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ABSTRACT
Convolutional Neural Networks (CNNs) are deployed in more and
more classification systems, but adversarial samples can be mali-
ciously crafted to trick them, and are becoming a real threat. There
have been various proposals to improve CNNs’ adversarial robust-
ness but these all suffer performance penalties or have other lim-
itations. In this paper, we offer a new approach in the form of a
certifiable adversarial detection scheme, the Certifiable Taboo Trap
(CTT). This system, in theory, can provide certifiable guarantees of
detectability of a range of adversarial inputs for certain l∞ sizes. We
develop and evaluate several versions of CTT with different defense
capabilities, training overheads and certifiability on adversarial sam-
ples. In practice, against adversaries with various lp norms, CTT
outperforms existing defense methods that focus purely on im-
proving network robustness. We show that CTT has small false
positive rates on clean test data, minimal compute overheads when
deployed, and can support complex security policies.
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1 INTRODUCTION
Convolutional Neural Networks (CNNs) give the best performance
on visual applications [1, 24, 40] and are now being used in safety-
critical applications, including autonomous vehicles [11], face recog-
nition [42] and human action recognition [20]. However, perturba-
tions can be crafted to trigger misclassifications that are not percep-
tible by humans [15]. Researchers have demonstrated adversarial
samples that can exploit face-recognition systems to break into
smartphones [4] and misdirect autonomous vehicles by perturb-
ing road signs [10]. These adversarial samples can be surprisingly
portable. Samples generated from one classifier transfer to others,
making them a potentially scalable threat to real-life systems.
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Since most of these attacks use neural network gradient infor-
mation to generate perturbations [15], the obvious defense is to
improve the networks’ classification robustness, such as by training
classifiers with adversarial images. Such adversarial training signif-
icantly increases the performance of CNNs on adversarial samples
but falls short in three ways. First, it assumes the defender has prior
knowledge of the attacks; second, the defense is not certifiable;
third, building a fully robust model is still an unsolved question
[41]. In this paper, we look at a different defense strategy, namely
adversarial sample detection. Researchers have shown that many
adversarial samples are detectable, and detection methods can be
built without prior knowledge of attacks [33, 46]. We built on the ex-
isting Taboo Trap detection scheme [46], whose focus is on finding
overly excited neurons being driven beyond a pre-defined range by
adversarial perturbations. We propose a mechanism, the Certifiable
Taboo Trap (CTT), that combines the original Taboo Trap detection
with numerical bound propagation, making the detection bounds
on CNN activation values certifiable against certain input pertur-
bation sizes. For input perturbations at a particular l∞ value, CTT
can verify detection, meaning that CTT guarantees the detected
samples are adversarial inputs. As illustrated in Figure 1, certifiable
detection provides a new angle to the problem of provable defense
guarantees for adversarial samples compared to existing certifiable
robustness research.

In this paper, we propose three versions of CTT: lite, loose and
strict. CTT-lite requires no additional fine-tuning on a pretrained
model, and can provide basic protection against weak adversaries.
CTT-loose retrains on a random set of selected activations with
propagated numerical interval bounds, and provides a loose guar-
antee that all samples detected are adversarial. Finally, CTT-strict
fine-tunes with stricter numerical interval bounds, and thus is able
to provide the same guarantee as CTT-loose on attackers with
small l∞ values; in addition, CTT-strict can verify detection on a
pre-defined range of l∞ values.

The contributions of this paper are:

• We introduce a novel certifiable detection scheme for adver-
sarial samples.

• We release an open-source implementation with fully repro-
ducible results.
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Figure 1: An intuitive comparison between certifiable ro-
bustness and detection. Certifiable robustness builds an lp
normball of provable performance aroundnatural data sam-
ples and provides no guarantees outside of this ball. Cer-
tifiable detection on the other hand builds a very small lp
norm ball around natural data where we guarantee no de-
tection.We also guarantee, for samples outside the ball, that
CTT-loose detection is possible and CTT-strict detection
will always happen in the declared range. The presented
shape for CTT-strict is arbitrary; any regions that are non-
overlapping with natural samples can be certified.

• We introduce CTT-lite, a new detection method that is fine-
tuning free but is limited in its defense capability. We demon-
strate how to optimise detection boundaries through fine-
tuning, then introduce CTT-loose and CTT-strict, both detec-
tion schemes ensure that all detected samples are adversar-
ial. CTT-strict guarantees detections on adversarial samples
with a particular range of pre-defined l∞ bounds.

• We provide detection results on all versions of CTT. For the
first time, we empirically demonstrate how certifiable de-
tection schemes (CTT-loose and CTT-strict) can have above
90% detection ratios on all attacks experimented on MNIST.

2 RELATEDWORK
The field of adversarial machine learning has seen a rapid co-
evolution of attack and defense since the discovery of adversarial
samples [47]. The fast gradient sign method (FGSM) is an early
adversarial attack that generates perturbations using the signs of
the network gradients, and is still a simple yet effective way of
finding adversarial samples [15]. The FGSM attack can be extended
in an iterative way to look for smaller perturbations, giving the
Projected Gradient Descent (PGD) Method or the Basic Iterative
Method (BIM) [27, 32]. Many alternatives of BIM exist and focus on
minimizing the l1 or l2 distances. DeepFool [36] is a more advanced
iterative attack that linearizes misclassification boundaries of the
network at each iteration and moving along the direction that gives
the nearest misclassification. The Carlini & Wagner attack (CW)
has improved the adversarial sample search by directly optimizing
the difference between correct and incorrect logits [6]. However,
a strong adversarial image, i.e. an adversarial sample satisfying a

number of strong constraints such as perturbation size or classifica-
tion confidence, is time-consuming to generate since it requires a
large number of search iterations and binary search steps. Many of
the attacks can change their optimization focus or be constrained
on certain lp norms in an iterative run. In our setup, we use the
term lp -bound attack to differentiate the same attack bounded by
various lp norms.

