2009.02667v1 [cs.CR] 6 Sep 2020

arXiv

An extended abstract of this article was accepted for presentation at CYSARM 2020. This is a pre-publication authors’ copy.

Efficiency Improvements for Encrypt-to-Self

Jeroen Pijnenburg
Royal Holloway, University of London, Egham, UK
{jeroen.pijnenburg.2017}@rhul.ac.uk

ABSTRACT

Recent work by Pijnenburg and Poettering (ESORICS’20) explores
the novel cryptographic Encrypt-to-Self primitive that is dedicated
to use cases of symmetric encryption where encryptor and decryp-
tor coincide. The primitive is envisioned to be useful whenever a
memory-bounded computing device is required to encrypt some
data with the aim of temporarily depositing it on an untrusted
storage device. While the new primitive protects the confidentiality
of payloads as much as classic authenticated encryption primitives
would do, it provides considerably better authenticity guarantees:
Specifically, while classic solutions would completely fail in a con-
text involving user corruptions, if an encrypt-to-self scheme is
used to protect the data, all ciphertexts and messages fully remain
unforgeable.

To instantiate their encrypt-to-self primitive, Pijnenburg et
al. propose a mode of operation of the compression function of a
hash function, with a carefully designed encoding function play-
ing the central role in the serialization of the processed message
and associated data. In the present work we revisit the design of
this encoding function. Without questioning its adequacy for se-
curely accomplishing the encrypt-to-self job, we improve on it from
a technical/implementational perspective by proposing modifica-
tions that alleviate certain conditions that would inevitably require
implementations to disrespect memory alignment restrictions im-
posed by the word-wise operation of modern CPUs, ultimately
leading to performance penalties. Our main contributions are thus
to propose an improved encoding function, to explain why it offers
better performance, and to prove that it provides as much security
as its predecessor. We finally report on our open-source implemen-
tation of the encrypt-to-self primitive based on the new encoding
function.

1 INTRODUCTION

ENCRYPT-TO-SELF. Assume a resource constrained computing de-
vice like a smartcard or a TPM chip that is required to temporarily
or permanently store a record of data that is larger than what would
fit into its memory capacity. If the device is connected to other de-
vices, e.g., to a dedicated storage server, a nearby solution would
be to transfer the data to the latter and retrieve it from there when
needed. In this article we focus on secure solutions for this, mean-
ing that the storage server is trusted with as little as possible. In
particular, with a secure solution, the storage server should not be
able to recover any non-trivial information about the data (con-
fidentiality), nor should it be able to alter or manipulate the data
(integrity, authenticity).

At first sight one might come to the conclusion that an imme-
diate solution is implied by authenticated encryption [13]. The
resource constrained device would generate and hold the key, and

Bertram Poettering
IBM Research-Zurich, Riischlikon, Switzerland
{poe}@zurich.ibm.com

the storage server would see just ciphertexts. Seemingly, any off-
the-shelf authenticated encryption scheme, like AES-GCM [5] or
ChaCha20/Poly1305 [8] or OCB3 [6], would do the job.

Note that in the described scenario, the party encrypting and
decrypting is the same. This motivated recent work by Pijnenburg
and Poettering (PP) to coin the term Encrypt-to-Self (EtS) for the
adequate type of encryption [10, 11]. As PP point out, standard
authenticated encryption does not manifest a secure solution to
the EtS challenge. The reason for this is the lack of security in case
of user corruptions. A corruption is an attack where the adversary
retrieves a copy of the key of an honest user. Such a condition can
result from side-channel analysis, physical inspection, a computer
break-in, leaked backup copies, etc. If standard encryption tech-
niques are used in the EtS setting, all security is immediately lost in
the moment a corruption based attack happens: The adversary can
decrypt all ciphertexts, and it can create forgeries on arbitrary self-
chosen messages simply by encrypting them. The authors of [10]
identify this as an issue, and argue that satisfactory EtS solutions
should not fail that drastically.

This highlights the constant arms race between attackers and
defenders: manifesting itself in cryptology with on one side the
design of new primitives, protocols and improved security models
and the analysis of said designs on the other side. The EtS primitive
is of particular interest with an explosion of cloud adoption in 2020.
In this article we take another look at the recently introduced EtS
primitive [10] and after careful analysis identify optimizations to
improve upon the proposed construction.

SECURITY OF ENCRYPT-TO-SELF. As suggested by PP, authenticated
encryption does not represent a secure solution to EtS. Investigating
and evaluating (better?) suitable candidates for EtS requires first
identifying what level of security actually can be reached in the EtS
setting. In the following we discuss this, considering aspects of con-
fidentiality and authenticity separately. Regarding confidentiality,
it is clear that no EtS candidate whatsoever could protect message
contents any better than a general encryption scheme. The reason
is as follows: If the constrained device transforms a message to a
ciphertext, it does so with the goal of being able to later recover the
message from the ciphertext, using key material that it stores lo-
cally. Now, if the adversary performs a user corruption, it retrieves
a full copy of this key material, bringing it into the position of being
able to recover the message using exactly the same algorithms as
the device would. That is, after a corruption, no confidentiality can
remain. The situation is different for authentication. We illustrate
this by giving two intuitive reasons: Firstly, a construction could,
in principle, use different keys for authenticating and verifying
ciphertexts, for instance by employing a signature scheme. After
an authentication key is used, it would be securely erased so that
a corruption will not leak it to an adversary. The verification key
would be kept and remain intact until a decryption is conducted. In
this case, clearly, a corruption would not leak enough information

https://www.cysarm.org/

to enable the adversary to forge new valid ciphertexts. Secondly,
while a corruption attack leaks all information stored at a user,
it does not change this information. Thus, in the EtS setting, the
encryptor could keep for itself a small amount of information about
the ciphertext, in such a way that even if this information is leaked
it still remains impossible to forge a new ciphertext matching it.
More concretely, if storing a message corresponds with encrypting
it, sending the ciphertext to the storage server, and keeping a hash
value of the ciphertext in a local registry, then forging a cipher-
text would necessarily require, even after a corruption, finding a
collision for the hash function. The conclusion drawn in [10] from
these and similar examples is that in the EtS setting a level of au-
thentication is reachable that goes beyond what is in reach with
standard authenticated encryption. In [10], PP go on and propose a
security model that formalizes EtS security in the presence of user
corruptions. The analyses in the present article are conducted with
respect to their model.

CONSTRUCTIONS OF ENCRYPT-TO-SELF. If plain authenticated en-
cryption is not a sufficient solution for EtS, how do we construct
a solution that is? It turns out that the encrypt-then-hash (EtH)
construction suggested above is secure in the model of PP. Recall
that EtH processes the message in two passes: first an encryption
pass is conducted to derive the ciphertext, then a hashing pass
is conducted to derive the tag from the ciphertext. While this ap-
proach is generic and robust, for requiring two passes it is not very
efficient. Indeed, the alternative approach explored by PP in [10]
entangles encryption and hashing into one operation. This results
in a substantial saving of computational work.

