Check for
Updates

Session 2: Systematization of MTD 1

MTD '20, November 9, 2020, Virtual Event, USA

Adoption Challenges of Code Randomization

Per Larsen
perl@uci.edu
University of California, Irvine

ABSTRACT

Languages in the C family are distinguished by their efficiency, ma-
turity, and their lack of guardrails compared to other mainstream
language in use today. Their efficiency properties kept these lan-
guages relevant as new ones appeared. Their lack of memory safety
and the resulting vulnerabilities is an ongoing challenge.

Code randomization, a moving target defense technique, is one
among many competing answers to this challenge. Many tech-
niques have been proposed and evaluated extensively in academic
conferences but adoption in the field is lagging. The goal of this
paper is to highlight why adoption is so hard and what can be
done about it. Code randomization techniques offer much flexibility
in their design and implementation. We encourage research that
investigates the complex trade-offs between security and many
equally important concerns that must be made for enhanced code
randomization defenses to make their way into production.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

KEYWORDS

code randomization, exploits, mitigations, moving target defense

ACM Reference Format:

Per Larsen and Michael Franz. 2020. Adoption Challenges of Code Ran-
domization. In 7th ACM Workshop on Moving Target Defense (MTD’20),
November 9, 2020, Virtual Event, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3411496.3421226

1 INTRODUCTION

Because there are very few safeguards when C/C++ code is run-
ning in production [24], defenders must eliminate as many bugs
as possible during implementation and testing. Dynamic testing
tools such as fuzzers [14] and sanitizers [23] play a key role here.
Pre-release testing is far from perfect, however, so defenders must
also react promptly to residual bugs that make it into the final soft-
ware release and put users at risk. Once a vulnerability is known to
the defenders, it can be patched. However, adversaries can discover
vulnerabilities and use them to deliver malicious payloads before a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MTD’20, November 9, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8085-0/20/11...$15.00
https://doi.org/10.1145/3411496.3421226

45

Michael Franz
franz@uci.edu
University of California, Irvine

patch is available. Thus the primary role of mitigations is to buy
defenders time to develop a patch and buy users time to install it.

Mitigations must slow down adversaries without significantly
interfering with normal program operation; a mitigation that vio-
lates this property is a mitigation that will not be deployed. This
makes development of mitigations a matter of making the right
trade-offs (more on that later). As a result, mitigations end up nar-
rowly targeting specific exploitation techniques. This is perfectly
fine since multiple mitigations are used together with the combined
result of closing off entire avenues of exploitation. Data execution
prevention [15], for instance, largely obsoleted code injection tech-
niques on hosts where it was deployed. Faced with this challenge,
adversaries discovered that exploitation did not inherently require
code injection. This is just one example of how the deployment
of a new technique prompts a counter-reaction from people with
opposing interests. Figure 1 shows a brief and incomplete timeline
of exploits and mitigations over the last twenty years. This is the
frame within which we consider efforts to adopt enhanced code
randomization.

We see in Figure 1 that stack canaries were among the first mov-
ing target defenses deployed. Address space layout defense was
introduced a few years later as part of PaX - a patch for the Linux
Kernel [18]. Since 2001, these two code randomization mitigations
were deployed more widely and extended to privileged code such as
OS kernels. Given the age of ASLR, its weaknesses are well under-
stood and many papers propose improvements that substantially
improve its security properties. Yet, these improvements have not
seen wide uptake among operating system developers. Instead,
practitioners adopted a different mitigation technique: control-flow
integrity, CFI [1, 5]. CFI is not a moving target defense, rather it
makes it harder to hijack the control flow by restricting the possible
target addresses for each indirect branch.

2 CODE RANDOMIZATION AND
CONTROL-FLOW INTEGRITY

What characterizes a good mitigation? As usual, that depends on
who we ask. Academic reviewers value novelty and the security
of a proposed mitigation; the goal is to bring new ideas to light
after all. Evaluations need only span a handful of programs and it
is not necessarily disqualifying if some programs are incompatible
with the proposed technique. Practitioners, as expected, take a more
pragmatic view which is perhaps best summarized as “done is better
than perfect”. Security-wise, a good mitigation “should eliminate a
common vulnerability class or break a key exploitation technique
or primitive used by modern exploits” [17]. However, performance,
compatibility, maintainability, and integration are all important
concerns when deciding which mitigation technique to deploy.
To concretize the discussion, let us look closer at the CFI, tech-
niques that are deployed to counter return-oriented programming

https://doi.org/10.1145/3411496.3421226
https://doi.org/10.1145/3411496.3421226
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3411496.3421226&domain=pdf&date_stamp=2020-11-09

