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ABSTRACT

Neural networks are increasingly important in the development
of Network Intrusion Detection Systems (NIDS), as they have the
potential to achieve high detection accuracy while requiring limited
feature engineering. Deep learning-based detectors can be however
vulnerable to adversarial examples, by which attackers that may
be oblivious to the precise mechanics of the targeted NIDS add
subtle perturbations to malicious traffic features, with the aim of
evading detection and disrupting critical systems in a cost-effective
manner. Defending against such adversarial attacks is therefore of
high importance, but requires to address daunting challenges.

In this paper, we introduce T1kI1-TAKA, a general framework for
(i) assessing the robustness of state-of-the-art deep learning-based
NIDS against adversarial manipulations, and which (ii) incorporates
our proposed defense mechanisms to increase the NIDS’ resistance
to attacks employing such evasion techniques. Specifically, we se-
lect five different cutting-edge adversarial attack mechanisms to
subvert three popular malicious traffic detectors that employ neu-
ral networks. We experiment with a publicly available dataset and
consider both one-to-all and one-to-one classification scenarios,
i.e., discriminating illicit vs benign traffic and respectively identify-
ing specific types of anomalous traffic among many observed. The
results obtained reveal that, under realistic constraints, attackers
can evade NIDS with up to 35.7% success rates, by only altering
time-based features of the traffic generated. To counteract these
weaknesses, we propose three defense mechanisms, namely: model
voting ensembling, ensembling adversarial training, and query de-
tection. To the best of our knowledge, our work is the first to
propose defenses against adversarial attacks targeting NIDS. We
demonstrate that when employing the proposed methods, intru-
sion detection rates can be improved to nearly 100% against most
types of malicious traffic, and attacks with potentially catastrophic
consequences (e.g., botnet) can be thwarted. This confirms the ef-
fectiveness of our solutions and makes the case for their adoption
when designing robust and reliable deep anomaly detectors.
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1 INTRODUCTION

Network Intrusion Detection (NID) aims at identifying malicious
traffic flows, so as to protect computers, networks, servers, and
data from attacks, unauthorized access, modification, or destruc-
tion [6]. Given the unprecedented growth in the data traffic volume
transiting both wired and wireless infrastructure, NID is becoming
increasingly important to ensure system/service availability and
protect individuals’ safety and privacy online. As new cyberattacks
proliferate, traditional intrusion detection methodologies that rely
on pattern matching (e.g., IP address and port number) and clas-
sification are losing effectiveness [61]. In this context, machine
learning-based solutions are gaining traction, as they rely increas-
ingly less often on deep packet inspection (hence raising fewer
privacy concerns) and may have better generalization abilities.
Stimulated by recent success in areas such as image classification,
the limited extent of feature engineering involved, and the decreas-
ing cost of parallel processing hardware, deep learning — a subset
of machine learning - is making its way also in the networking
domain [58]. This includes NID, where solutions based on Deep
Neural Networks (DNNs) yield demonstrably superior detection ac-
curacy (see, e.g., [25, 47]). However, due to their complex structures,
DNN s also suffer from limited interpretability, which inevitably
raises important questions: Is deep learning a truly reliable option for
NID? Is there any “Achilles’ heel” that can be exploited to compromise
the expected high detection accuracy of neural network-based NID
models? Answering these questions is crucial to guaranteeing the
reliability of Network Intrusion Detection Systems (NIDS).
Unfortunately, DNNs have been proven vulnerable to adversar-
ial examples [36] or backdoor attacks [52] in several applications
[13, 21], whereby they can be fooled by subtle perturbations in-
troduced in the input [54], which interfere with the correctness
of the inferences made. Since such adversarial manipulations are
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Figure 1: The Tik1-Taka framework for crafting and defend-
ing against adversarial attacks towards Network Intrusion
Detection Systems (NIDS).

often extremely difficult to detect, deep learning-based NIDS are
also at risk. Attackers, potentially unaware of the properties of an
NIDS (i.e., black-box system), could generate adversarial samples
by repeatedly changing small subsets of the traffic features, and
make ‘queries’ to the NIDS. After each query, the attacker receives
some feedback (e.g., an acknowledgment or lack of any response),
which indicates the success or failure of the attack attempt. Based
on this feedback, the attacker can adjust the perturbations on se-
lected features (e.g., intervals between consecutive packets) of the
traffic, or introduce new ones, without changing its essence, un-
til succeeding in bypassing the NIDS [23, 46]. By this approach,
malicious flows could then disguise into benign traffic and compro-
mise their targets [28], while remaining undetected even by NIDS
thought to be highly accurate. Cyberwarfare is exploding [17] and
such adversarial strategies offer cost-effective means to jeop-
ardize healthcare systems, electronic voting, banking, indus-
trial automation, and countless more.

In this paper, we tackle the severe intrusion detection issues
faced by classifiers under adversarial attacks. We first scrutinize
the robustness of state-of-the-art deep learning NID models against
different adversarial mechanisms, considering attacks in practical
decision-based settings (i.e., attackers can only infer if the traffic
generated was classified as benign or malicious, without knowledge
about the exact class to which the traffic was mapped). We test
the effectiveness and efficiency of each attack in two detection
scenarios: one-to-all and one-to-one, i.e., aiming to discriminate
malicious vs. benign traffic, and respectively to identify precise
types of attacks. We then propose three solutions to defend against
this new class of threats, which effectively reduce the success rate of
each attack to a large extent. This enables more robust and reliable
NID. In a nutshell we make the following key contributions:

[C1] We implement three types of DNN architectures based on
state-of-the-art NID models, i.e., Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN), and Long Short-Term
Memory (LSTM), and perform NID on the realistic cyber

defense dataset CSE-CIC-IDS2018 [42]. The NID models im-
plemented achieve over 98.7% detection accuracy based on a
limited set of features, which matches the performance of
previously reported NIDS implementations (details in Sec. 5).

[C2] To demonstrate the NIDS considered can be evaded, we
employ five state-of-the-art attack strategies to generate
adversarial samples (i.e., NES, BoUNDARY, HOPSKIPJUMPAT-
TACK, POINTWISE, and OPT-ATTACK), bounding traffic feature
manipulations to realistic domain constraints (i.e., leaving
unchanged those features that may alter flow semantics). We
conduct a comprehensive evaluation on the effectiveness of
each adversarial attack and provide an in-depth analysis of
their characteristics (see Sec. 6).