Figure 1 provides an overview of (a simplified version of) the EtS
scheme from [10].! Function F represents the compression func-
tion of a Merkle-Damgéard (MD) hash function, that is, it takes
d bits of data input and c bits of chain input, and (deterministically)
transforms these inputs to ¢ bits of chain output. Such compres-
sion operations are at the heart of common hash functions like
SHA256 and SHA512 [9], and are routinely assumed to behave
pseudo-randomly.? The EtS construction of [10] starts with split-
ting the message input and optional associated-data input into
sequences of blocks (m;) and (ad;). It then iteratively computes
the MD hash value of these blocks,> where all message carrying
parts are additionally protected by XORing the EtS key into the
corresponding compression function input. Intuitively, working the
key into the chain state in this way ensures that intermediate values
C1,Cy, . .. are distributed uniformly at random from an adversary’s
perspective. This is exploited by employing these values as masks
for one-time pad encrypting the message blocks mq, mg, . .. into ci-
phertext blocks cty, cta, . . . Overall, this explains how the approach
of [10] achieves both confidentiality and authenticity in one pass.

ENCODING FOR ENCRYPT-TO-SELF CONSTRUCTION. Our description
of the EtS scheme of [10] omits an important detail, namely how
precisely the message and associated data is split and formatted as
compression function inputs. Quite obviously, the encoding has to

LA fairly similar construction was proposed by Dodis et al. [4] as a solution to a rather
different problem.

2More formally, they are assumed to behave like a random oracle.

3In the figure, the intermediate chain values are labelled Cy, . . ., Cs, and the final
hash value is labelled Cy.

be injective, as otherwise it would be easy to find two different pairs
(ad, m) that result in the same tag. In [10], PP propose a suitable
and compact yet fairly technical encoding that assumes that the
compression function is one-bit tweakable [7]. That is, it assumes
that the compression function takes a total of d + ¢ + 1 bits on input
(d data bits, ¢ chain bits, and 1 tweak bit), in order to output ¢ bits
of chain state.

While skipping many details of the encoding scheme from [10],
we shed light on two of its properties that are most relevant for the
present article. Firstly, if a message block m of length smaller than ¢
is to be processed, the block is formatted as |m| 11 m 1 0*. That is, the
encoding consists of three concatenated components: the length of
the message (in bytes), the message itself, and a stretch of null bytes
so that the desired overall length is reached. Secondly, when the key
is XORed into the compression function input blocks, it is actually
only XORed into the prefix that contains the message. For instance,
in the second iteration shown in Fig. 1, function F is evaluated on
input (k @ mq) 11 ads 1 C; rather than on k & (my, ads) 1 C1.4 As
the security argument provided by PP makes evident, this is indeed
sufficient for security [10].

OuRr APPROACH. We propose two improvements for the encoding
scheme of PP [10]. These are not related to an aspect of security,
but rather to efficiency.> We explain our modifications in detail in
Sec. 4, but we anticipate some details here. The first modification
reconsiders the encoding |m| i1 m 11 0% of the message (see above).
We note that implementing this will require shifting every message
byte in computer memory by one position. It turns out that due to
the word-wise organization of computer memory, a shift-by-one
operation is considerably more expensive that one might assume
at first.® We alleviate this efficiency bottleneck by changing the
padding to m 11 0% 11 |m| which does not require shifting by a single
byte (yet remains injective). The second modification reconsiders
how the key k is XORed into the compression function inputs. Here
we observe that in most use cases of EtS it should be expected that
the associated data string is shorter than the message input. In the
terms of Fig. 1 this means that the ad-input of most compression
function invocations will be constant, meaning that preparing the
compression function input requires just XORing the message with
the key. Our proposal is to switch, in the terms of the example above,
the XORing step from (k @ m1) 1t ads u C; to (k @ adz) 1 mq n Cy.
Note that if the associated data input is shorter than the message,
this means that no XORing is necessary once the associated data
is fully processed (as the first component of the concatenation
remains invariant and can be precomputed). Also this modification
improves on the execution time of the overall algorithm.

OuR CoNTRIBUTIONS. We reconsider the encoding scheme of PP [10,
11] and suggest alterations as just described. Our proposals improve
the efficiency of the EtS construction of PP, rendering it truly prac-
tical. We then formally show that our modified encoding scheme is
provably secure. We finally report on our implementation of the

4This notation omits the tweaking bit for clarity of exposition.

Both the PP scheme and our scheme are provably secure with the same bounds. With
respect to security, the two schemes are thus equivalent. With respect to efficiency,
our scheme is superior.

®Two quantities play a role here: Memory move operations should be by multiples
of 64 bits (8 bytes) due to the register size of modern CPUs, and they should be by
multiples of 32 bytes by the size of the cache lines.

| adq 1 ads | my Il ads | mo Il ady | ads 1 adg |

k

Cy

Cs Cy

k k
Fl|G]F
Co =1V
' L— | 1~
mi ma
cty

F F tag
- 1~

cty

Figure 1: Principle of the EtS construction from [10]. (Less important details were removed for clarity.) An input consisting of
a key k, a message m, and associated data ad, is transformed into a ciphertext ct and a tag. The message is encoded into blocks
., and the ciphertext consists of the sequence cty, ctz, . ..

mi, my, ..

improved EtS scheme. We will release the source code under a free
software license by the time this article goes into print.

RELATED WORK. The Encrypt-to-Self primitive emerged only very
recently and little directly related work seems to exist. We already
pointed to [10, 11] as our main sources of inspiration, and to the
work of Dodis et al. [4] for a quite similar solution for a different
problem. In [10], PP identify the topics of memory encryption,
password managers, and encryptment (a notion related to instant
messaging) as related to EtS, although there doesn’t really seem to
be a considerable overlap. Finally, we note that EtS-like tools have
been proposed for the state management of TLS 1.3 variants [2].

2 PRELIMINARIES
2.1 Notation

We will keep notation consistent with [10] to allow for easy com-
parison. We denote the natural numbers with N = {0,1, ...} and
we write N* = {1,2,...} for the natural numbers excluding zero.
For the Boolean constants True and False we either write T and F,
respectively, or 1 and 0, respectively, depending on the context. An
alphabet X is any finite set of symbols or characters. We denote
with 3" the set of strings of length n and with =" the strings of
length up to (and including) n. For our implementation we assume
that |Z| = 256, i.e., that all strings are byte strings. We denote string
concatenation with 1. If var is a string variable and exp evaluates
to a string, we write var < exp shorthand for var « var n exp.
Further, if exp evaluates to a string, we write var 1 var’ «, exp
to denote splitting exp such that we assign the first n characters
from exp to var and assign the remainder to var’. When we do not
need the remainder, we write var <5 exp to denote assigning the
first n characters from exp to var. In pseudocode, we write $(S) for
picking an element of S uniformly at random, for any finite set S.
Associative arrays implement the ‘dictionary’ data structure: Once
the instruction A[-] « exp initialized all items of array A to the
default value exp, with Alidx] « exp and var « Alidx| individ-
ual items indexed by expression idx can be updated or extracted.
Finally, we note all algorithms considered in this article may be
randomized.

