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ABSTRACT
Time-division-duplexing (TDD) massive multiple-input multiple-

output (MIMO) systems will play a crucial role in the deployment of

emerging mobile networks in 5G and beyond. Such systems heavily

rely on the reciprocity-based channel estimation for its scalabil-

ity. However, the imperfect channel reciprocity, mainly caused by

radio-frequency mismatches among the base station antennas, can

contaminate the estimate of the effective channel response thus

become a performance-limiting factor. In practice, self-calibration

schemes are often applied to compensate for this type of imperfec-

tions. This work investigates two self-calibration schemes, namely

relative calibration and inverse calibration. Considering a TDD

massive multi-user MIMO system in the presence of both chan-

nel reciprocity error and imperfect channel estimation, we derive

closed-form expressions for the receive mean-square error and

provide an in-depth comparative analysis of the post-equalisation

performance of two calibration schemes. The proposed analytical

results are verified via Monte-Carlo simulations.
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1 INTRODUCTION
The explosive growth of connected devices and the growing number

of broadband subscribers have led to unprecedented growth in traf-

fic demand of the current mobile internet. To this effect, a promising

multi-user (MU) massive MIMO (multiple-input-multiple-output)

technology has evolved in the 5th generation (5G) mobile networks

[1], operating by a large scale base station (BS) antennas, typically

in the order of hundreds or perhaps thousands [2–4]. One key ad-

vantage of massive MIMO over the conventional MU-MIMO in the

future mobile network deployment, is that simple linear processing

algorithms perform very well at both uplink (UL) and downlink

(DL), due to the significant imparity between the number of service-

antennas at the BS and that of the user terminals (UTs) [5, 6]. Prior

investigations in the context of the massive MIMO downlinks [7, 8]

show that typical linear precoding schemes, such as maximum ratio

transmission (MRT) and zero-forcing (ZF), can achieve a spectral

efficiency close to the optimal non-linear precoding techniques, but

with a relatively low computational complexity. However, these

channel-aware linear precoding schemes are susceptible to the

accuracy of the channel state information (CSI).

One of the main challenges in building up mobile networks with

massive MIMO is the CSI acquisition at the BS, which significantly

increases the signalling overhead, posing a practical hindrance in

performance, in terms of both spectral and energy efficiency. Con-

sidering that in a time-division-duplexing (TDD) system, where the

UL and DL channels are reciprocal, exploiting channel reciprocity,

therefore, enables implicit DL channel estimation. Most prior in-

vestigations assume perfect channel reciprocity in TDD massive

MIMO systems [2, 7, 9]. However, such assumption is over-strong

in practical scenarios, due to amplitude and phase mismatches be-

tween the UL and the DL as well as radio-frequency (RF) mismatch

between transmit (Tx) and receive (Rx) RF frontends of the BS an-

tennas [10, 11]. These mismatches contaminate the estimate of the

effective channel response, causing a significant degradation in the

performance of linear precoding schemes in the massive MIMO

system. Our prior work, [12], thoroughly investigated the perfor-

mance degradation for the MRT and ZF precoders under imperfect

channel estimation. The results in [12] show that both MRT and

ZF are severely affected by the compound effect of the reciprocity

and estimation errors.

In practice, calibration schemes are often used in a TDD MIMO

system to restore the reciprocity of its effective channel response.

https://doi.org/10.1145/3411043.3412507
https://doi.org/10.1145/3411043.3412507
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Two prevalent schemes have been offered in MIMO systems: over-

the-air calibration [13] and self-calibration [14]. The former re-

quires an exchange of pilots between UTs and the BS during the

calibration phase. Due to the large number of the required pilots,

which is proportional to the number of the BS antennas, it may be

spectrum inefficient to implement the over-the-air calibration in

the massive MIMO system. On the contrary, the self-calibration

can be implemented at the BS; thus it is widely considered in the

massive MIMO system [11, 15, 16]. A number of research activities

have been developed from the perspective of the so-called relative

self-calibration [15, 16], where the underlying concept is to rela-

tively calibrate the BS antennas based on the ratio of the Tx RF

response to the Rx RF response. By contrast, we proposed a cali-

bration scheme in [17, 18], namely “inverse calibration". Here the

design principles include using low-cost calibration circuits at the

BS to reliably estimate the RF responses and taking into account the

compound effect of the reciprocity and estimation errors. Further-

more, the work in [18] provided an analysis of the pre-equalisation

performance of both inverse and relative calibration schemes by

evaluating their ergodic sum rates.