An interesting feature of adversarial samples is their transferabil-
ity [15, 47, 53]. Adversarial samples that work well on a given neural
network often transfer to a different type of network trained to
solve a similar task. This makes black-box attacks possible. Another
way of finding black-box attacks is using estimated instead of true
gradients [2]. Estimation involves building an output distribution
based on information queried from the target model.

Many defenses against adversarial attacks have been proposed,
most of which aim at improving classification robustness. Adversar-
ial training adds adversarial samples to the training process, helping
the model to learn how to deal with an attacker [15, 27]. Pang et
al. use an ensemble of models to increase decision robustness [38],
while Mustafa et al. use class-wise disentanglement to restrict fea-
ture maps crossing the decision boundaries [37]. However, Schott
et al. showed that even building robust classification on the small
MNIST data remains an unsolved problem [41]. They also proposed
the analysis and synthesis (ABS) method using class-conditioned
data and demonstrate better robustness on the MNIST classification
task.

Many researchers have tried to detect adversarial samples [31, 33,
34, 43]. Magnet detects adversarial samples by inspecting the recon-
struction error of a trained autoencoder [33]. SafetyNet proposed
SVM classifiers to recognize adversaries through neural activation
patterns [31]. However, both of these detection methods rely on
auxiliary components, which have two main problems. First, they
impose a significant computational overhead. Second, an adversary
might obtain a copy of the defense and devise an adversarial sample
to defeat it [5, 7].

Another efficient detection scheme is the Taboo Trap [46], where
a random subset of neurons are constrained in training and an alarm
is set off when some threshold of them become overly excited. This
imposes no extra runtime computational cost, and the constrained
subset of neurons can be picked randomly, giving a key that can be
different each time the network is trained. This makes Black-box
attacks more challenging as there can be multiple independently-
keyed networks each of which is vulnerable to different adversarial
samples [44]. Our work builds on the Taboo Trap, and answers the
question of how to make adversarial sample detection certifiable. It
also establishes the optimal numerical range limit on neurons, and
significantly improves the detection performance of Taboo Trap.

Our work can also be viewed as being related to certifiable ro-
bustness where the prediction of a data point x is verifiably constant
with perturbations of a certain lp norm. When queried with the
input data x , x will be perturbed by isotropic Gaussian noise and
multiple inference runs are executed on a base classifier f [8, 30],
in this way, the returned classification provides the most probable
prediction made by f with a Gaussian corrupted x . Meanwhile,
certification of adversarial samples can be achieved using bound
interval propagation, which is becoming established as a means
of formal verification of neural networks [9, 13, 16, 21, 35, 48, 49].
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Several prior works have studied efficient relaxation methods for
computing tight bounds on the neural network outputs [48, 49].
Our Certifiable Taboo Trap uses bound-interval propagation, but
its focus is on certifying out-of-bound values in a set of randomly
sampled intermediate activations. The interval bounding is a simple
integral bound so the computation overhead is minimised [35].

3 METHOD
3.1 Taboo Trap: A Practical View
The method shown here extends the Taboo Trap originally pre-
sented in [44, 46]. First, we will explain the Taboo Trap method
and then demonstrate the extension made for producing a relaxed
guarantee that a certain l∞ bound attacker will always be detected.

Taboo Trap is based on the idea that neural network activations
can be trained with extra regularisations to bound a set of acti-
vations inside a certain numerical range. No training set inputs
drive this chosen set of activation values out of range. So if such a
‘taboo’ activation is seen, it signals that the current input may be
adversarial. As different instances of the model can be trained with
different taboo sets, the authors coined a term of a transfer function,
which essentially served as a neural network key. In the original
Taboo Trap, Shumailov et al. made use of the nth-max percentile
activation bounds profiled from a trained network [46]. They later
used polynomial keys [44]. Yet, the detection rates reported were
less than ideal: the nth-max percentile function only detects weak
attackers, while polynomial-based detectors show good detection
rates on transfer attacks but perform worse under direct attack.

The Taboo Trap authors hypothesised that its performance is
related to the choice of transfer functions, yet could not explain why
some attackers could not be detected. While their experiments show
a practical ability to detect adversaries, there is little theoretical
understanding of how and why it worked.

3.2 Taboo Trap: A Theoretical View
In this section, we provide a theoretical understanding of how oper-
ating in a high dimensional activation space can detect adversarial
samples. Assume that we have a linear function f (x) = ax + b for
simplicity. The simple integral bound of the linear function with
input bounded between xmin and xmax is bounded by f (xmin) and
f (xmax).

Figure 2a presents how the original Taboo Trap will instrument
function f with a nth max percentile transfer function. xmin and
xmax represent the minimum andmaximum values x can take. Since
network inputs are bounded, the intermediate layers should receive
inputs that are also bounded, regardless of non-linearities. Being
monotonic functions, f (xmin) and f (xmax) present the minimum
and maximum values that the function f can naturally assume. If
Thigh represents the Taboo Trap threshold; we have:{

f (x) ≤ Thigh Benign
f (x) > Thigh Malicious

(1)

We define an adversarial sample x̂ = x + ϵ , with its l∞ norm
having the size of ϵ . With different detection thresholds (Thigh), we
can have natural samples becoming false positives or adversarial
samples becoming undetectable. Figure 2b shows the scenario when

Thigh < f (xmax): there exists a clean sample x with an output f (x)
being in betweenThigh and f (xmax). This causes natural samples to
be misclassified as adversarial (false positives). Figure 2c presents
the case that Thigh > f (xmax): adversarial samples x̂ can generate
output f (x̂) smaller than Thigh so that it becomes undetectable by
the Taboo Trap framework. In summary:{

Thigh > f (xmax) Missed detection
Thigh < f (xmax) False positives

(2)

Consider r = | f (xmax) −Thigh |, it means

• if r equals to zero, the adversarial samples will always get
detected.

• for a given r it is easy to compute what type and how many
of perturbations will go undetectable.

• as mentioned by Shumailov et al. , there is a direct measur-
able trade-off between false positives, accuracy and detection
rate.