2.2 Security Games

The security analyses in our article are conducted with respect to
the security model formalized in [10], we replicate the security
model for completeness. Security games are parameterized by an

., the associated data is encoded into blocks ady, ady, . .

adversary, and consist of a main game body plus zero or more
oracle specifications. The execution of a game starts with the main
game body and terminates when a ‘Stop with exp’ instruction is
reached, where the value of expression exp is taken as the outcome
of the game. The adversary can query all oracles specified by the
game, in any order and any number of times. If the outcome of
a game G is Boolean, we write Pr[G(A)] for the probability that
an execution of G with adversary A results in True, where the
probability is over the random coins drawn by the game and the
adversary. We define macros for specific combinations of game-
ending instructions: We write ‘Win’ for ‘Stop with T’ and ‘Lose’
for ‘Stop with F’, and further ‘Reward cond’ for ‘If cond: Win’,
‘Promise cond’ for ‘If ~cond: Win’, ‘Require cond’ for ‘If =cond: Lose’.
These macros emphasize the specific semantics of game termination
conditions. For instance, a game may terminate with ‘Reward cond’
in cases where the adversary arranged for a situation—indicated
by cond resolving to True—that should be awarded a win (e.g., the
crafting of a forgery in an authenticity game).

2.3 Handling of Algorithm Failures

We follow the clean notation of [10] where any algorithm of a
cryptographic scheme can fail. Here, by failure it is meant that an
algorithm doesn’t generate output according to its syntax specifica-
tion, but instead outputs some kind of error indicator (e.g., an AE
decryption algorithm that rejects an unauthentic ciphertext or a
randomized signature algorithm that doesn’t have sufficiently many
random bits to its disposal). Instead of encoding this explicitly in
syntactical constraints which would clutter the notation, we assume
that if an algorithm invokes another algorithm as a subroutine, and
the latter fails, then also the former immediately fails.” The same
is assumed for game oracles: If an invoked scheme algorithm fails,
then the oracle immediately aborts as well. Further, we assume that
the adversary learns about this failure, i.e., the oracle will return
the error indicator when it aborts. Note that this implies that if a
scheme’s algorithms leak vital information through error messages,
then the scheme will not be secure in these models. (That is, they
are particularly robust.) We believe that this way to handle errors

"This approach to handling algorithm failures is taken from [12] and borrows from
how modern programming languages handle ‘exceptions’, where any algorithm can
raise (or ‘throw’) an exception, and if the caller does not explicitly ‘catch’ it, the
caller is terminated as well and the exception is passed on to the next level. See
Wikipedia: Exception_handling_syntax for exception handling syntaxes of many
different programming languages.

https://en.wikipedia.org/wiki/Exception_handling_syntax

implicitly rather than explicitly contributes to obtaining definitions
with clean and clear semantics.

2.4 Memory Alignment

For n a power of 2, we say an address of computer memory is n-byte
aligned if it is a multiple of n bytes. We further say that a piece of
data is n-byte aligned if the address of its first byte is n-byte aligned.
A modern CPU accesses a single (aligned) word in memory at a
time. Therefore, the CPU performs reads and writes to memory
most efficiently when the data is aligned. For example, on a 64-
bit machine, 8 bytes of data can be read or written with a single
memory access if the first byte lies on an 8-byte boundary. However,
if the data does not lie within one word in memory, the processor
would need to access two memory words, which is considerably
less efficient. We modify the scheme algorithms proposed by [10]
such that when they need to move around data, they exclusively
do this for aligned addresses. In practice, the preferred alignment
value depends on the hardware used, so for generality in this article
we refer to it abstractly as the memory alignment value mav. (A
typical value would be mav = 8.)

3 NOTIONS OF ENCRYPT-TO-SELF

In [10] the authors identified the novel encrypt-to-self (EtS) primi-
tive, which provides one-time secure encryption with authenticity
guarantees that hold beyond key compromise. In this section we
replicate the syntax and security definitions of EtS.

EtS consists of an encryption and a decryption algorithm, where
the former translates a message to a binding tag and a ciphertext,
and the latter recovers the message from the tag-ciphertext pair. For
versatility the two operations further support the processing of an
associated-data input [13] which has to be identical for a successful
decryption.

The task of the binding tag is to prevent forgery attacks: A user
that holds an authentic copy of the binding tag will never accept any
ciphertext they did not generate themselves, even if all their secrets
become public. Note that while standard authenticated encryption
(AE) does not provide this type of authentication, the encrypt-then-
hash construction suggested in Sec. 1 does. In Sec. 4 we provide a
considerably more efficient construction that uses a hash function’s
compression function as its core building block.

Definition 3.1. Let AD be an associated data space and let M
be a message space. An encrypt-to-self (EtS) scheme for AD and
M consists of algorithms enc, dec, a key space K, a binding-tag
space Bt, and a ciphertext space C. The encryption algorithm enc
takes a key k € K, associated data ad € AD and a message
m € M, and returns a binding tag bt € Bt and a ciphertext ¢ € C.
The decryption algorithm dec takes a key k € K, a binding tag
bt € Bt, associated data ad € AD and a ciphertext ¢ € C, and
returns a message m € M. A shortcut notation for this API is as
follows:

KXAD XM — enc - Bt xC

and
KXBEXADXC — dec > M .

CORRECTNESS AND SECURITY. We require of an EtS scheme that if
a message m is processed to a tag-ciphertext pair with associated

data ad, and a message m’ is recovered from this pair using the same
associated data ad, then the messages m, m” shall be identical. This
is formalized via the SAFE game in Fig. 2.8 In particular, observe that
if the adversary queries Dec(ad, c) (for the authentic ad and c that
it receives in line 02) and the dec procedure produces output m’, the
game promises that m’ = m (lines 05,06). Recall from Sec. 2.2 that
this means the game stops with output T if m’ # m. Intuitively, the
scheme is safe if we can rely on m’ = m, that is, if the maximum ad-
vantage AdvS(A) = max,ge 7 D, me M Pr[SAFE(ad, m, A)] that
can be attained by realistic adversaries A is negligible. The scheme
is perfectly safe if Adv*®e(A) = 0 for all A. We remark that the
universal quantification over all pairs (ad, m) makes the advantage
definition particularly robust.

The security notions demand that the integrity of ciphertexts be
protected (INT-CTXT), and that encryptions be indistinguishable in
the presence of chosen-ciphertext attacks (IND-CCA). The notions
are formalized via the INT and IND?, IND! games in Fig. 2, where
the latter two depend on some equivalence relation = C M x M
on the message space.” For consistency, in line 07 in each of the
three games we suppress the message if the adversary queries
Dec(ad, c). This is crucial in the IND? games, as otherwise the ad-
versary would trivially learn which message was encrypted, but
does not harm in the other games as the adversary already knows m.
Recall from Sec. 2.3 that all algorithms can fail, and if they do, then
the oracles immediately abort. This property is crucial in the INT
game where the dec algorithm must fail for unauthentic input such
that the oracle immediately aborts. Otherwise, the game will re-
ward the adversary, that is the game stops with T (line 05). We
say that a scheme provides integrity if the maximum advantage
AdvP(A) = maxgge 4D, me M PI[INT(ad, m, A)] that can be at-
tained by realistic adversaries A is negligible, and that it provides
indistinguishability if the same holds for the advantage

Adv™(A) =

max |Pr[IND!(ad, m®, m!, A)] - Pr[IND°(ad, m°, m, A)]|.
ade AD
m®,mte M

4 NEW ENCRYPT-TO-SELF CONSTRUCTION

We mentioned in Sec. 1 that a generic construction of EtS can be
realized by combining standard symmetric encryption with a cryp-
tographic hash function: one encrypts the message and computes
the binding tag as the hash of the ciphertext. In [10] the authors
provide a more efficient construction that builds on the compres-
sion function of a Merkle-Damgéard hash function. To be more
precise, the construction uses a tweakable compression function
with tweak space T = {0, 1}, i.e., the domain of the compression
function is extended by one bit. We provide a general definition
below.