[C3] We propose three defense mechanisms to strengthen deep
learning-based NIDS against adversarial attacks, namely:
model voting ensembling, ensembling adversarial training,
and query detection. Each defense method can either op-
erate individually or jointly with the others. Experiments
show these methods drastically reduce the attack success
rates, significantly improving the robustness of the NIDS
considered as we bring detection rates close to 100% (Sec. 7).

We name our general attack—defense framework Tix1-Taka! and
illustrate the workflow of our methodology in Figure 1. To the
best of our knowledge, we are the first to introduce defense
mechanisms against adversarial attacks targeting NIDS.

2 RELATED WORK

DNNss are increasingly used for NID purposes, as they help mini-
mize feature engineering efforts and operate with high detection
accuracy [6]. However, recent research suggests that there exist
loopholes that can degrade the performance of neural NIDS, as
perturbation added to their input can trigger traffic misclassifica-
tion [20, 58]. Thus, defending deep learning-based approaches from
adversarial samples becomes a crucial issue for network security.

2.1 Deep Learning-based NID

Niyaz et al. employ sparse autoencoders for self-taught learning and
extract important features from traffic flows [25]. They conduct NID
on the NSL-KDD dataset [44] and achieve 98.84% F1 scores. Faker
and Dogdu design an MLP to discriminate malicious traffic [16]
in the CIC-IDS2017 dataset [42]. Although the model structure
is simple, the MLP achieves significantly higher detection rates
than Random Forest (RF), Gradient Boosting Tree (GPT), and Sup-
port Vector Machine (SVM) structures. Similar conclusions have
been reached in [47], where Vinayakumar et al. compare the MLP
with a large set of traditional machine learning approaches to NID,
showing that deep learning yields better performance.
CNN-based approaches have been employed for NID as well [48].
Zhang et al. design a two-branch CNN and employ feature fusion, to
resolve the class imbalance problem of the dataset used [59]. Their
proposal detects a minor class of anomalies with higher accuracy,
while being more efficient in terms of execution time. Recurrent

ITik1-TaKA is a football tactic that encourages short and fast ball passing, and tackling
on the spot when losing ball possession. We use this to metaphorize the frequent queries
passed to an NIDS in the attack process, with the detector subsequently regaining
control through defenses.



Neural Networks (RNNs) are popular candidates for extracting tem-
poral features of traffic flows [53]. Zhang et al. perform NID on raw
packet-level traffic [60]. They combine CNNs and LSTMs to extract
important spatial and temporal features, achieving higher detection
rates than when using each of these components individually.

In our study, we select MLP, CNN, and LSTM as representative
models to perform NID, then test them against adversarial attacks,
and subsequently augment these models with a set of defense mech-
anisms that we propose for enhancing their robustness.

2.2 Attacking Deep Learning-based NIDS

The majority of existing methods that employ adversarial samples to
compromise classifiers target image applications (e.g., [19, 30, 35]).
Research on evading deep learning-based NIDS is scarce. Wang
et al. employ four sets of white-box attack algorithms designed
for image classification, to bypass MLP-based intrusion detectors
trained on the NSL-KDD dataset [49]. Their experiments suggest
that these attack algorithms are transferable to the NID domain and
the MLP detectors are vulnerable to adversarial samples. However,
attackers may not have access to the neural model underpinning
the targeted NIDS, which make such settings more useful to NIDS
designers to assess the robustness of their systems [28].

Yang et al. generate adversarial samples in black-box settings [51]
using three types of approaches, namely surrogate models [8], Ze-
roth Order Optimization (ZOO) [10], and Generative Adversarial
Networks (GANs) [3]. These methods can reduce the performance
of MLP-based classifiers, thus becoming a threat to NIDS. Kuppa et
al. consider a more realistic situation, performing black-box attacks
against different deep learning-based detectors in decision-based
and query-limited settings [28]. By learning and approximating the
distribution of benign and anomalous samples, these methods can
evade NIDS with high success rate.

2.3 Defending from Adversarial Samples

There exist a range of strategies for defending deep learning models
from adversarial examples. Commonly used methods include Net-
work Distillation [37], Adversarial Training [45], Adversarial De-
tecting [31], Input Reconstruction [40], Classifier Robustifying [2],
Network Verification [26], and an ensemble of them [33, 54], which
work either reactively or proactively. Network distillation methods
employ a student neural network to learn knowledge from a more
complex teacher network. With this approach, the student network
generalizes better and becomes more robust to adversarial samples.
Adversarial training retrains the neural networks by augmenting
the original training set with adversarial samples, such that they can
better defend against those inputs with subtle feature perturbations.
Input reconstruction reduces the effectiveness of the perturbations
by recovering the original input. Classifier robustifying employs
various approaches (e.g., model ensembling) to improve the ro-
bustness of the original classifier. Network verification uses an
additional classifier to identify adversarial samples.

While such approaches can be effective in the computer vision
and natural language processing domains, (i) work by Carlini et
al. demonstrates defense mechanisms against adversarial examples
in imaging can be defeated by constructing new loss functions [7],
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Figure 2: An illustration of the attack process against ma-
chine learning-based NID models.

while (ii) none of these are aimed at defending against adversarial
samples in NIDS, which is the problem we tackle in this paper.

3 THREAT MODEL

We focus on scenarios where attackers generate adversarial sam-
ples by adding small perturbations to the input given to NIDS,
thereby aiming to cause misclassification and evade detection of
their malicious traffic. As in [24], we denote by x the input to a
classifier (i.e., features extracted from flows), an adversarial sam-
ple as x,4y = x + 0y, and the targeted class as y,q,. The objective
of the adversarial attacks can be formulated as finding x,4, such
that ||x,dy — x||leo < € and x,qy is classified as y,g4y. Here, oy is the
perturbation added to the input and € limits the perturbation scale.

3.1 Adversarial Settings

Typical attacks against machine learning models can be catego-
rized into three classes: (i) white-box attacks, (ii) grey-box attacks,
and (iii) black-box attacks. White-box and grey-box attacks assume
the malicious actors have access to the training data or/and model
structures. Such hypotheses apply in cases where system designers
seek to improve the robustness of their NIDS, but less commonly to
scenarios with external adversaries. At best, malicious actors could
conduct white-box attacks against own models and subsequently
seek to transfer these attacks onto victim NIDS. More often, po-
tential hackers are forced to treat a NIDS as a black-box, since the
details of a victim system’s inner workings remain hidden and the
only way in which the NIDS behavior can be learned is through
a sequence of queries and the feedback received. This is also the
primary practical threat model that we consider in this work, while
the defense mechanisms we propose can also fend off adversarial
samples adapted from white-box methods, as we reveal.