Using the method defined above, it becomes apparent that all
monotonic transfer functions should theoretically work in Taboo
Trap, and have a trade-off between accuracy, false positive and
detection rates.

Perturbations can also exist in the range between xmin and xmax.
The original Taboo Trap paper observed that better detector perfor-
mance is achieved by setting a small threshold value, yet training
becomes hard. Our hypothesis is that reducing the distance between
xmin and xmax leads to a reduced number of perturbations in the
natural image range.

It is also worth noting that in this paper detection occurs on post-
ReLU activation values, and only the positive numerical range and
the positive numerical threshold (Thigh) are considered. In practice
bothThigh andTlow can be used with other activation functions such
as LeakyReLU. For simplicity, we use Tl to represent a layer-wise
threshold scalar in later descriptions.

3.3 Interval Bound Propagation
For simplicity, we consider a feed-forward CNN F consisting of
a sequence of convolution layers, where the l th layer computes
output feature maps xl ∈ RCl×Hl×Wl . xl is a collection of feature
maps with Cl channels of Hl ×Wl images.

The first stage of CTT is to compute the activation bounds from
a pretrained network. In this paper we use Interval Bound Prop-
agation (IBP) method [16]. Given the pretrained weights and the
numerical bounds of inputs, CTT computes the numerical bounds
for each layer in the CNN. Assuming the a set of lower and upper
bound for layer l is (Blowl ,B

up
l ), where Blowl is the lower bound and

B
up
l is the upper bound respectively, we have

Blowl+1 = Convb(Wl ,B
low
l )

B
up
l+1 = Convb(Wl ,B

up
l )

(3)

Notice Blow0 and B
high
0 will be the boundaries on the input, ob-

tained from profiling on the natural input data samples. Both Blowl
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(a) Original Taboo Trap. (b) False positives (in red). (c) Undetectable range (in blue).

Figure 2: Taboo Trap visualisation. If x is from the original data distribution, a strict bound causes them to be detected as
adversarial samples, the red area shows the false positive samples (middle figure). If x is an adversarial sample, loose bounds
cause detection fail on adversarial samples with small l∞ values (blue part in figure on the right).

and Bupl have the same dimensions as xl . The interval bound prop-
agation in Equation (3) can be seen as a series of abstract interpola-
tions in a convolution (Convb) [35, 49]. Given scalar boundsml ≤

m ≤ mh andnl ≤ n ≤ nh , we define an operation (ml ,mh )∩(nl ,nh )
produces a tighter bound pl = max(ml ,nl ) and ph = min(mh,nh ):

(ml ,mh ) ∩ (nl ,nh ) = (max(ml ,ml ),min(nh,nh )) (4)

This is equivalent to abstract interpolation in the interval domain
(the box domain) [35]. Notice the bound propagation can also be
performed for adversarial inputs, where the upper bound of the
input becomes B̂up0 = B

up
0 + ϵ and ϵ is the size of the l∞ norm. We

then define (B̂lowl , B̂
up
l ) to be a pair of upper bound and lower bound

for layer l for adversarial inputs with an l∞ budget of ϵ .
Considering the case in the middle layer l , we obtain a particular

activation value x and its values across all input data distributions
can be seen as a set X . Meanwhile, its values for all adversarial
samples with an adversarial perturbation can be viewed as a set X̂ .
For convenience, we call X the natural set and X̂ the adversarial
set. Figure 3 shows the placements of the detection threshold Tl .
In the ideal case, if the distributions of the natural set (X ) and the
adversarial set (X̂ ) are disjoint, the optimal placement of Tl is that
B
up
l <= Tl <= B̂lowl . However, in practice, the natural set and the

adversarial set might overlap (Figure 3b), meaning that there is only
a sub-optimal placement option B

up
l ≤ Tl ≤ B̂

up
l . For these two

threshold placements, we conclude:

• Optimal placement of Tl ( B
up
l ≤ Tl ≤ B̂lowl ) ensures that

all adversarial samples with l∞ norm at the size of ϵ are
detectable (Figure 3a).

• Both optimal and suboptimal placements (Bupl ≤ Tl ≤ B̂
up
l )

of Tl ensure that all detected samples are adversarial regard-
less of the perturbation size (Figure 3b).

The above optimality claims are true if and only if the following
assumption holds: The test data distribution falls inside the training
data distribution. In other words, the test data fall in the range of the
maximum and minimum bounds from the training dataset. Note
that the above assumption does not mean that we mix training
and test datasets. It only implies that there exists a perfect scenario

in which there are no false positives and undetected adversarial
samples. Yet in practice we find that we cannot place the threshold
perfectly and because of that only capture a sub-set of adversarial
examples. This could be a consequence of classification error, as it
was previously shown that classification errors lead to existance of
“local“ adversarial samples [14]. We find that small increase in false
positive rate helps networks to get significantly better at detecting
adversarial samples, further strengthening the locality argument.

In Section 3.5, we show a training-free method of placing a non-
optimal Tl . Section 3.6 discusses methodologies we used to ensure
that placements of Tl are near-optimal.

3.4 Intuition Behind CTT
CTT is best understood in contrast with work on certifiable ro-
bustness such as that by Cohen et al. [8] and Gowal et al. [16].
Certifiable robustness aims at making natural sample behaviour
stay in a pre-formed lp norm ball, so that model behaviour is “stable“
in a pre-defined range of ϵ values. CTT, on the other hand, aims at
detecting illegal behaviours outside of the lp ball, so the optimisa-
tion process of CTT encourages behaviour outside of the natural
range to be more “unstable“. In other words, CTT fine-tuning en-
courages the model to have a large Lipschitz constant, as opposed
to regular robust training methods that decrease Lipschitz constant.

Figure 1 shows an intuitive comparison between Certifiable Ro-
bustness and Detection. Certifiable Robustness builds an lp ball of
provable performance around natural data samples and provides
little to no guarantees on what happens outside of this ball. Certifi-
able Detection builds a very small ball around natural data where
detection is impossible. With CTT-loose detection is possible, with
CTT-strict samples in the predefined range will always be detected.
Presented shape for CTT strict is arbitrary and we find that any
regions non-overlaping with natural samples can be certified. It
should be noted that certification of large continuous regions is
hard as the volume of samples occupied by the region grows expo-
nentially with number of dimensions.