8The SAFETY term borrows from the Distributed Computing community. SAFETY
should not be confused with a notion of security. Informally, safety properties require
that “bad things” will not happen. (In the case of encryption, it would be a bad thing if
the decryption of an encryption yielded the wrong message.) For an initial overview
we refer to Wikipedia: Safety_property and for the details to [1].

9We use relation = (in line 01 of IND?) to deal with certain restrictions that practical
EtS schemes may feature. Concretely, our construction does not take effort to hide the
length of encrypted messages, implying that indistinguishability is necessarily limited
to same-length messages. In the formalization this technical restriction is expressed
by defining = such that m® = m' & |m°| = |m!|.

https://en.wikipedia.org/wiki/Safety_property

Game SAFE(ad, m, A)

Game INT(ad, m, A)

Game INDb(ad, m®, m!, A)

00 k «— $(K)
01 (bt,c) « enc(k, ad, m)
02 Invoke A(k, ad, m, bt, c)

03 Lose 03 Lose

Oracle Dec(ad’, c’)

00 k «— $(K)
01 (bt,c) « enc(k, ad, m)
02 Invoke A(k, ad, m, bt, c)

Oracle Dec(ad’, ¢’)

00 k «— $(K)

o1 Require m® = m!

02 (bt,c) — enc(k, ad, m?)
03 b’ — A(ad, m®, m', bt, c)

04 Stop with b’

04 m’ « dec(k, bt,ad’,c’)
05 If (ad’, ¢’) = (ad, c):
06 Promise m’ = m
07 m — L 07
08 Return m’

04 m’ « dec(k, bt, ad’, c’)
05 Reward (ad’, c’) # (ad, c)
06 If (ad’,c’) = (ad, c):

m o« L

08 Return m’

Oracle Dec(ad’, c’)

05 m’ « dec(k, bt,ad’,c’)
06 If (ad’, c”) = (ad, c):

07 m «— L

08 Return m’

Figure 2: Games for EtS. For the values ad’, ¢’ provided by the adversary we require that ad’ € AD,c’ € C. Assuming L ¢ M,
we encode suppressed messages with L. For the meaning of instructions Stop with, Lose, Promise, Reward, and Require see

Sec. 2.2.

Definition 4.1. For ¥ an alphabet, ¢,d € N* withc < d, and a
tweak space T, we define a tweakable compression function to be a
function F: %¢ x T x 3¢ — 3¢ that takes as input a block B € %¢
from the data domain, a tweak t € T from the tweak space, and a
string C € ¢ from the chain domain, and outputs a string C’ € 3¢
in the chain domain.

We will write F¢(B, C) as shorthand notation for F(B, t,C). For
practical tweakable compression functions the memory alignment
value mav (see Sec. 2.4) will divide both ¢ and d. When constructing
an EtS scheme from F, because the compression function only takes
fixed-size input, we need to map the (ad, m) input to a series of
block-tweak pairs (B, t). We will refer to this mapping as the input
encoding.

The approach taken by [10] fixes the encoding independently
of the encryption engine. It is precisely this modular approach
that allows us to easily replace the encoding function with our
optimized version. We present our new encoding function in Sec. 4.1
and provide the encryption engine in Sec. 4.2 for completeness.
Together they form an efficient construction of EtS.

We first convey a rough overview of the EtS construction. In
Fig. 3 we consider an example with block size d double the chaining
value size c. We assume that key k is padded to size d. The first
block B; only contains associated data and we XOR B; with the key
k before we feed it into the compression function. From the second
block, we start processing message data. We fill the first half of the
block with associated data ads and the second half with message
data my, and XOR with the key. We also XOR m; with the current
chaining value Cj, to generate a partial ciphertext ct;. The same
happens in the third block and we append ct; to the ciphertext.
If there is associated data left after processing all message data
we can load the entire block with associated data, which occurs
in the fourth block. Note, we no longer need to XOR the key into
the block after we have processed all message data, because at
this point the input to the compression function will already be
independent of the message m. After processing all blocks, we XOR
an offset w € {wg, w1} with the chaining value, where w, w; are
two distinct constants. The binding tag will be (a truncation of)

the last chaining value C*.1% Note that the task of the encoding is
not only to partition ad and m into blocks By, B, . . . as described,
but also to derive tweak values t1, to, . . . and the choice of the final
offset w in such a way that the overall encoding is injective.

4.1 Old and New Message Block Encoding

We turn to the technical component of our EtS construction that
encodes the (ad, m) input into a series of output pairs (B, t) and the
final offset value w. For authenticity we require that the encoding
is injective. For efficiency we require that the encoding is online
(i-e., the input is read only once, left-to-right, and with small state),
that the number of output pairs is as small as possible, and that the
encoding preserves memory alignment (see Sec. 2.4). Syntactically,
for the outputs we require that all B € 24 allt € T,and w €
Q, where quantities ¢, d are those of the employed compression
function, T = {0,1}, and Q C X is any two-element set. In our
implementations we use Q = {wp, w1} where wy = 0x00¢ and
w1 = 0xa5°. Pijnenburg et al. [10] describe the task as follows:

Task. Assume |2| = 256 and AD = M =3* and T = {0,1} and
|Q| = 2. For ¢,d € N*, ¢ < d, find an injective encoding function
encode: AD x M — (3¢ x T)* x Q that takes as input two finite
strings and outputs a finite sequence of pairs (B,t) € ¢ x T and
an offset w € Q.

As we already alluded to in Sec. 1 we introduce two improve-
ments to the encoding scheme of [10]. These are not related to
any aspect of security, but rather to efficiency. We note that imple-
menting the encoding presented in [10] will require shifting every
message byte in computer memory by one position. As described in
Sec. 2.4 this shift-by-one operation is considerably more expensive
than one might expect at first. We alleviate this efficiency bottleneck
by changing the padding to one which does not require shifting by
a single byte (yet remains injective).

We will now present a detailed specification of our encoding
(and decoding) function. The pseudocode can be found in Fig. 5,
but we present it here in text. Note the construction does not use

101t will be crucial to fix wg, w; such that they are distinct also after truncation.