One critical research gap identified in [18] is that, in order to

equalise and decode the received signal, each UT should have an

estimate of the effective channel gain. This channel gain is a com-

pound of the actual channel and the calibration matrix. Hence,

the post-equalisation mean-square error (MSE) at each UT is an

important performance metric to evaluate the effectiveness of the

calibration schemes. In this work, we aim at an in-depth analysis of

the post-equalisation MSE performance of massive MIMO systems

with self-calibration. More specifically, by taking into account the

channel reciprocity error, imperfect CSI and the simplest precod-

ing scheme, i.e., MRT, we derive closed-form expressions of the

receive MSE for both calibration schemes. The comprehensive per-

formance analysis in this work provides important insights for the

practical system design, including that: a) the relative calibration
suffers from the effect of estimation error amplification, which can

even outweigh the benefit of calibration in certain cases, such as

in the low region of the estimation signal-to-noise ratio (SNR); b)
the inverse calibration outperforms the relative calibration, in the

massive MIMO system under compound effect of both reciprocity

and estimation errors.

Notation: A random variable x ∼ CN (µ,σ 2) is complex Gaussian

distributedwithmean µ and covarianceσ 2
; whilex ∼ NT (µ,σ

2),x ∈
[a,b], is truncated Gaussian distributed with mean µ, variance σ 2

and truncated range [a,b], where −∞ < a < b < ∞. Vectors and
matrices are denoted by lower and upper case boldface characters,

respectively. AnM×M identity matrix is denoted by IM , and diag(·)
represents the diagonalisation operator to transform a vector to a

diagonal matrix. Operators E{·}, var(·), tr(·), (·)∗, (·)T and (·)H rep-

resent mathematical expectation, variance, matrix trace, complex

conjugate, transpose and Hermitian transpose, respectively. The

magnitude of a complex number is denoted by |·|, while ∥·∥ is the

matrix Frobenius norm. The imaginary unit is denoted by j. The
exponential function is defined as exp(·). Unless otherwise stated,
superscript/subscript ‘b’ stands for BS, and ‘t’ and ‘r’ correspond
to Tx and Rx, while ‘u’ and ‘d’ represent UL and DL, respectively.

Figure 1: A TDDmassiveMU-MIMO Systemwith calibration
circuits.

2 SYSTEM MODEL
The considered system model is a TDD massive MU-MIMO as

shown in Fig. 1, where K single-antenna UTs are served simultane-

ously by one BS. The BS hasM antennas that connect to individual

RF chains equipped with calibration circuits. The overall radio chan-

nel comprises the propagation channel as well as Tx and Rx RF

frontends at the BS side. We assume M ≫ K , and the time delay

from the UL channel estimation to the DL transmission is less than

the coherence time of the channel, and the impact of imperfect

channel reciprocity at the single-antenna UT side on the system

performance is negligible [5].

2.1 Modelling of Channel Reciprocity Error
As illustrated in Fig. 1, UL and DL propagation channels are re-

ciprocal, whereas the Tx and Rx frontends are not [10–12]. More

specifically, the UL and DL propagation channel responses are

denoted by H ∈ CM×K and HT
respectively, whose entries are

assumed to be independent identically distributed (i.i.d.) complex

Gaussian random variables with zero mean and unit variance, i.e.,

CN (0, 1). On the other hand, the effective hardware responses of

the Rx and Tx RF frontends at the BS are denoted by two diagonal

matrices Hbr ,Hbt ∈ C
M×M

, as [12]

Hbr = diag(hbr,1, · · · ,hbr,i , · · · ,hbr,M ), (1)

Hbt = diag(hbt,1, · · · ,hbt,i , · · · ,hbt,M ), (2)

whose ith diagonal entries hbr,i and hbt,i are given by

hbr,i = Abr,iexp(jφbr,i ), (3)

hbt,i = Abt,iexp(jφbt,i ), (4)

respectively. Amplitude and phase reciprocity errors,Abr,i ,φbr,i in
(3) andAbt,i , φbt,i in (4) can be modelled as independent truncated

Gaussian random variables as

Abr,i ∼ NT (αbr,0,σ
2

br ),Abr,i ∈ [ar ,br ], (5)

φbr,i ∼ NT (θbr,0,σ
2

φr ),φbr,i ∈ [θr,1,θr,2], (6)

Abt,i ∼ NT (αbt,0,σ
2

bt ),Abt,i ∈ [at ,bt ], (7)

φbt,i ∼ NT (θbt,0,σ
2

φt ),φbt,i ∈ [θt,1,θt,2], (8)
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where, without loss of generality, the statistical magnitudes of these

truncated Gaussian distributed variables are assumed to be static,

e.g., αbr,0, σ
2

br , ar and br ofAbr,i in (5) remain constant within the

considered coherence time of the channel [15].

