
Skip to Secure: Securing Cyber-physical Control Loops with
Intentionally Skipped Executions

Sunandan Adhikary
∗
, Ipsita Koley

∗
, Sumana Ghosh

∗
, Saurav Kumar Ghosh

∗
, Soumyajit Dey

∗
,

Debdeep Mukhopadhyay
∗

*Indian Institute of Technology, Kharagpur
{sunandana,ipsitakoley,soumyajit,debdeep}@iitkgp.ac.in,{sumanaghosh,saurav.kumar.ghosh }@cse.iitkgp.ernet.in

ABSTRACT
We consider the problem of provably securing a given control loop

implementation in the presence of adversarial interventions on data

exchange between plant and controller. Such interventions can be

thwarted using continuously operating monitoring systems and

also cryptographic techniques, both of which consume network

and computational resources. We provide a principled approach for

intentional skipping of control loop executions which may qualify

as a useful control theoretic countermeasure against stealthy attacks

which violate message integrity and authenticity. As is evident

from our experiments, such a control theoretic counter-measure

helps in lowering the cryptographic security measure overhead and

resulting resource consumption in Control Area Network (CAN)

based automotive CPS without compromising performance and

safety.

1 INTRODUCTION
The proliferation of network connectivity has increased the applica-

tion domain for cyber-physical systems (CPS) in today’s connected

world. However, increased connectivity manifests security vulnera-

bility in terms of increased number of possible attack surfaces for

such systems. Recent results have established that network based

Man-in-the-Middle type attacks, like false data injection on cyber-

physical control systems are quite capable of disturbing closed loop

stability as well as degrading the control performance of such sys-

tems [25]. In such an attack, an adversary injects false data in the

communication medium between the plant and the controller with

the intention of driving the system to an unsafe state by changing

the set point of the system.

State-of-the-art detection systems: In order to detect such

attacks, the most common control theoretic countermeasures put

in place are threshold based anomaly detectors that generate an

alarm if the estimation error crosses the threshold over a single

or multiple control loop iterations. Though such control theoretic

primitives can limit the attacks, it has been observed that stealthy

attacks are possible even in the presence of such state estimation

based lightweight control theoretic intrusion detectors [24]. Hence,

the standard way to secure a system against such attack is the use

of security primitives like Message Authentication Codes (MACs)

[21], Message Encryption [21], Physically Unclonable Functions

(PUFs) [8] etc. Some recent efforts also focus on learning based

[15, 26] intrusion detection mechanisms. However, the options for

implementing such security primitives in CPS is often limited by

the available compute resources in the on-board platforms. Hence,

there have been proposals [11] for sporadic usage of such Intrusion

Detection Systems (IDS) for securing messages exchanged between

software-based controllers and physical plants.

CPS operation under Sporadic IDS: A sporadic IDS can be

specified by a pair (nup , ndown) such that the IDS is active for

nup consecutive control samples and inactive for ndown consec-

utive control iterations, and this behavior repeats in a cycle. As

shown in Fig.1, let for a control system, there exists an initial re-
gion C which is composed of the initial range of plant state values.

nup

ndown

C

C1

C2

Figure 1: Sporadic IDS

Starting from C, consider that the

preferable operating region for the

system is given by an inner safety
region C1(C ⊆ C1) in the absence

of any external attacks. The safety

guarantee offered by a sporadic IDS

is based on the existence of an outer
safety region C2 (C1 ⊂ C2) which

meets the safety requirements of the

system, but may not be a preferable

operating region for unsatisfactory

control performance. The IDS parameters, nup , ndown can be for-

mally defined as,

x [k] ∈ C1 =⇒ ∀i ≤ ndown, x [k + i] ∈ C2 when IDS is off

x [k] ∈ C2 =⇒ ∀i ≥ nup, x [k + i] ∈ C1 when IDS is on

where x[k] denotes the plant state at any time instant k . When

an IDS is not available for ndown consecutive control iterations,

stealthy attacks (similar to [11]) which the control system is hood-

winked to think as environmental noise are possible. The period

ndown should be small enough to ensure that starting from ∈ C1,

such attacks should not steer the system outside C2. When the IDS

is active for nup consecutive control iterations, no false data injec-

tion attack is possible. The period nup needs to be large enough to

ensure that the system is brought inside C1 starting from anywhere

∈ C2. This ensures that the system duly recovers from the effect of

false data injected during the period when IDS was inactive thus

nullifying attacker’s efforts.

Attack resilience of a system: Attack resilience of an IDS en-

abled CPS is measured by the value of ndown/nup . Let dmin be the

minimum attack-length, i.e., the minimum number of consecutive

control samples required by an attacker to drive the system out

of C2 (starting ∈ C1) while remaining undetected (thus defining a

minimum effort successful attack). We can bound the down-time

ndown of an IDS asndown < dmin . This allows us to set a maximum

down time of ndown = dmin − 1 in order to stop the attacker before

being successful. Thus, increasing dmin with suitable choice of CPS

parameters in-turn increases the attack resilience (i.e., ndown/nup)
of the system. Furthermore, the increment in ndown proportion-

ally reduces the computational and communication requirement

ar
X

iv
:2

00
7.

08
12

1v
1

 [
cs

.C
R

]
 1

6
Ju

l 2
02

0

of the IDS. Considering resource-constrained CPS implementation

platforms, it is always desirable to go for lightweight provably se-

cure IDS schemes by maximizing down-time (i.e., ndown) without

sacrificing safety and and performance in the presence of stealthy

attacks, which is the focus of this work.

Motivation and Problem statement: Computing control law

over falsified sensor measurements can actually drive a CPS to-

wards an unsafe state. Hence, in order to minimize the effect of

false data injection in sensor measurements, it may be useful to skip

the control law computation in some carefully chosen sampling

instants while ensuring that such occasional execution skips do not

hamper the desired control performance. The system does not get

affected by malicious data injected by the attacker into the commu-

nication channel at sampling instants when the control executions

are skipped. So, even if the attacker is aware of the positions of

skipped executions, it has to try longer to make the system unsafe

by fault data injection. When the system is running following some

carefully chosen control skipping pattern unknown to attacker, the

attacker may potentially require longer periods of attack efforts

to guess the skip positions and efficiently inject faulty data into

the system in order to succeed. In the present work, we motivate

employing execution skips as a secure control mechanism. Our pro-

posed framework considers a CPS specification and automatically

synthesizes control skipping patterns which maximize the attack re-

silience without compromising the desired control performance of

the system. The synthesis process also provides us an IDS activation

schedule with minimized computational cost as a by-product.

Proposed approach andContributions:The abovementioned

goals require setting up and solving a non-linear multi-objective

optimization problem. The problem is non-trivial since we want to

1) maximize attack resilience, while also retaining 2) the control

performance as much as possible. Note that both these objectives

are highly dependent on the positions of execution skips in the

control schedule and they do not follow a monotonic relationship.

The pattern exhibiting best control performance may lack in at-

tack resilience. Also, the dependence of control performance on

the skipping pattern of a control schedule is nonlinear [7]. Hence,

formulating a single step optimization framework for maximizing

both control performance and attack resilience of a CPS is not a scal-

able approach. For this reason, we propose a two-step optimization

framework. In the first step, we synthesize a set of control skipping

patterns that are ranked based on their control performance. In

the next step, we analyze the attack resilience of these patterns

using Satisfiability Modulo Theory (SMT) based techniques. Higher

attack resilience in-turn guarantees less usage of IDS along with the

underlying computing and communication platforms. In summary,

our contributions can be listed as follows.