(B1,B2,B3,By) =

| adq 1 ady | ads 1 mq | adyq 1 my

ad5 Il adg |

Co=1V

I/

ctq

Figure 3: Example for enc(k, ad, m) where d = 2c and ad = adj u . ..

w
L—

I/

cty

i adg and m = my 11 my with |ad| = 6c and |m| = 2c. For clarity

we have made the blocks B;, as they are output by the encoding function, explicit.

the decoding function, but we provide it anyway to show that
the encoding function is indeed injective. Roughly, we encode as
follows. We fill the first block with associated data and for any
subsequent block we load the associated data in the first part of
the block and the message in the second part of the block. When
we have processed all the message data, we load the full block
with ad again. Clearly, we need to pad ad if it runs out before we
have processed all message data. We do this by appending a special
termination symbol ¢ € X to ad and then appending null bytes
as needed. Similarly, we need to pad the message if the message
length is not a multiple of c. Naturally, one might want to pad the
message to a multiple of c. However, this is suboptimal: Consider the
scenario where there are d — ¢ + 1 bytes remaining to be processed
of associated data and 1 byte of message data. In principle, message
and associated data would fit into a single block, but this would
not be the case any longer if the message is padded to size c. On
the other hand, for efficiency reasons we do not want to misalign
all our remaining associated data. If we do not pad at all, when
we process the next d bytes of associated data, we can only fit
d — 1 bytes in the block and have to put 1 byte into the next block.
Therefore, we pad m up to a multiple of the memory alignment
value mav. To be precise, we pad message with null bytes until
reaching a multiple of mav. We replace the final (null) byte with
the message length |m|; this will uniquely determine where m stops
and the padding begins. This restricts us to ¢ < 256 bytes such
that |m| always can be encoded into a single byte. As far as we
are aware, any current practical compression function satisfies this
requirement.

In Fig. 4, for the artificially small case with ¢ = 1and d = 2
we provide four examples of what the blocks would look like for
different inputs. The top row shows the encoding of 8 bytes of
associated data and an empty message. The second row shows the
encoding of empty associated data and 3 bytes of message data.
The third row shows the encoding of 6 bytes of associated data and
2 bytes of message data. The final row shows the encoding of 3
bytes of associated data and 3 bytes of message data.

We have two ambiguities remaining. (1) How to tell whether
ad was padded or not? Consider the first row in Fig. 4. What dis-
tinguishes the case ad = ady 1 ... 1 ad7 from ad = ady 1 ... 1
ady 11 adg with adg = o? A similar question applies to the message.
(2) How to tell whether a block contains message data or not? Com-
pare e.g., the first row with the third row. This is where the tweaks
come into play.

(B1, B2, B3, Bg) = | adi 1 ads | ads 1l ady | ads 11 adg | ady adg |

(B1,B2,B3,By) = | o 11 0X00 | 0x00 11 my | 0x00 11 mo | 0x00 11 m3 |

(B1, B2, B3, By) = | ady 1 ads | ads 1 mq | ady 1 my | ads 1 adg |

(B1,B2,B3,By) = | adi 1 ads | ads 1 my | o1l my | 0x00 Il m3 |

Figure 4: Example encodings for the casec = 1 and d = 2.

First of all, we tweak the first block if and only if the message is
empty. This fully separates the authentication-only case from the
case where we have message input.

Next, if the message is non-empty, we use the tweaks to indicate
when we switch from processing message data to ad-only: we tweak
when we have consumed all of m, but still have ad left. Note the first
block never processes message data, so the earliest block this may
tweak is the second block and hence this rule does not interfere
with the first rule. Furthermore, observe this rule never tweaks the
final block, as by definition of being the final block, we do not have
any associated data left to process.

Next, we need to distinguish between the cases whether m is
padded or not. In fact, as the empty message was already taken care
of, we need to do this only if m is at least one byte in size. As in
this case the final block does not coincide with the first block, we
can exploit that its tweak is still unused; we correspondingly tweak
the final block if and only if m is padded. Obviously, this does not
interfere with the previous rules.

Finally, we need to decide whether ad was padded or not. We do
not want to enforce a policy of ‘always pad’, as this could result in
an extra block and hence an extra compression function invocation.
Instead, we use our offset output. We set the offset w to w; if ad
was padded; otherwise we set it to wg.

This completes our description of the encoding function. The de-
coding function is a technical exercise carefully unwinding the steps
taken in the encoding function, which we perform in Fig. 5. We ob-
tain that forallm € M, ad € AD we have decode(encode(ad, m)) =
(ad, m). It immediately follows that our encoding function is injec-
tive. For readability we have implemented the core functionality
of the encoding in a coroutine called nxt, rather than a subroutine.
Instead of generating the entire sequence of (B, t) pairs and return-
ing the result, it will ‘Yield’ one pair and suspend its execution. The
next time it is called (e.g., the next step in a for loop), it will resume

execution from where it called ‘Yield’, instead of at the beginning of
the function, with all of its state intact. The encode procedure is a
simple wrapper that runs the nxt procedure and collects its output,
but our authenticated encryption engine described in Sec. 4.2 will
call the nxt procedure directly.

4.2 Encryption Engine

For completeness, in this section we describe the encryption en-
gine presented in [10]. Thanks to their modular approach, we can
combine it with our encoding function without having to make any
modifications: They only assume that the associated data and mes-
sage are present in encoded format, i.e., as a sequence of pairs (B, t),
where B € 39 is a block and t € {0, 1} is a tweak, and additionally
an offset w € {wg, w1}

We specify the encryption and decryption algorithms in Fig. 5
and assume they are provided with a key of length d. This is to
ensure the @ operation is well defined, without cluttering the nota-
tion. One can consider the key padded with null bytes to length d.
In practice, our implementation in C code will XOR the key with
the first |k| bytes of a block B. As described in Sec. 1, the associated
data string is often shorter than the message input. By our encoding
function defined in Sec. 4.1, this means that the ad-input of most
compression function invocations will be constant. Thus, the first
part of a block can be precomputed and no XORing is necessary any
more. Hence improving on the overall execution time compared to
[10].

We now discuss the encryption and decryption procedure pre-
sented in [10] in more detail. As illustrated in Fig. 3, the main idea
is to XOR the key with all blocks that are involved with message
processing. For the skeleton of the construction, we initialize the
chaining value C to IV and loop through the sequence of pairs
(B, t) output by the encoding function, each iteration updating the
chaining value C « F;(B,C). Let us examine each iteration of the
enc procedure in more detail. If the block is empty (line 69), we
are in the final iteration and do not do anything. Otherwise, we
check if we are in the first iteration or if we have message data left
(line 71). In this case we XOR the key into the block (line 72). This
ensures we start with an unknown input block and that subsequent
inputs are statistically independent of the message block. If we only
have ad remaining we can use the block directly as input to the
compression function. If we have message data left we will encrypt
it starting from the second block (line 73). To encrypt, we take a
chunk of the message, XOR it with the chaining value of equal size
and append the result to the ciphertext (lines 74-77). We only start
encrypting from the second iteration as the first chaining value is
public. Finally, we call the compression function F; to update our
chaining value (line 78). Once we have finished the loop, the last
pair (B, t) equals (€,) by definition. So we XOR the offset w with
the chaining value C and truncate the result to obtain the binding
tag (line 79). We return the binding tag along with the ciphertext.

The dec procedure is similar to the enc procedure but needs to be
slightly adapted. Informally, the nxt procedure now outputs a block
B = (ad n ct) (line 82) instead of B = (ad 1 m) (line 68). Hence,
we XOR with the chaining variable (line 91,97) such that the block
becomes B = (ad 11 m) and the compression function call takes
equal input compared to the enc procedure. The case distinction

handles the slightly different positioning of ciphertext in the blocks.
Finally, there obviously is a check if the computed binding tag is
equal to the stored binding tag (line 100).