The parameter ϵ can be thought of as a detectability certifica-
tion of an adversarial sample. It defines the minimum theoretical
perturbation size for which the detector can work. Rather than
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(a) Optimal placement of Tl . (b) Suboptimal placement of Tl .

Figure 3: Placement of the detection threshold Tl with different boundaries from both the natural activations (X ) and the
adversarial activations (X̂ ). This indicates that both the numerical value of Tl and the two distributions should be optimised
using fine tuning.

generating adversarial samples as in adversarial training, we use
natural samples perturbed by ϵ as in certifiable robustness. The
CTT loss tries to ensure that when adversarial samples X ± ϵ are
considered, the detector neurons can be turned on.

The intuition is that the smaller you make natural sample lp
norm for CTT, the smaller the natural sample volume becomes. As
the volume of natural samples becomes smaller, it becomes eas-
ier to detect adversarial behaviours. In practice, that should make
CTT a lot less prone to invariance-based adversarial samples [18].
Instead of increasing the volume of natural samples as with certifi-
able robustness, certifiable detection reduces the volume of natural
undetectable samples.

Algorithm 1 Certifiable Taboo Trap finetuning process
Inputs: α , β , θ , f , x , y, ϵ , E
md = RandomMaskGen(β)
for e = 0 to E − 1 do
L = CrossEntropy(y, f (x))
B = ∅, B̂ = ∅

for l ∈ Layers(f ) do
(B

up
l ,B

low
l ) = BoundPropagate(l, x, f )

(B̂
up
l , B̂

low
l ) = BoundPropagate(l, x ± ϵ, f )

B = B ∪ (B
up
l ,B

low
l )

B̂ = B̂ ∪ (B̂
up
l , B̂

low
l )

end for
LD , LV = ComputeRegLoss(B, B̂, f (x),md )

α = Anneal(α, e)
Optθ (L + α(LD + LV ))

end for

3.5 Taboo Trap for Free
One major bottleneck in defending against adversarial samples is
the training overhead. Classic methods like adversarial training
increase model robustness by training with additional adversarial
data points and thus significantly increase the training time. CTT
can be deployed without any additional fine-tuning, and we name
this detection mode CTT-lite.

We previously introduced the concept of a detection threshold
value. Recall the definition of a particular layer’s output activations
xl , CTT uses a randomised binary mask md

l that is the same size
of xl to decided on which activation values to restrict on. Unlike
[44] which used different transfer functions as keys, in this work
we represent different keys as different subsets of neurons that are
instrumented with CTT. We find that such a construction has all
of the benefits described by [44]. Practically, CTT only detects on
xl ·md

l , where · is a Hadamard product (element-wisemultiplication)
between matrices.

CTT-lite simply placesTl at the upper boundary of the natural set
so thatTl = B

up
l . In the original Taboo Trap setup, as in Section 3.2,

this effectively means r = | f (xmax) −T | = 0. So the only additional
computation is to perform the interval bound propagation for de-
ducing the value of Tl in each layer, and no additional training is
required. Note that as the bounds are computed for the training
dataset, it will have false positives for the evaluation dataset.

We find that CTT-lite can detect very weak attackers such as
FGSM with large epsilon, but struggles with attacks that produce
small and mid-sized perturbations. AsTl placement is very far from
optimal, CTT-lite should be considered a baseline detector. CTT-
lite is pre-built into all networks by default and does not bring any
additional costs – it is simply a natural upper bound of activations.
We find that for LeNet5 with MNIST all adversarial samples with
l2 > 10 are detected by default.

3.6 Fine-tuning with CTT Losses
Fine-tuning networks further with CTT losses can introduce a
better separation between the natural and adversarial sets. Unlike
adversarial training, CTT fine-tuning operates on the original data;
we do not generate any adversarial inputs to train with the model,
so the training overheads are lower for CTT.We present three losses
related to interval bounds that are considered as regularisations
in our CTT detection. The three losses are presented in Figure 4,
and they are: 1) Detection loss LD , 2) Strict certification loss LSC ,
3) Loose certification loss LLC .

Consider a masking function ml = M(xl ,Tl ), the output m is a
binary mask of which its elementwise entry is 1 if its corresponding
elementwise entry in x is bigger than a scalar Tl , and otherwise is
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(a) Detection loss LD . (b) Strict Certification loss LSC . (c) Loose Certification loss LLC .

Figure 4: An illustration of CTT regularisation losses. The detection loss (LD ) ensures no natural samples are detected. Strict
certification loss encourages the placement ofTl to be optimal, while loose certification loss helpsTl to achieve the suboptimal
placement.

0. The detection loss LD is a sum of all activation values picked by
the taboo selection mask md

l that are greater than the detection
thresholdTl . The verification losses are simply the distance between
the detection threshold and the bound when the threshold is bigger
than the bound. Considering a network with N layers, we have:

LD =
N−1∑
l=0

sum(xl ·m
d
l ·M(xl ,Tl )) (5)

LSC =
N−1∑
l=0

sum(md
l ·M(B̂lowl ,Tl ) · (Tl − B̂lowl )) (6)

LLC =
N−1∑
l=0

sum(md
l ·M(B̂

up
l ,Tl ) · (Tl − B̂

up
l )) (7)

The function sum produces the sum of all entries of a high dimen-
sional tensor that is the result of convolutions (activations). Recall
we previously defined the optimal and suboptimal placements of
Tl in Section 3.3, the minimization of different combination of CTT
regularisation losses provide:

• If LD = 0 and LSC = 0, we are achieving optimal placement
of Tl . All adversarial inputs with l∞ norm equal to ϵ are
detectable, and all detected samples are adversarial samples
regardless of the perturbation size. Given that, the test data
fall into the training data distribution.