2.2 Imperfect CSI
The UL training protocol is based on the minimum mean-square

error (MMSE) channel estimation. In particular, UTs send orthogo-

nal UL pilots to BS, of length τu ≥ K . Then the BS calculates the

MMSE estimate of the actual UL channel response Hu as

Ĥu = aHbrH + bNu , (9)

where

a =
τuρu

τuρu + 1
, b =

√
τuρu

τuρu + 1
. (10)

In addition, the noise matrix Nu ∈ C
M×K

has i.i.d. CN (0, 1) ele-
ments, and ρu denotes the expected UL transmit SNR. The BS takes

ĤT
u as the DL channel estimate Ĥd , but the actual DL channel is

Hd = HTHbt . As a result,

Ĥd = aHdE + bN
T
u , (11)

where E = H−1btHbr is the channel reciprocity error. According

to the property of the MMSE channel estimation, the actual DL

channel matrix Hd can be further decomposed into a combination

of DL channel estimation matrix and an independent estimation

error matrix [19]. Considering the effect of the channel reciprocity

error E, we have
Hd = (Ĥd + V)E

−1, (12)

where the channel estimation error matrix V denotes the imperfect

CSI. This matrix V has entries modelled as CN (0, 1

τu ρu+1 ) and is

independent of Ĥd . It is reasonable to further assume the indepen-

dence between Ĥd , V, and E (or equivalently Hbt and Hbr ). We can

see from (12) that imperfect CSI causes an additive distortion, V,
while imperfect reciprocity introduces a multiplicative distortion,
E, in the sense that E is multiplied with the channel estimate Ĥd
and the estimation error V. The compound effect of the additive

estimation error and the multiplicative reciprocity error can cause

a significant performance degradation of the considered precoded

system without a proper calibration [12].

2.3 Downlink Precoding
The BS applies the DL precoding and form the transmit signal which

is represented by a vector x ∈ CM×1,

x =
√
ρdλWs, (13)

where ρd denotes the average transmit power at the BS, and the

vector s = [s1, · · · sk , · · · , sK ]
T ∈ CK×1 denotes the transmit sym-

bol for K UTs. We assume these independent symbols have the

normalised symbol power per user, such that E
{
|sk |

2

}
= 1, for k =

1, 2, · · · ,K . The matrix W ∈ CM×K denotes the linear precoder,

with a normalisation parameter λ to satisfy the transmission power

constraint at the BS:

E
{
∥x∥2

}
= E

{
∥
√
ρdλWs∥2

}
= ρd . (14)

Thus, we have:

λ =

√
1

E
{
tr

(
WWH

)} . (15)

The collective received signal vector for all K UTs can be ex-

pressed as

y = Hdx + n =
√
ρdλH

THbtWs + n. (16)

Here the vector n ∈ CK×1 represents the collective DL received

noise, with kth element nk ∼ CN (0,σ 2

k ), assuming σ 2

k = 1,∀k . For

the kth UT, the received signal yK can be given as

yk =
√
ρdλh

T
kHbtwksk +

K∑
i=1,i,k

√
ρdλh

T
kHbtwisi + nk , (17)

where the M × 1 vectors hk and wk are the kth column of H and

W, respectively.

2.4 Calibration
We consider a so-called pre-precoding calibration which has better

performance compared with the calibration after precoding [18].

A pre-precoding calibration matrix B ∈ CM×M is introduced to

compensate for the non-reciprocity, such that

Ĥd,CL = aHdEB + bN
T
uB, (18)

where Ĥd,CL represents the calibrated DL channel estimate. With-

out considering the imperfect CSI, the minimum requirement to

calibrate the BS antennas is that EB = cIM , where the non-zero

scalar c does not change the direction of the precoding beamformer

[20]. We can see that the calculation of B relies on the estimation

of Hbt ,Hbr , which can be achieved by using the calibration circuit

as presented in [17, 18]. The considered calibration circuit contains

simple hardware, e.g., Tx/Rx switches and couplers, thus can be

easily scaled when M goes large. More details on the calibration

circuit design can be found in [17, 18].