4.3 Security Analysis

In order to prove security, we need further assumptions on our
compression function than the standard assumption of preimage
resistance and collision resistance. For example, we need F to be
difference unpredictable. Roughly, this notion says it is hard to
find a pair (x, y) such that F(x) = F(y) @ z for a given difference z.
Moreover, we truncate the binding tag, so actually it should be hard
to find a tuple such that this equation holds for the first | bt| bits. We
note collision resistance of F does not imply collision resistance of
a truncated version of F [3]. However, such assumptions could be
justified when one considers the compression function as a random
function. Hence, instead of several ad hoc assumptions, we prove
our construction secure directly in the random oracle model.

As described in [10], the SHA2 compression function can be
tweaked by modifying the chaining value depending on the tweak.
Let F be the tweakable compression function in Fig. 5. We write
F’ for the SHA2 compression function that will take as input the
block and the (modified) chaining value. Let H: 34 x 3¢ — 3¢ be
a random oracle. In the security analysis of the SHA2 construction,
we will substitute H for F” in our construction.

We remark the BLAKE2b compression function is a tweakable
compression function and it can be substituted directly for a ran-
dom oracle with an extended input space. That is, a random oracle
H: 39 % {0,1} x =¢ — 5. Hence, in the security analysis of the
BLAKEZ2b construction, we will substitute H for F in our construc-
tion.

We remark that we cannot treat our tweaked SHA2 compression
function F in this way as it would be distinguishable from random
oracle H. To see this, observe that querying F on the unmodified
chaining variable with tweak t = 1 yields the same result as query-
ing F on the modified chaining variable with ¢ = 0. In the random
oracle H these two queries are completely independent.

Both for tweakable and non-tweakable compression functions
our EtS construction from Fig. 5 provides integrity and indistin-
guishability in the random oracle model, assuming sufficiently large
tag and key lengths. We refer the reader to Proposition 4.2 for the
integrity, and Proposition 4.3 for the indistinguishability, of the
instantiation with a non-tweakable compression function. For the
instantiation with a tweakable compression function we refer to
Proposition 4.4 and Proposition 4.5 for integrity and indistinguisha-
bility, respectively.

The security proofs in [10] only require injectivity from the
encoding function. We have demonstrated in Sec. 4.1 that our mod-
ified encoding function remains injective, so the security proofs
still apply. However, [10] omits the security proofs for the tweak-
able instantiation, so we expand upon them here for the interested
reader. We will now first discuss the non-tweakable compression
function instantiation and subsequently the tweakable compression
function instantiation.

Let H: ¢ x 3¢ — %€ be a random oracle. Recall we consider an
instantiation with a standard (non-tweakable) compression func-
tion F’ transformed into a tweakable compression function F by

Proc encode(ad, m)
00 S[-] «— i« 0

01 For (B, t) € nxt(ad, m):

02 IfB+#e:

03 i—i+1

04 S[i] « (B, t)
05 Else:w « t

06 Return (S, w)

Proc decode(S, w)

07 ad «— e;m «— €
08 n « |S[; j « [S]
09 If n = 0:

10 Return (ad, m)
11 Fori « 1ton:

12 (Bi, tj) « S[i]
13 Fori<—1ton-1:
14 Ifti=1:j«i
15 ad < B

16 Fori «— 2toj—ty:
17 B B; —. B;
18 ad<lB,-

19 m<lBlf
20lfn>1At,=1:
21 Bj nl —d-1 BJ'
22 p < —I mod mav
23 a<—d-1-p
24 ad 1 Bj <4 B;j
25 m<«—j Bj

26 Fori «— j+1tom:
27 ad < B;

28 If w = ws:

29 Splitad o1 0" « ad

30 Return (ad, m)

Proc nxt(ad, m)

31 ad_padded « F

32 m_padded « [m = €]
33 m_final « [m = €]

34 @< wy;n<—0

35 While ad # e Vm # e:

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ne—n+1
(Bn, tn) < (€,0)
Ifn=1
d «—d
else:
j « —|m| mod mav
d —d-—|m|-j
If |ad| < d’:
If not ad_padded:
W — W1
ad & o
ad_padded « T
jd —|ad|
ad & o/
By ad «—y ad
Ifn>1Am#e:
If |m| < ¢:
m_padded « 1
Jj < —|m| mod mav
me—muo/1i|m|
[« min(c, |m|)
m' imee;m
Bp, «—m’
Ifm=e:
If ad = e:
tn < m_padded
Else:
tp, < m_final
m_final « 0
Yield (B, tn)

66 Yield (e, w)

Proc enc(k, ad, m)

67 ct«—€;C —1IV;i0
68 For (B, t) € nxt(ad, m):

69
70
71
72
73
74
75
76
77
78

If B # e:

i—i+1
Ifi=z=1lvm+#e:
B—B®k
Ifi>1Am+#e:
j < min(c, |m|)
m'ime;m
C/<—jC
ct—m' ®C’
C « F;(B,0)

79 bt —taglen C Ot
80 Return (bt, ct)

Proc dec(k, bt, ad, ct)

s me—egC«—IV;i—0
82 For (B, t) € nxt(ad, ct):

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

If B+#e:

ie—i+1
Ifi=1Vect#e:
B+~ B&k
Ifi>1Act#e:
If |ct| = c:
ct’ et ¢ ct
mect’' ®C
B <& od—¢ ¢
Else:
C’<—|0t|C
me« ct®C’
j < —|m| mod mav
a—d—|m|—j
B 0% o/
C « F;(B,0)

99 bt —(aglen C Ot
100 If bt’ # bt: Fail
101 Return m

Figure 5: EtS construction: encoder, decoder, encryptor, and decryptor. (Procedure nxt is a coroutine for encode, enc, and dec,
see text.) Using global constants mav, c, d, taglen, and IV.

modifying the chaining value. We replace F’, used internally by F,

with random oracle H.

PROPOSITION 4.2. Let 7 be the construction given in Fig. 5, H a

random oracle replacing the compression function, A an adversary,

Advi,rr‘t(ﬂ) the advantage that A has against 7t in the integrity game
of Fig. 2 and q the number of random oracle queries (either directly

or indirectly via Dec). We have,

AdviM(A) < ¢? - 27¢ +q- 2710

Proor. For all ad € AD, m € M we will show that

Pr[INT(ad, m, A)] < ¢* - 27 + ¢ - 27 1P,

Let ad € AD be associated data and let m € M be a message. The
game INT(ad, m, A) samples a uniformly random key k € K and
computes (bt, ¢) = enc(k, ad, m). A wins the INT game if it provides
apair (ad’, ¢’) # (ad,) such that dec(k, bt, ad’, ¢’) succeeds, which
only happens if b’ = bt. Recall the encoding function outputs a
sequence S of (B, t) pairs and an offset w. Because the encoding
function is injective we must have §” # S or w’ # w. Let us first
assume S’ = S. Let Cp, denote the final chaining variable. Because
the sequences are equal, we will arrive at C;, = C,,. We must have
@’ # w, but clearly Cp, ® wy is not equal to Cp, ® w; (even after
truncation), that is, bt’ # bt. We have a contradiction and conclude
S"#S.