In general, an attacker may send a traffic flow towards the tar-
get network, which will be first examined by a NID model. This
is known as a query process. Subsequently, the attacker will re-
ceive implicit/explicit feedback from the model, e.g., an ACK packet,
which reflects whether the traffic flow was classified as anomalous.
Based on the feedback, the attacker can adjust and apply subtle
perturbations to the malicious traffic flows, thereby producing ad-
versarial samples that eventually may compromise the effectiveness
of the NIDS, which will end up classifying malicious traffic as be-
nign. On the other hand, the attacker may not have confidence
about the exact decision class decided by the NIDS, but whether
the traffic was deemed malicious or benign (decision-based attacks).
We illustrate this attack process against NID models in Figure 2.



3.2 Domain Constraints

Unlike adversarial attacks against image classifiers, adversarial sam-
ples against NIDS must respect certain domain constrains [28], such
that the functionality and intactness of the samples is preserved
when introducing perturbations oy. This means that (i) only a sub-
set of features are amendable; and (ii) the features of adversarial
samples do not violate the properties inherent to the original sam-
ples. To meet these requirements, here we confine consideration
to 22 time-based features, to which we add perturbations, as also
suggested in [28]. These include (a) Forward Inter Arrival Time -
the time between two packets sent in the forward direction (mean,
min, max, std); (b) Backward Inter Arrival Time - the time between
two packets sent in reverse direction (mean, min, max, std); (c)
Active-Idle Time - the amount of time a flow was idle before be-
coming active, and vice-versa (mean, min, max, std), (d) Average
number of bytes and packets sent in forward and backward direc-
tions in the initial window or/and sub-flows. It is conceivable that
an attacker may also attempt to mimic the time features of benign
flows and conceal malicious content within payloads (e.g., SQL
injection, cross-site scripting, etc.). In such cases, our TIkI-TAKA
framework can also accommodate payload-based features extracted,
e.g., through word embedding or Text-CNNs [34]. Features outside
the subset that may change flow semantics remain unchanged dur-
ing the attack, which is inline with recent research confirming that
adversarial samples can be constructed effectively by perturbing
only a small subset of the input features [43].

In addition, we expect that (i) the Mean Absolute Percentage Er-
ror (MAPE) for each feature k does not exceed 20%, i.e., 100-| (x(¥) —
x;{:‘)])/x(k” < 20%; (ii) the perturbed features preserve the mean
property (e.g., the mean forward inter arrival time) plus/minus std
features do not exceed their corresponding max and min features;
(iii) the sign of each perturbed sample remains the same as that of
the original; and (iv) if the std feature is zero, the corresponding
mean, max, min and std features remain unchanged in the adversar-
ial sample. Samples that violate these constrains are to be regarded
as unsuccessful trials, since they alter the originally intended func-
tionality of the flows. In crafting adversarial attacks for our study,
we will also perform validation tests based on these constraints.

4 DATASET

We conduct all experiments (i.e., NID, black-box adversarial attacks,
and attacks against NIDS augmented with the proposed defenses)
using the publicly available CSE-CIC-IDS2018 dataset [42]. This
encompasses 14 types of network intrusion traffic flows along with
benign traffic. The attacks can be categorized into seven classes,
namely Brute Force, Heartbleed, Botnet, Denial of Service (DoS),
Distributed Denial of Service (DDoS), Web attacks, and infiltration.
Table 1 summarizes the prevalence of each type of traffic. The
infrastructure employed includes 50 machines, which attempt to
intrude a victim network consisting of 420 end hosts and 30 servers.

A total of 80 features of the traffic flows are extracted to perform
intrusion detection and we filter 65 of them for the purpose of
our work. The features selected can be grouped into 8 classes,
specifically (a) Forward Inter Arrival Time — the time between two
packets sent in the forward direction (mean, min, max, std); (b)
Backward Inter Arrival Time - the time between two packets sent

Table 1: Statistics of the CSE-CIC-IDS2018 dataset employed.

Flow Type Number of Instances Ratio
Benign 14,097,779 83.6861%
Bot 286,191 1.6989%
DoS attack-SlowHTTPTest 139,890 0.8304%
DoS attack-Hulk 461,912 2.7420%
Brute Force-XSS 230 0.0014%
SQL Injection 87 0.0005%
Infiltration 161,934 0.9613%
DoS attack-GoldenEye 41,508 0.2464%
DoS attack-Slowloris 10,990 0.0652%
Brute Force-Web 611 0.0036%
FTP-Brute Force 193,360 1.1478%
SSH-Brute Force 187,589 1.1136%
DDoS attack-LOIC-UDP 1,730 0.0103%
DDoS attack-HOIC 686,012 4.0723%
DDoS attack-LOIC-HTTP 576,191 3.4203%
All of the above attacks 2,748,235 16.3139%

Total 16,846,014 100%

in reverse direction (mean, min, max, std); (c) Flow Inter Arrival
Time - the time between two packets sent in either direction (mean,
min, max, std); (d) Active-Idle Time - the amount of time a flow
was idle before becoming active (mean, min, max, std) and the
amount of time a flow was active before becoming idle (mean, min,
max, std); (e) Flags based features — the number of times the URG,
PSH flags are set, both in the forward and backward direction; (f)
Flow characteristics — bytes per second, packets per second, flow
length (mean, min, max, std) and ratio between number of bytes
sent downlink and uplink; (g) Packet count with flags FIN, SYN, RST,
PUSH, ACK, URG, CWE and ECE; (h) Average number of bytes and
packets sent in forward/backward directions in the initial window,
bulk rate, and sub flows count. Our framework is readily extensible
to other types of features, e.g., extracted from payloads [34].

We train all deep learning models, implement and defend against
the adversarial attacks using the selected features.