Session 2: Systematization of MTD 1

2000 2005 2010

2015

MTD '20, November 9, 2020, Virtual Event, USA

2018 2020s

D e

Refinement of
browser exploit

Morris Worm C++ vtable hijacking

8LGM Browser Exploits techniques
NCSA HTTPD Heap Spray Memory disclosures
SplitvT Heap metadata (unlink,

voodoo malloc tricks) ' 'ash techniques

Smashing the Stack

Borrowed Code Chunks The end of an era for

NX Stack general exploit
PAX techniques
Stack Canaries
ASLR
Ret2libc ROP (refinement of
earlier ret2text)
StackGuard

Heap Overflows

Format Strings

ASLR bypass is
required

Program specific
techniques dominate

Hardware assisted
CFI/CFG/RFG

Sandbox escapes are
required for any serious
target

Immutable containers, and
sandboxes become the default
everywhere

Exploit chains require
multiple steps

JIT era begins

Shellcode is dead, DEP
is everywhere

Sandbox era begins

Mobile jailbreaks begin
to gain influence

Out of process JIT
appears

CFI/CFG bypass required

RAP (?)
Side channels break

thi
S Shadow process memory

verification
Kernel protections

become the default
Out of process components

Execute only memory

CFI/CFG appears

Figure 1: An incomplete overview of exploits and mitigations from the late nineties until the present. ©Chris Rohlf (http:

/Istruct.github.io/); reproduced with permission.

and code-reuse techniques more broadly. The goal of the compari-
son is to see how each of these technologies address concerns that
decide whether a mitigation is adopted or not. Specifically, we will
look at Microsoft’s Control-Flow Guard, CFG [16], and ARM Pointer
Authentication Codes, PAC [19], as these CFI implementations are
deployed to millions of Windows and iOS devices respectively. On
the code randomization front, we will consider Address Space Lay-
out Randomization, ASLR and Address Space Layout Permutation,
ASLP. We include ASLP because it is a straightforward improve-
ment over ASLR and the authors were involved with the design and
evaluation of an ASLP prototype focused on deployability which
helps guide the discussion.

Let’s briefly recap the characteristics of these mitigations.

ASLR Together with data execution prevention and stack ca-
naries, ASLR is (or should) be the baseline for all systems running
potentially vulnerable code. ASLR requires that the compiler emits
code that is either position independent (Linux) or can be relocated
before it is executed (Windows). This let’s the kernel or dynamic
linker place the code section at a randomly selected offset in virtual
memory. Operating systems only keep one copy of (the code in) a
shared library in memory even if loaded by multiple processes. To
preserve this property, ASLR requires changes to both the operating
system, the loader, linker, and compiler. Moreover, memory sharing
requires that the random base address is aligned to a memory page
which, along with other requirements, meaningfully decreases the
available entropy on 32-bit systems [22]. This is a perfect example
of the trade-offs that deployed mitigations make. Hosts with 64-bit
address spaces provide plenty of randomness, so exploit chains

46

include a stage that leaks a code pointer to reveal the effects of
ASLR on the target process [21].

CFI Where ASLR presents an adversary with a moving target,
CFI places restrictions on the targets of indirect branches. This can
thwart exploits because they tend to introduce abnormal control
flows (jumps into the middle of a basic block or calls into the middle
of a function) that do not occur during normal program execution.

Just like code randomization mitigations, CFI must trade secu-
rity for speed, compatibility, and so on. Some CFI implementations
approximate the legitimate set of branch targets via static program
analysis. This approach turned out to be hard to scale and complex
to implement, so the CFI implementations in use today trade some
security for increased compatibility and decreased complexity. Mi-
crosoft’s Control Flow Guard, for instance, simply enforces that
an indirect function call targets a function that is “address-taken”
meaning that it is potentially called through a function pointer.
This policy is less strict than one derived from a static analysis but
is simpler to apply even to applications that are written in a mix of
different languages (C/C++ and assembly) and privileged code such
as operating system kernels. When code is compiled, the compiler
emits a function table that identifies valid indirect call targets as
well as code that validates such targets before executing an indirect
call. All code emitted by just-in-time compilers is treated as valid by
default for compatibility but JIT compilers can provide a list of valid
targets via operating system APIs and thus opt into protection with
modest effort. CFG further trades security for performance by only
protecting indirect calls; backward edges (returns) will be protected
on processors that support hardware shadow stacks. Notice that

http://struct.github.io/
http://struct.github.io/

Session 2: Systematization of MTD 1

like ASLR, CFG required changes to the operating system itself as
well as the compiler.