For the case S’ # S, let us now assume the subcase ©” # ®. The
first |bt| bits of C;, must equal the first |bt| bits of C, @ w ® ©’, ie,,
A must find a partial preimage. Because H is a random oracle, A
would succeed with probability at most q-2’|bt‘ , where g is the num-
ber of queries. In the other subcase we have w’ = w. Then the first
| bt| bits of C:l, must equal the first | bt| bits of Cp, i.e., the first |bt|

bits of H(B;,,, é;l,_l) must equal the first |bt| bits of H(By, Cn_1),
where C‘;l 1 Cn_1 are the chaining values C;,_>Cn-1 after apply-
ing tweaks t/,, t,, respectively. If the inputs are not equal, A has
found a partial second preimage. Since H is a random oracle, A
would succeed with probability at most q 27 1Pt where q is the
number of oracle queries. However, if the inputs are equal we know
(:‘;l,_l = Cp_1. Let us write (:‘;l,_l = C;l,_l &1’ and Cp_q = Cp_1 ®T.
We obtain C;l,_l =Cp_1 ® 1 @ 1’. Thus, either A has found a colli-
sion or C ;l,_l = Cp—1. We can repeat the argument to reason about
C} _5Cn—2, etc. By a standard birthday argument we can bound
the probability of a collision by g2 - 27¢.

If we eventually conclude C;l,_ s = Cn-s =1V, we know one of
the sequences is longer, i.e., n’ —§ > 0 or n — § > 0. Otherwise the
sequences would be equal, which is excluded by the injectivity of the
encoding function. In the case n—§ > 0, there has been a collision in
the hash function, we have already bounded this probability above.
Thus, let us assume n’ — § > 0. We have H(B,y_s,Cpr_5-1) = IV.
Thus A has found a preimage of IV. Because H is a random oracle,
A would succeed with probability at most ¢ - 27¢. O

PrROPOSITION 4.3. Let 7 be the construction given in Fig. 5, H
a random oracle replacing the compression function, A an adver-
sary, Advi,rrld(?l) the advantage that A has against 7 in the indis-
tinguishability games of Fig. 2 and q the number of random oracle
queries (either directly or indirectly via Dec). We have,

AV A) < ¢ - 27 + g 27K 4 AdviRt(A).

Proor. Other than the challenge pair (ad, c), we can assume the
decryption oracle rejects all queries by A. Otherwise A would
immediately win the integrity game and the proposition holds. En-
cryption is done by XORing the message with the chaining variable.
As long as the chaining variable never repeats, each input to H
is a fresh query that has not been seen before. Then H will pro-
vide fresh, uniformly random output, as it is a random oracle. By
a standard birthday argument we can bound the probability of a
collision by ¢? - 27¢. Now let us assume there is no collision. Each
chaining variable that is used to encrypt is output of a query to H
that XORed the key k with the input. Additionally each block that

has message data as input is also XORed with the key k. Thus if A
does not know k it cannot query H to obtain the chaining variable.
The key is only used with input to the compression function, and
since H is a random oracle, A can only learn by guessing the input
and checking the random oracle output. However, this has a success
probability of at most g - 2~ Ik, O

Let H: =9 x {0,1} x ¢ — =€ be a random oracle. We now
consider an instantiation with a tweakable compression function F.
We replace F with random oracle H.

PROPOSITION 4.4. Let 7 be the construction given in Fig. 5, H a
random oracle replacing the tweakable compression function, A an
adversary, Advif;t(ﬂ) the advantage that ‘A has against m in the
integrity game of Fig. 2 and q the number of random oracle queries
(either directly or indirectly via Dec). We have,

AdviM(A) < ¢? - 27¢ +q- 2710

Proor. For all ad € AD, m € M we will show that
Pr[INT(ad, m, A)] < ¢* - 27€ +q- 27 1%,

Let ad € AD be associated data and let m € M be a message. The
game INT(ad, m, A) samples a uniformly random key k € K and
computes (bt, ¢) = enc(k, ad, m). A wins the INT game if it provides
apair (ad’, c’) # (ad, c¢) such that dec(k, bt, ad’, ¢’) succeeds, which
only happens if bt’ = bt. Recall the encoding function outputs a
sequence S of (B, t) pairs and an offset w. Because the encoding
function is injective we must have S’ # S or v’ # w. Let us first
assume S’ = S. Let Cp, denote the final chaining variable. Because
the sequences are equal, we will arrive at C;, = C,. We must have
@’ # w, but clearly C, ® wy is not equal to C,, & wy (even after
truncation), that is, bt’ # bt. We have a contradiction and conclude
S"#S.

For the case S” # S, let us now assume the subcase v’ # w. The
first |bt| bits of C;;, must equal the first | bt| bits of Cn ® w ® &', i.e,,
A must find a partial preimage. Because H is a random oracle, A
would succeed with probability at most q - 27 1% where q is the
number of queries. In the other subcase we have v’ = w. Then
the first |bt| bits of C;, must equal the first |bt| bits of Cp, i.e., the
first |bt| bits of H(B/,, ty’,C/,_,) must equal the first |bt| bits of
H(By, tn, Cp—1). If the inputs are not equal, A has found a partial
second preimage. Since H is a random oracle, A would succeed
with probability at most g - 27151 where q is the number of oracle
queries. However, if the inputs are equal we know C/, | = Cy-1.
Thus, either A has found a collision or C;l,_l = Cp—1. We can
repeat the argument to reason about C;,_,, Cy—2, etc. By a standard
birthday argument we can bound the probability of a collision by
g?-27¢.

If we eventually conclude C ;1 r_s = Cn-s =1V, we know one of
the sequences is longer, i.e, n” =& > 0 or n — § > 0. Otherwise the
sequences would be equal, which is excluded by the injectivity of the
encoding function. In the case n—§ > 0, there has been a collision in
the hash function, we have already bounded this probability above.
Thus, let us assume n’ —§ > 0. We have H(B,,s_s, ty/—s5,Cpr—s5—-1) =
IV. Thus A has found a preimage of IV. Because H is a random
oracle, A would succeed with probability at most g - 27€. O

PROPOSITION 4.5. Let 7 be the construction given in Fig. 5, H
a random oracle replacing the tweakable compression function, A
an adversary, Advi,?d(ﬂ) the advantage that A has against 7 in
the indistinguishability games of Fig. 2 and q the number of random
oracle queries (either directly or indirectly via Dec). We have,

AdVIYA) < ¢F - 27 + g 27K 4 AV ().