5 TRAINING INTRUSION DETECTORS

Training accurate deep network intrusion detectors is the initial
important step of our study, as Tik1-Taka builds on the pre-trained
NID models. To this end, we employ three well-known deep learn-
ing architectures, namely Multilayer Perceptron (MLP) [16], Con-
volutional Neural Network (CNN) [59], and CNN with Long Short-
Term Memory (LSTM) layers, i.e., C-LSTM [60]. These models are

MLP CNN C-LSTM
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Figure 3: Architectures of the deep learning-based Network
Intrusion Detection (NID) models employed in this study.
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Figure 4: Confusion matrices of the MLP, CNN, and C-LSTM models for the one-to-one NID.

frequently used for NID purposes and have achieved notable per-
formance. We illustrate the architecture of each model in Figure 3.

The MLP is the most simple deep learning architecture, which
employs multiple stacks of fully-connected layers for features ex-
traction. It is particularly suitable for handling traffic flows that
have mixture type features and ranges. In our study, we construct
an MLP with 3 hidden layers. Each layer has 200 units, except for
the last hidden layer, which has 400 units. CNNs have good spatial
perception abilities and have demonstrated remarkable precision
in NID tasks [59]. In this work, we design a CNN with 10 one-
dimensional CNN layers, each equipped with 108 filters, with filter
size 5. Lastly, we replicate the C-LSTM employed in [60], with our
C-LSTM operating on the features that characterize the traffic, in-
stead of operating on raw flows. The C-LSTM combines CNN and
LSTM structures to extract spatial and temporal features separately.
Data will be first processed by a CNN with 5 hidden layers, then
passed to a 2-layer LSTM for final predictions. Each LSTM layer
has 160 units. We perform NID, black-box adversarial attacks, and
then defend against them based on these models, as we detail next.

We consider NID in two different scenarios, namely (i) one-to-all
detection and (ii) one-to-one detection. The one-to-all scenario
groups all types of attacks into a single ‘anomaly’ class, which
leads to a supervised binary classification problem. In contrast,
one-to-one detectors separate each network attack (14 in total)
into individual classes, and perform multi-class classification. In
our study, the same neural network architectures are employed
for both scenarios, except for changes in the final layers, as their
number directly depends on the number of classes considered for
identification. We train and validate all models using 80% of the
dataset and test on 20% of it, as customary. All models are trained via
minimizing the cross-entropy loss function through the Adam opti-
mizer [27]. Super-sampling is employed to handle class imbalance
between benign and malicious traffic, inherent to the dataset.

All models are trained and evaluated on a parallel computing
cluster equipped with one or multiple Nvidia TITAN X, Tesla M40
or/and Tesla P100 GPUs. The neural models are implemented in
Python using the TensorFlow [1] and TensorLayer [14] packages.

5.1 One-to-all NID Performance

We quantify the performance of the NIDS using four metrics, namely
accuracy, precision, recall, and F1 score, as shown in Table 2. These
metrics are frequently employed for evaluating binary classifiers.

Observe that all models achieve high detection performance, as
all F1 scores are above 0.960. In addition, the three models consid-
ered perform similarly, since the difference between the F1 scores
attained by each never exceeds 0.01. This matches the performance
of state-of-the-art deep learning-based NID solutions, thus the mod-
els we use can be considered to be ‘reliable’.

5.2 One-to-one NID Performance

One-to-one NIDS aim at classifying each traffic flow into 14 types
of anomalies and benign. We employ the same neural networks and
this time resort to normalized confusion matrices to assess their
performance, as shown in Figure 4. The diagonal elements represent
ratios of points for which the predicted label is equal to the true
label, while off-diagonal elements indicate misclassification ratios
[38]. Therefore, the elements of each row sum to 1. The higher the
diagonal values in a confusion matrix, the higher the performance,
indicating many correct predictions.

Table 2: The detection performance of MLP, CNN, and C-
LSTM in the one-to-all scenario.

Accuracy | Precision | Recall | F1 score
MLP 0.987 0.968 0.954 0.961
CNN 0.987 0.968 0.953 0.960
C-LSTM 0.987 0.967 0.952 0.960

Observe that all NID models achieve high detection accuracy for
most types of anomalies, as diagonal values are close to 1. However,
taking a closer look at the Brute Force-XSS, SQL Injection, Infiltra-
tion, and Brute Force-Web attacks, it appears the NID models tend to
misclassify them as ‘benign’. In addition, all DNNs face difficulties
in dealing with DoS attack-SlowHTTPTest and FTP-Brute Force,
as they mix them roughly 50/50. Further, the C-LSTM misclassifies



almost all DDoS attack-HOIC traffic as DDoS attack-LOIC-HTTP.
This is perhaps less critical, since both attacks belong to DDoS
category. Overall, the MLP, CNN, and C-LSTM attain 98.4%, 98.3%,
and respectively 98.3% classification accuracy, which matches fairly
closely the performance observed in the one-to-all scenario.

In what follows, we demonstrate that although the NID so-
lutions considered seem reliable in terms of detection accu-
racy, they can be easily compromised through a sequence
of perturbations and queries, without requiring knowledge
about the underlying models.

6 ADVERSARIAL ATTACKS AGAINST NIDS

We consider five state-of-the-art black-box attack approaches, which
we use to generate adversarial samples and compromise the pre-
trained deep anomaly detectors discussed in Sec. 5. These include
(i) Natural Evolution Strategies (NES) [24], (ii)) BouNDARY Attack [5],
(iii) PoINTWISE Attack [41], (iv) HoPSKIPJUMPATTACK [9], and
(v) OpT-ATTACK [12], all of which were originally designed to com-
promise image classifiers. We quantify their performance in terms
of different metrics and examine closely the role of different fea-
tures in the adversarial sample generation process, as well as the
decision mechanics of each NID model.

6.1 Black-box Adversarial Attack Methods

We first summarize the operation of each of the adversarial attack
techniques we use against NIDS.

NES [24] are black-box gradient estimation methods for machine
learning models. Estimated gradients can be used for projected gra-
dient descent (as used in white-box attacks) to construct adversarial
examples. This approach does not require a surrogate network, thus
it is more query-efficient and reliable when crafting adversarial
examples. Notably, NES work well in decision-based settings, which
makes them suitable for attacks against NID models.

BounDARY Attack [5] is a method that follows the decision bound-
ary between adversarial and non-adversarial samples via rejection
sampling. At each step, it employs constrained i.i.d. samples follow-
ing a Gaussian distribution, starting from a large perturbation and
successively reducing this until successful. This attack is highly
flexible and can accommodate a set of adversarial criteria.