• If LD = 0 and LLC = 0, we are achieving suboptimal place-
ment of Tl , all detected samples are adversarial samples re-
gardless of the perturbation size. Given that, the test data
fall into the training data distribution.

We present the detailed fine-tuning algorithm in Algorithm 1.
The fine-tuning function takes a hyperparameter α , which con-
trols how strong the regularisation is in the optimization procedure
(Opt). In practice, it is necessary to anneal (Anneal) the value of
α with respect to the number of epoch e . The other hyperparame-
ter β is a probability between 0 to 1 that is later used to produce
a set of masks md for each layer’s activations. In the meantime,
the fine-tune function considers a neural network f with trained
parameters θ ; x and y are the training data samples and their labels
respectively. In addition, we need a pre-defined perturbation size

ϵ for adversarial bound construction and E represents the maxi-
mum number of epochs for which we would like to fine-tune. The
function CrossEntropy essentially computes the classification loss
L based on the input training data.

Consider a neural network f parameterised by θ . For each layer
in f , we perform the bound propagation as described in Section 3.3.
The bounds for both the adversarial set of inputs and the natu-
ral set of inputs of each layer are accumulated for computing the
regularisation loss using the function ComputeRegLoss. Note that
the adversarial set represents the set of inputs with a particular
l∞ norm, so there is no actual generation of adversarial samples.
The function ComputeRegLoss produces two losses LD and LC ;
the value of LC can be calculated to be equal to whether LSC or
LLC (Equation (6) and Equation (7)) depending on whether we use
CTT-strict or CTT-loose. Since Algorithm 1 is only a high level
overview, we did not distinguish between LSC and LLC , but call
them in general LC in Algorithm 1. It is worth to note that LSC is a
stronger regularisation than LLC , so adding both regularisations
is theoretically equivalent to adding only LSC . The pre-defined
parameter ϵ determines a trade-off between accuracy, detection
ratios and adversarial accuracy. In practice, we determine the value
of ϵ using a grid search spanning values from 10−5 to 10−1, and
determine its value based on the optimal performance in accuracy
and detection ratio under a simple FGSM attack with fixed l0. We
explain this trade-off in detail in Section 4.4.

4 EVALUATION
4.1 Networks, Datasets and Attacks
We evaluate the proposed Certifiable Taboo Trap (CTT) on three
different image datasets, MNIST [29], FashionMNIST [50] and CI-
FAR10 [23]. The MNIST dataset consists of images of hand-written
digits and the number of output classes is 10. FashionMNIST is
slightly harder than MNIST, and tries to classify pieces of clothing.
The CIFAR10 dataset is a task of classifying 60000 images into 10
classes. We use the LeNet5 [28] architecture for MNIST, and evalu-
ate an efficient CNN architecture (MCifarNet) from Mayo [52] that
achieved a high classification accuracy using only 1.3M parameters.
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Table 1: A comparison between CTT-lite, CTT-loose, CTT-strict, AdvTrain [27], Ensemble [38], MagNet reconstruction-based
detector [33] and PCL [37] on the MNIST dataset. Acc means accuracy and Det means detection rate on adversarial samples.

Baseline AdvTrain Ensemble PCL MagNet CTT-lite CTT-loose CTT-strict
Attack Param Acc Acc Acc Acc Detl1 Detl2 Detl1 ∥l2 Acc Det l2 Acc Det l2 Acc Det l2

No Attack 99.1 99.5 99.5 99.3 1.75 1.93 2.93 99.1 1.9 - 98.5 1.6 - 98.9 1.1 -

FGSM ϵ = 0.1 66.7 73.0 96.3 96.5 54.49 54.59 54.80 70.9 1.4 2.08 25.0 100.0 1.98 61.1 100.0 1.99
ϵ = 0.2 25.7 52.7 52.8 77.9 85.20 85.31 85.31 21.9 1.0 4.14 15.0 100.0 3.89 32.7 100.0 3.90

BIM ϵ = 0.1 49.4 62.0 88.5 92.1 80.82 24.90 80.92 44.2 1.0 1.13 0.0 100.0 0.38 0.15 100.0 0.75
ϵ = 0.15 15.4 18.7 73.6 77.3 88.37 37.14 88.47 4.2 0.8 1.48 0.0 100.0 0.50 2.0 100.0 0.97

PGD ϵ = 0.1 59.4 62.7 82.8 93.9 83.78 77.96 83.78 51.0 1.2 1.50 1.0 100.0 1.24 13.4 100.0 1.35
ϵ = 0.2 1.83 31.9 41.0 80.2 98.27 98.27 98.27 0.0 1.1 2.73 0.0 100.0 2.43 0.9 100.0 2.53

Table 2: A comparison between CTT-loose, CTT-strict, AdvTrain [27], Ensemble [38], MagNet reconstruction-based detector
[33] and PCL [37] on the Cifar10 dataset. Acc means accuracy and Det means detection rate on adversarial samples.

Baseline AdvTrain Ensemble PCL MagNet CTT-loose CTT-strict
Attack Param Acc Acc Acc Acc Detl1 Detl2 Detl1 ∥l2 Acc Det l2 Acc Det l2 Acc Det l2

No Attack 89.1 84.5 90.6 91.9 6.40 6.61 8.13 86.2 3.4 - 86.3 6.4 - 86.1 3.0 -

FGSM ϵ = 0.02 33.6 44.3 61.7 78.5 7.80 6.64 9.55 18.6 95.7 1.07 16.8 98.5 1.08 16.1 96.4 1.06
ϵ = 0.04 22.4 31.0 46.2 69.9 11.53 8.38 13.27 7.6 93.6 2.00 7.2 94.2 2.01 6.0 93.1 2.06

BIM ϵ = 0.01 13.5 22.6 46.6 74.5 6.98 6.52 8.61 0.5 9.0 0.15 0.0 14.1 0.16 1.1 10.9 0.16
ϵ = 0.02 1.5 7.8 31.0 57.3 6.64 6.52 8.50 0.0 14.2 0.21 0.0 25.9 0.20 0.0 17.2 0.21

PGD ϵ = 0.01 24.0 24.3 48.4 75.7 7.10 6.52 8.73 0.1 10.4 0.34 2.9 24.3 0.34 2.0 16.6 0.34
ϵ = 0.02 2.9 7.8 30.4 48.5 6.98 6.52 8.85 0.0 40.8 0.65 0.0 70.3 0.65 0.0 49.9 0.65

Table 3: A comparison between CTT-lite, CTT-loose, CTT-strict, Madry et al. [32], Sitatapatra [44], ABS and Binary ABS [41]
on the MNIST dataset. For detection based defense, we show results in the form of a(d), where a is accuracy and d is detection
rate. GE represents gradient estimation.