(1) We present the first work that motivates the use of intentional

execution skips as a control-theoretic security measure.

(2) In order to formally analyze the robustness of this measure,

we build an SMT based algorithmic framework for synthesizing

successful but stealthy false data injection attack vectors.

(3) We leverage this framework for designing sporadic IDS with

increased down-time (or more attack resilience) when compared

with existing sporadic IDS schemes used with period control im-

plementations (i.e., without execution skips) [11].

(4) Since the pattern search space is exponential in pattern length,

we develop a pruning mechanism for classifying control skipping

patterns based on their offered performance. This step is instru-

mental in rendering our method scalable for sporadic IDS design.

(5) We establish the usefulness of our approach by considering

automotive system examples where sporadic IDS solutions gener-

ated by our tool set provided performance and security guarantees

similar to previously reported schemes while consuming less com-

munication bandwidth and computational resources.

2 MODEL DESCRIPTION
This section briefly describes the model of the plant and controller,

followed by mathematical description of CPS under attack.

2.1 Control System Modeling
A physical plant can be represented as a linear discrete-time invari-

ant system (LTI) having the dynamical equations given as follows.

x [k + 1] = Ax [k] + Bu[k], y[k + 1] = Cx [k + 1] (1)

x̂ [k + 1] = Ax̂ [k] + Bu[k] + L(y[k] −Cx̂ [k]), u[k + 1] = Kx̂ [k + 1]

Here x[k] is the value of state variable at k-th iteration, which is

being controlled by control input u[k] calculated by the controller

based on the estimated state x̂[k]. In this work, we consider Kalman

Filter [13] for state estimation and Linear Quadratic Regulator (LQR)

based optimal control technique for calculating the control input.

The control input is received by actuators in plant side and control

action can not be exerted beyond the actuator saturation limit.

In Eq. 1, the estimated state is calculated using the Kalman Gain,

L and output measurement y[k]. Plant outputs are sampled by

sensors and transmitted provided they are within supported sensing

ranges. The matrices A,B,C,D are system matrices and constant in

nature. For a plant-control loop (P ,K) with K as the state feedback

gain, we define X [k] = [xT[k] x̂T[k] u[k]T]T as state vector for the

augmented system comprising both the plant and estimator states

along with control inputs. The augmented system helps analyze

the effect of execution skips on the closed loop. The dynamical

equation for the augmented system is given by, X [k + 1] = A1 X [k],

where A1 =

[
A 0 B
LC A − LC − BK 0

KLC KA − KLC − KBK 0

]
. If the execution of

the controller is intentionally skipped inside a sampling interval

[k,k + 1), no new control update is communicated to the plant and

state estimation unit in that sampling instance but sensor update

is received. Therefore, the plant state is updated using the last

communicated control input from previous iteration i.e., u[k + 1] =
u[k] and state space equations change as follows.

x [k + 1] =A x [k] + B u[k], u[k + 1] = u[k]
x̂ [k + 1] =LC x [k] + (A − LC) x̂ [k] + Bu[k] (2)

Following Eq.(2), during control skips the augmented system pro-

gresses with A0 =

[
A 0 B
LC A − LC − BK 0

0 0 I

]
instead of A1. Next,

we define the notion of control skipping pattern as follows.

Definition 1. Control Skipping Pattern : An l-length control
skipping pattern for a given control loop (P ,K), is an l length sequence
ρ ∈ {0, 1}l such that it can be used to define an infinite length control
schedule π = ρω , repeating with period l , i.e., π [k] = π [k + l] =
ρ[k%l],∀k ∈ Z+. □

2

The evolution of the closed loop system according to a control

skipping pattern can be exemplified as: for ρ = 110010, we have,

X [6] = A1X [5] = A1A1A0X [3] = . . . = A1A1A0A0A1A0X [0].

2.2 Control Design and Performance Metrics
The control design metric represents the control objective while

designing the controller. One such design metric that we use in this

work is settling time. It is the time needed by the system output

to fall and stay around the reference value (e.g., within 2 % error

band). Hence, the controller has to be designed in such a way

that given settling time requirement is always met. On the other

side, the control performance is the measure of quality of control

(QoC), i.e., how efficiently the design requirement is met. In this

work we consider LQR-based controller design technique. So we

use LQR cost function J as the performance metric given by, J =∑∞
k=0
(xT[k]Qx [k] + uT[k]Ru[k]), [1], with Q ≽ 0 and R ≻ 0 being

symmetric weighing matrices capturing the relative importance

that the control designer can give to the state deviation and control

effort respectively. Lower the LQR cost better the performance.

Sensor

Plant

Estimator

~u

4u

y ~y

x

x̂

4y

r

Detector

u

krk>Th

Attacker

Controller

Figure 2: CPS attack model

A significant amount of work

exists in the literature addressing

the issue of control design and

performance in the presence of

execution skips [7, 23, 28]. Given

the settling time requirement, Ts ,
we follow Theorem 4.1 of [7] to

calculate the minimum execution
rate, rmin , from Ts . This essen-

tially means, to maintain Ts , the controller has to be executed at

least ⌈l × rmin⌉ times in l-length consecutive control samples, i.e.,

in an l-length control skipping pattern, ρ, there has to be at least
⌈l × rmin⌉ number of ‘1’s. On the other hand, control performance

varies with relative positions of the execution skips in a pattern

(i.e., distribution of ‘0’s over ρ) [10].

2.3 Attack Modeling
A schematic of a cyber-physical system under stealthy false data

injection attacks is given in Fig. 2. We consider a stealthy attack

scenario where the communication network has been compromised

and an adversary can (i) provide false sensor measurements to the

controller, denoted by ỹ[k] = y[k] + △y[k] and (ii) tamper with

the control input resulting in ũ[k] = u[k] + △u[k] received by

the actuators. Here, △y[k] and △u[k] are the amount of measure-

ment and actuation errors respectively, induced by the attacker

at the k-th iteration, and we express this with an attack vector,

A[k] = [△uT[k] △yT[k]]T. Under these circumstances, the estima-

tor estimates corrupted x̂[k + 1] (i.e., ˜x̂[k + 1]) to minimize the

residue r [k] = ỹ[k] −Cx̂[k] (i.e., the difference between the mea-

surement received and the estimated measurement). Due to such a

compromised control sample, the plant states are polluted by the

attacker-induced errors. As a result, the manipulated states x̃[k] are
driven towards an unsafe region (outside of C2). We can formalize

the state progression in attacked situation using our augmented

system with manipulated state vector, X̃ [k + 1] = A1 X̃ [k] + B1 A[k]

where, BT
1
=

[
0 LT LTKT

0 0 I

]
. In presence of execution skip, BT

1

can be replaced with BT
0
=

[
0 LT 0

0 0 0

]
, causing minimized per-

turbations during skipped executions. Note that to the plant and

controller these false data injections may get disguised as process

and measurement noises. Following existing techniques for physics
based attack detection [9], we assume the following system protec-

tion and attack model.