PoIiNTWISE Attack [41] is a simple decision-based attack method
that greedily minimizes the Ly-norm between raw and adversarial
samples. In image applications, it first introduces salt-and-pepper
noise until misclassification, and then repeatedly iterates over each
perturbed pixel, resetting it to the initial value if the perturbed
image remains adversarial. We implement a similar approach to
attack the NID models, but substitute the salt-and-pepper noise
with additive Gaussian noise, to better suit network traffic.

HoPSKIPJUMPATTACK [9] is a hyperparameter-free, query-efficient
attack method, which consists of three main steps: (i) estimation
of the gradient direction, (ii) step-size search via geometric pro-
gression, and (iii) boundary search via a binary search approach. It
is applicable to more complex settings, such as non-differentiable
models or discrete input transformations, and achieves competitive
performance against several defense mechanisms.

OPT-ATTACK [12] projects the decision-based attack into a con-
tinuous optimization problem and solves it via randomized zeroth-
order gradient update. In particular, a Random Gradient-Free (RGF)
method is employed to find appropriate perturbations and con-
verge to stationary points. Since OPT-ATTACK does not rely on
gradients, it can attack other non-differentiable classifiers besides
neural networks, e.g., Gradient Boosting Decision Trees.

We employ a modified version of the mean absolute percentage
error to quantify the deviation between each unmodified sample x
and its adversarial version x,g4y, i.€.,

N |,.(k (k)
x( ) - Xad

100% v
: (1)

MAPE(x, x,4y) =
N pt x (k)

where N is the total number of perturbed features in x and x(k)
xé(’ic‘), are the k™ features of the original and adversarial samples
respectively. Smaller MAPE indicates higher similarity between the

raw input x and the adversarial sample x4y

6.2 Attack Performance

We randomly select 50,000 malicious traffic flows from the test set,
to craft adversarial samples. We quantify the performance of each
attack approach using four performance metrics, namely Attack
Success Rate (ASR), average benign confidence, MAPE, and average
number of queries. The ASR is widely used to assess the effective-
ness of adversarial attacks against DNNs [30] and is measured by
the ratio between the number successful adversarial samples and
the total attack attempts (in our case 50,000). An attack attempt is
successful if and only if the underlying algorithm converges, and the
adversarial samples meet the constraints discussed in Sec. 3.2. The
average benign confidence denotes the probability that the model
predicts an adversarial sample x,4, as benign. Higher confidence
implies that the model is more confident about the decision made
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Figure 5: ASRs, Confidence, MAPE, and number of queries
of all attack approaches against the three NID models con-
sidered, and their averages, in the one-to-one scenario.
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Figure 6: ASR with different types of attacks against all NID models considered in the one-to-one scenario.

over a sample. MAPE is defined in Eq. (1) and is computed over 22
features that allow perturbations. Recall that lower MAPE represent
higher similarity between the raw and adversarial samples. The
number of queries indicates how many attempts an attacker should
perform in order to generate a successful adversarial sample. This
can be used to measure the efficiency of an attack approach. Higher
number of queries might trigger the NIDS, making the attack easier
to be detected. Note that the MAPE, benign confidence, and number
of queries are averaged over the successful attack attempts for each
attack approach and NID model. All attacks are conducted using
the original implementations and Python Foolbox [39].

Due to space constraints, in the rest of the paper we mainly focus
on the one-to-one scenario.

Attack Performance in the One-to-one Scenario: We illus-
trate the statistics of each attack against the different NID models
considered, in Figure 5. Observe that, except for the NES where
the performance is similar among the different NID models, the
ASR varies among models for all the other attack methods This
is because the models work with large number of classes, which
makes it difficult to craft adversarial samples to match the targeted
‘benign’ label. The PoINTWISE method obtains the highest ASR,
lowest MAPE, and lower average number of queries. This suggests
that this approach is effective and efficient in one-to-one settings.
The C-LSTM appears to be the most robust model against adver-
sarial samples, as all attack methods attain the lowest ASR values
against this NID model. Although achieving the highest benign
confidence with adversarial samples, NES obtain the lowest ASR

on average. In general, they also require more queries to craft an
adversarial sample.

In Figure 6, we show the ASR for each type of malicious traffic
flow considered, in the same one-to-one scenario. Analyzing these
results jointly with Figure 4, observe that anomalies with low de-
tection rate (i.e., Brute Force-XSS, SQL Injection, Infiltration, Brute
Force-Web) are easier to be disguised by attackers. This is because
the models already have vague decision boundaries for these flow
types, thus are easier to be gamed. Attackers obtain the lowest
ASR when crafting adversarial samples based on DoS attacks-Hulk,
-GoldenEye, -Slowloris, and DDoS attack-LOIC-UDP, as the NID
models exhibit high detection rates over these anomalies.

6.3 Adversarial Samples Analysis

6.3.1 Feature-wise MAPE. We delve deeper into the adversarial
samples generated, by showing in Figure 7 the average MAPE of
each perturbed feature on all successful attack samples, across all
NID models and attack approaches. Observe that for both detection
scenarios, the Active/Idle Time (i.e., the time a flow was idle be-
fore becoming active and amount of time a flow was active before
becoming active) are less affected, as the related features remain
almost unchanged in the attack process. In contrast, those features
that characterize the average number of bytes and packets
sent in the forward and backward directions in the initial
window or/and sub flows, are perturbed more significantly.
This indicates that these features are the most influential in the de-
cision of NID models, and therefore more likely to be exploited
by potential attackers.
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produced by all attack methods, and their corresponding original malicious samples (pink).

6.3.2 t-SNE Visualization. We also investigate the inner workings
of each NID model, by visualizing the output embedding of their
hidden layers, so as to understand better how a neural network
‘thinks’ of the benign, malicious, and adversarial samples. To this
end, we adopt the t-distributed Stochastic Neighbor Embedding
(t-SNE) [32] to reduce the dimension of the last hidden layer of each
model to 2. In Figure 8, we plot the t-SNE embedding (x, y axes) of
the hidden representations of 10,000 benign samples (blue), 10,000
adversarial samples (green) generated by each attack method, and
their corresponding anomalous samples used to craft them (pink),
along with their benign confidence (z axis). Note that a sample will
be considered benign iff the benign confidence is greater than 0.5
(above the decision plane). Typically, the t-SNE approach organizes
data points that have higher similarity into nearby embeddings [55].
It can therefore reflect how the model ‘thinks’ of the data samples,
as similar data representations will be clustered together.