Pointer authentication codes, PAC [19], introduced in the ARM
v8.3 specification [2] protects code running on Apple’s iOS devices.
PAC adds new instructions that sign and authenticate pointers.
Signed pointers contain a hash-based message authentication code,
HMAC, which is stored in the upper bits of 64-bit pointers. The
signing key is stored in a dedicated hardware register to prevent
accidental leakage. Like CFG, this approach avoids the need for
static analysis. This is particularly attractive since Objective-C code,
which is common on iOS, uses dynamic dispatch more pervasively
than C/C++ and is thus harder to statically analyze than C/C++ code.
PAC delivers excellent security and compatibility with existing code
at the cost of requiring changes to the instruction set architecture
as well as the OS and compiler.

ASLP Address space layout permutation was first explored by
Kil et al. [13] as a straightforward extension to ASLR. The idea is to
shuffle the function order inside each . text section in addition to
randomizing the starting address of the . text section. This means
that a single leaked code pointer no longer reveals the entire layout
of the module it belongs to; this makes ASLP more resilient to the
techniques used to bypass ASLR. Kil et al. implemented ASLP by
modifying the Linux kernel similar to ASLR and reported minimal
performance overheads from doing so. It is not known whether
there was an attempt to upstream ASLP into the Linux kernel or
not.

The authors of this paper were involved in an effort that imple-
mented the ASLP technique without modification of the operating
system kernel or compiler. The prototype is called selfrando [8]
because it makes libraries and executables randomize themselves
when loaded. The security and performance properties are simi-
lar to the implementation of Kil et al.; the main difference is that
binaries can be built and distributed without changes to the host
operating system.

3 LEARNING FROM THE DEPLOYMENT OF
CONTROL-FLOW INTEGRITY

Adding either of the aforementioned CFI solutions or ASLP to a
system makes it harder to construct a code reuse exploit and none of
the mitigations introduce noteworthy overheads. At the same time,
all of these solutions have known weaknesses that, under the right
conditions, make them bypassable. ASLP can be bypassed with an
arbitrary read primitive [24]. CFG can be bypassed by adhering to
the control-flow policy [6, 9, 11] — which is much more permissible
than many other CFI variants. For example, CFG ensures that an
indirect call targets an address-taken function but does not require
that the corresponding control flow-edge exists in the source code
or that the target function has the expected type. PAC is a more
restrictive CFI policy because a code pointer can only be used in a
branch if it was generated by the program. This leaves adversaries
with two options that adhere to the control-flow policy: i) swap
two legitimate pointers or ii) coerce the program into generating
new code pointers to be used in a code reuse exploit.

Does this mean that PAC is better than CFG? The answer is
of course no! The two mitigations simply make different trade-
offs. By virtue of being a pure software mitigation, CFG could be

47

MTD '20, November 9, 2020, Virtual Event, USA

rolled out in November of 2014 whereas PAC was introduced much
later in September of 2018 and was only available on devices with
the very latest hardware. CFG protection of forward branches will
eventually be enforced at the hardware level and return branches
will similarly be protected by a hardware shadow stack. Lesson
1: the performance concern is so great that requiring hard-
ware changes is acceptable. This is nothing new, data execution
prevention similarly required hardware changes albeit not to the
same extent as CFL

What does all of this have to do with moving target defenses? The
fact that practitioners by and large chose CFI over improvements
to code randomization raises two questions:

e Why adopt CFI ahead of code randomization?
e Where can we make the case for code randomization?

4 WHY ADOPT CFI AHEAD OF CODE
RANDOMIZATION?

While we were not party to the discussions that lead to CFG and
PAC being deployed, we can make educated guesses by examining
1) the trade-offs between the two and 2) the compatibility challenges
faced by code randomization.