(1) In our protection system model, the threshold-based intru-

sion detector flags an attack whenever the residue r [k] surpasses
the detector threshold given by some constantTh, i.e., ∥r [k]∥ > Th,
which in turn limits the attacker’s effort of manipulation (∥.∥ de-
notes vector 2-norm). We can also consider the system to be fitted

with popularly used χ2
based attack detectors since detection cri-

teria in such probabilistic detectors can as well be interpreted as

non-probabilistic threshold-based detection techniques [11].

(2) The attacker has full knowledge of the system dynamics and

threshold-based detectors present in the system. The attacker can

observe the system closely and choose proper false data irrespective

of knowing the control skipping pattern. The system supported

sensor range and actuator saturation limit impose a bound on at-

tacker’s stealthy efforts.

(3) The goal of the attacker is to alter the operating point of the

system thereby driving it to an unsafe state x < C2 in the least

amount of time possible while remaining stealthy. An attack vector

of length d can be defined as Ad = A[1 : d] =
[
△u1 · · · △ud
△y1 · · · △yd

]
.

The attack vector Ad launched on a protected control system exe-

cuting its k-th iteration is deemed 1) stealthy if ∥r [i]∥ ≤ Th for all

i ∈ [k + 1,k + d + nup] where nup is the up-time of the IDS, and

2) successful if ∃j ∈ [k + 1,k + d + nup] such that x[j] < C2, i.e., it

violates the safety criterion of the system. Note that we define the

stealthiness and success of an attack of length d over a window of

d +nup control samples, because an attack of d-iterations can drive

the system to an unsafe state even after the attack is over. So, we

check the safety criteria for a period equal to the attack duration d
followed by the time nup between the attacker’s two consecutive

attempts. This setting works because of our additional constraint

that during IDS operation for period nup we ensure that the system

will converge back inside C1.

3 A MOTIVATING EXAMPLE
We consider a trajectory tracking control (TTC) example to demon-

strate the advantage of using control skipping pattern in improving

the attack resilience of the system. TTC system regulates deviation

(denoted by D) of a vehicle from a given trajectory and deviation

(denoted byV) from a reference velocity by applying proper amount

of acceleration as control input. To cope up with the space we refer

to Tab. 1 for the system matrices and initial safety regions. Fol-

lowing [7], the settling time criterion of 5 s allows maximum 50%

execution skips, i.e., rmin = 0.5 for this system. The protection

system considered in place is a threshold-based anomaly detector

having Th = 2. The attacker model is as described in Sec. 2.3.

In Fig. 3a, we consider two possible control schedule scenar-

ios. With the periodic pattern 1
ω
, there exists an attack vector

of length 11 for which the system becomes unsafe at the 6-th
3

iteration. However, this attack vector is stealthy as the residue

is never higher than the threshold. The reason that the attack

length need to be much larger than the point of safety violation

is because, suddenly stopping the attack after the 6-th iteration

will lead to large residue and thereby detection. Hence the at-

tack needs to gradually decrease without drastic modification in

system dynamics. In fact, it can be checked that for this system,

11 is the minimum attack length (dmin), i.e. there does not exist

any attack vector of length < 11 which is stealthy but successful.

10 20 30 40 50
iterations

0

20

40

V

0

2

4

r

safe V

V for (1)

V for (11010011)

Th

r for (1)

r for (11010011)

Unsafe &

stealthy

for (1)

Detected

 at next

iteration

for pattern

11 length attack

(a) Attack vector for periodic not stealthy on
11010011

10 20 30 40
iterations

0

10

20

30

V

0

2

4

r

safe V

V for (11010011)

Th

r for (11010011)

Unsafe State

15 length attack

(b) Stealthy and successful attack for 11010011with
more ndown

Figure 3: Plotting V (in blue) in left y-axis
and residue r (in red) in right y-axis (in cor-
responding scales) to demonstrate the effect
of stealthy attack on TTC with and without
pattern-based execution. V crossing the blue
dashed line (safety boundary of V) leads to vi-
olation of safety and r crossing the red dashed
line (Th) indicates attack is detected.

Next, we choose an

8-length control skip-

ping pattern, ρ1 =

11010011 that satis-

fies rmin = 0.5.

With the same choice

of attack vector as

used earlier in the

periodic execution,

this time, running

the system with the

pattern ρ1, we ob-

serve the following

cases.

O1. While the 11-

length attack could

drive the system to

an unsafe state and

remain stealthy for

fully periodic exe-

cution, in case of

execution with the

pattern ρ1, it is de-

tected at 9-th itera-

tion just after driv-

ing the system to an

unsafe state at 8-th
iteration. This happens because due to the control skips the at-

tacker’s efforts in those samples are not affecting the system. This

leads to better unbiased estimation in such iterations which may

create a large residue resulting detection in future iterations that

are under attack.

O2. We also find that no successful but stealthy attack of length

d < 15 is possible for this system running with the pattern ρ1.

System response for this pattern-based execution (ρω
1
) of the system,

with a successful and stealthy attack vector of length d = 15 is

depicted in Fig. 3b. The control skips reduce the amount of attack

that could have been injected while remaining stealthy. In general,

the value of dmin is dependent on the choice of pattern because

system-behaviour under a control skipping pattern depends on the

positions of the control skips and the nature of the system.

O3. Since the minimum attack-length dmin = 15 in this case, we

can setndown = 14 increasing the attack resilience (i.e.,ndown/nup)
by ≈ 30% in comparison with the periodic execution (ndown = 10)

for a fixed value of nup . This increment in ndown in-turns reduces

the computation time of the IDS saving the resource bandwidth.

O4. In general, there may exist multiple patterns that are equally

resilient (i.e. with similar dmin). Among such patterns with similar

resilience, it makes sense to choose the one providing better control

performance, e.g. lower LQR cost in our setting. The observations

indicate that it is possible for a CPS to be more resilient to false data

injection attacks when running with a control skipping pattern

when compared with fully periodic execution. However, we need

an efficient algorithmic framework in order to search for such

performance preserving attack resilient patterns. The next section

describes such a framework in detail.

4 PROPOSED METHODOLOGY
As motivated earlier, our framework has two distinct steps which

are discussed next.

• Step-1: We synthesize a set of control skipping patterns P, and
rank them according to their control performance (ref. Algo. 1). This

helps in filtering upfront all the patterns that violate the desired

control performance.

• Step-2: In this step, we synthesize the setPR ⊂ P of most attack

resilient control skipping pattern(s), which guarantee minimal re-

source usage and best ranked control performance (ref. Algo. 3). For

this, we compute successful yet stealthy attack vectors for control

schedules ∈ P using Algo. 2.

4.1 Synthesizing and Ranking Patterns based
on Control Performance

Recall that in Sec. 2.2, we already limit the number of allowable exe-

cution skips by imposing the constraint of minimum execution rate
rmin . Yet, for a large l , the number of patterns is still very large for

testing attack resilience. Moreover w.r.t. resilience, it is important

to remember that a pattern under repeated execution is equivalent

to any of its cyclic shifts as the attack can start at any point of exe-

cution. For example, the patterns 1110 and 0111 are equivalent since

one can be derived from another using cyclic shifts. Both represent

the same infinite control schedule, i.e. (1110)ω = (0111)ω . Thus, we
need a measure which i) considers any two patterns that are cyclic

shifts of each other as equivalent and ii) is also indicative of the

control performance of a candidate pattern. Using such a measure

to rank patterns provides the following advantage. Patterns whose

cyclic shifts are already tested for resilience need not be tested again

thus eliminating expensive computation. Since the computation of

control performance index J for every pattern requires evaluating

a complex quadratic expression, a lightweight equivalent index can

help in ranking of patterns w.r.t. performance thus ensuring that

our method outputs patterns which are both resilient as well as

performance preserving.