The design of relative calibration takes into account the afore-

mentioned requirement, i.e., BRC = cHbtH−1br , where the subscript
“RC" refers to the relative calibration. As discussed in [18], the re-

sults based on the this minimum requirement may not able to be

held in the presence of the compound effect of reciprocity error

and imperfect CSI. More specifically, it can be seen from (18) that

the calibration matrix B may amplify the power of the channel

estimation error. We name this effect “estimation error amplifica-

tion", which can even outweigh the benefit of calibration in the case

with a significant level of channel estimation error, such as in the

low region of ρu . In [17, 18], we proposed the inverse calibration

to compensate for the effect of the channel reciprocity error, as

well as to reduce the noise power of the UL channel estimation, or

equivalently reduce the estimation noise variance. In particular, the

inverse calibration matrix BIC is equivalent to the inverse of the

product of H∗bt and Hbr . The subscript “IC" refers to the inverse

calibration. In the next section, we will provide a comprehensive

performance evaluation of these two calibration schemes.

3 PERFORMANCE EVALUATION
We consider the widely-used precoding algorithm [2], i.e., MRT,

to carry out the performance evaluation of two considered self
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calibration schemes. In this case, the precoding matrix W becomes

Wmrt = ĤH
d,CL . (19)

Following (15), we have λmrt representing the normalisation

parameter of the MRT precoding scheme, to meet the power con-

straint at the BS as shown in (14). We use mean-square error as the
performance metric to analyse the post-equalisation performance.

Note that our theoretical analysis contends with the compound ef-

fects on the system performance of the additive channel estimation

error and multiplicative channel reciprocity error.

In practice, each UT should perform equalisation to reliably

decode the received signal yk . This is particularly important in

the case with high orders of modulation and a soft decoder. The

equalisation process requires the knowledge of the DL CSI, or equiv-

alently, the effective DL channel response which consists of the

precoding vector and the channel gain. We denote the effective DL

channel response by дk , which is given by

дk =
√
ρdλh

T
kHbtwk . (20)

The acquisition of дk at the UT side in the massive MIMO sys-

tem can be achieved efficiently by the DL beamforming training

technique [21]. We assume that the training SNR is sufficiently high

to guarantee the perfect knowledge of дk at the kth UT [21]. The

widely used zero-forcing equalisation [22] is considered in this paper,
such that the kth UT applies the inverse of дk to yk for decoding.

Let ˆsk denote the decoded signal, we have

ŝk =
yk
дk
= sk +

K∑
i=1,i,k

дisi +
nk
дk
, (21)

whereдi = д
−1
k
√
ρdλhTkHbtwi . Based on (21), the post-equalisation

MSE at the kth UT can be calculated as

MSEk = E
{
|ŝk − sk |

2

}
(22)

= E



�������

K∑
i=1,i,k

дisi

�������

2

+ E




�����
nk
дk

�����

2

. (23)

Using (19), the effective channel gain at the kth UT in the MRT

precoded system can be given by

дk,mrt
=
√
ρdλmrthTkHbtwk,mrt

. (24)

Note thatдk,mrt
contains the precoding vectorwk,mrt

that is first

contaminated by the compound effect of the channel reciprocity

error and the estimation error, and then calibrated by either relative

or inverse calibration schemes. We shall analyse the performance

of these two calibration schemes in terms of the receive MSE as

follows.

3.1 Inverse Calibration
In this case, the effective channel gain in (24) at the kth UT can be

rewritten as

дICk,mrt
=
√
ρdλ

IC

mrt

(
ahTk h

∗
k + bh

T
k (H

∗
br )
−1n∗u,k

)
, (25)

where nu,k is the kth column of the channel estimation noise matrix

Nu . Substituting (25) in (23), the closed-form expression of the MSE

can be derived as follows:

Proposition 1. Consider a TDD massive MU-MIMO system mod-
elled in Section 2, where the BS applies the MRT precoder and the
inverse calibration, and the UTs apply the zero-forcing equalisation.
The receive MSE at the k th UT is given by

MSE
IC

k,mrt
≈*
,

a2 + b2Er
2̄

a2 (M+1)+b2Er
2̄

+
-
*
,
K−1+

KEt
2̄

ρd
+
-
, (26)

where the expected values of the inverse square of truncated Gaussian
distributed variables, i.e. Er

2̄

,Et
2̄

, are given in [18].

Proof. See Appendix A. □

3.2 Relative Calibration
In the case that the BS applies the relative calibration, (24) can be

rewritten as

дRCk,mrt
=
√
ρdλ

RC

mrt

(
ahTkHbtH

∗
bth
∗
k +bh

T
kHbtH

∗
bt (H

∗
br )
−1n∗u,k

)
.