Security: CFI ensures that a particular control flow policy will
be followed (modulo design or implementation errors [4, 7, 26])
irrespective of the application. Code randomization can be as ef-
fective as CFI if there is no information leakage. That is a big “if”,
however. There are many sources of information leakage including
side channels and direct reading of memory by exploiting memory
corruption. If the adversary can run code locally on the target host
(by achieving co-residency in the cloud or causing the target to
download malicious JavaScript), microarchitectural side channels
are of particular concern. At the very least, we must assume that
the code to be protected is prone to memory corruption; otherwise,
there is no reason to deploy mitigations. This implies that for code
randomization to match CFI, it must be deployed alongside strong
countermeasures to information leakage. It is currently unclear
how to pervasively counter information leakage and, if possible,
what the associated cost and complexity will be.

Memory: The reason that ASLR ensures that the randomized
base address is aligned to a page boundary is to make sure that
only one copy of the code in shared libraries is stored in memory.
This means that the page granularity is the smallest granularity of
randomization that can be applied to a shared library if we want
them to have a different layout in each process. Note that ASLP
randomizes at the level of individual functions which are typically
much smaller than a 4 kilobyte code page. We must, therefore,
decide whether to randomize a shared library at page granularity
in each process or randomize the library at a finer granularity and
share a single randomized copy across all processes. As Niirnberger
et al. [3] show, the cost of breaking memory sharing makes code
randomization impractical.

Interoperability with Other Defenses: CFI is fully interoper-
able with a range of widely-deployed defenses. Let us consider a
couple of important ones. Both i0S and Android use checksums
to detect if binaries have been modified on disk; similar solutions
are used to protect system files on traditional computer systems
such as Windows and MacOS. When CFI and ASLR is applied at

Session 2: Systematization of MTD 1

compile time, both remain transparent to checksumming mecha-
nisms. In other words, code randomization must be applied at load
or runtime to avoid changing the on-disk representation. This is a
challenge because runtime policies such as SELinux and AppArmor
may similarly prevent the code from being changed after it has
been loaded. This means that code randomization should ideally
happen exactly at one time and place: at load time before integrity
defenses such as SELinux are applied. This is of course exactly how
ASLR works and any code randomization technique that chooses
another time is likely to be marred by compatibility issues on a
range of systems. Lesson 2: code randomization defenses are
ideally integrated into the operating system. Integration into
the operating system has practical benefits too. On Windows, some
libraries are pre-loaded into most process types. These need to be
randomized too; when ASLR was not applied uniformly, exploits
could simply target code that was left unprotected. On Linux, all
libraries can be randomized at load time without customizing the
operating system but the standard C library must be patched in
order to work correctly after code randomization.

Startup Performance: When a modern operating system boots
on low-end hardware, the time to load each library matters. CFI
defenses require very little initialization if any and code can simply
be memory mapped into the running process. Code randomization,
on the other hand, must read all code from disk, place each function
or page at a random offset, and apply relocations so it correctly
references other code and data at its new location. In this aspect,
code randomization is at a disadvantage to CFL Of course, there are
likely ways to reduce this startup overhead but any such solution
will add complexity and reduce security so CFI ends up looking
more attractive than code randomization in this aspect.

Just-in-time Compiled Code: It is fairly easy to extend code
randomization to dynamically generated code. In fact, it can be done
without modifying the just-in-time compiler itself [12]. Except for
legacy code, better performance can be obtained by modifying
the JIT compiler to randomize the code it emits. For CFI, the JIT
engine needs direct modification as well. In fact, Microsoft’s CFG
offers special APIs that JIT engines can use to safely call statically
compiled code protected by CFG.

Debugging and Telemetry This is perhaps the area where the
interests of academics and practitioners diverge the most. Being
able to debug an application before it is released and collect error
reports when an application crashes in the field is how practition-
ers support modern software and keep users happy. CFI does not
interfere with either of these processes but code randomization
does. For ASLR, debugging is handled by simply turning it off. For
finer-grained types of code randomization, debuggers and stack
unwinders must be made randomization aware which yet again
adds to the complexity of deploying this type of mitigation.

When the developers of mainstream operating systems decided
to adopt a new mitigation, we think it is clear why they chose
CFL It has well-understood security properties in the presence
of information leaks and is arguably simpler to implement in a
way that does not interfere with other defenses, operating system
optimizations, and development workflows.