In order to model these strategies in the pattern-synthesis ap-

proach, we use the correlation between the structure of a pattern

(i.e. relative position of skips) and its LQR cost. A well known the-

ory [10] establishes that a pattern having most uniform execution
skips (i.e., uniform distribution of ‘0’s) exhibits the lowest LQR cost.
The uniformity of binary patterns is defined in literature using the

notion of upper mechanical binary word [3]. Following the same we

can define the notion of most uniform skipping pattern as follows.

Definition 2. UniformControl Skipping Pattern:An l-length
control skipping pattern ρ with number of control execution skips =
⌊(1−rmin)×l⌋ (where rmin is as discussed earlier), is considered to be

4

fully uniform when the number of skips in each overlapping q-length
sub-sequence of ρ is exactly one, where q = ⌈l/{l × (1 − rmin)}⌉. □

For example, consider ρ1 = 101010 and ρ2 = 111000 which are

l = 6 length patterns satisfying rmin = 0.5. We can claim ρ1 is a

uniform pattern but ρ2 is not. Because, all 6 overlappingq = 6/3 = 2

length sub-sequences ⟨10, 01, 10, 01, 10, 01⟩ of ρ1 contain exactly

one ‘0’(i.e., skip), whereas ρ2 has only 2 such sub-sequences (3-rd

and 6-th) among ⟨11, 11, 10, 00, 00, 01⟩. It is understood that the

trailing sub-sequences are derived by cyclic rotation of the pattern.

With this observation we try to rank the patterns of a given length

based on how much they deviate from absolute uniformity. For this

we define a function skipCount(ρ, i,q) which outputs the number

of ‘0’s in a q-length sub-sequence of ρ starting from ρ[i] (i.e. the
i-th term of ρ). In case i + q − 1 > l , the sub-sequence under

consideration will wrap back to the front, i.e., it will be given by

ρ[i]ρ[i + 1] · · · ρ[l − 1] · · · ρ[(i +q − 1)%l]. Based on this, we employ

the following metric of non-uniformity for patterns in our work.

Definition 3. LQR-Distance(): Consider an l-length control
skipping pattern ρ withminimum execution rate rmin andq = ⌈l/{l×
(1 − rmin)}⌉. For a given ρ, the index LQR-Distance(ρ) is defined
as, LQR-Distance(ρ) = ∑l−1

i=0
|min(0, skipCount(ρ, i,q)−1)|. Given

patterns ρi and ρ j , ρi is considered more non-uniform than ρ j if
LQR-Distance(ρi) > LQR-Distance(ρ j). □

The subtraction of 1 is done since skipCount is expected as ‘1’ in

all cases for perfect uniformity. Considering the previously used

patterns ρ1 = 101010, ρ2 = 111000 (l = 6,q = 2), we have

LQR-Distance(ρ1) = 0, and LQR-Distance(ρ2) = 2. This gives

a measure that among these two patterns with same amount of

skip, the control performance of ρ1 will be better. Also, the measure

will be same for all cyclic shifts of a pattern since the definition

itself accounts for it. In that way, all patterns with equal length and

equal number of execution skips which evaluate to same value of

LQR-Distance will be similar in control performance.

We use the measure defined to rank and classify patterns in

Algorithm 1. In this algorithm, we consider a user specified pattern

length l and number of skips fixed as θ . With this, we first gen-

erate all possible l-length patterns (Line 3) with θ skips. Then we

group patterns with same LQR-Distance in the same set (Line 6).

Patterns with cyclic equivalence get automatically grouped with

same LQR-Distance value in the data structures called pattern-lists

denoted by s ∈ Sl where Sl is the overall collection of l length
patterns with θ skips. For patterns with same LQR-Distance, i.e., in
the same pattern-list, we carry out the following pruning operation.

For any ρ ∈ s , we eliminate all other patterns which are cyclic

shift equivalent of ρ (Line 10) since they are equivalent w.r.t. both

performance as well as resilience (as we shall see). Next, we include

this pruned set in S′ (Line 11). After the pruning is completed for

each pattern-list, the collective set is inserted into the final set of

patterns P (Line 12).

4.2 Attack Vector Synthesis
In order to synthesize patterns having best attack-resilience, an

important step is to verify the existence of successful and stealthy
attack vectors for patterns under test.We develop a formal approach

to synthesize attack vectors for control skipping patterns as outlined

Algorithm 1 Performance-based Pattern Synthesis

Require: pattern length: l ,Exact no. of skips: θ ,
Ensure: Set of pattern, P , sorted in ascending order of the LQR cost

1: function Rank_Pattern(l, θ)
2: P, S′, ¯Sl ← Φ; ▷ Initialized with NULL

3: Sl ← all possible l length pattern with l − θ number of ‘1’s; ▷ performance criteria

4: q ← ⌈{l/θ }⌉; ▷ the uniformity condition

5: for each pattern ρ ∈ Sl do
6:

¯Sl [LQR-Distance(ρ, q)] ← ρ ▷ group patterns w.r.t. LQR-Distance

7: for each pattern-list s ∈ ¯Sl do
8: for each ρ ∈ s do
9: for each cyclic shift ρ′ ∈ s do
10: s← s \ ρ′ ▷ omitting cyclic shifts of ρ
11: S′ ← S′ ∪ s
12: P ← P ∪ S′;
13: return P;

in Algorithm 2. We build on earlier work on attack vector synthesis

for periodic controllers [14].

Algorithm 2 Attack Vector Synthesis for Pattern-based Execution

Require: Attack length: d , pattern: ρ , IDS up-time: nup , detector threshold: Th, inner safety
region: C1 , outer safety region: C2

Ensure: Attack vector Ad of length d (if it exists, otherwise NULL)

1: function SynAttVec(d, ρ, nup , Th)
2: x [0] ∈ C1 ; x̂ [0] ← 0; u[0] ← Kx̂ [0] ← 0; y[0] ← Cx [0]; ▷ Starting from C1

3: r [0] ← y[0] −Cx̂ [0]; ũ[0] ← u[0]; ỹ[0] ← y[0];
4: for k = 1 to d + nup do
5: x [k] ← Ax [k − 1] + Bũ[k − 1]; x̂ [k] ← Ax̂ [k − 1] + Bu[k − 1] + Lr [k − 1];
6: if k ≤ d then △u[k] ← nondet(); △y[k] ← nondet();
7: else △u[k] ← 0; △y[k] ← 0;

8: if ρ[k] = 1 then u[k] ← Kx̂ [k]; ũ[k] ← u[k] + △u[k];
9: else u[k] ← u[k − 1]; ũ[k] ← ũ[k − 1]; ▷ Skip Execution

10: ỹ[k] ← y[k] + △y[k]; r [k] ← ỹ[k] −Cx̂ [k];
11: Φ←assert((|r [1] | ≤ Th∧.. |r [d+nup] | ≤ Th)∧ (x [1] < C2∨..∨x [d+nup] < C2));

12: if Φ is unsatisf iable then return NULL;

13: else return Ad ←
[
△u1 · · · △ud
△y1 · · · △yd

]
;

The function SynAttVec in Algo. 2, symbolically executes the

system starting from any initial state x[0] inside the inner safety
region C1(Line 2) for d + nup control samples following Eqn. (1).