Proor. Other than the challenge pair (ad, c¢), we can assume the
decryption oracle rejects all queries by A. Otherwise A would
immediately win the integrity game and the proposition holds. En-
cryption is done by XORing the message with the chaining variable.
As long as the chaining variable never repeats, each input to H
is a fresh query that has not been seen before. Then H will pro-
vide fresh, uniformly random output, as it is a random oracle. By
a standard birthday argument we can bound the probability of a
collision by ¢ - 27¢. Now let us assume there is no collision. Each
chaining variable that is used to encrypt is output of a query to H
that XORed the key k with the input. Additionally each block that
has message data as input is also XORed with the key k. Thus if A
does not know k it cannot query H to obtain the chaining variable.
The key is only used with input to the compression function, and
since H is a random oracle, A can only learn by guessing the input
and checking the random oracle output. However, this has a success
probability of at most g - 27 Ikl O

5 IMPLEMENTATION

We implemented three versions of the EtS primitive. We developed
optimized C code for the padding scheme and encryption engine
from Fig. 5, based on the compression functions of common hash
functions. Specifically, our EtS implementations are based on the
compression functions of SHA256, SHA512, and BLAKE2 [9, 14].
We chose these functions as all three of them are ARX designs (Add-
Rotate—Xor) which makes them particularly efficient in software
implementations. While SHA256 and SHA512 are more widely
standardized and used than BLAKEZ2, only the latter is a HAIFA
construction and tweakable without ad-hoc modifications. Note
that due to the used internal register size of 32 bits, SHA256 is most
competitive on 32-bit CPUs; in contrast, SHA512 and BLAKE2 use
64-bit registers and thus perform best on 64-bit CPUs.

We implemented all components of EtS in plain C, including
the compression functions, the encoding schemes, and the EtS
framework. In addition we implemented a range of self-tests and
provide test vectors. We note that while in particular the compres-
sion functions would be good candidates for being re-implemented
in assembly for further efficiency improvements, we believe that,
as all three compression functions are ARX designs, the penalty of
not hand-optimizing is not too drastic.

We released the source code of our implementation as open
source software. The terms of use are those granted by the Apache li-
cense!!. The code is available at https://github.com/cryptobertram/
encrypt-to-self.

We conducted timing measurements for our implementations.
We measured on two devices: on a roughly 9-year old CPU that
identifies itself as Intel Core i3-2350M CPU @ 2.30GHz, and
on a more recent CPU of the type Intel Core i5-7300U CPU @

Uhttps://www.apache.org/licenses/LICENSE-2.0

2.60GHz. The results are shown in Table 1. The timings were taken
for various message lengths, with a 16 byte associated data input in
call cases. Note that the BLAKEZ based version clearly outperforms
the others for all tested message lengths. Further, SHA512 is gener-
ally faster than SHA256 (except for messages that are so short that
one SHA256 compression function invocation is sufficient to fully
encrypt the message).

Table 1: Timings (in microseconds) of EtS implementation

compression message time on time on
function length i3-2350M i5-7300U
SHAZ256 16 1.578 0.684
SHAS512 16 2.101 0.881
BLAKE2 16 0.766 0.366
SHA256 48 2.354 1.014
SHAS512 48 2.186 0.882
BLAKE2 48 0.767 0.372
SHAZ256 256 6.894 2.987
SHAS512 256 5.054 2.139
BLAKE2 256 1.805 0.858
SHA256 1024 25.590 10.860
SHAS512 1024 17.380 7.213
BLAKE2 1024 6.040 2.846
ACKNOWLEDGMENTS

We thank the reviewers of CYSARM 20 for their helpful comments
and feedback. The research of Pijnenburg was supported by the
EPSRC and the UK government as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1). The research of Poettering was supported by the
European Union’s Horizon 2020 project FutureTPM (779391).

REFERENCES

[1] ALPERN, B., AND SCHNEIDER, F. B. Recognizing safety and liveness. Distributed

Computing 2, 3 (1987), 117-126.

AVIRAM, N., GELLERT, K., AND JAGER, T. Session resumption protocols and efficient

forward security for TLS 1.3 0-RTT. In Advances in Cryptology - EUROCRYPT 2019,

Part II (Darmstadt, Germany, May 19-23, 2019), Y. Ishai and V. Rijmen, Eds.,

vol. 11477 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany,

pp- 117-150.

[3] Biaam, E., AND CHEN, R. Near-collisions of SHA-0. In Advances in Cryptology
— CRYPTO 2004 (Santa Barbara, CA, USA, Aug. 15-19, 2004), M. Franklin, Ed.,
vol. 3152 of Lecture Notes in Computer Science, Springer, Heidelberg, Germany,
pp. 290-305.

[4] Doprs, Y., GRUBBS, P., RISTENPART, T., AND WOODAGE, J. Fast message frank-

ing: From invisible salamanders to encryptment. In Advances in Cryptology —

CRYPTO 2018, Part I (Santa Barbara, CA, USA, Aug. 19-23, 2018), H. Shacham

and A. Boldyreva, Eds., vol. 10991 of Lecture Notes in Computer Science, Springer,

Heidelberg, Germany, pp. 155-186.

DWORKIN, M. J. SP 800-38D: Recommendation for block cipher modes of op-

eration: Galois/Counter Mode (GCM) and GMAC. Tech. rep., National Insti-

tute of Standards & Technology, Gaithersburg, MD, United States, 2007. http:

//dx.doi.org/10.6028/NIST.SP.800-38D.

[6] KrovETz, T., AND RoGAwAy, P. The OCB Authenticated-Encryption Algorithm.
RFC 7253, May 2014.

[7] Liskov, M., RIVEsT, R. L., AND WAGNER, D. Tweakable block ciphers. Journal of
Cryptology 24, 3 (July 2011), 588-613.

[8] Nir, Y., AND LANGLEY, A. ChaCha20 and Poly1305 for IETF Protocols. RFC 8439,
June 2018.

[9] NIST. FIPS 180-4: Secure Hash Standard (SHS). Tech. rep., NIST, 2015.

[2

—
)

https://github.com/cryptobertram/encrypt-to-self
https://github.com/cryptobertram/encrypt-to-self
https://www.apache.org/licenses/LICENSE-2.0
http://dx.doi.org/10.6028/NIST.SP.800-38D
http://dx.doi.org/10.6028/NIST.SP.800-38D

[10] PIJNENBURG,J., AND POETTERING, B. Encrypt-to-self: Securely outsourcing storage. [12] PIJNENBURG, J., AND POETTERING, B. Key assignment schemes with authenticated

In ESORICS (2020), vol. 12308 of Lecture Notes in Computer Science, Springer, pp. ?— encryption, revisited. IACR Transactions on Symmetric Cryptology 2020, 2 (2020),
? https://doi.org/10.1007/978-3-030-58951-6_31. 40-67.
[11] PINENBURG, J., AND POETTERING, B. Encrypt-to-self: Securely outsourcing storage. [13] Rocaway, P. Authenticated-encryption with associated-data. In ACM CCS 2002:
Cryptology ePrint Archive, Report 2020/847, 2020. https://eprint.iacr.org/2020/ 9th Conference on Computer and Communications Security (Washington, DC, USA,
847. Nov. 18-22, 2002), V. Atluri, Ed., ACM Press, pp. 98-107.
[14] SAARINEN, M. O., AND AUMASSON, J. The BLAKE2 cryptographic hash and message

authentication code (MAC). RFC 7693, 2015.

https://doi.org/10.1007/978-3-030-58951-6_31
https://eprint.iacr.org/2020/847
https://eprint.iacr.org/2020/847

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Security Games
	2.3 Handling of Algorithm Failures
	2.4 Memory Alignment

	3 Notions of Encrypt-to-Self
	4 New Encrypt-to-Self Construction
	4.1 Old and New Message Block Encoding
	4.2 Encryption Engine
	4.3 Security Analysis

	5 Implementation
	Acknowledgments