CNN Madry et al. Binary ABS ABS Sitatapatra CTT-loose CTT-strict

No Attack 99.1% 98.8% 99.0% 99.0% 99.2% (2%) 99.1% (0.5%) 98.8% (1.3%)

l2-metric (ϵ = 1.5)
FGM 48% 96% - - 2% (3%) 4% (99%) 21%(100%)
FGM w/ GE 42% 88% 68% 89% 4% (7%) 0% (100%) 25%(100%)
Deepfool 18% 91% - - 12% (1%) 0% (100%) 77% (95.6%)
Deepfool w/ GE 30% 90% 41% 83% 6% (2%) 0% (100%) 76.5% (94.4%)
L2 BIM 13% 88% - - 0% (0%) 0% (100%) 0% (100%)
L2 BIM w/ GE 37% 88% 63% 87% 0% (3%) 0% (100%) 0% (100%)

l∞-metric (ϵ = 0.3)
FGSM 4% 93% - - 2%(3%) 1% (99%) 2%(100%)
FGSM w/ GE 21% 89% 85% 34% 0%(2%) 0% (100%) 4% (100%)
BIM 0% 90% - - 0%(1%) 0% (100%) 0% (100%)
BIM w/ GE 37% 89% 86% 13% 0%(1%) 0% (100%) 0% (100%)

We consider gradient-based FGSM [15], FGM [15], BIM [27],
PGD [27] and C&W [6] attacks with various attack parameters.
These attacks can be seen as a collection of l∞ and l2 based attacks.
In addition, we provide results in both White-box and Black-box

settings. For Black-box attacks, we use gradient estimation with
the coordinate-wise finite-difference method, similar to Schott et
al. [41]; and a fully decision-based Boundary Attack [3]. The attack
implementations are from Foolbox [39].

Session 1: Adversarial Machine Learning AISec '20, November 13, 2020, Virtual Event, USA

19



4.2 Parameter Choices
Most of the commonly-used optimisers are suitable for CTT train-
ing. However, there exists an interaction between the CTT penalty
(the additional loss term introduced by CTT) and the weight decay
of the optimizer. Although we have not evaluated this interaction
formally, we find it easier to train models when the weight decay
is either turned off or set to a very small value. The optimizer used
in our experiments is RMSProp.

The annealing procedure (Anneal in Algorithm 1) for CTT param-
eters is important for convergence. The parameter α determines the
strength of the CTT penalty, and we increase α iteratively by a fac-
tor of β every t training epochs. For bothMNIST and FashionMNIST,
we used t = 6, β = 0.005. For CIFAR10, we used t = 30, β = 0.001.
In all of the networks we instrumented a proportion of the second
layer with CTT. We find that the best way to train the models is to
first optimise LV , i.e. make sure that neurons have a bound larger
thanTl and then start iteratively increasing α . We hypothesise that
this works in line with recent findings that there exist a number
of connected convergence clusters with similar performance [12]
with a path between them. Iteratively increasing α allows us to
keep convergence, while maintaining low LV loss and decreasing
the false-positive rate.

4.3 Attackers with Various Capabilities and
Various Norm Bounds

Attacks can be evaluated very differently, and we offer two sets
of evaluations for a thorough comparison with existing defense
methods. In the first set, we run attacks with fixed parameters and
a fixed number of iterations. In the second set, we enable early
stopping for iterative attacks so that perturbation sizes are fixed. In
addition, we also provide evaluation with Black-box attacks using
gradient estimation. We used ϵ = 3 × 10−3 for MNIST networks,
and ϵ = 10−4 for CIFAR10 networks. These values were determined
from a grid search, a detailed discussion of the grid search and an
evaluation of using different ϵ is shown in Section 4.4. We show
the detailed hyperparameter configurations of α , β , E and ϵ in
Algorithm 1.

In Table 1 and Table 2, we present comparisons between CTT
and various robust adversarial training schemes, including Adv-
Train [27], Ensemble [38], MagNet [33] and PCL [37]. In this setup,
we run attacks with fixed parameters and measure the accuracy,
detection ratios and l2 norms of the adversarial samples. BIM and
PGD iterated for 10 times with a step size of ϵ/10; Notice we present
the baseline accuracy for the networks on which we evaluate. The
baseline accuracy will be the same as CTT-lite, since it involves
no re-training of the model. CTT-lite provides limited protections
against adversarial attacks. CTT-loose and CTT-strict, however,
show above 90% detection ratios across all examined attacks in
Table 1. In addition, both detection schemes provide a degree of cer-
tifiability on the detected adversarial samples. The detection ratios
when no attacks are applied are the false positives. There exists a
trade-off between the false-positive rates and the detection ratios.
As presented in Table 2, the two versions of CTT-loose have dif-
ferent false-positive rates, and offer different detection capabilities.
Table 2 shows our detection scheme outperform robust networks
on FGSM, however, provides relatively worse performance when

Figure 5: Trade-off between choices of ϵ and detector perfor-
mance. There are five LeNet5 networks classifying MNIST,
instrumented with CTT-loose with Tl = 10−4 with a given ϵ .
Thenetworks are trained to a false-positive rate of 2%. Points
showmedian performance, whereas error bars refer to stan-
dard deviations of the 5 networks.

l2 norms are low. First, our detection offers certifiability which is
not seen in any of the work compared. Second, the work compared
does not report the l2 norm, attacks with different random starts
may cause a difference in l2 norms and also the attacking quality.