In each sample k , we introduce two non-deterministic variables

△u[k] and △y[k] to model the actuation and measurement errors

introduced by the adversary (Line 6). Attack length is bounded to

d by setting these variables to zero for each iteration k > d . In case

of the skip in k-th control execution (i.e., ρ[k] = 0), x[k], r [k],y[k]
are calculated following Eq. (2) (u[k], ũ[k] are updated using the

last calculated u[k − 1], ũ[k − 1] , in line 9). The function at the

end validates an assertion using the SMT solver Z3 [5] to check if

any attack of length d that is stealthy over d + nup samples (i.e.,

until further activation of IDS), violates the safety requirements of

the system in any control sample (Line 11). On getting satisfiable

solution from the solver, SynAttVec() returns a successful attack

vector Ad of length d (Line 13). Otherwise it returns NULL. This

guarantees that no attack vector of length d exists that remains

stealthy over d + nup control samples and successfully violates the

safety of the system in any of those samples.

4.3 Synthesizing Attack Resilient Patterns
As described earlier, given a control system, we compute a reduced

set P with fixed length control skipping patterns and fixed num-

ber of skips, ranked according to their control performance using

Algo. 1. We use the set P to find a further pruned set of patterns

Pl ⊂ P where each ρ ∈ Pl has a sporadic IDS specification ⟨n
ρ
up ,

n
ρ
down⟩ for a detector threshold Th, ensuring the following.

1) The ranking of the l length patterns (w.r.t. descending order of

5

Algorithm 3Most Attack Resilient Pattern Synthesis

Require: Desired pattern length l , 1-length pattern for periodic control execution: ρ∗ , detec-
tor Threshold: Th, inner and outer safety regions: C1 and C2 , plant and controller matrices:

A, B, C, K , Min. execution rate: rmin
Ensure: Set of most attack resilient l length patterns PR
1: θmax ← ⌊l × (1 − rmin)⌋; ▷ initializing with maximum number of skips allowed

2: for each θ ∈ [1, θmax] do
3: P ← RankPattern(l, θ);
4: nρ

∗
up ←FindOnTime(ρ∗, C1, C2); d ← 1; ▷ Finding ontime of the IDS, Initializing d

5: d∗min ←MinAttLen(ρ∗, d, nρ
∗

up , Th);

6: nρdown ← d∗min − 1; dmin ← d∗min ▷ Initializing with minimum attack length for

1
ω

7: rateρ∗ ← nρ
∗

up /(n
ρ∗
down + n

ρ∗
up); ratemin ← rateρ∗ ; ▷ Initializing with 1

ω
IDS

rate

8: for each pattern ρ ∈ P do
9: nρup ←FindOnTime(ρ, C1, C2); d ←MinAttLen(ρ, dmin, n

ρ
up , Th);

10: if d ≥ dmin then
11: nρdown ← d − 1; rateρ ← nρup /(n

ρ
down + n

ρ
up);

12: if rateρ > ratemin then P ← P \ ρ
13: else ratemin ← rateρ ; dmin ← d ;
14: else P ← P \ ρ
15: for each pattern ρ ∈ P do
16: if rateρ == ratemin then Pl ← ρ ;
17: PR [θ] ← Pl ▷ Store l length most attack resilient patterns performance wise

18: return PR
19: function MinAttLen(ρ , dm , nup , Th)
20: d ← dm ;

21: repeat d ← d + 1

22: for i = 0 to |ρ | − 1 do
23: ρ′ ← i-times left cyclic shift of pattern ρ ;
24: if SynAttVec(d, ρ′, nup , Th) , NU LL then return d − 1;

25: until SynAttVec(d, ρ′, nup , Th)= NU LL
26: function FindOnTime(ρ, C1, C2)

27: n ← 1

28: for i = 0 to |ρ | − 1 do
29: ρ′ ← i-times left cyclic shift of pattern ρ ;
30: repeat
31: x [0] ∈ C2 ; u[0] = 0; r [0] = 0;

32: for k = 1 to n do
33: r [k − 1] ← y[k − 1] −Cx̂ [k − 1];
34: x̂ [k] ← Ax̂ [k −1]+Bu[k −1]+Lr [k −1]; x [k] ← Ax [k −1]+Bu[k −1];
35: if ρ′[k] = 1 then u[k] = Kx̂ [k];
36: else u[k] ← u[k − 1]; ▷ Skip Execution

37: Φ← assert(|r [1] | ≤ Th ∧ · · · ∧ |r [n] | ≤ Th ∧ x [n] < C1);
38: n ← n + 1

39: until Φ is unsatisf iable
40: n ← n − 1

41: return n

Quality of Control (QoC)) as set by Algo. 1 is maintained in Pl .
2) Given the inner and outer safety regions, C1 and C2, (ref. Fig. 1),

starting from anywhere inside C2, the system will reach C1 under

a safe scenario with no stealthy attack as guaranteed by an IDS

within n
ρ
up iterations.

3) (nρdown + 1) is minimum attack length required to drive the sys-

tem to an unsafe state while remaining stealthy.

4) Attack resilience, i.e., (nρdown/n
ρ
up) will be maximum and same

for all the patterns in Pl ensuring minimum IDS execution rate, i.e.,

n
ρ
up/(n

ρ
down + n

ρ
up).

We derive such a set Pl for all allowable number of skips θ ∈
[1, ⌊l × (1 − rmin)⌋] (for certain l length) and arrange them in in-

creasing order of control skips. The method is outlined in Algo. 3.

Here, our goal is to output set of patterns, PR , with most attack

resilience that would help us design better sporadic IDS schemes

with provable security, improved resource utilization ensuring best

performance. We define ρ∗ = 1 as the 1-length pattern represent-

ing the periodic execution, i.e., (ρ∗)ω = 1
ω
in order to represent

existing IDS schemes in literature.

In Algo. 3, we compute IDS up and down time for any pattern

using FindOnTime() and MinAttLen() function respectively. Find-

OnTime() returns the minimum number of iterations required by

following the pattern ρ to formally guarantee that the system start-

ing from any state x[k] in the outer safety region C2 (as a result of

successful attack) will be in a state inside the inner safety region

C1 (Lines 26-41). We symbolically simulate attack-free closed loop

iterations of the system starting from an initial state x[0] ∈ C2

according to the pattern ρ ′ (where ρ ′ represents a left cyclic shift
of the pattern ρ) (Lines 29-31). We use the clause x[k] < C1 which

implies that the system is not inside the inner safety region C1

after k iterations (Line 37). This assertion is the negation of our

design requirement for the up-time nup of the IDS. If the assertion

Φ is found to be unsatisfiable using SMT solver, then our design

requirement is valid (Line 39-40). However, if Φ is satisfiable, then

we infer that the present IDS up-time, n, is not sufficient to bring

the system to the inner safety region C1 starting from any point

in the outer safety region C2, and we increase n until Φ becomes

unsatisfiable (Line 38). We now repeat this procedure to find the

maximum value of n that satisfies our design requirement over all

possible cyclic shifts of the pattern ρ (Lines 30-38). We check for

all possible such shifts since the system can start from C2 while

executing any position in the pattern. The value of n thus found is a

safe up-time of the sporadic IDS designed using an attack resilient

control skipping pattern ρ, i.e. n
ρ
up = n (Line 41).