(27)

Then we can derive the closed-form expression of the MSE as

follows:

Proposition 2. Assume that the same conditions are held as in
Proposition 1, but with the relative calibration at the BS. The post-
equalisation MSE at the k th UT is given by

MSE
RC

k,mrt
≈*
,

a2 + b2Er
2̄

a2 ((M−1)c1+2)+b2E
r
2̄

+
-

(
K−1+

Kc2
ρd

)
, (28)

where c1 = A2

t /E
t
4
and c2 = At /E

t
4
. The reciprocity-error-related

parameter At and the 4th non-central moment of truncated Gaussian
distributed variables Et

4
are given in [12] and [18], respectively.

Proof. See Appendix A. □

It can be observed from (26) and (28) that, for both inverse and

relative calibration schemes, the effect of the phase reciprocity

error is eliminated thus does not affect the post-equalisation MSE.

However, the relative calibration is hindered by the significant

residual amplitude error, e.g., c1 and c2 in (28), where c2 < c1 < 1.

Comparing (28) with (26), we can conclude that: 1) in low DL SNR

regime, such that the noise-related component in (28), i.e., Kc2/ρd ,
is dominant, MSE

RC

k,mrt
may be smaller than MSE

IC

k,mrt
. However, in

this case, both calibration schemes are not able to work properly;

2) in the case of sufficiently high DL SNR, MSE
IC

k,mrt
can be smaller

than MSE
IC

k,mrt
. We will verify these analytical results via Monte-

Carlo simulations in the following section. In addition, we would

like note that the approximate expressions in Proposition 1 and 2

are accurate in the case with the asymptotically large values of the

BS antennas, which is also verified in the following section.

4 SIMULATION RESULTS
In this section, we perform Monte-Carlo simulations to corrobo-

rate the analytical results developed in Section 3, and compare the

performance of the concerned two calibration schemes under dif-

ferent scenarios. Two reference scenarios are considered which are

no calibration performed “NC" and “Perfect Channel Reciprocity"

where σ 2

bt = σ 2

bt = σ 2

φt = σ 2

φt = 0. We also consider M = 100,

K = 10, the amplitude reciprocity error with (αbt,0,σ
2

bt , [at ,bt ]) =
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Figure 2: MSE versus DL SNR in the presence of the reci-
procity error and channel estimation error with ρu = 0 dB.
QPSK applied.

(αbr,0,σ
2

br , [ar ,br ]) = (0 dB, 0.2, [−4 dB, 4 dB]), and the phase reci-

procity errorwith (θbt,0,σ
2

φt , [θt,1,θt,2]) = (θbr,0,σ
2

φr , [θr,1,θr,2])

= (0◦, 0.2, [−50◦, 50◦]). In addition, the quadrature phase shift key-

ing (QPSK) modulation is applied at the BS, while the zero-forcing

equalisation is performed at each UT as mentioned before. The

orthogonal UL pilots are of length τu = K , and the receive MSE is

measured in dB.

Fig. 2 shows that the inverse calibration outperforms the relative

calibration in high DL SNR regime, e.g., ρd from 0 dB to 20 dB.

For low DL SNR, the relative calibration performs slightly better

than the inverse calibration. This can be confirmed analytically

by comparing (26) and (28), where MSE
RC

k,mrt
can be smaller than

MSE
IC

k,mrt
when the noise-related component is dominant. However,

the MSE performance of MRT is significantly affected by the noise

at the UT when the DL SNR is low. For example, MSE is around -3

dB (or 50 %) when ρd = −5 dB. Therefore, it is more meaningful to

consider the case with the non-trivial DL SNR, e.g., ρd = 10 dB. In

this case, the performance of inverse calibration approaches to the

best case scenario, whereas the performance gain of RC is negligible

compared to the case without the calibration.

To verify the conclusion followed by Proposition 2, we present

the MSE performance of different calibration schemes in the pres-

ence of different levels of the estimation error in Fig. 3. It is not

surprised to see from Fig. 3 that the relative calibration loses its

performance gain with high estimation error. On the contrary, the

inverse calibration is more robust to the compound effect of the

reciprocity and estimation errors.

5 CONCLUSION
In this paper, we have considered a key technical enabler in the

emerging mobile networks, i.e., TDD massive MU-MIMO system.

Our focus has been on the potential performance-limiting factors

of such a system, which are imperfect CSI and non-reciprocity, in

order to provide valuable insights into the practical system design.