To further evaluate the CTT system, we conduct a comparison to
Madry et al., Sitatapatra [44], ABS and Binary ABS [41] under both
White-box and Black-Box attacks on the MNIST dataset. We set a
noise budget for each attack, and the Black-Box attacks are con-
structed using gradient estimation.We see almost all CTT-loose and
CTT-strict results show above 90% detection of adversarial samples
while keeping the false positives low. These results outperform all
other competitors that focus solely on improving model robustness.
As can be seen in Table 1, the robustness-based defenses have higher
accuracy than to CTT on adversarial images. Intuitively, CTT en-
forces separation of natural and adversarial sets by the detection
thresholds. The CTT models are thus more sensitive to adversarial
samples – we observe selected neurons get suppressed for natural
inputs but get non-zero values for adversarial ones. CTT-strict will
show 100% detection on all attacks that are above a certain given
l∞ – which is exactly what we see in Table 1 with l∞-based attacks.
For l2-based attacks, it is hard to ensure every pixel is under the
given certifiable limit, but our method practically capture many
adversaries with high detection rates.

4.4 False Positives Trade-off
In this section we show the impact of different false-positive rates
on the CTT-loose instrumentation. We use 5 LeNet5 networks and
train each of them with the same CTT-loose restrictions but stop
at various training time so that networks achieve different false-
positive rates. Figure 6 presents the false positive rate trade-off
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Figure 6: Trade-off between choices of false positive rates
and detector performance. There are five LeNet5 networks
classifying FashionMNIST, instrumented with CTT-loose
with Tl = 10−4 with a given ϵ = 0.005. Points show me-
dian performance, whereas error bars refer to standard de-
viations.

two specific attacks, with false positive rates on the x-axis and
detectability on the y-axis.

The relationship between detector performance and false posi-
tive rates indicates a trade-off of interest when applying CTT-loose
in practice. With a slight increase of false positive rates (1% to 3%),
we increase the detector performance by around 20%. Intuitively,
this suggests first, that there exist inefficiencies in the internal rep-
resentations of the neural network, where the network struggles to
separate natural and non-natural samples (similarly to [14]); and
second, this trade-off between false positive rates and detectabil-
ity is the result of of imperfections of the training dataset. If the
training dataset involves imperfect, confusing images, this leaves a
vague boundary between the natural and adversarial input sets. Al-
though this relationship exists across different datasets and models,
its scaling seems to be dataset-dependent.

4.5 FashionMNIST on LeNet5
MNIST is a popular benchmark, but is known to be relatively sim-
ple [29]. Xiao et al. proposed FashionMNIST [50], a more complex,
yet still simple toy dataset. In this section we report on results of
CTT-loose instrumentation of LeNet5 networks solving Fashion-
MNIST with ϵ = 0.001, meaning that the adversarial set includes
perturbed images with an l∞ size of 0.001.

In addition to the attacks presented in the previous section, we
also show here the results for a decision-based attack [3]. The attack
itself is particularly interesting as it is not based on any gradient
information, so CTT detection is not network-information specific.
For this attack, we use 25 trials per iteration and vary the number
of iterations.

Table 4 shows the results of attacking LeNet5 instrumented with
CTT-loose. In the evaluation section of the paper, we have shown

that for MNIST, CTT detection was capable of capturing almost all
of the adversarial samples. Unlike MNIST, CTT fails to detect all of
the adversarial samples on FashionMNIST.

As already noted, there is a relationship between the attack
perturbation size, dataset specifics, and the detectability of CTT.
In the case of FashionMNIST, for the particular ϵ value, we find it
shows relatively better detection rate for small l2 values.

4.6 Runtime Overheads and Security Protocols
The proposed CTT system has low runtime overheads compared
with other detection systems (SafetyNet [31] and MagNet [33]). It is
similar to Sitatapatra [44], another derivative of Taboo Trap; CTT
supports the concept of embedding keys in each neural network to
diversify models under adversarial attack. The key is embedded via
the mask and can support complex security protocols; a detailed
analysis of key attribution and runtime overheads can be found
in Shumailov et al. and these advantages are equally applicable to
CTT.

Table 4: CTT-loose instrumented LeNet5 network classify-
ing FashionMNIST. We show results in the form of a(d),
where a is accuracy and d is detection rate.

θ l2 CTT-loose

No Attack 90.6% (5.3%) 90.7% (3.2%)

FGSM

ϵ = 0.006 0.14 86.55% (92.44%) 84.55% (97.06%)
ϵ = 0.007 0.17 84.63% (92.65%) 82.27% (98.08%)
ϵ = 0.01 0.24 78.08% (92.78%) 75.57% (95.81%)
ϵ = 0.03 0.71 42.49% (82.12%) 41.14% (80.69%)
ϵ = 0.05 1.17 22.82% (71.30%) 25.80% (69.53%)
ϵ = 0.07 1.63 16.38% (64.32%) 17.61% (63.59%)

Boundary

i = 10 2.92 0.00% (34.58%) 0.00% (42.39%)
i = 50 2.35 0.00% (32.99%) 0.00% (36.93%)
i = 100 1.88 0.00% (35.71%) 0.11% (39.59%)
i = 500 0.51 0.00% (77.63%) 0.00% (81.48%)
i = 1000 0.35 0.11% (84.84%) 0.00% (87.39%)

C&W

c = 0.1 b = 1 4.85 25.73% (15.20%) 24.66% (8.79%)
c = 0.5 b = 1 0.10 65.79% (78.21%) 61.42% (79.89%)
c = 0.1 b = 5 0.19 0.00% (79.68%) 0.00% (81.05%)
c = 0.5 b = 5 0.23 0.88% (74.78%) 0.22% (77.11%)
c = 0.1 b = 10 0.19 0.00% (80.81%) 0.00% (81.05%)
c = 0.5 b = 10 0.22 0.88% (76.33%) 0.22% (79.78%)

5 DISCUSSION
5.1 Robustness and Detection
What does it mean for a neural network to be robust? Depending
on who is asked the answers will range from interpretability i.e.
understanding what influenced the decision, through to detection
i.e. flagging up inputs that confuse the network, to resilience i.e.
tolerance of perturbations of some particular size. Although each
interpretation is useful, they all answer conceptually different ques-
tions and have large implications. We believe all three cases should
be considered together.