The MinAttLen() function on the other hand computes all pos-

sible cyclic shifts of the input pattern as ρ ′ (Line 23) and calls the

function SynAttVec() (Line 24) which checks for existence of pos-

sible stealthy and successful attack vector of length d (initialized

with input length dm in line 20). If no attack vector of length d
exists, we can claim that the system can not be made unsafe with

stealthy attack of length d . Hence, we search again for an attack

vector by increasing the attack length by 1 (Line 21). Otherwise,

on finding a successful and stealthy attack vector of d length, we

terminate by decreasing the length by 1 and return the length as

minimum attack length (Line 24).

We start Algo. 3 by choosing a certain number of control skips

θ ≤ θmax ,which is the maximum number of allowed control skips

for l length pattern, calculated using the length input l and mini-

mum execution rate criteria for a system i.e. rmin (θmax = ⌊l ×(1−
rmin)⌋, Lines 1- 2). For this ⟨l ,θ⟩ pair we call RankPattern(l ,θ)
to get the pruned and Quality of Control (QoC) wise ordered set

of l length patterns P. Our aim here is to make the IDS scheme as

much sporadic as possible i.e. minimizing the IDS execution rate

(nup/(nup +ndown))) w.r.t. their periodic counterpart by examining

all l length patterns. So we start our attack resilience analysis with

the periodic pattern ρ∗. We derive d∗min i.e., minimum attack length

for ρ∗ (periodic execution) and update dmin with it first. Then we

calculate down time for ρ∗, i.e., nρ
∗

down = d∗min − 1 (Line 5-6). We

compute IDS up-time for ρ∗ in line 4. Then we initialize ratemin
with IDS execution rate for periodic execution i.e., rateρ∗ (Line 7).

Next, for every pattern ρ ∈ P, we first calculate the up-time (n
ρ
up)

and minimum attack length (d) for ρ using the functions FindOn-

Time() and MinAttLen() respectively (Line 9). If d is larger than or

equal to dmin indicating better attack resilience (n
ρ
down/n

ρ
up) than

last found most attack resilient pattern (Line 10), we compute rateρ ,

6

the execution rate for the pattern ρ (Line 11). A pattern ρ is removed

from P if rateρ > ratemin since ρ can not reduce IDS utilization

when compared to last found best candidate (Line 12). Otherwise,

ratemin and dmin are updated with rateρ and d respectively (Line

13).

While repeating the above procedure for all patterns (∀ρ ∈ P),
we pick the patterns with least IDS execution rate ratemin from

P and insert them into Pl maintaining their actual order (Line

16). This sorted set Pl has following properties, i.e. ∀ρ ∈ Pl , (i)
rateρ = ratemin among all l length patterns with θ number of

skips and (ii) all patterns in Pl are sorted in increasing order of

LQR-Distance. We store Pl derived for all possible skips (≤ θmax)

for a fixed length l in PR , indexing them with number of skips (Line

17) and finally returning this set (Line 18). In PR , the set of patterns
with smaller number of skips are better in control performance

and patterns with same number of skips are internally sorted (in

each entry of PR) following uniformity measure. A system running

with any of the l length control skipping patterns ∈ PR meets

the desired performance criteria with best QoC and a sporadic

IDS can be designed for this system having a formal guarantee of

the security against false data injection attack with minimum IDS

activation.

5 RESULTS
We demonstrate the efficacy of our proposed approach considering

two systems from the automotive domain. The systems are Vehicle
Dynamic Controller (VDC) and Trajectory Tracking Controller (TTC).

5.1 Case Studies
VDC regulates the lateral dynamics of a vehicle by controlling

its side slip (β) and yaw rate (γ) [29]. The control input in this

case is the steering angle. For TTC [11], details about the system

specifications are given in Sec. 3. For both the systems, system

matrices (A,B,C), sampling period (h), outer (C2), inner (C1) safety

regions of the state variables and detector thresholds (Th) are given
in Tab. 1. Safety regions are determined following [19, 20].

Table 1: System Specifications
System Specifications C2 C1 Th

VDC

A = [0.4450,-0.0458;1.2939,0.4402];

B = [0.0550;4.5607]; C = [0,1];

h = 0.1sec; K = [-0.0987;0.1420];

L = [-0.0390;0.4339]

β ∈ [-1, 1]
γ ∈ [-2, 2]

β ∈ [-0.1, 0.1]
γ ∈ [-0.2, 0.2] 0.003

TTC

A = [1.0000, 0.1000;0, 1.0000];

B = [0.0050;0.1000]; C = [1 0];

h = 0.1sec; K = [16.0302, 5.6622];

L = [1.8721;9.6532]

D ∈ [-25, 25]
V ∈ [-30, 30]

D ∈ [-15, 15]
V ∈ [-18, 18] 2

For the above systems, we first report in Row 1 of both parts of

Tab. 2 the results for sporadic IDS design with fully periodic execu-

tion (1
ω
) similar to [11]. For periodic execution, our method com-

putes IDS up-time nup = 3, 3, and minimum attack length dmin =

11, 3 for TTC and VDC respectively. These are given in Row 1, Col.

4 of both parts in Tab. 2 (ndown = dmin − 1). Using these, IDS exe-

cution rates (rate) of periodic execution are calculated and reported

in Col. 5 of Tab. 2. We now apply Algo. 3 considering rmin = 0.5 for

both VDC and TTC as derived from their respective settling time re-

quirements. The value of rmin combined with different possible val-

ues of l provide us multiple combinations of (l ,θ) as given in Col. 2.

For each case, Algo. 3 outputs the patterns with maximum resilience

as provided in Col. 3 of Tab. 2. If there are multiple such patterns

Table 2: Designed Sporadic IDS schemes for VDC and TTC

Sys. ⟨l, θ ⟩ pattern ⟨ndown, nup ⟩ rate LQR-D
- 1 10,3 0.2308 -

10,3 1010011111 15,3 0.1667 3
10,4 1101011100 14,3 0.1765 1

10,5 1101001010 13,3 0.1875 1

11,4 11010111100 15,3 0.1667 2
10100101011 13,3 0.1875 1

TTC

11,5

10100111010 13,3 0.1875 1

- 1 2,3 0.6 -

VDC

2,1 10 5,3 0.375 0
5,2 11010 4,3 0.4286 0

110010 5,3 0.375 1
110100 5,3 0.375 16,3

100011 5,3 0.375 2

10,5

1100101010 4,3 0.4286 1

1101001010 4,3 0.4286 1

1000111001 4,3 0.4286 2

110001110010 4,3 0.4286 3

VDC

12,6

110100111000 4,3 0.4286 3

with same resilience, the algorithm provides them in decreasing or-

der of control performance (i.e. increasing LQR-D for the same (l ,θ)
in col. 6). For each pattern, the corresponding safe IDS configuration

⟨nup ,ndown⟩ is given in Col. 4 with the IDS execution rate in Col. 5.