48

MTD '20, November 9, 2020, Virtual Event, USA

5 WHERE CAN CODE RANDOMIZATION
SHINE?

Again, we can only offer speculation and educated guesses based
on our own past experience. One can argue that now that many
mainstream operating systems have deployed some form of CFJ,
they should consider something like ASLP next. While we believe
that CFI and ASLP are complementary in their security properties,
the added security may not be enough to justify the added complex-
ity. The main reason, in our opinion, is that there are many sources
of information leaks that threaten to undermine code randomiza-
tion. Most recently, we have seen a steady stream of microarchi-
tectural side-channel vulnerabilities that exploit design flaws at
the hardware-level. These threats are particularly worrisome on
systems where untrusted code is co-resident with trusted code op-
erating on sensitive data (browsers, mobile apps, etc.) or when code
from different owners is co-resident in public cloud infrastrucure.

Embedded devices are in the complementary set of the systems
we enumerated above. The embedded space is characterized by
heterogeneity at the hardware and software level and a focus on
low per-unit costs. Taken together, this means that widespread
hardware support for CFI is likely a long way out. Absent such
hardware support, ASLP is highly performance competitive with
CFI variants that protect both forward (calls, jumps) and backward
(returns) indirect control flows. Moreover, many processors are
32-bit only; this makes ASLP more attractive than ASLR since
the former does not require a large address space to offer enough
entropy to withstand brute force attacks. The threat of information
leakage is also lower than on traditional computers. Embedded
hardware often runs a single firmware image compiled from trusted
code. Running such code on processors that perform much less
speculation than power-hungry, high-performance chips reduce the
threat of information leakage via microarchitectural side channels.

It may also be interesting and worthwhile to investigate to in-
tegrate the idea of moving target defenses such as code and data
randomization in new operating systems. Google’s Fuchsia oper-
ating system, for instance, makes some interesting design choices
such as not including the file system in the kernel. One could imag-
ine a randomization-aware file system that provides the following
two properties by design: 1) it protects against unauthorized modi-
fication of binaries 2) it randomizes binaries when loaded off disk
(maybe once per boot for shared libraries and kernel extensions,
and per run for everything else).

Finally, high-assurance techniques known as multi-variant exe-
cution environments can benefit from code randomization [25].

6 SUMMARY AND RECOMMENDATIONS

Code randomization is currently at a disadvantage to non-moving
target solutions such as CFI in the mitigation space. One major rea-
son is that its security properties are difficult to quantify because of
the memory secrecy assumption, i.e., that the memory contents of
victim processes are unknown to adversaries. Not only can memory
corruption undermine this assumption, so can most side channel
attacks. Second, and perhaps just as important, code randomiza-
tion techniques that work at a finer granularity than ASLR seem
simple at first but end up requiring complex workarounds to avoid
interference with existing defenses, optimizations, and tools.

Session 2: Systematization of MTD 1

Therefore, successful moving target defense mitigations need to
offer clear complementary security properties on platforms that
already implement CFIL Key questions for this line of work will
be how hardware support and changes to the operating system
can improve the aforementioned security/complexity trade-off. Al-
ternatively, they can target deployment on embedded, emerging,
and other platforms where CFI is less attractive and where the
threat from information leakage can reasonably be said to be low
based on an analysis of the software as well as the underlying
hardware. Another way to complement CFI is to target data-only
attacks instead of code-reuse attacks. This has received much less
attention than code randomization. ARM’s forthcoming memory
tagging extensions [10, 20] is a great example of how a moving
target defense mitigation can provide valuable additional security
but requires changes throughout hardware, operating system, and
memory allocators.

ACKNOWLEDGMENTS

To Chris Rohlf, for permitting the authors reuse his excellent overview
of exploits and mitigations. To Andrei Homescu and Hamed Okhravi,
for providing valuable feedback on draft versions of this paper.

This material is based upon work partially supported by the
United States Office of Naval Research under contract N00014-17-
1-2782.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research or its
Contracting Agents, or any other agency of the U.S. Government.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS °05). 340-353.

ARM Ltd. 2017. ARM Architecture Reference Manual ARMv8. https://static.docs.
arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf.

Michael Backes and Stefan Niirnberger. 2014. Oxymoron: Making Fine-Grained
Memory Randomization Practical by Allowing Code Sharing. In USENIX Security
Symposium.

Andrea Biondo, Mauro Conti, and Daniele Lain. 2018. Back To The Epilogue:
Evading Control Flow Guard via Unaligned Targets. In Symposium on Network
and Distributed System Security (NDSS).

Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. ACM Comput. Surv. 50, 1, Article 16 (April 2017).

Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-flow Integrity.
In USENIX Security Symposium.