Observe that anomalous samples can be clearly distinguished
from benign samples by their t-SNE embeddings for all NID models.
The purpose of adversarial attacks is to cause misclassification
by bringing malicious samples across the decision boundary. This
is reflected in Figure 8, as the t-SNE embedding of adversarial
samples are moved closer to the benign embedding cluster, while
they remain anomalies in nature. This successfully confuses the
NID models, making the adversarial samples indistinguishable. In
addition, adversarial samples with higher benign confidence are in
general closer to the benign embedding cluster.

7 DEFENDING AGAINST ADVERSARIAL
ATTACKS

Defense mechanisms against adversarial attacks should improve
the robustness of deep learning models to adversarial samples, such

that they become less likely to be compromised and the ASR of
different attacks is reduced. In general, countermeasures for adver-
sarial examples can be categorized into two types [54]: (i) Reactive
— detecting adversarial examples after DNNs have been trained; and
(ii) Proactive — improving the robustness of DNN models against
adversarial examples. In this paper, we propose three different de-
fense mechanisms, and combine them to counteract the adversarial
samples generated by the black-box attack methods discussed in
the previous section. These defense mechanisms include:

(1) Model Voting Ensembling (Proactive): Ensembling pre-
trained MLP, CNN, and C-LSTM using a voting mechanism,
to construct stronger models that are less susceptible to mis-
classification of adversarial samples;

(2) Ensemble Adversarial Training (Proactive): Augment-
ing the training dataset with adversarial samples, and retrain-
ing the NID models, thereby reinforcing their capabilities
against adversarial samples;

(3) Adversarial Query Detection (Reactive): Detecting the
query process in the black-box attack process, so as to black-
list the attacker’s IP address before they may succeed.

In what follows, we detail the proposed defense mechanisms, and
demonstrate their effectiveness against adversarial attacks.

7.1 Model Voting Ensembling

The experiments we reported in Sec. 6 suggest that an attacker
can successfully compromise a NID model with up to 35% ASR.
However, only a small set of adversarial samples can bypass all
three NID models simultaneously. This motivates us to construct a
new ensembling model [56, 57] by combining all of these structures,
to strengthen the barrier against potential attacks. Specifically, for
each input traffic flow, we gather the decisions of all NID models
individually, and make the classification using a voting process. A
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Figure 9: The confusion matrix of the ensembling model in
the one-to-one detection scenario.

Table 3: One-to-all NID performance of ensembling model.
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Figure 10: ASRs, MAPE, and number of queries statistics of
all attack approaches against ensembling models in one-to-
all and one-to-one scenarios.

flow will be classified as ‘benign’ iff all models reach consensus, i.e.,
all of them classify it as ‘benign’. Otherwise, the traffic flow will
be regarded as an ‘anomaly’. We recognize several advantages of
using such model voting ensembling as means of defense, namely:

(1) In order to construct a successful adversarial sample, attack-
ers need to defeat all NID models simultaneously, which is
much harder than compromising a single one;

(2) The voting mechanism makes the entire model non-differen-
tiable, thus attack approaches that rely on model gradient
estimation (e.g., NES) will be obstructed,;

(3) The voting mechanism is easy to implement, as it does not
require to re-train the original NID models.

The proposed model voting ensembling method is a proactive
approach, as it improves the robustness of the pretrained models
against adversarial samples. We show the NID performance of the
ensembling model for the one-to-all scenario in Table 3 and the
confusion matrix for the one-to-one scenario in Figure 9. Revisiting

Table 2 and Figure 4, observe that the ensembling model obtains

very close performance compared to its individual compo-
nents in both detection scenarios, while achieving lower false
positive rates, since it requires consensus to make the ‘benign’

classification decision.

We re-run the same five black-box attacks considered previously
over the same set of 50,000 malicious samples and show statistics
of their performance in Figure 10. Note that the benign confidence
measure is abandoned, since the outputs of ensembling models
are no longer probabilities. Jointly analyzing these results with
Figure 5, observe that the ASR of each attack approach against
the ensembling model has dropped relatively to when attacking
each of the model’s component (i.e., MLP, CNN, and LSTM). In
the best case, the BOUNDARY approach obtains 20.1% ASR in at-
tacking the CNN-based NIDS in the one-to-all scenario, while its
success rate is merely 8.0% when attacking the ensembling model.
Regarding the one-to-one scenario, the reduction in ASR is also
substantial. This indicates that the voting ensembling mechanism is
an effective defense approach. Turning attention to MAPE, observe
that adversarial samples crafted against ensembling models yield
low MAPE, which suggests that this defense mechanism applies
hidden and tighter constraints to the adversarial samples, to
prevent them from deviating excessively from the raw input
samples, which in turn improves detection.

We also show in Figure 11 the ASR on a malicious traffic type
basis, when crafting adversarial samples against the ensembling
model, for the one-to-one NID scenario. Observe that the voting
ensembling mechanism successfully defends 9 type of adversar-
ial samples, i.e., Bot, DoS attack-SlowHTTPTest, DoS attack-Hulk,
DoS attack-GoldenEye, DoS attack-Slowloris, FTP-BruteForce, SSH-
Bruteforce, DDoS attack-LOIC-UDP and DDoS attack-LOIC-HTTP,
as their ASR is virtually 0%. For attacks such as botnet this
is critical, since any success could have catastrophic effects,
which our ensembling technique thwarts. For other types of
malicious traffic, the ASR also drops by varying degrees, but not as
significant, which calls for further defenses, as we show next.

7.2 Ensemble Adversarial Training (EAT)

As discussed in Sec. 3, white-box strategies are not commonly ac-
cessible to external adversaries seeking to compromise NIDS, as the
training data, model structures and parameters are opaque. How-
ever, recent literature confirms that adversarial samples are adapt-
able across different attack methods and victim models [22, 45, 50].
Therefore, from the defenders’ points of view, adversarial samples
generated using white-box attacks can be exploited to improve
the robustness of NID models, so as to defend against potential
adversarial samples. Therefore, we employ the Ensemble Adversar-
ial Training (EAT) as an additional defense approach [45], which
augments the training data with adversarial examples generated by
white-box attacks crafted on other static pre-trained NID models.
Subsequently, the original NID models are reinforced by re-training
on the augmented dataset. We expect that, with the proposed re-
training, the NID models learn to classify adversarial samples better
and thus become more resilient to attacks.