1 2 3 4 5 6 7 8
Iterations

0

2

4
re

s
id

u
e

10
-3

Th || r || in 1 || r || in (10)

(a) Stealthy attack on VDC

1 2 3 4 5 6 7 8
Iterations

0

1

2

3

 (
ra

d
),

 (

ra
d

/s
) safe in 1 in (10)

safe in 1 in (10)

On time in (10)Off time in (10)

On time in 1Off time

in 1

(b) Higher IDS Off time (ndown) for control skipping

For each system, the

patterns reported by

our automatedmethod

as most attack re-

silient (i.e. requir-

ing lowest IDS us-

age) are marked in

bold. As one may re-

call, the input l and
rmin provides the

maximum number

of skips, i.e. θmax .

For TTC, running

our method with

l = 10, we find the

most attack resilient

pattern as ρ =

1010011111 (with IDS

rate 0.1667) showing a 27.78% improvement w.r.t. existing periodic

IDS with rate = 0.2307 (ref. Col. 5, Row 1). For l = 11, we have

ρ = 11010111100 with similar resilience. For a given l , Algo. 3
(Lines 2-17), automatically tries for different values of θ ∈ [1,θmax]
and reports only those values which provide better resilience w.r.t.

periodic control. So, we do not have entries like (l ,θ) = (10, 2) and
many others. Similarly for VDC, our methodology was tried with

different values of l and the most resilient solutions are shown in

bold resulting in about 37.5% reduction in IDS rate.

For comparison, we consider the effect of a stealthy and successful

attack on VDC when it is executing the closed loop following 1
ω

(periodic) and (10)ω (best pattern returned by Algo. 3 for l = 2). Our

method reveals the the minimum attack length for VDC following

1
ω
and (10)ω as 3 and 5 respectively. Fig. 4a shows the residue of

the VDC considering an attack scenario which is stealthy since

| |r | | ≤ Th is always satisfied for both 1
ω
and (10)ω . For the same

attack scenario, we plot system states (i.e., side slip β and yaw rate

γ) of the VDC in Fig. 4b considering both 1
ω
and (10)ω . The attack

7

inflicted during the IDS off time is unable to cross the safety limits

(of value 1 and 2 in Y axis) as we activate IDS from 2-nd iteration

in case of 1
ω
and from 5-th iteration in case of (10)ω depending on

their corresponding minimum attack lengths as mentioned earlier.

The plot clearly demonstrates that due to the deployment of pattern

based execution, the safety of the system is maintained in spite of

increasing the down-time of the IDS (from 2 to 5). This validates our

principal claim of potential increment in system attack resilience

provably improving security by judiciously skipping some control

executions. Next, we demonstrate a useful application of the abil-

ity to implement provably safe sporadic IDS leveraging control

skipping patterns in automotive systems.

5.2 Manifestation on CAN bandwidth
Let us consider an automotive system where the CAN messages

are communicated through the bus with a speed of B bps at peri-

odicity p1, p2, . . . ,pk such that p1 > p2 > · · · > pk . The number

of message types with rate pi is given bymi , i ∈ {1, · · · ,k}. As-
sume that IDS is implemented for messages with periodicity pk ′
and there aremk ′ > 0 number of such types of messages. Similar

to [4], we consider a p1-length observation window (≥ the largest

period) and compute bandwidth consumption in CAN bus for the

aforementioned setup through the following steps.

A. We find out the number of messages communicated over the

observation window p1. For anymi it is ci = ⌈p1/pi ⌉∀i ∈ [0,k]. We

consider maximum CAN payload for each message, i.e. 64 bits.

B. For each of them′k different type of messages, the IDS rate is

ratei , i ∈ [1,m′k]. If we design the IDS with CMAC/AES-128 (with

a-bit CMAC) [27] encryption to provide confidentiality and au-

thenticity, payload will be of size (64+a) bits. This will convert
to ⌈(64+a)/128⌉ AES blocks or b= (⌈(64+a)/128⌉ × 128)/64 CAN

frames (CAN payload size=64). In such an arrangement, each CAN

frame will be replaced by b CAN frames when IDS is active (refer

Fig. 5a where b = 4). Hence, over the observation window, each of

themk ′ messages is transmitted (1− ratei) × ck ′ times without IDS

active and b × ratei × ck ′ times with IDS active giving a total count

of (1 + (b − 1)ratei) × ck ′ .
C. Additional 47 bits are added to the payload to form one CAN

frame (SOF + Arbitration + RTR + Control + CRC + Acknowledg-

ment + EOF + Interframe Space = 1 + 11 + 1 + 6 + 16 + 2 + 7 + 3 =

47 bits)[4]. Thus, in our consideration, size of each CAN frame is

(64+47) bits = 111 bits. Following this, total bandwidth consump-

tion over observation window is computed as T = 111 × [m1 +

m2 × c2 + .. +
∑mk′
i=1
(1 + (b − 1)ratei) × ck ′ + .. +mk × ck]/B. Let

the IDS rates for some control skipping pattern, output by Algo. 3

be rate ′i ,∀i ∈ [1,mk ′]. Since Algorithm 3 ensures if proposed pat-

terns are used rate ′i < ratei (∀i ∈ [1,mk ′]), the improvement in

bandwidth consumption when executing a pattern based sched-

ule compared to a periodic schedule is given as, (T − T ′)/T =
111 ·∑mk′

i=1
((1 + (b − 1)(ratei − rate ′i)) · c3)/T consideringT ′ as the

bandwidth consumed by pattern based schedule.

Example: Let us consider the following setup of (#message, period-

icity): ⟨m1,p1⟩ = ⟨10, 1⟩, ⟨m2,p2⟩ = ⟨20, 0.2⟩, ⟨m3,p3⟩ = ⟨2, 0.1⟩(VDC),
⟨m4,p4⟩ = ⟨2, 0.1⟩(TTC) in CAN bus. So, the VDC and TTC both

require two types of messages (sensor o/p, control i/p) of period p3

and p4 respectively. These are denoted by CAN IDs 1 · · · 4(Fig. 5a).

Figure 5: a) CAN Transmissions with sporadic IDS in presence of adversary,
b) Message flow for periodic execution, c) Message flow for skipped execution

During skips in the control execution, actuation signals are not

communicated as we can see in Fig. 5c, which also frees bandwidth.

If the IDS scheme in place uses 128 bit CMAC (i.e. a = 128), it

replaces each CAN frame with b = 4 CAN frames when IDS is

active (refer Fig. 5a). Following the derived formula for the afore-

mentioned setup, we get 16.25% net improvement in CAN bandwidth
consumption using the secure control schedule 10

ω
for VDC and

1010011111
ω
for TTC. Considering our methodology to design such

pattern based secure control schedules for a significant number

of control loops has an additive effect on the bandwidth saving.

Thus our methodology helps to design sporadic IDS schemes based

on intentional control loop skips which promise better resource

utilization in terms of communication bandwidth.

