for digits data. On the whole, MCUs consume approximately
20x times less energy for the iris data and 350x times less energy
for digits data than CPUs did to perform a unit inference. Using
our Edge2Train, MCUs can perform inference at the lowest power
costs and also can perform complete offline training and inference.
This increases the operating time of battery-powered devices while
also eliminating the need for a wireless chipset that transmits data
to the cloud for training or inference.

5 RELATEDWORK
There are only a few articles in the domain of enabling on-the-fly
offline training on the resource-constrained MCUs at the edge. Also,
since this is a yet to emerge area of research there are no existing
frameworks like Tensorflow, Keras, etc. for enabling trainingmodels
on MCUs. We are grouping the related research into three sets.

In the first set, we present efforts that aim to push analytics to the
edge platform. In the article [7], a decentralized stochastic gradient
descent method to solve a large linear regression problem on the
edge network was proposed and applied to the seismic imaging use-
case. In [13], authors present a framework for coordinated process-
ing between edge and cloud. They utilize network-wide knowledge
and historical information from the cloud servers to guide edge
nodes for improving the performance of heterogeneous wireless
IoT networks. To minimize the communication overhead and to
maximize the quality of analytics results, the article [5] provides a
quality-aware, time optimized edge analytics model that enables
edge devices to intelligently decide when and what data to process
and deliver to the above fog and cloud layers. In [10], to improve
the data security without much impact on throughput, authors
first process the large streams of IoT data using their edge stream
analytics engine, which is a Trusted Execution Environment (TEE),
then stream the data to the cloud. Articles [5, 7, 10, 13] provides
edge nodes executable models/algorithms to achieve configuration
adaptation, privacy-preservation, useful features extraction from
heterogeneous data, balanced computation, robustness towards

7

node/link failure, etc. Although such models solve real-life prob-
lems, when they get exposed to unseen data patterns, they will not
know how to react to that specific scenario or produce results with
degraded accuracy. Also, such models do not continuously improve
themselves, by learning from the fresh real-world data patterns
they see after their deployment.

The second set of articles proposes compression techniques to re-
duce the size of the model’s weights using quantization and weight
pruning techniques resulting in a reduction of both model size and
inference time without considerable accuracy loss. CONDENSA
[6], a system for users to compose simple operators to build com-
plex model compression strategies. Two new compression methods
jointly leverage weight quantization and the distillation of larger
networks was proposed in [12]. In both [6], [12] and other similar ar-
ticles proposing compressing [3, 4, 15] and optimization [1, 9, 21, 23]
the model is trained in high resource environments, followed by
using multi-stage MCU-aware optimisation to enabling deploying
models at edge. Whereas in our Edge2Train, we provided a c++ li-
brary with multiple functions that developers can leverage to train
models offline using real-time data from any of their use-case.

In the third set of related articles, authors in [8] have imple-
mented a tree-based algorithm for efficient prediction in millisec-
onds even on slow MCUs with only kBs of memory. Similarly, Pro-
toNN, k-Nearest Neighbor (KNN) inspired algorithm with several
orders lower storage and prediction complexity was proposed in
[2] to address the problem of real-time and accurate prediction on
resource-scarce devices. Articles from this set provided algorithms
that tailor models to fit in MCUs. Such methods and are again not
generic across all MCUs, and also do not enable edge devices to
learn from the new data pattern it sees after deployment.

6 CONCLUSION
We presented Edge2Train, a framework that enables a wide va-
riety of open-source MCUs that have limited Flash, SRAM, and
no floating-point support to re-train themselves locally and of-
fline. Thus, MCU-based edge devices can continuously improve
themselves for better analytics results by managing to understand
continuously evolving real-world data on the fly. We also provided
algorithms of Edge2Train with its C++ implementation, which en-
ables users to train models offline on MCUs using live data from
their IoT use-cases, and also enables performing on-board inference
and model evaluations. In future work, we plan to provide algo-
rithms and functions to enable users to perform, on-board, offline
multi-class SVM training and inference.

ACKNOWLEDGEMENTS
This publication has emanated from research supported by research
grants from Science Foundation Ireland (SFI) under Grant Num-
ber SFI/16/RC/3918 (Confirm) and SFI/12/RC/2289_P2 (Insight), co-
funded by the European Regional Development Fund.

REFERENCES
[1] Sourav Bhattacharya and Nicholas D. Lane. 2016. Sparsification and Separation

of Deep Learning Layers for Constrained Resource Inference on Wearables. In
Conference on Embedded Network Sensor Systems (SenSys).

[2] Chirag Gupta, Prateek Jain, et al. 2017. ProtoNN: Compressed and Accurate kNN
for Resource-scarce Devices. In Proceedings of the 34th International Conference
on Machine Learning (ICML).

[3] Philipp Gysel, MohammadMotamedi, and Soheil Ghiasi. 2016. Hardware-oriented
Approximation of Convolutional Neural Networks. arXiv preprint.

[4] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint.

[5] Natascha Harth and Christos Anagnostopoulos. 2017. Quality-aware aggregation
& predictive analytics at the edge. In IEEE International Conference on Big Data.

[6] Vinu Joseph, Saurav Muralidharan, Animesh Garg, Michael Garland, and Ganesh
Gopalakrishnan. 2019. A Programmable Approach to Model Compression. arXiv.