We have evaluated the performance of two self-calibration schemes,
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-10 -8 -6 -4 -2 0 2 4 6 8 10

M
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IC (Analytical, Eq(46))
IC (Simulated)
RC (Analytical, Eq(48))
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NC (Simulated)
Perfect Channel Reciprocity

26

28

Figure 3: MSE versus UL SNR in the presence of the reci-
procity error and ρd = 10 dB. QPSK applied.

i.e., inverse calibration and relative calibration, in the presence of

the compound effect of the multiplicative reciprocity error and

the additive estimation error. The closed-formed expressions for

post-equalisation MSE based on the zero-forcing equalisation of the

considered system have been derived, under the assumption with

the MRT precoding that affected by the compound effect of both

errors. A comparative analysis based on the theoretical expressions

has been provided for both calibration schemes, with the analyt-

ical results perfectly matching the simulated results in different

scenarios. The paper has demonstrated that the inverse calibration

in general outperforms the relative calibration, due to the fact that

the former takes the compound error effect into considerations of

its design principle.
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A PROOF OF PROPOSITION 1 AND 2
Recall (23), we notice that there are two uncorrelated terms in (23)

which can be further simplified due to the property of si and nk .
More specifically,

E{|
K∑

i=1,i,k

дisi |
2} =

K∑
i=1,i,k

E
{��дisi ��2

}
=

K∑
i=1,i,k

E
{��дi ��2

}
, (29)

E



�����
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�����

2

= E




1

��дk ��2


. (30)

Thus the MSE can be calculated based on the values of E{��дi ��2} and
E{��дk ��−2}.

A.1 Inverse Calibration
In the case that the inverse calibration is considered at the BS, we

have
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. (32)

In order to calculate the expectation in (32), we first consider a

simplified scenario without the estimation error, where the afore-

mentioned expectation becomes E{∥hk ∥−4}. Based on [12, Proposi-

tion 2], we have

E

{
1

∥hk ∥4

}
=

1

E
{
∥hk ∥4

} + O (
var(∥hk ∥4)
E{∥hk ∥4}3

)
. (33)

The term

(
var(∥hk ∥4)/E{∥hk ∥4}3

)
in (33) is a function of M , as

given by [23]

var(∥hk ∥4)
E{∥hk ∥4}3

=
4M3 + 10M2 + 6M

(M2 +M )3
, (34)

whose value is negligible when M is large. Then one can easily

prove that

E

{
1

∥hk ∥4

}
≈

1

E
{
∥hk ∥4

} = 1

M2 +M
. (35)

The approximation in (35) tightlymatches the exact value ofE{∥hk ∥−4}
whenM goes large, based on Lhospital’s Rule. In fact, whenM goes

to infinity, we have

∥hk ∥
4

a.s.

−−−→ M2 +M . (36)

Using the generalised results in [18], we can derive the following

tight approximations for large or moderately largeM :

|hTkHbtH
∗
bth
∗
k |

2
a.s.

−−−→ M
(
2Et

4
+ (M − 1)A2

t
)
, (37)

|hTkHbtH
∗
bth
∗
i |
2

a.s.

−−−→ MEt
4
, (38)

|hTkH
−1
br h
∗
i |
2

a.s.

−−−→ MEr
2̄
, (39)

|hTk (HbtH
∗
br )
−1h∗i |

2
a.s.

−−−→ MEt
2̄
Er
2̄
. (40)

The terms At ,E
t
2̄

,Er
2̄

and Et
4
can be found in [8]. Based on (36) and

(39), we have

E
{���дICk,mrt

���
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}
≈

KEt
2̄

(
a2 + b2Er

2̄

)
ρd

(
a2 (M + 1) + b2Er
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) . (41)

Consider the technique in [12, Eq. (95)] and [24, Eq. (14)], we also

have

E
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(42)

≈
a2 + b2Er

2̄

a2 (M + 1) + b2Er
2̄

. (43)

Substituting (43) in (29), and applying the completed (29) along

with (41), we arrive at (26) in Proposition 1.

A.2 Relative Calibration
Similar to that of the inverse calibration, we have

E
{���дRCk,mrt

���
−2

}
≈

KAt
(
a2 + b2Er

2̄

)
ρd

(
a2 ((M−1)A2

t +2E
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4
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) , (44)
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t + 2E
t
4
)+b2Et

4
Er
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. (45)

Then we can derive (28) in Proposition 2.

https://books.google.co.uk/books?id=nLzk11P15IAC
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