6 RELATEDWORK
We provide a brief survey on existing works in the area of secure

control which are relevant in the context of the current work. In

[17], the authors discuss suitable conditions under which a control

system with χ2
based detectors is stealthily attackable. The per-

formance degradation of such χ2
detector enabled systems in the

presence of stealthy attacks has been quantified in [6]. In [18], the

authors report such ‘fake disturbance attacks’ and their implications

in Network Control Systems (NCS) in the presence of deterministic

monitoring algorithms. The idea of stealthy attacks on both sensor

and actuator sides being able to destabilize automated power gen-

eration systems with threshold based detectors has been discussed

in [25]. Authors in [2] also discuss security vulnerabilities in auto-

motive CPS domain. Designing resilient control implementations

by leveraging secure state estimation techniques, more specifically

in the automotive context has been reported in [22]. The idea of

sporadically using IDS schemes like MAC computation has been

investigated in a different line of works [11, 12, 16], but in the

context of periodic control only. In [8], the authors explore the ad-

vantage of employing lightweight periodic authentication schemes

like Physically Unclonable Functions (PUFs) in the context of cyber

physical security as a sporadically available IDS mechanism, again

for periodic control. In that work, the periodic availability of the

authentication scheme depends on the PUF delay (PUF with high

reliability incurs higher delay due to reliability peripherals like

error correction, helper data etc). In the current work, we assume

that the IDS security primitive is available for nup consecutive iter-

ations followed by an off time for which we are able to establish a

guarantee that the performance degradation due to stealthy attacks

is inside recoverable limits.

8

7 CONCLUSION
The present work demonstrates how control skipping patterns can

be synthesized guaranteeing desired performance with increased

resilience. The safe and resilient patterns generated by the method

helped in reducing the computation and communication overhead

of IDS schemes employed in Automotive CPS. Integrating our SMT

based technique with safe but approximate analysis (e.g. using

‘Barrier functions’) can help increase the scalability of the approach

for applicability in complex industrial test cases. This along with

controller synthesis for the joint objective of performance and

security are important future extensions possible for this work.

REFERENCES
[1] Karl J Åström and BjörnWittenmark. 1997. Computer-controlled systems. Prentice-

Hall, Inc.

[2] Paul Carsten and et al. 2015. In-vehicle networks: Attacks, vulnerabilities, and

proposed solutions. In CISRC. ACM.

[3] Christian Choffrut and Juhani Karhumäki. 1997. Combinatorics of words, Hand-

book of formal languages, vol. 1: word, language, grammar. (1997).

[4] JA Cook and JS Freudenberg. 2007. Controller Area Network (CAN). EECS 461
(2007), 1–5.

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

TACAS. Springer.
[6] Benjamin Gerard et al. 2018. Cyber Security and Vulnerability Analysis of

Networked Control System subject to False-Data injection. In ACC. IEEE.
[7] Sumana Ghosh et al. 2017. A structured methodology for pattern based adaptive

scheduling in embedded control. ACM TECS 16, 5s (2017), 189.
[8] Saurav K. Ghosh et al. 2018. Performance, Security Trade-offs in Secure Control.

IEEE ESL (2018).

[9] Jairo Giraldo et al. 2018. A survey of physics-based attack detection in cyber-

physical systems. ACM Computing Surveys (CSUR) 51, 4 (2018), 76.
[10] Ning Jia, Ye-Qiong Song, and Françoise Simonot-Lion. 2007. Graceful degradation

of the quality of control through data drop policy. In 2007 European Control
Conference (ECC). IEEE.

[11] Ilija Jovanov and Miroslav Pajic. 2017. Sporadic data integrity for secure state

estimation. In CDC. IEEE.
[12] Ilija Jovanov and Miroslav Pajic. 2018. Secure State Estimation with Cumulative

Message Authentication. In CDC. IEEE.
[13] Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction

problems. J. Basic Eng. 82, 1 (1960), 35–45.
[14] Ipsita Koley et al. 2020. Formal Synthesis of Monitoring and Detection Systems

for Secure CPS Implementations. (2020). arXiv:cs.CR/2002.12412

[15] Philipp Kreimel et al. 2017. Anomaly-Based Detection and Classification of

Attacks in Cyber-Physical Systems. In ARES. ACM.

[16] Vuk Lesi et al. 2017. Security-Aware Scheduling of Embedded Control Tasks.

ACM TECS 16, 5 (2017).
[17] Yilin Mo and Bruno Sinopoli. 2010. False data injection attacks in control systems.

In SCS.
[18] Yilin Mo and Bruno Sinopoli. 2016. On the Performance Degradation of Cyber-

Physical Systems Under Stealthy Integrity Attacks. IEEE TAC 61, 9 (2016), 2618–

2624.

[19] BoschMotorsport. 2020. Acceleration SensorMM5.10. (May 2020). RetrievedMay

28, 2020 from http://www.bosch-motorsport.de/content/downloads/Raceparts/

en-GB/51546379119226251.html

[20] Bosch Motorsport. 2020. Steering Wheel Angle Sensor LWS. (May 2020). Re-

trieved May 28, 2020 from http://www.bosch-motorsport.de/content/downloads/

Raceparts/en-GB/54425995191962507.html

[21] Arslan Munir and Farinaz Koushanfar. 2018. Design and analysis of secure and

dependable automotive CPS: A steer-by-wire case study. IEEE Transactions on
Dependable and Secure Computing (2018).

[22] Miroslav Pajic et al. 2017. Design and Implementation of Attack-Resilient Cy-

berphysical Systems: With a Focus on Attack-Resilient State Estimators. IEEE
Control Systems Magazine 37, 2 (April 2017), 66–81.

[23] Damoon Soudbakhsh et al. 2013. Co-design of control and platform with dropped

signals. In ICCPS. ACM.

[24] Andre Teixeira et al. 2015. A secure control framework for resource-limited

adversaries. Automatica 51 (2015), 135–148.
[25] Andre Teixeira et al. 2015. Secure control systems: A quantitative risk manage-

ment approach. IEEE Control Systems Magazine 35, 1 (2015), 24–45.
[26] Korosh Vatanparvar and Mohammad Abdullah Al Faruque. 2019. Self-Secured

Control with Anomaly Detection and Recovery in Automotive Cyber-Physical

Systems. In DATE. IEEE.

[27] Springer FachmedienWiesbaden. 2013. AUTOSAR—TheWorldwide Automotive

Standard for E/E Systems. ATZextra worldwide 18, 9 (Oct 2013), 5–12.
[28] Wei Zhang et al. 2001. Stability of networked control systems. IEEE Control

Systems 21, 1 (Feb 2001), 84–99.
[29] Shuibo Zheng, Houjun Tang, Zhengzhi Han, and Yong Zhang. 2006. Controller

design for vehicle stability enhancement. Control Engineering Practice 14, 12
(2006), 1413–1421.

9

http://arxiv.org/abs/cs.CR/2002.12412
http://www.bosch-motorsport.de/content/downloads/Raceparts/en-GB/51546379119226251.html
http://www.bosch-motorsport.de/content/downloads/Raceparts/en-GB/51546379119226251.html
http://www.bosch-motorsport.de/content/downloads/Raceparts/en-GB/54425995191962507.html
http://www.bosch-motorsport.de/content/downloads/Raceparts/en-GB/54425995191962507.html

	Abstract
	1 Introduction
	2 Model Description
	2.1 Control System Modeling
	2.2 Control Design and Performance Metrics
	2.3 Attack Modeling

	3 A Motivating Example
	4 Proposed Methodology
	4.1 Synthesizing and Ranking Patterns based on Control Performance
	4.2 Attack Vector Synthesis
	4.3 Synthesizing Attack Resilient Patterns

	5 Results
	5.1 Case Studies
	5.2 Manifestation on CAN bandwidth

	6 Related Work
	7 Conclusion
	References