7.2.1  Reinforcing NID models with White-box Adversarial Samples.
We randomly select 250,000 malicious flows to generate adversarial
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Figure 11: ASRs of each type of attack against the model voting ensemble technique in the one-to-one scenario.

samples using three state-of-the-art white-box attack approaches:
Fast Gradient Sign Method [18], Iterative Attack (I-FGSM) [29] and
Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [15].
The FGSM-based approaches perform one step gradient update
along the direction the gradient at each feature that allows per-
turbations, and introduce noise following that direction. 'lFGSM
extends the FGSM by running a finer optimization for multiple
iterations to generate a valid adversarial sample. MI-FGSM intro-
duces a momentum term into the iterative process of -lFGSM, which
helps stabilizing the update directions and escaping from poor local
maxima. This leads to more transferable adversarial samples.

Due to the information asymmetry between attackers and de-
fenders, the defenders do not have knowledge about which features
will be perturbed for attack purposes. We therefore relax the fea-
ture constraints (see Sec. 3.2) for perturbations in the white-box
setting. However, the constraints over MAPE (< 20%) are retained,
to restrict the scale of the perturbations. Note that the adversarial
samples generated by white-box attacks are not necessarily valid
traffic flows, as they are only employed for training purposes. We
gather successful adversarial samples generated by all white-box
attack methods (i.e., FGSM, I-FGSM, and MI-FGSM), crafted with
all NID models (i.e., MLP, CNN, and C-LSTM) in both detection
scenarios (i.e., one-to-all and one-to-one) and combine these with
the original training data, to build an augmented dataset for EAT.

We show the performance of each white-box attack in Figure 12.
Observe that since the NID models are transparent, and looser
constraints are applied to the adversarial samples, the ASR for all
white-box attacks is significantly higher than their black-box coun-
terparts. White-box attacks also require fewer queries to generate
adversarial samples. Fortunately, attackers normally do not have
access to the NID models.

7.2.2  NID Performance of Post-EAT Models. In Table 4, we report
the detection performance on the same test set after EAT, for the
one-to-all scenario. Compared to NID models prior to the EAT (See
Tables 2 and 3), the detection performance of the newly trained
models has dropped slightly in terms of accuracy, precision, and F1
score. However, the recall rate of each model has improved. This
indicates that the models are prone to classifying some ambiguous
samples as anomalies, which results in higher false positive and
lower false negative rates. Similar phenomena are also observed in
the one-to-one scenario. The accuracy for the MLP, CNN, C-LSTM,
and the ensembling model appears worse than what was achieved
prior to EAT. However, by taking a closer look at their confusion
matrices in Figure 13, post-EAT models achieve high detection
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Figure 12: ASRs, Confidence, MAPE, and number of queries
statistics of all white-box attack approaches against the
three NID models considered in this study, and their aver-
age values for both NID scenarios.

Table 4: Performance of MLP, CNN, C-LSTM, and ensem-
bling model after EAT in the one-to-all scenario.

Model Accuracy | Precision | Recall | F1 score
MLP 0.987 0.968 0.953 0.960
CNN 0.986 0.959 0.954 0.956

C-LSTM 0.985 0.953 0.955 0.954
Ensembling 0.983 0.943 0.956 0.949

Table 5: Ratio of adversarial samples that can bypass each
NID model after EAT.

Scenario MLP | CNN | C-LSTM | Ensembling
One-to-all | 40.04% | 53.15% 48.43% 81.54%
One-to-one | 42.45% | 38.06% 38.26% 43.31%

rates on most anomalies they failed to detect previously (i.e.,
Brute Force-XSS, SQL Injection, and Brute Force-Web). This sug-
gests that EAT has improved the robustness of NID models, making
them more sensitive to anomalous traffic that is difficult to classify.
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Figure 14: ASR of each attack after EAT (bars above x axis),
and ASR reduction compared to when no further defense is
applied (bars below x axis) for the one-to-one NID scenario.

7.2.3  Robustness to Old Adversarial Samples. In Table 5, we fur-
ther show the ratio of adversarial samples crafted from the models
before EAT, which can compromise the corresponding post-EAT
models. Observe that EAT also makes each model more resilient to
old adversarial samples, as those ratios are significantly below 100%.
In particular, only 38.06% of adversarial samples crafted from the
old C-LSTM can bypass the Ensemble Adversarial Trained C-LSTM.
This means that EAT enables each model to learn to characterize ad-
versarial samples generated using white-box attacks, and therefore
fixes some ‘bugs’ present in the old setting.

7.2.4  The Effect of EAT. In Figure 14, we show the ASR for each
attack after EAT (ASRgaT, bars in the upper part of the plot), and
the ASR reduction compared to the case before EAT was applied
(ASR - ASREgaT, bars in the lower part) for the one-to-one NID
scenario. In the figure, positive numbers below the x-axis indicate
that the ASRgaT has dropped after EAT was employed. We ob-
serve that ASR of each attack drops for most of the models. This
means that EAT successfully improves the robustness of each
model, making them more difficult to be compromised. On
average, the ASR drops to 6.70% and 5.78% for one-to-one and one-
to-all NID scenarios, respectively. This is particularly beneficial
to practically mitigating DoS and brute-force type attacks.

7.3 Adversarial Query Detection

Recall that all black-box attack methods rely on continuous queries
to the victim model and feedback received. Based on the feedback,
the attackers learn to adjust the perturbations added to the input,
so as to compromise detection. The scale of perturbations is usually
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Figure 15: An illustration of the query detection defense
mechanism using a deep similarity encoder.

small, so that they to do not change the essence of the original input.
Therefore, the queries in the same attack round are typically with
high similarity. This inherent similarity between queries can
be harnessed to detect an attack. Therefore, we explore query
detection [11] as the final defense mechanism. Once queries have
been discovered, the NIDS can blacklist the attackers’ IP addresses,
to prevent potential threats.