When a previous version of this paper was submitted to a top
machine learning conference, a number of reviewers questioned
the usefulness of detection, arguing that for a car moving at speed,
not making a decision while under attack might be as dangerous as
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making a wrong decision. We disagree. Humans and many other
animals have evolved an acute awareness of hostile intent, and
for good reasons. Remaining alert for extended periods of time is
exhausting. In systems security, situational awareness is critical
in many real-life contexts; companies spend real money on threat
intelligence, and monitor DNS to detect whether any machine in
their network has been compromised. Academic security thinking
has been influenced by cryptography, where one assumes a Dolev-
Yao opponent (i.e. the enemy controls the phone company) and can
use mechanisms that have security proofs to assure confidentiality
and integrity of our communications. In most real-life applications,
however, the costs of making a system resilient to all attacks are
excessive. (Even in the cryptographers’ model, there is no guarantee
of availability: a hostile phone company can always deny us service.)

In the specific context of road vehicles, manufacturers must qual-
ify all programmable electronics under ISO 26262, which involves
careful hazard analysis leading to requirements for both safety
functionality and safety integrity. These standards are about to be
complemented by the draft ISO SAE/DIS 21434 on cybersecurity
for road vehicles which extends hazard analysis to threat analysis.
As a result, automotive machine-vision systems are significantly
detuned to make adversarial attacks extremely difficult. Attack de-
tection is also a valid means of response and may enable the use of
better vision systems; in the event of an attack being detected, the
vehicle can simply switch to its default safety behaviour of coming
to a stop.

Next, it is often correct to be uncertain about a decision. When
classifying cats and dogs, a giraffe should not be called either. Mod-
ern safety-critical systems typically have a number of fallback
modes. In the case of road vehicles, the options include fallback to
a limp-home mode with limited speed, and reversion to manual
operation. The kind of DNN resilience on offer from adversarial
training or certifiable robustness does not react to the attacks so
much as remaining ignorant to their existence. This may seem
ideal in isolation but is nowhere near ideal in many real-world
applications.

If there is an actual attack, in which a malicious actor projects
images on a wall with the intent of killing people in a car driving
past it, it makes little difference whether the attacker has to use
8/255 or 35/255 perturbation, as long as the images work. If a car
manufacturer or Tier-1 component supplier wishes to sell a DNN
that is resilient to an ϵ-attacker, but only for easily achievable values
of ϵ , we fail to see how such a product could usefully fit into the
automotive safety ecosystem.

Resilience mechanisms may have some applications, but detec-
tion mechanisms probably have more. They must considered in the
context of the design of larger systems, many of which already have
other mechanisms for intrusion detection and situational aware-
ness. Indeed two of the fastest-growing sectors in the cybersecu-
rity ecosystem are security orchestration and response (SOAR) and
security incident and event management (SIEM). On top of that,
safety-critical systems of many kinds have their own mechanisms
for resilience at the system level, involving redundancy, fallback
and response.

5.2 Desirable Properties of the Detector
Detector mechanisms can be designed with different properties
in mind. In this section we discuss properties that we consider
important for real world deployable detectors.

5.2.1 Computational complexity. – when designing detectors it is
important to consider them in context of real systems, where energy,
latency, and memory constraints must be taken into consideration.
For example, for simple MNIST, MagNet introduces an additional
20% and SafetyNet 2000–3000% computation overhead [46]. Such
overheads can be used to create service-denial attacks [45]. Ideally,
detection mechanisms should introduce zero run-time overheads in
both computation and memory access. Detectors with this property
include Taboo Trap [44, 46], CTT, introduction of an additional
class [17], ODD [25], and Injected Attractors [51].

5.2.2 Hardware awareness. – a large number of neural networks
now need to run on particularly constrained devices, such as se-
curity cameras or unmanned vehicles. This introduces additional
complexity to the detection mechanisms – they need to be effective
with highly quantised data representations, and to adapt to varying
architectures produced by AutoML algorithms. This in turn sug-
gests a need for detection mechanisms that are flexible and adaptive.
CTT supports running on individual layers and even particular fil-
ter banks, making it flexible in deployment. Furthermore, detection
can be very energy-efficient in hardware, since optimised detection
is just numerical comparison of particular activation values. In ad-
dition, CTT can be seamlessly integrated into low-precision CNN
inference hardware by just looking at overflow flags at the end of
arithmetic operations.

5.2.3 Diversity and key size. – diversity is really important for de-
tectors that may be attacked. In 1883, the cryptographer Auguste
Kerckhoffs outlined a design principle that has stood the test of time:
a system should withstand enemy capture, and it should remain
secure if everything about it, except the value of a key, becomes
public knowledge [22]. This suggests a need for controllable diver-
sity of detectors, such that breaking one detector would not have
an effect on another.

CTT randomises the set of detector neurons and uses them as a
key which gives a significant advantage against Black-box attacks.
Kupek et al. showed that it is possible to find detector thresholds
of Taboo Trap in a White-box setting [26]. Exact model extraction
techniques such as the one presented by Jagielski et al. may be the
best known attack in a Black-box setting [19].

6 CONCLUSION
In this paper, we presented the Certifiable Taboo Trap (CTT), a
new way for neural networks to detect adversarial samples. We
discussed three different modes which provide different detection
capabilities and levels of certifiability at different training costs. All
variants have a small run-time overhead, and can be customised
with the equivalent of cryptographic keys. The stronger variants
have extra training but this is used to characterise propagation
bounds rather than to defend against specific adversarial samples,
yielding a more flexible and general defense mechanism.
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