[7] Goutham Kamath, Pavan Agnihotri, Maria Valero, Krishanu Sarker, and Wen-
Zhan Song. 2016. Pushing Analytics to the Edge. In IEEE Globecom.

[8] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient Ma-
chine Learning in 2 KB RAM for the Internet of Things. In ICML.

[9] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Cmsis-nn: Efficient neural
network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601.

[10] Heejin Park, Shuang Zhai, et al. 2019. StreamBox-TZ: Secure Stream Analytics at
the Edge with TrustZone. In USENIX Annual Conference.

[11] Fernando Pérez-Cruz, Antonio Artés-Rodríguez, et al. 2000. Fast Training of
Support Vector Classifiers. In Advances in NIPS.

[12] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression
via distillation and quantization. arXiv preprint.

[13] Shree Krishna Sharma and Xianbin Wang. 2017. Live Data Analytics With
Collaborative Edge and Cloud Processing in Wireless IoT Networks. IEEE Access.

[14] Bharath Sudharsan, John G. Breslin, and Muhammad Intizar Ali. 2020. Adaptive
Strategy to Improve the Quality of Communication for IoT Edge Devices. In IEEE
6th World Forum on Internet of Things (WF-IoT).

[15] Bharath Sudharsan, John G Breslin, and Muhammad Intizar Ali. 2020. RCE-NN:
a five-stage pipeline to execute neural networks (cnns) on resource-constrained
iot edge devices. In 10th International Conference on the Internet of Things.

[16] Bharath Sudharsan and Manigandan Chockalingam. 2019. A microphone array
and voice algorithm based smart hearing aid. arXiv preprint.

[17] Bharath Sudharsan, Peter Corcoran, and Muhammad Intizar Ali. [n.d.]. Smart
Speaker Design and Implementation with Biometric Authentication and Ad-
vanced Voice Interaction Capability. In 27th AIAI Irish Conference on Artificial
Intelligence and Cognitive Science (AICS).

[18] Bharath Sudharsan, Sree Prem Kumar, and Rakesh Dhakshinamurthy. 2019. AI
Vision: Smart speaker design and implementation with object detection cus-
tom skill and advanced voice interaction capability. In IEEE 11th International
Conference on Advanced Computing (ICoAC).

[19] Bharath Sudharsan, Sweta Malik, Peter Corcoran, Pankesh Patel, John G Breslin,
and Muhammad Intizar Ali. 2021. Owsnet: Towards real-time offensive words
spotting network for consumer iot devices. In IEEE 7th World Forum on Internet
of Things (WF-IoT).

[20] Bharath Sudharsan and Pankesh Patel. 2021. Machine learning meets internet of
things: From theory to practice. European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD).

[21] Bharath Sudharsan, Pankesh Patel, John G Breslin, and Muhammad Intizar Ali.
2021. Enabling Machine Learning on the Edge using SRAM Conserving Effi-
cient Neural Networks Execution Approach. In European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD).

[22] Bharath Sudharsan, Pankesh Patel, John G Breslin, and Muhammad Intizar Ali.
2021. SRAM optimized porting and execution of machine learning classifiers
on MCU-based IoT devices: demo abstract. In Proceedings of the ACM/IEEE 12th
International Conference on Cyber-Physical Systems (ICCPS).

[23] Bharath Sudharsan, Pankesh Patel, John G. Breslin, and Muhammad Intizar
Ali. 2021. Ultra-fast Machine Learning Classifier Execution on IoT Devices
without SRAM Consumption. In 2021 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events (PerCom
Workshops).

[24] Bharath Sudharsan, Pankesh Patel, Abdul Wahid, Muhammad Yahya, John G
Breslin, and Muhammad Intizar Ali. 2021. Demo Abstract: Porting and Execution
of Anomalies Detection Models on Embedded Systems in IoT. Proceedings of the
ACM/IEEE Conference on Internet of Things Design and Implementation (IoTDI).

[25] Bharath Sudharsan, Simone Salerno, Duc-Duy Nguyen, Muhammad Yahya, Ab-
dul Wahid, Piyush Yadav, John G Breslin, and Muhammad Intizar Ali. 2021.
TinyML benchmark: Executing fully connected neural networks on commodity
microcontrollers. In IEEE 7th World Forum on Internet of Things (WF-IoT).

[26] Bharath Sudharsan, Dineshkumar Sundaram, John G. Breslin, and Muhammad In-
tizar Ali. 2020. Avoid Touching Your Face: A Hand-to-face 3D Motion Dataset
(COVID-away) and Trained Models for Smartwatches. In 10th International Con-
ference on the Internet of Things Companion. ACM.

[27] Bharath Sudharsan, Dineshkumar Sundaram, Pankesh Patel, John Breslin, and
Muhammad Intizar Ali. 2021. Edge2Guard: Botnet Attacks Detecting Offline
Models for Resource-Constrained IoT Devices. IEEE International Conference on
Pervasive Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops).

8

	Abstract
	1 Introduction
	2 Edge2Train Framework
	3 Framework Implementation
	3.1 File System of Edge2Train
	3.2 Edge2Train C++ Library
	3.3 Fusing IoT applications with Edge2Train

	4 Evaluation
	4.1 Datasets and Evaluation Procedure
	4.2 Training and Executing SVMs on MCUs
	4.3 Training and Inference Time
	4.4 SRAM Requirement
	4.5 Energy Efficiency

	5 Related work
	6 Conclusion
	References