Specifically, for each IP address, we construct a buffer with size B
to store the features of the traffic flows originating from that address
in a pre-defined period. To reduce the dimension of the features
saved and model the similarity degree between flows, we employ a
deep similarity encoder (DSE) [4], encoding similar traffic flows in
a lower-dimensional space with shorter I3 distance. More precisely,
for each new flow x sent from a given IP address, we compute the
pairwise distance between the embedding of this flow and others
in the buffer, calculating the k nearest neighbor average distance
d’; JIf d)IE is lower than a threshold 7, i.e., d,’§ < 7, this suggests that
that IP address has sent an excessive number of similar traffic flows,
which can be considered as queries in an ongoing attack. When this
happens, the IP address can be blacklisted and thus the potential
threat eliminated. We show the underlying principle of the query
detection mechanism in Figure 15.

After an attack is detected, the buffer associated to the specific IP
address can be cleared. In addition, when query detection suggests
a potentially malicious actor, their IP address can be banned either
immediately, or after subsequent queries, as suggested in [4]. This
can minimize an attacker’s knowledge of the time when their attack
was detected, therefore reducing the probability of compromising
the query detection mechanism.

7.3.1 Deep Similarity Encoder. The core component of the query
detection-based defense mechanism is the deep similarity encoder



(DSE) [4], which is a neural network that reduces the dimension of
the input. After embedding by a DSE, dissimilar flows will be far
from each other in the encoded space, while similar queries will be
close. Thus, queries and traffic flows become more distinguishable.

For the DSE, we employ a CNN similar to that in Figure 3, only re-
placing the last layer with 3 units. This means that the embedding of
each traffic flow is a 3-dimensional vector. We denote e; = DSE(x;)
as the embedding of the input sample x;. The DSE can be trained
via minimizing the following contrastive loss function:

- <112 2 2
L(xi, Xi, Xm, Xn3 0) = [|e; = €[5 + max(0, @ = [lem —enll3). (2)

Here, x;, X; are a pair of similar traffic flows, while x,, x, are traffic
flows that are dissimilar. 0 is the trainable parameter set of the
DSE, and o is a constant penalty, which regularizes the scale of
|lem —enl |§ We choose @ = 0.5 in our experiments. The first term of
the function ensures that the [ distances of the similar traffic flows
are minimized, while the second term guarantees that distances of
dissimilar traffic pairs are maximized but limited to .

We train the DSE using the same training set sampled from
the CSE-CIC-IDS2018 dataset as used by other NID models. For
the purpose of training, we construct x; by adding Gaussian noise
oi ~ N(0, «|x;|) to each sample x;, i.e., X; = x;+0;. Here, a controls
the standard deviation of the Gaussian noise and we choose a =
0.15. xp, x,, are sampled from a training set distinct from x;. After
training, we use the full training set to randomly generate 13,153,902
pairs of similar and dissimilar flows.

7.3.2  Hyper-parameters Selection. There are three important hyper-
parameters to be configured for query detection, namely (i) the
detection threshold 7; (ii) the number of neighbors k used for de-
tection; and (iii) the size of the buffer B, which stores the traffic
flows sent from the same IP address. These parameters will sig-
nificantly affect the performance of the query detection. First, we
select 7 = 0.00157, since 10% of dissimilar pairs and 86.4% of similar
pairs in the training set are below this threshold. This provides an
appropriate decision boundary to discriminate normal traffic flows
and attack queries. The values of k and B affect the robustness of
the detection and also the computational and storage cost of the
NIDS. We select B = 500 and k = 200, as these numbers allow
efficient detection and yield 0 false positive rates when operating
with traffic streams simulated with the entire training set.

7.3.3  Query Detection Defense Performance. In Figure 16 we show
the ASR of each attack after the query detection (bars above the
x-axis in the top sub-plot), the ASR reduction compared to when
query detection is not employed (bars below the x-axis in the top
sub-plot), and the average number of queries (bottom) when the
attack is detected, for each attack method in the one-to-one NID
scenario. Observe that the ASR has dropped significantly after
the query detection was employed. In particular, the ASR of NES
reaches 0 for all models, and the detection rate thus become 100%.
On average, the query detection defense reduces the ASR of attacks
by 8.56% and 12.38% in the one-one-to one and one-to-all scenario,
respectively. Effectively, the majority of the adversarial attack
are detected during their query process.

Taking a closer look at the average number of detected queries,
we observe that NES, BOUNDARY, POINTWISE, and HOPSKIPJUMPAT-
TACK attack attempts are detected at their 2015t query. Recall that
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Figure 16: Performance statistics of query detection defense
in the one-to-one scenario. Top: ASR of each attack after
query detection (bars above x axis) and ASR reduction com-
pared to when the query detection is removed (below x axis).
Bottom: average number of queries when the query detector
is triggered.

the k neighborhood size selected for query detection is 200, hence
the detection alarm will only be triggered when the buffer has
more than 200 samples. This means that the attack is detected im-
mediately after the buffer has k neighbor samples. Regarding the
OPT-ATTACK attack, this is detected always within 208 queries. This
is due to the initial phase of the attack, when it injects a few benign
traffic flows to learn the direction of perturbation to be added to
the adversarial samples. These samples are normally dissimilar,
which slightly increases the detection time. Note that, despite the
efficiency of the query detection mechanism, a larger buffer size
(B = 500) is still needed for tolerance, as the attacks may fill the
buffer with queries (similar samples) and garbled traffic (dissimilar
samples) alternately, to compromise the defense.

Overall, by combining the model voting ensembling, EAT,
and query detection mechanisms, our proposal can success-
fully prevent five mainstream black-box adversarial attacks
from compromising deep learning-based NIDS.

8 CONCLUSIONS

In this paper, we introduced Tik1-Taka, a framework for defend-
ing against adversarial attacks on deep learning-based NIDS. We
trained three state-of-the-art deep learning models (MLP, CNN, and
C-LSTM) on a publicly available dataset, then employed 5 classes
of decision-based adversarial attacks to compromise the neural
models. Experiments show that despite having high detection rates,
deep learning-based NIDS are vulnerable to adversarial samples.
To strengthen NIDS against such threats, we proposed three de-
fense methods: model voting ensembling, ensembling adversarial
training, and query detection. To our knowledge, these are the first
defense mechanisms to be proposed against adversarial attacks
targeting NIDS. Their combined use can reduce success rates of
all attacks considered, bringing detection close to 100% on most
malicious traffic and fending off particularly critical malicious traf-
fic such as botnet and DoS. Future work will focus on handling
infiltration traffic, which appears more resilient to NID models and
defense approaches.
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