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing Control: On the Effectiveness of Control-Flow Integrity under Stack
Attacks. In ACM Conference on Computer and Communications Security (CCS).
Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Kop-
pen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi.
2016. Selfrando: Securing The Tor Browser Against De-anonymization Exploits.
In Privacy Enhancing Technologies Symposium (PETS).

Lucas Davi, Daniel Lehmann, Ahmad-Reza Sadeghi, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In USENIX Security Symposium.

Vincenzo Frascino. 2019. ARM v8.5 Memory Tagging Extension. Linux Plumbers
Conference, https://www.linuxplumbersconf.org/event/4/contributions/571/
attachments/399/642/MTE_LPC.pdf.

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out of Control: Overcoming Control-Flow Integrity. In IEEE Symposium on
Security and Privacy (S&P).

(2]
(3]

[10]

(11

49

[12

[13

[14]

=
&

=
o)

junpen
22,

[20

[21

[22

~
&

&
=)

™
2

I
&

MTD '20, November 9, 2020, Virtual Event, USA

Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2013. li-
brando: Transparent Code Randomization for Just-in-Time Compilers. In ACM
Conference on Computer and Communications Security (CCS).

Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization
of Commodity Software. In Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC ’06).

V. J. M. Maneés, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M.
Woo. 2019. The Art, Science, and Engineering of Fuzzing: A Survey. IEEE
Transactions on Software Engineering (2019). Early Access. https://ieeexplore.
ieee.org/document/8863940.

Microsoft. 2006. Data Execution Prevention (DEP). http://support.microsoft.com/
kb/875352/EN-US.

Microsoft Corporation 2018. Microsoft Control-Flow Guard. https://docs.
microsoft.com/en-us/windows/win32/secbp/control-flow-guard.

Matt Miller. 2015. https://msrc-blog.microsoft.com/2015/09/08/what-makes-a-
good-microsoft-defense-bounty-submission/. Accessed September 12th, 2020.
PaX Team. 2001. Homepage of The PaX Team. http://pax.grsecurity.net.
Qualcomm Technologies, Inc. 2017. Pointer Authentication on ARMvS.3.
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-
authentication-on-armv8-3.pdf.

Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. https://arxiv.org/pdf/1802.09517.pdf.

Fermin J. Serna. 2012. The info leak era on software exploitation.
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2012/BH_US_
12_Serna_Leak_FEra_Slides.pdf. BlackHat USA.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-Space Randomization. In
ACM Conference on Computer and Communications Security (CCS).

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per
Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In IEEE Symposium
on Security and Privacy (S&P).

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In IEEE Symposium on Security and Privacy (S&P).

Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen,
Bjorn De Sutter, and Michael Franz. 2016. Secure and Efficient Application
Monitoring and Replication.. In USENIX Annual Technical Conference.

Tielei Wang and Hao Xu. 2019. Attacking iPhone XS Max. https://www.blackhat.
com/us-19/briefings/schedule/#attacking-iphone-xs-max-14444. BlackHat USA.

https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://www.linuxplumbersconf.org/event/4/contributions/571/attachments/399/642/MTE_LPC.pdf
https://www.linuxplumbersconf.org/event/4/contributions/571/attachments/399/642/MTE_LPC.pdf
https://ieeexplore.ieee.org/document/8863940
https://ieeexplore.ieee.org/document/8863940
http://support.microsoft.com/kb/875352/EN-US
http://support.microsoft.com/kb/875352/EN-US
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://msrc-blog.microsoft.com/2015/09/08/what-makes-a-good-microsoft-defense-bounty-submission/
https://msrc-blog.microsoft.com/2015/09/08/what-makes-a-good-microsoft-defense-bounty-submission/
http://pax.grsecurity.net
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://arxiv.org/pdf/1802.09517.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2012/BH_US_12_Serna_Leak_Era_Slides.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2012/BH_US_12_Serna_Leak_Era_Slides.pdf
https://www.blackhat.com/us-19/briefings/schedule/#attacking-iphone-xs-max-14444
https://www.blackhat.com/us-19/briefings/schedule/#attacking-iphone-xs-max-14444

	Abstract
	1 Introduction
	2 Code Randomization and Control-Flow Integrity
	3 Learning from the Deployment of Control-Flow Integrity
	4 Why Adopt CFI ahead of Code Randomization?
	5 Where Can Code Randomization Shine?
	6 Summary and Recommendations
	Acknowledgments
	References

